
AltOS

Altos Metrum Operating System

Keith Packard

AltOS: Altos Metrum Operating System
Keith Packard
Copyright © 2010 Keith Packard

This document is released under the terms of the Creative Commons ShareAlike 3.0 [http://creativecommons.org/licenses/by-sa/3.0/] license.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

iii

Table of Contents
1. Overview ... 1
2. Programming the 8051 with SDCC .. 2

1. 8051 memory spaces ... 2
1.1. __data .. 2
1.2. __idata ... 2
1.3. __xdata ... 2
1.4. __pdata ... 2
1.5. __code .. 2
1.6. __bit .. 3
1.7. __sfr, __sfr16, __sfr32, __sbit .. 3

2. Function calls on the 8051 ... 3
2.1. __reentrant functions ... 3
2.2. Non __reentrant functions .. 3
2.3. __interrupt functions ... 3
2.4. __critical functions and statements ... 3

3. Task functions .. 4
1. ao_add_task ... 4
2. ao_exit .. 4
3. ao_sleep .. 4
4. ao_wakeup ... 4
5. ao_alarm ... 5
6. ao_start_scheduler ... 5
7. ao_clock_init .. 5

4. Timer Functions ... 7
1. ao_time ... 7
2. ao_delay .. 7
3. ao_timer_set_adc_interval ... 7
4. ao_timer_init .. 7

5. AltOS Mutexes ... 8
1. ao_mutex_get ... 8
2. ao_mutex_put ... 8

6. CC1111 DMA engine .. 9
1. ao_dma_alloc ... 9
2. ao_dma_set_transfer .. 9
3. ao_dma_start .. 9
4. ao_dma_trigger ... 10
5. ao_dma_abort ... 10

7. SDCC Stdio interface ... 11
1. putchar .. 11
2. getchar .. 11
3. flush ... 11
4. ao_add_stdio .. 11

8. Command line interface ... 13
1. ao_cmd_register .. 13
2. ao_cmd_lex .. 13
3. ao_cmd_put16 .. 13
4. ao_cmd_put8 .. 14
5. ao_cmd_white ... 14
6. ao_cmd_hex ... 14
7. ao_cmd_decimal ... 14
8. ao_match_word ... 14

AltOS

iv

9. ao_cmd_init ... 15
9. CC1111 USB target device ... 16

1. ao_usb_flush .. 16
2. ao_usb_putchar ... 16
3. ao_usb_pollchar .. 16
4. ao_usb_getchar ... 16
5. ao_usb_disable .. 17
6. ao_usb_enable .. 17
7. ao_usb_init ... 17

10. CC1111 Serial peripheral .. 18
1. ao_serial_getchar ... 18
2. ao_serial_putchar .. 18
3. ao_serial_drain .. 18
4. ao_serial_set_speed .. 18
5. ao_serial_init .. 18

11. CC1111 Radio peripheral .. 20
1. ao_radio_set_telemetry ... 20
2. ao_radio_set_packet ... 20
3. ao_radio_set_rdf .. 20
4. ao_radio_idle .. 21
5. ao_radio_get ... 21
6. ao_radio_put ... 21
7. ao_radio_abort .. 21
8. ao_radio_send ... 21
9. ao_radio_recv ... 22
10. ao_radio_rdf ... 22
11. ao_packet_putchar ... 22
12. ao_packet_pollchar .. 22
13. ao_packet_slave_start ... 23
14. ao_packet_slave_stop ... 23
15. ao_packet_slave_init .. 23
16. ao_packet_master_init .. 23

1

Chapter 1. Overview
AltOS is a operating system built for the 8051-compatible processor found in the TI cc1111
microcontroller. It's designed to be small and easy to program with. The main features are:

• Multi-tasking. While the 8051 doesn't provide separate address spaces, it's often easier to write code
that operates in separate threads instead of tying everything into one giant event loop.

• Non-preemptive. This increases latency for thread switching but reduces the number of places where
context switching can occur. It also simplifies the operating system design somewhat. Nothing in the
target system (rocket flight control) has tight timing requirements, and so this seems like a reasonable
compromise.

• Sleep/wakeup scheduling. Taken directly from ancient Unix designs, these two provide the fundemental
scheduling primitive within AltOS.

• Mutexes. As a locking primitive, mutexes are easier to use than semaphores, at least in my experience.

