
 Design Note DN504

 SWRA113A Page 1 of 11

FEC Implementation
By Robin Hoel

Keywords

• CC1100
• CC1101
• CC1110
• CC1111
• CC1150
• CC2500

• CC2510
• CC2511
• CC2550
• FEC
• Viterbi
• Trellis

1 Introduction

This document gives an overview of the
FEC implementation in the CC1100,

CC1101, CC1110, CC1111, CC1150,
CC2500, CC2510, CC2511, and CC2550.

 Design Note DN504

 SWRA113A Page 2 of 11

Table of Contents

KEYWORDS.. 1
1 INTRODUCTION... 1
2 ABBREVIATIONS... 2
3 WHAT IS FEC?... 3
4 HOW IS FEC IMPLEMENTED? ... 3
5 HOW MANY BIT ERRORS CAN FEC CORRECT? .. 5
6 FEC IMPLEMENTATION.. 8
7 GENERAL INFORMATION .. 11

7.1 DOCUMENT HISTORY.. 11

2 Abbreviations

FEC Forward Error Coding
FSM Finite State Machine

 Design Note DN504

 SWRA113A Page 3 of 11

3 What is FEC?

Forward Error Correction (FEC) is a technique that allows the receiver to correct a certain
amount of errors in the received message. This is achieved by letting a FEC encoder add
redundancy to the data message at the transmitter according to certain prescribed rules. The
FEC decoder at the receiver uses the knowledge of these rules to identify and, if possible,
correct any errors that have appeared. Broadly speaking there are two main classes of FEC:
linear block codes (BCH, Reed-Solomon, etc) and convolutional codes.

An (n,k) linear block encoder takes k-bit block of message data and appends n-k redundant
bits algebraically related to the k message bits, producing a n-bit code block. There are 2k
valid code words, which is far less than the 2n possible code words, and a good linear block
code is one in which the minimum distance dmin, the minimum number of bits that must be
changed to go from any one code word to any other code word, is maximized. In order to be
able to correct e erroneous bits we have that dmin > 2e, i.e. after e erroneous bits the correct
code word is still the one with the smallest distance to the received code word. The
dimensionless ratio r = k/n is called the code rate.

A convolutional encoder is fundamentally a finite state machine with a k-bit input and n-bit
output, n>k, and an internal M-bit memory. An important parameter of the convolutional
encoder is its constraint length L = M + 1 which specifies over how many consecutive n-bit
output periods a k-bit input value affects the output. The FSM is such that any given message
sequence input results in a coded output sequence which maximizes the minimum distance
to what would be generated for any other input message sequence. Convolutional decoding
is usually performed by the Viterbi algorithm, which, conceptually, compares the received
sequence to the encoded version of all possible encoder input sequences and keeps tab of
how close of a match each is. Periodically, the Viterbi algorithm, tracks back through its
memory and outputs part of the input sequence, which when encoded is the closest match to
the received code sequence.

4 How is FEC Implemented?

The CC1100/CC1101/CC1110/CC1111/CC1150/CC2500/CC2510/CC2511/CC2550 all have
a rate r = 1/2 convolutional, non-recursive encoder with constraint length L = 4 (M = 3),
implemented as shown in Figure 1.

Z-1Z-1

Input
data i

g1 output

g0 output

s1s2

Z-1

s0

Figure 1. Implementation of Convolutional Encoder

Each input bit is encoded into two output bits, thus doubling the amount of data that must be
transmitted. If the same radio data rate is used, error-free reception with a lower signal
strength is possible – thus effectively the range of the radio has been increased or the power
consumption can be decreased for a fixed range. If the same raw data rate is required, the
radio data rate must be doubled either by doubling the modulation rate or going from a 2-ary
to a 4-ary modulation format. Obviously, this will increase the number of bit errors in the
received coded sequence, but the error-correction in the decoder ensures that the decoded
message sequence contains less erroneous bits than if the message sequence had been
transmitted without coding.

 Design Note DN504

 SWRA113A Page 4 of 11

Convolutional coding works best if the erroneous bits are evenly (or at least randomly)
spaced throughout the received coded sequence. Unfortunately, due to the bursty nature of
many radio interference sources and the characteristics of the demodulator, it is more likely
that erroneous bits will clump together. To combat this problem, so-called interleaving of the
coded data is performed after encoding in the transmitter and de-interleaving before decoding
in the receiver. The purpose of interleaving is to make sure that adjacent symbols in the
coded sequence are spaced out in the transmitted sequence, so that any clumps of bit errors
in the received sequence are spread out more uniformly by the de-interleaver, letting the
decoder work under optimum conditions. Our chips employ a 4x4 matrix interleaver with 2
bits (one encoder output symbol) per cell.

