

CC112X/CC1175 Low-Power High Performance Sub-1 GHz RF Transceivers/Transmitter

User's Guide

SWRU295C Page 1 of 108

Abbreviations

Abbreviations used in this data sheet are described below.

2-FSK	Binary Frequency Shift Keying	LSB	Least Significant Bit
4-FSK	Quaternary Frequency Shift Keying	LQI	Link Quality Indicator
ACP	Adjacent Channel Power	MCU	Microcontroller Unit
ADC	Analog to Digital Converter	MSB	Most Significant Bit
AFC	Automatic Frequency Compensation	MSK	Minimum Shift Keying
AGC	Automatic Gain Control	ООК	On-Off Keying
ASK	Amplitude Shift Keying	PA	Power Amplifier
ВТ	Bandwidth-Time Product	PD	Power Down
CCA	Clear Channel Assessment	PER	Packet Error Rate
CRC	Cyclic Redundancy Check	PLL	Phase Locked Loop
CS	Carrier Sense	POR	Power-On Reset
DC	Direct Current	PQT	Preamble Quality Threshold
ESR	Equivalent Series Resistance	QPSK	Quadrature Phase Shift Keying
FCC	Federal Communications Commission	RC	Resistor-Capacitor
FIFO	First-In-First-Out	RF	Radio Frequency
FHSS	Frequency Hopping Spread Spectrum	RSSI	Received Signal Strength Indicator
FS	Frequency Synthesizer	RX	Receive, Receive Mode
GFSK	Gaussian shaped Frequency Shift Keying	SPI	Serial Peripheral Interface
IF	Intermediate Frequency	SRD	Short Range Devices
I/Q	In-Phase/Quadrature	TX	Transmit, Transmit Mode
ISM	Industrial, Scientific, Medical	VCO	Voltage Controlled Oscillator
kbps	kilo bit per second	eWOR	Enhanced Wake on Radio
ksps	kilo symbol per second	XOSC	Crystal Oscillator
LNA	Low Noise Amplifier	XTAL	Crystal
LO	Local Oscillator		

Table of Contents

ABBI	REVIATIONS	2
TABI	LE OF CONTENTS	3
1	OVERVIEW	5
2	CONFIGURATION SOFTWARE	
3	MICROCONTROLLER INTERFACE	
3.1	CONFIGURATION	
3.2	SPI Access Types	
3.3	OPTIONAL PIN CTRL RADIO CONTROL FEATURE	18
3.4	GENERAL PURPOSE INPUT/OUTPUT CONTROL PINS	18
4	COMMON RECEIVE AND TRANSMIT CONFIGURATIONS	24
4.1	MODULATION FORMATS	
4.2	DATA RATE PROGRAMMING	29
5	RECEIVE CONFIGURATION	
5.1	RX FILTER BANDWIDTH	
5.2	DC Offset Removal	
5.3	AUTOMATIC GAIN CONTROL	
5.4	IMAGE COMPENSATION	
5.5	BIT SYNCHRONIZATION	
5.6 5.7	BYTE SYNCHRONIZATION, SYNC WORD DETECTION	
5.8	RSSI	
5.9	COLLISION DETECTOR	
5.10	CLEAR CHANNEL ASSESSMENT (CCA)	
5.11	LISTEN BEFORE TALK (LBT)	
5.12	LINK QUALITY INDICATOR (LQI)	
6	TRANSMIT CONFIGURATION	41
6.1	PA OUTPUT POWER PROGRAMMING	
6.2	OOK/ASK BIT SHAPING	41
7	PACKET HANDLING HARDWARE SUPPORT	42
7.1	STANDARD PACKET FORMAT	
7.2	PACKET FILTERING IN RECEIVE MODE	48
7.3	PACKET HANDLING IN TRANSMIT MODE	49
7.4	PACKET HANDLING IN RECEIVE MODE	
7.5	PACKET HANDLING IN FIRMWARE	
7.6	TX FIFO AND RX FIFO	
7.7	TRANSPARENT AND SYNCHRONOUS SERIAL OPERATION	
8	RADIO CONTROL	
8.1	POWER-ON START-UP SEQUENCE	
8.2	CRYSTAL CONTROL	
8.3 8.4	VOLTAGE REGULATOR CONTROL	
8.5	RX TERMINATION	
8.6	ENHANCED WAKE ON RADIO (EWOR)	
8.7	RX SNIFF MODE	
8.8	RC OSCILLATOR CALIBRATION.	
8.9	ANTENNA DIVERSITY AND MULTIPLE PATH TRANSMISSION	63
8.10	RANDOM NUMBER GENERATOR	64
8.11	FREQUENCY SYNTHESIZER CONFIGURATION	
8.12	RF PROGRAMMING	
8.13	IF PROGRAMMING	
8.14	FS CALIBRATION	
8.15	FS OUT OF LOCK DETECTION.	
9	SYSTEM CONSIDERATIONS AND GUIDELINES	
9.1	VOLTAGE REGULATORS	
9.2	SRD REGULATIONS	
9.3	FREQUENCY HOPPING AND MULTI-CHANNEL SYSTEMS	6 /

9.4	CONTINUOUS I RANSMISSIONS	
9.5	BATTERY OPERATED SYSTEMS	67
10	REGISTER DESCRIPTION	68
11	SOLDERING INFORMATION	106
12	DEVELOPMENT KIT ORDERING INFORMATION	106
13	REFERENCES	107
14	GENERAL INFORMATION	108
1/1	DOCUMENT HICTORY	109

The **CC1175** is a transmitter based on the **CC1120** transceiver. This means that all TX features/parameters described in this document are valid for the **CC1175**.

1 Overview

CC112X is a family of high performance low power RF transceivers designed for operation with a companion MCU. The purpose of this user's guide is to describe configurations and functionality available for implementing a wireless system. **CC112X** automates all common RF related tasks, greatly offloading the MCU. Below is a block diagram showing the different parts of the transceiver divided in an RF related part and a part for digital support functionality.