• Timers. Tasks can set an alarm which will abort any pending sleep, allowing operations to time-out
instead of blocking forever.

The device drivers and other subsystems in AltOS are conventionally enabled by invoking their _init()
function from the 'main' function before that calls ao_start_scheduler(). These functions initialize the pin
assignments, add various commands to the command processor and may add tasks to the scheduler to
handle the device. A typical main program, thus, looks like:

 void
 main(void)
 {
 ao_clock_init();

 /* Turn on the LED until the system is stable */
 ao_led_init(LEDS_AVAILABLE);
 ao_led_on(AO_LED_RED);
 ao_timer_init();
 ao_cmd_init();
 ao_usb_init();
 ao_monitor_init(AO_LED_GREEN, TRUE);
 ao_rssi_init(AO_LED_RED);
 ao_radio_init();
 ao_packet_slave_init();
 ao_packet_master_init();
 #if HAS_DBG
 ao_dbg_init();
 #endif
 ao_config_init();
 ao_start_scheduler();
 }

As you can see, a long sequence of subsystems are initialized and then the scheduler is started.

2

Chapter 2. Programming the 8051 with
SDCC

The 8051 is a primitive 8-bit processor, designed in the mists of time in as few transistors as possible.
The architecture is highly irregular and includes several separate memory spaces. Furthermore, accessing
stack variables is slow, and the stack itself is of limited size. While SDCC papers over the instruction set,
it is not completely able to hide the memory architecture from the application designer.

1. 8051 memory spaces
The __data/__xdata/__code memory spaces below were completely separate in the original 8051 design.
In the cc1111, this isn't true—they all live in a single unified 64kB address space, and so it's possible to
convert any address into a unique 16-bit address. SDCC doesn't know this, and so a 'global' address to
SDCC consumes 3 bytes of memory, 1 byte as a tag indicating the memory space and 2 bytes of offset
within that space. AltOS avoids these 3-byte addresses as much as possible; using them involves a function
call per byte access. The result is that nearly every variable declaration is decorated with a memory space
identifier which clutters the code but makes the resulting code far smaller and more efficient.

1.1. __data
The 8051 can directly address these 128 bytes of memory. This makes them precious so they should be
reserved for frequently addressed values. Oh, just to confuse things further, the 8 general registers in the
CPU are actually stored in this memory space. There are magic instructions to 'bank switch' among 4 banks
of these registers located at 0x00 - 0x1F. AltOS uses only the first bank at 0x00 - 0x07, leaving the other
24 bytes available for other data.

1.2. __idata
There are an additional 128 bytes of internal memory that share the same address space as __data but
which cannot be directly addressed. The stack normally occupies this space and so AltOS doesn't place
any static storage here.

1.3. __xdata
This is additional general memory accessed through a single 16-bit address register. The CC1111F32 has
32kB of memory available here. Most program data should live in this memory space.

1.4. __pdata
This is an alias for the first 256 bytes of __xdata memory, but uses a shorter addressing mode with single
global 8-bit value for the high 8 bits of the address and any of several 8-bit registers for the low 8 bits.
AltOS uses a few bits of this memory, it should probably use more.

1.5. __code
All executable code must live in this address space, but you can stick read-only data here too. It is addressed
using the 16-bit address register and special 'code' access opcodes. Anything read-only should live in this
space.

Programming the 8051 with SDCC

3

1.6. __bit
The 8051 has 128 bits of bit-addressible memory that lives in the __data segment from 0x20 through 0x2f.
Special instructions access these bits in a single atomic operation. This isn't so much a separate address
space as a special addressing mode for a few bytes in the __data segment.

1.7. __sfr, __sfr16, __sfr32, __sbit
Access to physical registers in the device use this mode which declares the variable name, it's type and the
address it lives at. No memory is allocated for these variables.

2. Function calls on the 8051
Because stack addressing is expensive, and stack space limited, the default function call declaration in
SDCC allocates all parameters and local variables in static global memory. Just like fortran. This makes
these functions non-reentrant, and also consume space for parameters and locals even when they are not
running. The benefit is smaller code and faster execution.

2.1. __reentrant functions
All functions which are re-entrant, either due to recursion or due to a potential context switch while
executing, should be marked as __reentrant so that their parameters and local variables get allocated on
the stack. This ensures that these values are not overwritten by another invocation of the function.