Figure 2. FEC and Interleaving

The decoder in the chip implements a Viterbi algorithm that works on 8-bit soft-decision
values from the demodulator. The Viterbi algorithm conceptually compares the received
coded sequence with the encoded sequences resulting from encoding of all possible input
message sequences, calculates a deviation value for each and then selects the most likely
one (the one with the lowest deviation).

A section of the so-called trellis shown in Figure 3 is useful in understanding how the Viterbi
algorithm works. The circles at the left and right represent the possible values of the encoder
state at any given time and the lines between them represent possible transitions from any
one state to another. The numbers written along the transition lines are, the input bit to the
encoder and the resulting output bits from the encoder, respectively.

In practice, the Viterbi algorithm manages to explore all possible input sequences to the
encoder by keeping track of only a finite number of paths through the trellis (corresponding to
certain sequences of input bits). Specifically, the Viterbi algorithm only keeps track of the
most probable of all paths that end in each of the 2M encoder states, and the accumulated
deviation or cost of that path.

For each input symbol, all possible encoder output symbols (00, 01, 10, and 11 in Figure 3)
are compared against the received symbol and a transition cost is calculated. The
appropriate transition cost is added to the accumulated path cost of each path that terminates
in the source state on the left in the figure. It can be seen that there are two transitions into
each destination state on the right in the figure. For each destination state the incoming
transition with the lowest accumulated path cost is selected (the survivor path) and the other
one thrown away – nothing is lost as all future paths that go through this state at this point in

Packet
Engine

FEC
Encoder Modulator

Interleaver
Write buffer

Interleaver
Read buffer

Demodulator FEC
Decoder

Packet
Engine

Interleaver
Write buffer

Interleaver
Read buffer

 Design Note DN504

 SWRA113A Page 5 of 11

the trellis would do the same selection. Thus the number of paths that the Viterbi Algorithm
tracks is always constant and the optimal path is always one of them.

0/1
1

0/1
0

0/00
1/11

0/01
1/10

0/11

1/00
0/10

1/01

1/10

0/01

1/11

0/00

1/01

1/0
0

000

001

010

011

100

101

110

111

001

010

011

100

101

110

111

000

s2..0 i/g1g0

Figure 3. Trellis Diagram

In order to provide the end of the transmitted data, which do not get the benefit of being
evaluated over a full trellis path, with a protection equal to that of the rest of the transmitted
data, so-called trellis termination is necessary. Terminating the trellis means to transmit extra
data that brings the convolutional encoder to a known state (usually all zero) so that the
decoder doesn’t need to make a decision on the most-probable trellis path with limited
history. At the end of the transmitted data it is also necessary to fill up the last interleaver
buffer with something so that a full interleaver block can be transmitted.

Our FEC implementation appends “00001011b” to the data input to the encoder/interleaver
when an odd number of data bytes are transmitted and “00001011 00001011 b” when an
even num ber of data bytes are transmitted. The first three zeros of these sequences are
used to terminate the trellis and the rest are used to fill up the last interleaver block. (The
reason that not all zeros are transmitted is to ensure that there are some symbol transitions in
the output of the interleaver to facilitate clock recovery.)

5 How Many Bit Errors Can FEC Correct?

The convolutional code (optionally) employed in our chips has a maximum free distance of
dfree= 6 bits. This means that changing any one bit in the message sequence will change at
least 6 bits in the coded output sequence. Correspondingly, at least three erroneous bits are
required in the received coded sequence before any other message sequence than the
correct one is equally likely or more likely.

 Design Note DN504

 SWRA113A Page 6 of 11

The ability to correct two bits in the entire coded sequence may not sound like much, but of
course this is not the whole story. Normally, when there are no bit errors in the received
sequence, the correct path through the trellis will have a much lower cost than all other
possible paths and these alternative paths will thus quickly die out. This situation is illustrated
in Figure 4 (for a different convolutional code than that employed in the CC11xx/CC25xx
having fewer states for illustrative clarity):

Example encoder

0/01

1/10

0/10

1/01

0/00
1/11

0/11

1/00

00

01

10

11

01

10

11

00

s1..0 i/g1g0

Z-1

Input
data i

g1 output

g0 output

s1

Z-1

s0

Example trellis

Figure 4. Example Trellis and Example Encoder

Figure 5. Trellis 1

The numbers above each state node is the cost in erroneous bits in the received sequence
(this assumes a binary symmetric channel and hard decoding). It can be seen that most
alternative paths quickly disappear since their cost become prohibitively high. If we introduce
an error in the received sequence (input) as shown below we see that the cost of the
alternative path(s) are much closer to the cost of the correct path and are thus longer-lived.