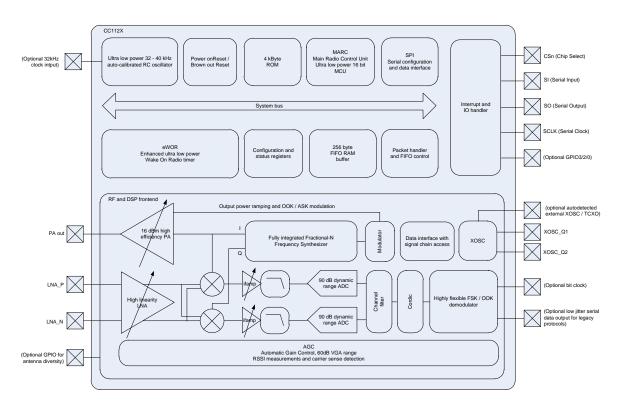


Figure 1: **CC112X** Block Diagram

CC112X can be configured to achieve optimum performance for many different applications using the SPI interface (see Section 3.1.1 for more details). The following key parameters can be programmed:

- Power-down/power-up mode (SLEEP/IDLE)
- Crystal oscillator power-up/power-down (IDLE/XOFF)
- Receive/transmit mode (RX/TX)
- Carrier frequency
- Data rate
- Modulation format
- RX channel filter bandwidth
- RF output power
- Data buffering with separate 128-byte receive and transmit FIFOs
- Packet radio hardware support
- Data whitening
- Enhanced Wake-On-Radio (eWOR)

Figure 1 shows a simplified state diagram. For detailed information on controlling the *CC1121* state machine see Section 8.

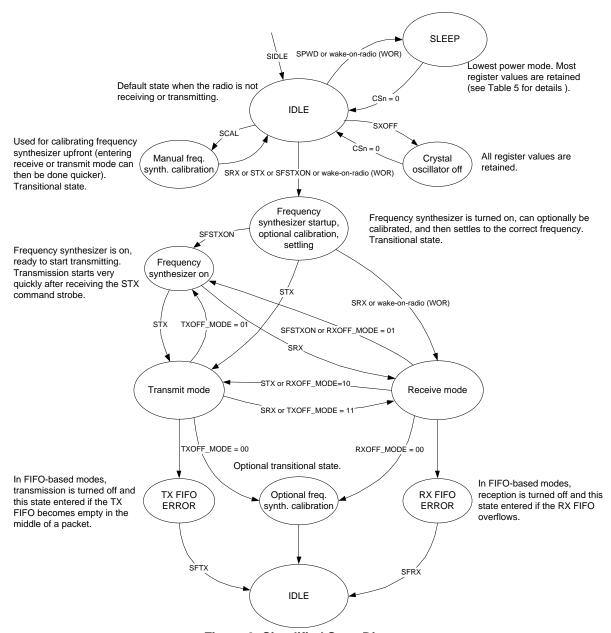


Figure 2: Simplified State Diagram

2 Configuration Software

CC112X can be configured using the SmartRF $^{\text{TM}}$ Studio software [1]. SmartRF Studio is highly recommended for obtaining optimum register settings, and for evaluating performance and functionality.

After chip reset, all registers have default values and these might differ from the optimum register setting. It is therefore necessary to configure/reconfigure the radio through the SPI interface after the chip has been reset. SmartRF Studio provides a code export function making it easy to implement this in firmware.

SWRU295C Page 6 of 108

3 Microcontroller Interface

3.1 Configuration

In a typical system, **CC112X** will interface to an MCU. This MCU must be able to communicate with the **CC112X** over a 4-wire SPI interface to be able to:

- Configure the **CC112X**
- Program **CC112X** into different modes (RX, TX, SLEEP, IDLE, etc)
- Read and write buffered data (RX FIFO and TX FIFO)
- · Read status information

3.1.1 4-wire Serial Configuration and Data Interface

CC112X is configured via a simple 4-wire SPI-compatible interface (SI, SO, SCLK, and CSn) where **CC112X** is the slave. This interface is also used to read and write buffered data. All transfers on the SPI interface are done most significant bit first.

All transactions on the SPI interface start with a header byte containing a R/W bit, a burst access bit (B), and a 6-bit address (A_5 - A_0). A status byte is sent on the SO pin each time a header byte is transmitted on the SI pin (see Section 3.1.2 for more details on the chip status byte).

The CSn pin must be kept low during transfers on the SPI bus. The timing for the address and data transfers on the SPI interface is shown in Figure 3 with reference to Table 1.

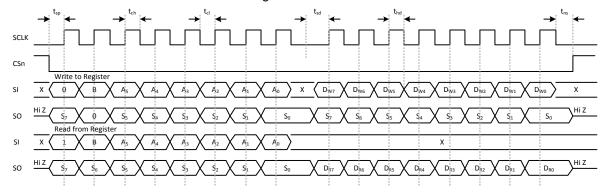


Figure 3: Configuration Registers Write and Read Operations

Parameter	Description	Min		Max		Units
f _{SCLK}	SCLK frequency read/write access Note: 100 or 125 ns delay between consecutive data bytes	-		$10 f_{XOSC} = 40 \text{ MHz}$		MHz
	must be added during burst write access to the configuration registers depending on f _{xosc} (40 or 32 MHz)		8	$f_{XOSC} = 32 \text{ MHz}$		
	SCLK frequency read access extended memory			7.7	$f_{XOSC} = 40 \text{ MHz}$	
					f _{XOSC} = 32 MHz	
t _{sp}	CSn low to positive edge on SCLK	50		-		ns
t _{ch}	Clock high	47.5	f _{XOSC} = 40 MHz	-		ns
			f _{XOSC} = 32 MHz			
t _{cl}	Clock low	47.5	f _{XOSC} = 40 MHz	-		ns
			f _{XOSC} = 32 MHz			
t _{rise}	Clock rise time	-		40		ns
t _{fall}	Clock fall time	-		40		ns
t _{sd}	Setup data before a positive edge on SCLK	10		-		ns
t _{hd}	Hold data after positive edge on SCLK	10		-		ns
t _{ns}	Negative edge on SCLK to CSn high.	200		-		ns
	CSn high time, time from CSn has been pulled high until it can be pulled low again	50				ns

Table 1: SPI Timing Requirements

When CSn is pulled low, the MCU must wait until **CC112X** SO pin goes low before starting to transfer the header byte. This indicates that the crystal is stable. Unless the chip was just reset or was in SLEEP or XOFF state, or the XOSC configuration has been altered, the SO pin will always go low immediately after pulling CSn low.