Functions which use significant amounts of space for arguments and/or local variables and which are not
often invoked can also be marked as __reentrant. The resulting code will be larger, but the savings in
memory are frequently worthwhile.

2.2. Non __reentrant functions
All parameters and locals in non-reentrant functions can have data space decoration so that they are
allocated in __xdata, __pdata or __data space as desired. This can avoid consuming __data space for
infrequently used variables in frequently used functions.

All library functions called by SDCC, including functions for multiplying and dividing large data types,
are non-reentrant. Because of this, interrupt handlers must not invoke any library functions, including the
multiply and divide code.

2.3. __interrupt functions
Interrupt functions are declared with with an __interrupt decoration that includes the interrupt number.
SDCC saves and restores all of the registers in these functions and uses the 'reti' instruction at the end so
that they operate as stand-alone interrupt handlers. Interrupt functions may call the ao_wakeup function
to wake AltOS tasks.

2.4. __critical functions and statements
SDCC has built-in support for suspending interrupts during critical code. Functions marked as __critical
will have interrupts suspended for the whole period of execution. Individual statements may also be marked
as __critical which blocks interrupts during the execution of that statement. Keeping critical sections as
short as possible is key to ensuring that interrupts are handled as quickly as possible.

4

Chapter 3. Task functions
This chapter documents how to create, destroy and schedule AltOS tasks.

1. ao_add_task

 void
 ao_add_task(__xdata struct ao_task * task,
 void (*start)(void),
 __code char *name);

This initializes the statically allocated task structure, assigns a name to it (not used for anything but the
task display), and the start address. It does not switch to the new task. 'start' must not ever return; there
is no place to return to.

2. ao_exit

 void
 ao_exit(void)

This terminates the current task.

3. ao_sleep

 void
 ao_sleep(__xdata void *wchan)

This suspends the current task until 'wchan' is signaled by ao_wakeup, or until the timeout, set by ao_alarm,
fires. If 'wchan' is signaled, ao_sleep returns 0, otherwise it returns 1. This is the only way to switch to
another task.

Because ao_wakeup wakes every task waiting on a particular location, ao_sleep should be used in a loop
that first checks the desired condition, blocks in ao_sleep and then rechecks until the condition is satisfied.
If the location may be signaled from an interrupt handler, the code will need to block interrupts by using
the __critical label around the block of code. Here's a complete example:

 __critical while (!ao_radio_done)
 ao_sleep(&ao_radio_done);

4. ao_wakeup

Task functions

5

 void
 ao_wakeup(__xdata void *wchan)

Wake all tasks blocked on 'wchan'. This makes them available to be run again, but does not actually switch
to another task. Here's an example of using this:

 if (RFIF & RFIF_IM_DONE) {
 ao_radio_done = 1;
 ao_wakeup(&ao_radio_done);
 RFIF &= ~RFIF_IM_DONE;
 }

Note that this need not be enclosed in __critical as the ao_sleep block can only be run from normal mode,
and so this sequence can never be interrupted with execution of the other sequence.

5. ao_alarm

 void
 ao_alarm(uint16_t delay)

Schedules an alarm to fire in at least 'delay' ticks. If the task is asleep when the alarm fires, it will wakeup
and ao_sleep will return 1.

 ao_alarm(ao_packet_master_delay);
 __critical while (!ao_radio_dma_done)
 if (ao_sleep(&ao_radio_dma_done) != 0)
 ao_radio_abort();

In this example, a timeout is set before waiting for incoming radio data. If no data is received before the
timeout fires, ao_sleep will return 1 and then this code will abort the radio receive operation.

6. ao_start_scheduler

 void
 ao_start_scheduler(void)

This is called from 'main' when the system is all initialized and ready to run. It will not return.

7. ao_clock_init

 void
 ao_clock_init(void)

Task functions

6

This turns on the external 48MHz clock then switches the hardware to using it. This is required by many
of the internal devices like USB. It should be called by the 'main' function first, before initializing any of
the other devices in the system.

7

Chapter 4. Timer Functions
AltOS sets up one of the cc1111 timers to run at 100Hz and exposes this tick as the fundemental unit of
time. At each interrupt, AltOS increments the counter, and schedules any tasks waiting for that time to
pass, then fires off the ADC system to collect current data readings. Doing this from the ISR ensures that
the ADC values are sampled at a regular rate, independent of any scheduling jitter.