Figure 6. Trellis 2

 Design Note DN504

 SWRA113A Page 7 of 11

If we were to introduce another bit error in the received sequence close to the first one, this
effect would be even more pronounced:

 Figure 7. Trellis 3

We see that this time there exists an alternative path that originates in state 10 at the point of
the first error (marked in green) which for time afterwards has the same (or even lower) cost
as the correct path. The culled (non-surviving) transitions are also shown in black to illustrate
at which point the correct path and the alternative path merge. The convolutional encoder
employed in CCxx00 can tolerate one additional bit error in the received sequence for the life-
span of such an alternative path (from when the two paths split at the first bit error until they
meet again at the same state sometime later). If a third bit error was to occur during this time,
the alternative path instead of the optimum path might be the survivor path upon merge. We
introduce a third error after the two paths merge to demonstrate the principle:

Figure 8. Trellis 4

The exact life-span of each such alternative path is dependant on the input data and the state
in which the alternative and correct paths split. As a rule of thumb one could say that they
usually merge again within 3L (constraint lengths). The interleaver will help in distributing
clumps of erroneous bits, which often occur in real-world received data, further part. Due to
the inability to precisely predict how many erroneous bits can be corrected by a convolutional
coder, the figure of merit usually associated with a convolutional code is its asymptotic coding
gain, i.e. the reduction of the SNR of the received signal that yields an equivalent BER as the
un-coded case. This can be used to increase range or decrease power in the transmitter. For
a binary-input AWGN channel (relevant for 2-ary modulation formats on the CCxx00) the
asymptotic coding gain is:

 () dBlog10 10 rdG freea = ,

 Design Note DN504

 SWRA113A Page 8 of 11

where dfree is the free distance of the code and r is the code rate. The used code (dfree= 6, r =
1/2) has an asymptotic coding gain of 4.8 dB, although the achievable gain is considerable
less for binary modulation formats (perhaps 2-3 dB).

6 FEC Implementation

//--
UINT16 culCalcCRC(BYTE crcData, UINT16 crcReg) {
 UINT8 i;
 for (i = 0; i < 8; i++) {
 if (((crcReg & 0x8000) >> 8) ^ (crcData & 0x80))
 crcReg = (crcReg << 1) ^ 0x8005;
 else
 crcReg = (crcReg << 1);
 crcData <<= 1;
 }
 return crcReg;
}// culCalcCRC
//--
// Variables
UINT16 xdata fecEncodeTable[] = {
 0, 3, 1, 2,
 3, 0, 2, 1,
 3, 0, 2, 1,
 0, 3, 1, 2
};
UINT16 input[260];
UINT16 i, j, val, fecReg, fecOutput;
UINT32 intOutput;
UINT16 fec[520];
UINT16 interleaved[520];
UINT16 inputNum = 0, fecNum;
UINT16 checksum;
UINT16 length;
//--
//Example code
length = 3;
input[0] = length;
input[1] = 1;
input[2] = 2;
input[3] = 3;

inputNum = length + 1;

printf("Input: [%5d bytes]\n", inputNum);
for (i = 0; i < inputNum; i++)
 printf("%02X%s", input[i], (i % 8 == 7) ? "\n" : (i % 2 == 1) ? " " : " ");
printf("\n\n");

// Generate CRC
checksum = 0xFFFF; //Init value for CRC calculation
for(i = 0; i <= input[0]; i++)
 checksum = culCalcCRC(input[i], checksum);
input[inputNum++] = checksum >> 8; // CRC1
input[inputNum++] = checksum & 0x00FF; // CRC0

printf("Appended CRC: [%5d bytes]\n", inputNum);
for (i = 0; i < inputNum; i++)
 printf("%02X%s", input[i], (i % 8 == 7) ? "\n" : (i % 2 == 1) ? " " : " ");
printf("\n\n");