Registers with consecutive addresses can be accessed in an efficient way by setting the burst bit (B) in the header byte. The address bits $(A_5 - A_0)$ set the start address in an internal address counter. This counter is incremented by one each new byte (every 8 clock pulses). The burst access is either a read or write, and must be terminated by setting CSn high.

If a single register shall be accessed multiple times (e.g. <code>SOFT_RX_DATA_OUT/SOFT_TX_DATA_IN</code> for custom frequency modulation, see Section 4.1.3), the <code>EXT_CTRL.BURST_ADDR_INCR_EN</code> bit can be set to 0. In this mode the address counter will not increment in burst mode, and it is possible to read/write the same register repeatedly without address overhead.

Table 3 gives an overview of the different SPI access types possible.

3.1.2 Chip Status Byte

When the header byte, data byte, or command strobe is sent on the SPI interface, the chip status byte is sent by the **CC112X** on the SO pin. The status byte contains key status signals, useful for the MCU. The first bit, S₇, is the CHIP_RDYn signal and this signal must go low before the first positive edge of SCLK. The CHIP RDYn signal indicates that the crystal is stable.

 S_6 , S_5 , and S_4 comprise the STATE value which reflects the state of the chip. In IDLE state the XOSC and power to the digital core are on and all other modules are in power down. Unless otherwise stated, registers should not be changed unless the chip is in this state.

Table 2 gives a status byte summary.

SWRU295C Page 8 of 108

Bits	Name	Descrip	Description			
7	CHIP_RDYn		Stays high until power and crystal have stabilized. Should always be low when using the SPI interface.			
6:4	STATE[2:0]	Indicate	es the current ma	in state machine mode		
		Value	State	MARC State	Description	
		000	IDLE	IDLE	IDLE state	
		001	RX	RX RX_END	Receive mode	
		010	TX	TX TX_END	Transmit mode	
		011	FSTXON	FSTXON	Fast TX ready	
		100	CALIBRATE	BIAS_SETTLE_MC REG_SETTLE_MC MANCAL STARTCAL ENDCAL	Frequency synthesizer calibration is running	
		101	SETTLING	BIAS_SETTLE REG_SETTLE BWBOOST FS_LOCK IFADCON RXTX_SWITCH TXRX_SWITCH IFADCON_TXRX	PLL is settling	
		110	RX FIFO ERROR	RX_FIFO_ERR	RX FIFO has over/underflowed. Read out any useful data, then flush the FIFO with an SFRX strobe	
		111	TX FIFO ERROR	TX_FIFO_ERR	TX FIFO has over/underflowed. Flush the FIFO with an SFTX strobe	
3:0	Reserved					

Table 2: Status Byte Summary

SWRU295C Page 9 of 108

3.2 SPI Access Types

Figure 4 shows the SPI memory map and the following sections are going to explain how the different SPI access types (see Table 3) should be used. Table 4 shows the SPI address space.

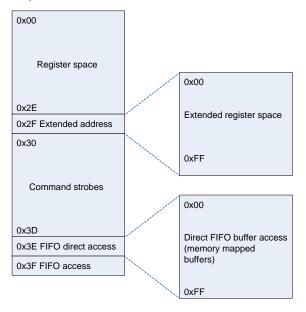


Figure 4: SPI Memory Map

Access type	Command/Address byte	Description
Single Register Access (register space)	Address : R/W 0 A ₅ A ₄ A ₃ A ₂ A ₁ A ₀	The R/W bit determines whether the operation is a read (1) or a write (0) operation
	$(A_{5-0} < 0x2F)$	The register accessed is determined by the address in $A_{5\text{-}0}$
		Exactly one data byte is expected after the address byte
		The chip status byte is returned on the SO line both when the address is sent on the SI line as well as when data are written
Burst Register Access (register space)	Address : R/W 1 A ₅ A ₄ A ₃ A ₂ A ₁ A ₀	The R/W bit determines whether the operation is a read (1) or a write (0) operation
	(A ₅₋₀ < 0x2F)	The address in A_{5-0} determines the first register accessed, after which an internal address counter is incremented for each new data byte following the address byte
		Consecutive bytes are expected after the address byte and the burst access is terminated by setting CSn high
		The chip status byte is returned on the SO line both when the address is sent on the SI line as well as when data are written
		If the internal address counter reaches address 0x2E (last byte in register space) the counter will not increment anymore and the same address will be read/written until the burst access is being terminated
Single Register Access (extended register space)	Command: R/W 0 1 0 1 1 1 1 Address: A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀	This access mode starts with a specific command (0x2F)
	(A ₇₋₀ : See Table 5)	The first byte following this command is interpreted as the extended address
	, , , , , , , , , , , , , , , , , , , ,	Exactly one data byte is expected after the extended address byte
		When the extended address is sent on the SI line, SO will return all zeros. The chip status byte is returned on the SO line when the command is transmitted as well as when data are written to the extended address