1. ao_time

 uint16_t
 ao_time(void)

Returns the current system tick count. Note that this is only a 16 bit value, and so it wraps every 655.36
seconds.

2. ao_delay

 void
 ao_delay(uint16_t ticks);

Suspend the current task for at least 'ticks' clock units.

3. ao_timer_set_adc_interval

 void
 ao_timer_set_adc_interval(uint8_t interval);

This sets the number of ticks between ADC samples. If set to 0, no ADC samples are generated. AltOS
uses this to slow down the ADC sampling rate to save power.

4. ao_timer_init

 void
 ao_timer_init(void)

This turns on the 100Hz tick using the CC1111 timer 1. It is required for any of the time-based functions
to work. It should be called by 'main' before ao_start_scheduler.

8

Chapter 5. AltOS Mutexes
AltOS provides mutexes as a basic synchronization primitive. Each mutexes is simply a byte of memory
which holds 0 when the mutex is free or the task id of the owning task when the mutex is owned. Mutex
calls are checked—attempting to acquire a mutex already held by the current task or releasing a mutex not
held by the current task will both cause a panic.

1. ao_mutex_get

 void
 ao_mutex_get(__xdata uint8_t *mutex);

Acquires the specified mutex, blocking if the mutex is owned by another task.

2. ao_mutex_put

 void
 ao_mutex_put(__xdata uint8_t *mutex);

Releases the specified mutex, waking up all tasks waiting for it.

9

Chapter 6. CC1111 DMA engine
The CC1111 contains a useful bit of extra hardware in the form of five programmable DMA engines.
They can be configured to copy data in memory, or between memory and devices (or even between two
devices). AltOS exposes a general interface to this hardware and uses it to handle radio and SPI data.

Code using a DMA engine should allocate one at startup time. There is no provision to free them, and if
you run out, AltOS will simply panic.

During operation, the DMA engine is initialized with the transfer parameters. Then it is started, at which
point it awaits a suitable event to start copying data. When copying data from hardware to memory, that
trigger event is supplied by the hardware device. When copying data from memory to hardware, the transfer
is usually initiated by software.

1. ao_dma_alloc

 uint8_t
 ao_dma_alloc(__xdata uint8_t *done)

Allocates a DMA engine, returning the identifier. Whenever this DMA engine completes a transfer. 'done'
is cleared when the DMA is started, and then receives the AO_DMA_DONE bit on a successful transfer
or the AO_DMA_ABORTED bit if ao_dma_abort was called. Note that it is possible to get both bits if
the transfer was aborted after it had finished.

2. ao_dma_set_transfer

 void
 ao_dma_set_transfer(uint8_t id,
 void __xdata *srcaddr,
 void __xdata *dstaddr,
 uint16_t count,
 uint8_t cfg0,
 uint8_t cfg1)

Initializes the specified dma engine to copy data from 'srcaddr' to 'dstaddr' for 'count' units. cfg0 and cfg1
are values directly out of the CC1111 documentation and tell the DMA engine what the transfer unit size,
direction and step are.

3. ao_dma_start

 void
 ao_dma_start(uint8_t id);

Arm the specified DMA engine and await a signal from either hardware or software to start transferring
data.

CC1111 DMA engine

10

4. ao_dma_trigger

 void
 ao_dma_trigger(uint8_t id)

Trigger the specified DMA engine to start copying data.

5. ao_dma_abort

 void
 ao_dma_abort(uint8_t id)

Terminate any in-progress DMA transation, marking its 'done' variable with the AO_DMA_ABORTED
bit.

11

Chapter 7. SDCC Stdio interface
AltOS offers a stdio interface over both USB and the RF packet link. This provides for control of the device
localy or remotely. This is hooked up to the stdio functions in SDCC by providing the standard putchar/
getchar/flush functions. These automatically multiplex the two available communication channels; output
is always delivered to the channel which provided the most recent input.

1. putchar

 void
 putchar(char c)

Delivers a single character to the current console device.

2. getchar

 char
 getchar(void)

Reads a single character from any of the available console devices. The current console device is set to
that which delivered this character. This blocks until a character is available.

3. flush

 void
 flush(void)

Flushes the current console device output buffer. Any pending characters will be delivered to the target
device. xo

4. ao_add_stdio

 void
 ao_add_stdio(char (*pollchar)(void),
 void (*putchar)(char),
 void (*flush)(void))

This adds another console device to the available list.