// Append Trellis Terminator
input[inputNum] = 0x0B;
input[inputNum + 1] = 0x0B;

fecNum = 2*((inputNum / 2) + 1);

printf("Appended Trellis terminator: [%5d bytes]\n", fecNum);
for (i = 0; i < fecNum; i++)
 printf("%02X%s", input[i], (i % 8 == 7) ? "\n" : (i % 2 == 1) ? " " : " ");
printf("\n\n");

 Design Note DN504

 SWRA113A Page 9 of 11

Running this code will give the following result (all data in hexadecimal base):

Input: [4 bytes]
03 01 02 03

Appended CRC: [6 bytes]
03 01 02 03 30 3A

Appended Trellis terminator: [8 bytes]
03 01 02 03 30 3A 0B 0B

FEC encoder output: [16 bytes]
00 0E 8C 03 7C 0D F0 0E 82 8C 0E 5E F0 D1 8C D1

Interleaver output: [16 bytes]
C8 3C 00 20 84 CF 33 31 A2 FC 40 4A 44 30 47 EF

To test this FEC encoder program one can transmit its output data from one device (with FEC
disabled) and recover the original input from a receiving device with FEC enabled. It is also
possible to deliberately insert errors in the transmitted sequence to experiment with the error
correcting abilities of the code.

// FEC encode
fecReg = 0;
for (i = 0; i < fecNum; i++) {
 fecReg = (fecReg & 0x700) | (input[i] & 0xFF);
 fecOutput = 0;
 for (j = 0; j < 8; j++) {
 fecOutput = (fecOutput << 2) | fecEncodeTable[fecReg >> 7];
 fecReg = (fecReg << 1) & 0x7FF;
 }
 fec[i * 2] = fecOutput >> 8;
 fec[i * 2 + 1] = fecOutput & 0xFF;
}

printf("FEC encoder output: [%5d bytes]\n", fecNum * 2);
for (i = 0; i < fecNum * 2; i++)
 printf("%02X%s", fec[i], (i % 16 == 15) ? "\n" : (i % 4 == 3) ? " " : " ");
printf("\n\n");

// Perform interleaving
for (i = 0; i < fecNum * 2; i += 4) {
 intOutput = 0;
 for (j = 0; j < 4*4; j++)
 intOutput =

(intOutput << 2) | ((fec[i +(~j & 0x03)] >> (2 * ((j & 0x0C) >> 2))) & 0x03);

 interleaved[i] = (intOutput >> 24) & 0xFF;
 interleaved[i + 1] = (intOutput >> 16) & 0xFF;
 interleaved[i + 2] = (intOutput >> 8) & 0xFF;
 interleaved[i + 3] = (intOutput >> 0) & 0xFF;
}

printf("Interleaver output: [%5d bytes]\n", fecNum * 2);
for (i = 0; i < fecNum * 2; i++)
 printf("%02X%s", interleaved[i], (i % 16 == 15) ? "\n" : (i % 4 == 3) ? " " : " ");
printf("\n\n");

 Design Note DN504

 SWRA113A Page 10 of 11

For relevant register settings in TX and RX, see table 1 and table 2 respectively.

Transmitter Comments
PKTCTRL0.LENGTH_CONFIG = 0 Fixed Packet Length

PKTCTRL0.CRC_EN = 0 Disable CRC

MDMCFG1.FEC_EN = 0 Disable FEC

PKTLEN = 0x10 Packet length = 16

TXFIFO = 0xC8, 0x3C, 0x00, 0x20 , 0x84, 0xCF, 0x33, 0x31,

 0xA2, 0xFC, 0x40, 0x4A, 0x44, 0x30, 0x47, 0xEF

The output from the interleaver

Table 1. TX Settings

Receiver Comments
PKTCTRL0.LENGTH_CONFIG = 1 Variable Packet Length

PKTCTRL0.CRC_EN = 1 Enable CRC

MDMCFG1.FEC_EN = 1 Enable FEC
RXFIFO = 0x03, 0x01, 0x02, 0x03 The received packet

Table 2. RX Settings

 Design Note DN504

 SWRA113A Page 11 of 11

7 General Information

7.1 Document History
Revision Date Description/Changes
SWRA113A 2007.10.22 Removed logo from header. Added CC1101 and CC1111
SWRA113 2006.07.31 Initial release.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	Introduction
	Abbreviations
	What is FEC?
	How is FEC Implemented?
	How Many Bit Errors Can FEC Correct?
	FEC Implementation
	General Information
	Document History