Access type	Command/Address byte	Description
Burst Register Access (extended register space)	Command: R/W 1 1 0 1 1 1 1 Address: A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀	This access mode starts with a specific command (0x2F)
	(A ₇₋₀ : See Table 5)	The first byte following this command is interpreted as the extended address
	,	Consecutive bytes are expected after the extended address byte and the burst access is terminated by setting CSn high
		When the extended address is sent on the SI line, SO will return all zeros. The chip status byte is returned on the SO line when the command is transmitted as well as when data are written to the extended address.
		If the internal address counter reaches address 0xFF (last byte in extended register space) the counter will wrap around to 0x00
		Registers not listed in Table 5 can be part of a burst access
Command Strobe Access	Address: R/W 0 A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ $(0x30 \le A_{5 \cdot 0} \le 0x3D)$	Accessing one of the command strobe registers triggers an event determined by the address in A ₅₋₀ , e.g. resetting the device, enabling the crystal oscillator, entering TX, etc. No data byte is expected. The chip status byte is returned on the SO line when a
		command strobe is sent on the SI line
Direct FIFO Access	Command: R/W B 1 1 1 1 1 0 Address: A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀	This access mode starts with a specific command (0x3E) which makes it possible to access the FIFOs directly through memory operations without affecting the FIFO pointers.
	$A_{7-0} < 0x80$: TX FIFO $0x80 \le A_{7-0} \le 0xFF$: RX FIFO	The first byte following this command is interpreted as the FIFO address. The next byte is read/written to this address. If burst is enabled, consecutive bytes will be read/written by incrementing the address. ¹
		FIFO pointers are available in extended register space for debug purposes.
Standard FIFO Access	Address: R/W B 1 1 1 1 1 1	The R/W bit determines whether the operation is a read (1) operation from the RX FIFO or a write (0) operation to the TX FIFO. If the burst bit B is 1, all bytes following the address byte are treated as data bytes until CSn goes high. If the burst bit B is 0, the FIFOs are accessed byte-wise as a normal register.

Table 3: SPI Access Types

SWRU295C Page 11 of 108

¹ Note that the first byte received in an empty RX FIFO will not be possible to read using direct FIFO access. Please see Section 3.2.3 for more details.

	Wr	ite		Read	
	Single Byte	Burst	Single Byte	Burst	
0.00	+0x00	+0x40	+0x80	+0xC0	
0x00 0x01			OCFG3 OCFG2		
0x01			DCFG1		
0x03	IOCFG0				
0x04	SYNC3				
0x05		SYNC2			
0x06			SYNC1		
0x07			SYNC0		
0x08 0x09			IC_CFG1		
0x09 0x0A			IC_CFG0 IATION M		
0x0B			FG DEV E		
0x0C			ILT_CFG		
0x0D		PREAM	/IBLE_CFG1		
0x0E			/IBLE_CFG0		
0x0F		FRE	Q_IF_CFG		iple
0x10		<u> </u>	IQIC		sso
0x11 0x12			IAN_BW DMCFG1		o s
0x12 0x13			MCFG0		Ses
0x14			RATE2		ас
0x15		D	RATE1		Irst
0x16			RATE0		R/W configuration registers, burst access possible
0x17			C_REF		ers,
0x18			_CS_THR		jiste
0x19 0x1A			AIN_ADJUST C_CFG3		Le _G
0x1A 0x1B			C_CFG3 C_CFG2		- uo
0x1C			C CFG1		rati
0x1D			C_CFG0		ngi
0x1E	FIFO_CFG				onf
0x1F	DEV_ADDR				_ ×
0x20	SETTLING_CFG				_ ≥
0x21 0x22	FS_CFG WOR CFG1				
0x22 0x23	WOR_CFG1 WOR_CFG0				
0x24			VENTO_MSB		
0x25			VENTO_LSB		
0x26			T_CFG2		
0x27			T_CFG1		
0x28 0x29			T_CFG0 ND_CFG1		
0x29 0x2A			ND_CFG1		
0x2B			CFG2		
0x2C			CFG1		
0x2D			_CFG0		
0x2E			(T_LEN	200	
0x2F	CDEC	EXTENDED I	MEMORY ACCE	SS	
0x30 0x31	SRES SFSTXON		SRES SFSTXON		-
0x31	SXOFF		SXOFF		-
0x33	SCAL		SCAL		1
0x34	SRX		SRX		
0x35	STX		STX		
0x36	SIDLE		SIDLE		_
0x37	SAFC		SAFC		_
0x38	SWOR SPWD		SWOR SPWD		es es
0x39 0x3A	SFRX		SFRX		
0x3B	SFTX		SFTX		- ISt
0x3C	SWORRST		SWORRST		anc
0x3D	SNOP		SNOP		Ĭ
0x3E			FIFO ACCESS		Command Strobes
0x3F	TX FIFO	TX FIFO	RX FIFO	RX FIFO	

Table 4: SPI Address Space

SWRU295C Page 12 of 108

3.2.1 Register Space Access and Extended Register Space Access

The configuration registers on the **CC112X** are located on SPI addresses from 0x00 to 0x2E (register space) with address extension command at address 0x2F to access the extended register space (see Figure 4). All configuration registers can be both written to and read and this is controlled by the R/W bit in the header byte. All configuration registers can also be accessed with the burst bit (B) set to either 1 or 0. Note that all registers in register space (address 0x00 - 0x2E) have retention. In extended register space, the status register do not have retention. Please see Table 5 for details.

Extended	Register Space (0x00 - 0x23)	Retention
0x00	IF_MIX_CFG	Yes
0x01	FREQOFF_CFG	Yes
0x02	TOC_CFG	Yes
0x03	MARC_SPARE	Yes
0x04	ECG_CFG	Yes
0x05	SOFT_TX_DATA_CFG	Yes
0x06	EXT_CTRL	Yes
0x07	RCCAL_FINE	Yes
0x08	RCCAL_COARSE	Yes
0x09	RCCAL_OFFSET	Yes
0x0A	FREQOFF1	Yes
0x0B	FREQOFF0	Yes
0x0C	FREQ2	Yes
0x0D	FREQ1	Yes
0x0E	FREQ0	Yes
0x0F	IF_ADC2	Yes
0x10	IF_ADC1	Yes
0x11	IF_ADC0	Yes
0x12	FS_DIG1	Yes
0x13	FS_DIG0	Yes
0x14	FS_CAL3	Yes
0x15	FS_CAL2	Yes
0x16	FS_CAL1	Yes
0x17	FS_CAL0	Yes
0x18	FS_CHP	Yes
0x19	FS_DIVTWO	Yes
0x1A	FS_DSM1	Yes
0x1B	FS_DSM0	Yes
0x1C	FS_DVC1	Yes
0x1D	FS_DVC0	Yes
0x1E	FS_LBI	Yes
0x1F	FS_PFD	Yes
0x20	FS_PRE	Yes
0x21	FS_REG_DIV_CML	Yes
0x22	FS_SPARE	Yes
0x23	FS_VCO4	Yes