'pollchar' returns either an available character or AO_READ_AGAIN if none is available. Significantly,
it does not block. The device driver must set 'ao_stdin_ready' to 1 and call ao_wakeup(&ao_stdin_ready)
when it receives input to tell getchar that more data is available, at which point 'pollchar' will be called
again.

SDCC Stdio interface

12

'putchar' queues a character for output, flushing if the output buffer is full. It may block in this case.

'flush' forces the output buffer to be flushed. It may block until the buffer is delivered, but it is not required
to do so.

13

Chapter 8. Command line interface
AltOS includes a simple command line parser which is hooked up to the stdio interfaces permitting remote
control of the device over USB or the RF link as desired. Each command uses a single character to invoke
it, the remaining characters on the line are available as parameters to the command.

1. ao_cmd_register

 void
 ao_cmd_register(__code struct ao_cmds *cmds)

This registers a set of commands with the command parser. There is a fixed limit on the number of
command sets, the system will panic if too many are registered. Each command is defined by a struct
ao_cmds entry:

 struct ao_cmds {
 char cmd;
 void (*func)(void);
 const char *help;
 };

'cmd' is the character naming the command. 'func' is the function to invoke and 'help' is a string displayed
by the '?' command. Syntax errors found while executing 'func' should be indicated by modifying the global
ao_cmd_status variable with one of the following values:

The command was parsed successfully. There is no need to assign this value, it is the default.

A token in the line was invalid, such as a number containing invalid characters. The low-level lexing
functions already assign this value as needed.

The command line is invalid for some reason other than invalid tokens.

2. ao_cmd_lex

 void
 ao_cmd_lex(void);

This gets the next character out of the command line buffer and sticks it into ao_cmd_lex_c. At the end
of the line, ao_cmd_lex_c will get a newline ('\n') character.

3. ao_cmd_put16

 void
 ao_cmd_put16(uint16_t v);

Command line interface

14

Writes 'v' as four hexadecimal characters.

4. ao_cmd_put8

 void
 ao_cmd_put8(uint8_t v);

Writes 'v' as two hexadecimal characters.

5. ao_cmd_white

 void
 ao_cmd_white(void)

This skips whitespace by calling ao_cmd_lex while ao_cmd_lex_c is either a space or tab. It does not skip
any characters if ao_cmd_lex_c already non-white.

6. ao_cmd_hex

 void
 ao_cmd_hex(void)

This reads a 16-bit hexadecimal value from the command line with optional leading whitespace. The
resulting value is stored in ao_cmd_lex_i;

7. ao_cmd_decimal

 void
 ao_cmd_decimal(void)

This reads a 32-bit decimal value from the command line with optional leading whitespace. The resulting
value is stored in ao_cmd_lex_u32 and the low 16 bits are stored in ao_cmd_lex_i;

8. ao_match_word

 uint8_t
 ao_match_word(__code char *word)

This checks to make sure that 'word' occurs on the command line. It does not skip leading white space.
If 'word' is found, then 1 is returned. Otherwise, ao_cmd_status is set to ao_cmd_syntax_error and 0 is
returned.

Command line interface

15

9. ao_cmd_init

 void
 ao_cmd_init(void

Initializes the command system, setting up the built-in commands and adding a task to run the command
processing loop. It should be called by 'main' before ao_start_scheduler.

16

Chapter 9. CC1111 USB target device
The CC1111 contains a full-speed USB target device. It can be programmed to offer any kind of USB
target, but to simplify interactions with a variety of operating systems, AltOS provides only a single target
device profile, that of a USB modem which has native drivers for Linux, Windows and Mac OS X. It
would be easy to change the code to provide an alternate target device if necessary.

To the rest of the system, the USB device looks like a simple two-way byte stream. It can be hooked into
the command line interface if desired, offering control of the device over the USB link. Alternatively, the
functions can be accessed directly to provide for USB-specific I/O.

1. ao_usb_flush

 void
 ao_usb_flush(void);

Flushes any pending USB output. This queues an 'IN' packet to be delivered to the USB host if there is
pending data, or if the last IN packet was full to indicate to the host that there isn't any more pending
data available.