Extended Re	gister Space (0x24 - 0x6E)	Retention
0x24	FS_VCO3	Yes
0x25	FS_VCO2	Yes
0x26	FS_VCO1	Yes
0x27	FS_VCO0	Yes
0x28	GBIAS6	Yes
0x29	GBIAS5	Yes
0x2A	GBIAS4	Yes
0x2B	GBIAS3	Yes
0x2C	GBIAS2	Yes
0x2D	GBIAS1	Yes
0x2E	GBIAS0	Yes
0x2F	IFAMP	Yes
0x30	LNA	Yes
0x31	RXMIX	Yes
0x32	XOSC5	Yes
0x33	XOSC4	Yes
0x34	XOSC3	Yes
0x35	XOSC2	Yes
0x36	XOSC1	Yes
0x37	XOSC0	Yes
0x38	ANALOG_SPARE	Yes
0x39	PA_CFG3	Yes
0x3A - 0x3E	Not Used	
0x3F - 0x40	Reserved	
0x41 - 0x63	Not Used	
0x64	WOR_TIME1	No
0x65	WOR_TIME0	No
0x66	WOR_CAPTURE1	No
0x67	WOR_CAPTURE0	No
0x68	BIST	No
0x69	DCFILTOFFSET_I1	No
0x6A	DCFILTOFFSET_I0	No
0x6B	DCFILTOFFSET_Q1	No
0x6C	DCFILTOFFSET_Q0	No
0x6D	IQIE_I1	No
0x6E	IQIE_I0	No

SWRU295C Page 13 of 108

Extended Re	gister Space (0x6F - 0x8C)	Retention
0x6F	IQIE_Q1	No
0x70	IQIE_Q0	No
0x71	RSSI1	No
0x72	RSSI0	No
0x73	MARCSTATE	No
0x74	LQI_VAL	No
0x75	PQT_SYNC_ERR	No
0x76	DEM_STATUS	No
0x77	FREQOFF_EST1	No
0x78	FREQOFF_EST0	No
0x79	AGC_GAIN3	No
0x7A	AGC_GAIN2	No
0x7B	AGC_GAIN1	No
0x7C	AGC_GAIN0	No
0x7D	SOFT_RX_DATA_OUT	No
0x7E	SOFT_TX_DATA_IN	No
0x7F	ASK_SOFT_RX_DATA	No
0x80	RNDGEN	No
0x81	MAGN2	No
0x82	MAGN1	No
0x83	MAGN0	No
0x84	ANG1	No
0x85	ANG0	No
0x86	CHFILT_I2	No
0x87	CHFILT_I1	No
0x88	CHFILT_I0	No
0x89	CHFILT_Q2	No
0x8A	CHFILT_Q1	No
0x8B	CHFILT_Q0	No
0x8C	GPIO_STATUS	No

Extended Re	gister Space (0x8D - 0xD9)	Retention
0x8D	FSCAL_CTRL	No
0x8E	PHASE_ADJUST	No
0x8F	PARTNUMBER	No
0x90	PARTVERSION	No
0x91	SERIAL_STATUS	No
0x92	RX_STATUS	No
0x93	TX_STATUS	No
0x94	MARC_STATUS1	No
0x95	MARC_STATUS0	No
0x96	PA_IFAMP_TEST	No
0x97	FSRF_TEST	No
0x98	PRE_TEST	No
0x99	PRE_OVR	No
0x9A	ADC_TEST	No
0x9B	DVC_TEST	No
0x9C	ATEST	No
0x9D	ATEST_LVDS	No
0x9E	ATEST_MODE	No
0x9F	XOSC_TEST1	No
0xA0	XOSC_TEST0	No
0xA1 - 0xD1	Not Used	
0xD2	RXFIRST	No
0xD3	TXFIRST	No
0xD4	RXLAST	No
0xD5	TXLAST	No
0xD6	NUM_TXBYTES	No
0xD7	NUM_RXBYTES	No
0xD8	FIFO_NUM_TXBYTES	No
0xD9	FIFO_NUM_RXBYTES	No

Table 5: Extended Register Space Mapping

3.2.2 Command Strobes

Command Strobes may be viewed as single byte instructions to **GC112X**. By addressing a command strobe register, internal sequences will be started. These commands are used to enable receive and transmit mode, enter SLEEP mode, disable the crystal oscillator, etc. The command strobes are listed in Table 6. The command strobe registers are accessed by transferring a single header byte (no data is being transferred). That is, only the R/W bit, the burst access bit (set to 0), and the six address bits (in the range 0x30 through 0x3D) are written. When sending a strobe, the R/W bit can be either one or zero. The status byte is available on the SO pin when a command strobe is being sent.

SWRU295C Page 14 of 108

Address	Strobe Name	Description	
0x30	SRES	Reset chip	
0x31	SFSTXON	Enable and calibrate frequency synthesizer (if SETTLING_CFG.FS_AUTOCAL = 1). If in RX and PKT_CFG2.CCA_MODE ≠ 0: Go to a wait state where only the synthesizer is running (for quick RX/TX turnaround).	
0x32	SXOFF	Enter XOFF state when CSn is de-asserted	
0x33	SCAL	Calibrate frequency synthesizer and turn it off. SCAL can be strobed from IDLE mode without setting manual calibration mode (SETTLING_CFG.FS_AUTOCAL = 0)	
0x34	SRX	Enable RX. Perform calibration first if coming from IDLE and SETTLING_CFG.FS_AUTOCAL = 1	
0x35	STX	In IDLE state: Enable TX. Perform calibration first if SETTLING_CFG.FS_AUTOCAL = 1. If in RX state and PKT_CFG2.CCA_MODE ≠ 0: Only go to TX if channel is clear	
0x36	SIDLE	Exit RX/TX, turn off frequency synthesizer and exit eWOR mode if applicable	
0x37	SAFC	Automatic Frequency Compensation	
0x38	SWOR	Start automatic RX polling sequence (eWOR) as described in Section 8.6 if WOR_CFG0.RC_PD = 0	
0x39	SPWD	Enter SLEEP mode when CSn is de-asserted	
0x3A	SFRX	Flush the RX FIFO. Only issue SFRX in IDLE or RX_FIFO_ERR states	
0x3B	SFTX	Flush the TX FIFO. Only issue SFTX in IDLE or TX_FIFO_ERR states	
0x3C	SWORRST	Reset the eWOR timer to the Event1 value	
0x3D	SNOP	No operation. May be used to get access to the chip status byte	

Table 6: Command Strobes

A command strobe may be followed by any other SPI access without pulling CSn high, and the command strobes are executed immediately. This applies for all command strobes except SRES, SPWD, SWOR, and the SXOFF strobe.

When a SRES strobe is issued the CSn pin must be kept low and wait for SO to go low again before the next header byte can be issued, as shown in Figure 5.

Figure 5: SRES Command Strobe

The SPWD, SWOR, and the SXOFF command strobes are not executed before the CSn goes high.

3.2.3 Direct FIFO Access

The complete RX and TX FIFOs, with associated pointers, are mapped in the register space for FIFO manipulation and SW-debug purposes. The FIFOs are mapped as shown in Table 7 (the address must be preceded by the command 0x3E) while the FIFO pointers are located in extended register space (address 0xD2 - 0xD5, see Table 5).

Direct FIFO Acce	Retention	
0x00 - 0x7F	TXFIFO	No
0x80 - 0xFF	RXFIFO	No

Table 7: Direct FIFO Access Mapping

SWRU295C Page 15 of 108

Both FIFO data and pointers are readable and writeable to enable e.g. re-transmissions, partial flush, partial readouts, changing only the sequence number before re-transmission etc. Figure 6 shows how the TX FIFO pointer changes as the FIFO is written and as data are sent on the air (assume variable packet length mode PKT CFGO.LENGTH CONFIG = 01b.

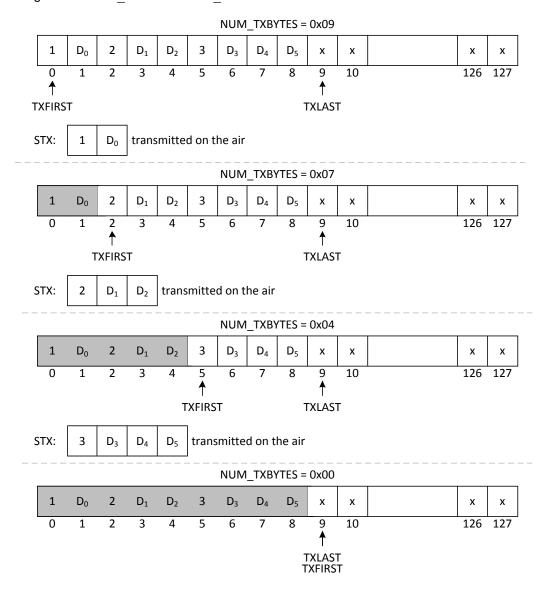


Figure 6: FIFO Pointers (TX FIFO)

To transmit packet number 3 over again one can simply write 0x05 to the TXFIRST register and then strobe STX again.

In RX mode, when the RX FIFO is empty (i.e. RXFIRST = RXLAST) the first byte received will not be available to be read from the RXFIFO using direct FIFO access. Please see Figure 7 (it is assumed that the receiver uses variable packet length mode (PKT_CFG0.LENGTH_CFG = 01) and that append status is disabled (PKT_CFG1.APPEND_STATUS = 0) for this example).

SWRU295C Page 16 of 108

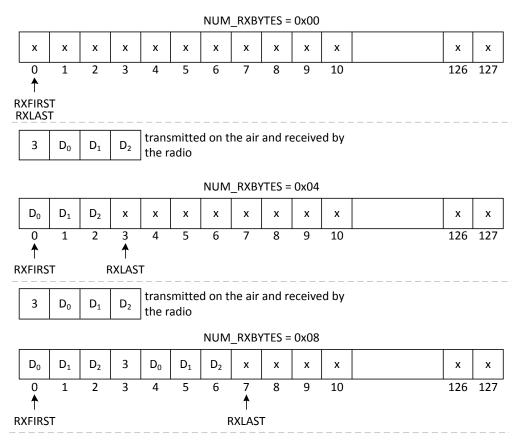


Figure 7: FIFO Pointers (RX FIFO) (1)

If 8 bytes (NUM_RXBYTES = 0x08) are read from the RXFIFO using standard FIFO access (see Section 3.2.4) the following will be read: 3, D₀, D₁, D₂, 3, D₀, D₁, D₂.

If the RX FIFO had been read (using standard FIFO access) in between the two packets, the RX FIFO pointers would end up with the values shown in Figure 8.

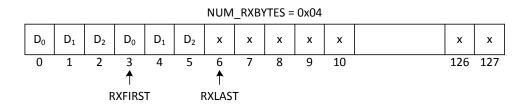


Figure 8: FIFO Pointers (RX FIFO) (2)

3.2.4 Standard FIFO Access

Using the standard FIFO push/pop interface the 128-byte TX FIFO and the 128-byte RX FIFO are accessed through the 0x3F address. When the R/W bit is zero the TX FIFO is accessed, and the RX FIFO is accessed when the R/W bit is one. Using this type of access, the TX FIFO is write-only, while the RX FIFO is read-only. The burst bit is used to determine if the FIFO access is a single byte access or a burst access. The single byte access method expects a header byte with the burst bit set to zero and one data byte. After the data byte, a new header byte is expected; hence CSn can remain low. The burst access method expects one header byte and then consecutive data bytes until terminating the access by setting CSn high.