2. ao_usb_putchar

 void
 ao_usb_putchar(char c);

If there is a pending 'IN' packet awaiting delivery to the host, this blocks until that has been fetched. Then,
this adds a byte to the pending IN packet for delivery to the USB host. If the USB packet is full, this queues
the 'IN' packet for delivery.

3. ao_usb_pollchar

 char
 ao_usb_pollchar(void);

If there are no characters remaining in the last 'OUT' packet received, this returns AO_READ_AGAIN.
Otherwise, it returns the next character, reporting to the host that it is ready for more data when the last
character is gone.

4. ao_usb_getchar

 char
 ao_usb_getchar(void);

CC1111 USB target device

17

This uses ao_pollchar to receive the next character, blocking while ao_pollchar returns
AO_READ_AGAIN.

5. ao_usb_disable

 void
 ao_usb_disable(void);

This turns off the USB controller. It will no longer respond to host requests, nor return characters. Calling
any of the i/o routines while the USB device is disabled is undefined, and likely to break things. Disabling
the USB device when not needed saves power.

Note that neither TeleDongle nor TeleMetrum are able to signal to the USB host that they have
disconnected, so after disabling the USB device, it's likely that the cable will need to be disconnected and
reconnected before it will work again.

6. ao_usb_enable

 void
 ao_usb_enable(void);

This turns the USB controller on again after it has been disabled. See the note above about needing to
physically remove and re-insert the cable to get the host to re-initialize the USB link.

7. ao_usb_init

 void
 ao_usb_init(void);

This turns the USB controller on, adds a task to handle the control end point and adds the usb I/O functions
to the stdio system. Call this from main before ao_start_scheduler.

18

Chapter 10. CC1111 Serial peripheral
The CC1111 provides two USART peripherals. AltOS uses one for asynch serial data, generally to
communicate with a GPS device, and the other for a SPI bus. The UART is configured to operate in 8-
bits, no parity, 1 stop bit framing. The default configuration has clock settings for 4800, 9600 and 57600
baud operation. Additional speeds can be added by computing appropriate clock values.

To prevent loss of data, AltOS provides receive and transmit fifos of 32 characters each.

1. ao_serial_getchar

 char
 ao_serial_getchar(void);

Returns the next character from the receive fifo, blocking until a character is received if the fifo is empty.

2. ao_serial_putchar

 void
 ao_serial_putchar(char c);

Adds a character to the transmit fifo, blocking if the fifo is full. Starts transmitting characters.

3. ao_serial_drain

 void
 ao_serial_drain(void);

Blocks until the transmit fifo is empty. Used internally when changing serial speeds.

4. ao_serial_set_speed

 void
 ao_serial_set_speed(uint8_t speed);

Changes the serial baud rate to one of AO_SERIAL_SPEED_4800, AO_SERIAL_SPEED_9600 or
AO_SERIAL_SPEED_57600. This first flushes the transmit fifo using ao_serial_drain.

5. ao_serial_init

 void

CC1111 Serial peripheral

19

 ao_serial_init(void)

Initializes the serial peripheral. Call this from 'main' before jumping to ao_start_scheduler. The default
speed setting is AO_SERIAL_SPEED_4800.

20

Chapter 11. CC1111 Radio peripheral
The CC1111 radio transceiver sends and receives digital packets with forward error correction and
detection. The AltOS driver is fairly specific to the needs of the TeleMetrum and TeleDongle devices, using
it for other tasks may require customization of the driver itself. There are three basic modes of operation:

1. Telemetry mode. In this mode, TeleMetrum transmits telemetry frames at a fixed rate. The frames are
of fixed size. This is strictly a one-way communication from TeleMetrum to TeleDongle.

2. Packet mode. In this mode, the radio is used to create a reliable duplex byte stream between TeleDongle
and TeleMetrum. This is an asymmetrical protocol with TeleMetrum only transmitting in response to a
packet sent from TeleDongle. Thus getting data from TeleMetrum to TeleDongle requires polling. The
polling rate is adaptive, when no data has been received for a while, the rate slows down. The packets
are checked at both ends and invalid data are ignored.

On the TeleMetrum side, the packet link is hooked into the stdio mechanism, providing an alternate
data path for the command processor. It is enabled when the unit boots up in 'idle' mode.

On the TeleDongle side, the packet link is enabled with a command; data from the stdio package is
forwarded over the packet link providing a connection from the USB command stream to the remote
TeleMetrum device.