SWRU295C Page 17 of 108

If the radio tries to write to the RX FIFO after it is full or if the RX FIFO is tried read when it is empty, the RXFIFO_OVERFLOW and RXFIFO_UNDERFLOW signals will be asserted and the radio will enter the RX_FIFO_ERR state. Likewise, if the TX FIFO is tried written when it is full or if the TX FIFO runs empty in the middle of a packet, the TXFIFO_OVERFLOW and TXFIFO_UNDERFLOW signals will be asserted and the radio will enter the TX_FIFO_ERR state.

The TX FIFO may be flushed by issuing a SFTX command strobe. Similarly, a SFRX command strobe will flush the RX FIFO. A SFTX or SFRX command strobe can only be issued in the IDLE, TX_FIFO_ERR, or RX_FIFO_ERR states. Both FIFOs are flushed when going to the SLEEP state.

3.3 Optional PIN CTRL Radio Control Feature

The **CC112N** has an optional way of controlling the radio by reusing SI, SCLK, and CSn from the SPI interface. This feature allows for a simple three-pin control of the major states of the radio: SLEEP, IDLE, RX, and TX. This optional functionality is enabled with the <code>EXT_CTRL.PIN_CTRL_EN</code> configuration bit.

State changes are commanded as follows:

- When CSn is high, the SI and SCLK are set to the desired state according to Table 8.
- When CSn goes low, the state of SI and SCLK is latched and a command strobe is generated internally according to the pin configuration.

If the device is in the TX state and the TX command is issued, it will be ignored. For RX state, an RX command will restart RX. When CSn is low the SI and SCLK have normal SPI functionality.

All pin control command strobes are executed immediately, except the SPWD strobe. The SPWD strobe is delayed until CSn goes high.

Pin control is useful to get precise timing on RX/TX strobes.

CSn	SCLK	SI	Function	
1	Χ	X	Chip unaffected by SCLK/SI	
\	0	0	Generates SPWD strobe	
\	0	1	Generates STX strobe	
\	1	0	Generates SIDLE strobe	
\	1	1	Generates SRX strobe	
0	SPI mode	SPI mode	SPI mode (wakes up into IDLE if in SLEEP/XOFF)	

Table 8: Optional Pin Control Coding

3.4 General Purpose Input/Output Control Pins

The four digital I/O pins GPIO0, GPIO1, GPIO2 and GPIO3 are general control pins configured with $IOCFGx.GPIOx_CFG$ (where x is 0, 1, 2, or 3). Table 10 shows the different signals that can be monitored on the GPIO pins. The signal name field in the table should be interpreted as follows:

- One signal name: The signal can be routed out to any of the four GPIO pins for full flexibility
- Four signal names: The signal can only be routed out on the GPIO designated in the table.

GPIO1 is shared with the SO pin in the SPI interface. The default setting for GPIO1/SO is <code>HIGHZ</code> (tristate) output, which is useful when the SPI interface is shared with other devices. By selecting any other of the programming options, the GPIO1/SO pin will become a generic pin when CSn is high and function as SO when CSn is low.

When the IOCFGx.GPIOx_CFG setting is less than 0x30 and IOCFGx.GPIOx_INV is 0 (1) the GPIO2 pin will be hardwired to 0 (1), and GPIO1 and GPIO3 will be hardwired to 1 (0) in the SLEEP state. These signals will be hardwired until the CHIP_RDYn signal goes low. GPIO0 will be tri-stated in SLEEP mode when IOCFG0.GPIO0_CFG[5:4] \neq 11b. If the IOCFGx.GPIOx_CFG setting is 0x30 or higher, the GPIO pins will work as programmed also in SLEEP state.

The GPIOs can also be used as inputs by setting $IOCFGx.GPIOx_CFG = HIGHZ$ (48). Table 9 shows which signals can be input to the **CC112X.**

GPIO Pin	Signal Name	Signal Description
0	SERIAL_TX	Serial data (TX mode). Used for both synchronous and transparent mode. Synchronous serial mode: Data is captured on the rising edge of the serial clock
1 - 2	Reserved	
3	EXT_32K_CLOCK	External 32 kHz clock signal

Table 9: GPIO Input Pin Mapping

3.4.1 MCU Input/Interrupt

There are two main methods that can be used to generate an input/interrupt to the MCU

- 1. GPIO Signals
- 2. MARC MCU WAKEUP

3.4.1.1 GPIO Signals

See Table 10 for the different signals that can be output from the **CC112X**. Note that all signals described as a pulse are two XOSC periods long.

GPIOx_CFG	Signal Name	Description	
0	RXFIFO_THR	Associated to the RX FIFO. Asserted when the RX FIFO is filled above FIFO_CFG.FIFO_THR. De-asserted when the RX FIFO is drained below (or is equal) to the same threshold	
1	RXFIFO_THR_PKT	Associated to the RX FIFO. Asserted when the RX FIFO is filled above FIFO_CFG.FIFO_THR or the end of packet is reached. De-asserted when the RX FIFO is empty	
2	TXFIFO_THR	Associated to the TX FIFO. Asserted when the TX FIFO is filled above (or is equal to) (127 -FIFO_CFG.FIFO_THR). De-asserted when the TX FIFO is drained below the same threshold	
3	TXFIFO_THR_PKT	Associated to the TX FIFO. Asserted when the TX FIFO is full. Deasserted when the TX FIFO is drained below (127 - FIFO_CFG.FIFO_THR)	
4	RXFIFO_OVERFLOW	Asserted when the RX FIFO has overflowed. De-asserted when the RX FIFO is flushed (see Section 3.2.4)	
5	TXFIFO_UNDERFLOW	Asserted when the TX FIFO has underflowed. De-asserted when the TX FIFO is flushed (see Section 3.2.4)	
6	PKT_SYNC_RXTX	RX: Asserted when sync word has been received and de-asserted at the end of the packet. Will de-assert when the optional address and/or length check fails or the RX FIFO overflows/underflows.	
		TX: Asserted when sync word has been sent, and de-asserted at the end of the packet. Will de-assert if the TX FIFO underflows/overflows	
7	CRC_OK	Asserted simultaneously as PKT_CRC_OK. De-asserted when the first byte is read from the RX FIFO	
8	SERIAL_CLK	Serial clock (RX and TX mode). Synchronous to the data in synchronous serial mode. Data is set up on the falling edge in RX and is captured on the rising edge of the serial clock in TX	
9	SERIAL_RX	Serial data (RX mode). Used for both synchronous and transparent mode.	
		Synchronous serial mode: Data is set up on the falling edge.	
		Transparent mode: No timing recovery (outputs just the hard limited baseband signal)	
10		Reserved (used for test)	
11	PQT_REACHED	Preamble Quality Reached. Asserted when the quality of the preamble is above the programmed PQT value (see Section 5.7)	
12	PQT_VALID	Preamble quality valid. Asserted when the PQT logic has received a sufficient number of symbols (see Section 5.7)	