3. Radio Direction Finding mode. In this mode, TeleMetrum constructs a special packet that sounds like
an audio tone when received by a conventional narrow-band FM receiver. This is designed to provide
a beacon to track the device when other location mechanisms fail.

1. ao_radio_set_telemetry

 void
 ao_radio_set_telemetry(void);

Configures the radio to send or receive telemetry packets. This includes packet length, modulation scheme
and other RF parameters. It does not include the base frequency or channel though. Those are set at the
time of transmission or reception, in case the values are changed by the user.

2. ao_radio_set_packet

 void
 ao_radio_set_packet(void);

Configures the radio to send or receive packet data. This includes packet length, modulation scheme and
other RF parameters. It does not include the base frequency or channel though. Those are set at the time
of transmission or reception, in case the values are changed by the user.

3. ao_radio_set_rdf

 void

CC1111 Radio peripheral

21

 ao_radio_set_rdf(void);

Configures the radio to send RDF 'packets'. An RDF 'packet' is a sequence of hex 0x55 bytes sent at a base
bit rate of 2kbps using a 5kHz deviation. All of the error correction and data whitening logic is turned off
so that the resulting modulation is received as a 1kHz tone by a conventional 70cm FM audio receiver.

4. ao_radio_idle

 void
 ao_radio_idle(void);

Sets the radio device to idle mode, waiting until it reaches that state. This will terminate any in-progress
transmit or receive operation.

5. ao_radio_get

 void
 ao_radio_get(void);

Acquires the radio mutex and then configures the radio frequency using the global radio calibration and
channel values.

6. ao_radio_put

 void
 ao_radio_put(void);

Releases the radio mutex.

7. ao_radio_abort

 void
 ao_radio_abort(void);

Aborts any transmission or reception process by aborting the associated DMA object and calling
ao_radio_idle to terminate the radio operation.

In telemetry mode, you can send or receive a telemetry packet. The data from receiving a packet also
includes the RSSI and status values supplied by the receiver. These are added after the telemetry data.

8. ao_radio_send

CC1111 Radio peripheral

22

 void
 ao_radio_send(__xdata struct ao_telemetry *telemetry);

This sends the specific telemetry packet, waiting for the transmission to complete. The radio must
have been set to telemetry mode. This function calls ao_radio_get() before sending, and ao_radio_put()
afterwards, to correctly serialize access to the radio device.

9. ao_radio_recv

 void
 ao_radio_recv(__xdata struct ao_radio_recv *radio);

This blocks waiting for a telemetry packet to be received. The radio must have been set to telemetry mode.
This function calls ao_radio_get() before receiving, and ao_radio_put() afterwards, to correctly serialize
access to the radio device. This returns non-zero if a packet was received, or zero if the operation was
aborted (from some other task calling ao_radio_abort()).

In radio direction finding mode, there's just one function to use

10. ao_radio_rdf

 void
 ao_radio_rdf(int ms);

This sends an RDF packet lasting for the specified amount of time. The maximum length is 1020 ms.

Packet mode is asymmetrical and is configured at compile time for either master or slave mode (but not
both). The basic I/O functions look the same at both ends, but the internals are different, along with the
initialization steps.

11. ao_packet_putchar

 void
 ao_packet_putchar(char c);

If the output queue is full, this first blocks waiting for that data to be delivered. Then, queues a character
for packet transmission. On the master side, this will transmit a packet if the output buffer is full. On the
slave side, any pending data will be sent the next time the master polls for data.

12. ao_packet_pollchar

 char
 ao_packet_pollchar(void);

CC1111 Radio peripheral

23

This returns a pending input character if available, otherwise returns AO_READ_AGAIN. On the master
side, if this empties the buffer, it triggers a poll for more data.

13. ao_packet_slave_start

 void
 ao_packet_slave_start(void);

This is available only on the slave side and starts a task to listen for packet data.

14. ao_packet_slave_stop

 void
 ao_packet_slave_stop(void);

Disables the packet slave task, stopping the radio receiver.

15. ao_packet_slave_init

 void
 ao_packet_slave_init(void);

Adds the packet stdio functions to the stdio package so that when packet slave mode is enabled, characters
will get send and received through the stdio functions.

16. ao_packet_master_init

 void
 ao_packet_master_init(void);

Adds the 'p' packet forward command to start packet mode.