SWRU295C Page 19 of 108

13	R	SSI_VALID	RSSI calculation is valid	
14			RSSI Signals	
	3	RSSI_UPDATE	A pulse occurring each time the RSSI value is updated (see Figure 14)	
	2	RSSI_UPDATE	A pulse occurring each time the RSSI value is updated (see Figure 14)	
	1	AGC_HOLD	AGC waits for gain settling (see Figure 14)	
	0	AGC_UPDATE	A pulse occurring each time the front end gain has been adjusted (see Figure 14)	
15			Clear channel assessment	
	3	CCA_STATUS	Current CCA status	
	2	TXONCCA_DONE	A pulse occurring when a decision has been made as to whether the channel is busy or not. This signal must be used as an interrupt to the MCU. When this signal is asserted/de-asserted, TXONCCA_FAILED can be checked	
	1	CCA_STATUS	Current CCA status	
	0	TXONCCA_FAILED	TX on CCA failed	
16	CA	ARRIER_SENSE_VALID	CARRIER_SENSE is valid (see Figure 14)	
17	CA	ARRIER_SENSE	Carrier sense. High if RSSI level is above threshold (see section 5.8.1) (see Figure 14)	
18			DSSS signals for DSSS repeat mode (RX). MODCFG_DEV_E.MODEM_MODE = 01b	
	3	DSSS_CLK	DSSS clock (see Section 4.1.6 for more details)	
	2	DSSS_DATA0	DSSS data0 (see Section 4.1.6 for more details)	
	1	DSSS_CLK	DSSS clock (see Section 4.1.6 for more details)	
	0	DSSS_DATA1	DSSS data1 (see Section 4.1.6 for more details)	
19	Ph	KT_CRC_OK	Asserted in RX when PKT_CFG1.CRC_CFG = 01b or 10b and a good packet is received. This signal is always on if the radio is in TX or if the radio is in RX and PKT_CFG1.CRC_CFG = 00b. The signal is deasserted when RX mode is entered and PKT_CFG1.CRC_CFG ≠ 00b	
20	M	ARC_MCU_WAKEUP	MCU wake up signal. Read MARC_STATUS1.MARC_STATUS_OUT to find the cause of the wake up event (see Section 3.4.1.2 for more details)	
21	SY	/NC_LOW0_HIGH1	DualSync Detect. Only valid when SYNC_CFG0.SYNC_MODE = 111b. When SYNC_EVENT is asserted this bit can be checked to see which sync word is found	
22			Reserved (used for test)	
23	LN	IA_PA_REG_PD	Common regulator control for PA and LNA. Indicates RF operation	
24	LN	IA_PD	Control external LNA ²	
25	P/	_PD	Control external PA ²	
26	R)	(0TX1_CFG	Indicates whether RF operation is in RX or TX (this signal is 0 in IDLE state)	
27			Reserved (used for test)	
28	IM	AGE_FOUND	Image detected by image rejection calibration algorithm	
29	CL	KEN_SOFT	Data clock for demodulator soft data (see Section 4.1.4 for more details)	
30	SC	DFT_TX_DATA_CLK	Data clock for modulator soft data (see Section 4.1.4 for more details)	
31 - 32			Reserved (used for test)	

² This signal is active low. To control an external LNA, PA, or RX/TX switch in applications where the SLEEP state is used it is therefore recommended to map this signal to GDO3 as this signal will be hardwired to 1(0) in the SLEEP state.

SWRU295C Page 20 of 108

33	RS	SSI_STEP_FOUND	Collision indication: RSSI step detected after a sync word is found (SYNC_EVENT asserted). The RSSI step is either 3 or 6 dB (configured through AGC_CFG3.RSSI_STEP_THR)			
34	RS	SSI_STEP_EVENT	RSSI step detected (single cycle pulse)			
35			Reserved (used for test)			
36	AN	ITENNA_SELECT	Antenna diversity control. Can be used to control external antenna switch. If differential signal is needed, two GPIOs can be used with one of them having IOCFGx.GPIOx INV set to 1			
37	MA	ARC_2PIN_STATUS[1]	Partial MARC state status			
			MARC_2PIN_STATUS[1]	MARC_2PIN_STATUS[0]	State	
			0	0	SETTLING	
			0	1	TX	
			1	0	IDLE	
			1	1	RX	
38	MA	ARC_2PIN_STATUS[0]	See MARC_2PIN_STATUS[1]		
39	3		Reserved (used for test)			
	2	TXFIFO_OVERFLOW	Asserted when the TX FIFO FIFO is flushed (see Section	has overflowed. De-asserted 3.2.4)	when the TX	
	1		Reserved (used for test)			
	0	RXFIFO_UNDERFLOW	Asserted when the RX FIFO FIFO is flushed (see Section	has underflowed. De-asserte 3.2.4)	d when the RX	
40	3	MAGN_VALID	New CORDIC magnitude sample			
	2	CHFILT_VALID	New channel filter sample			
	1	RCC_CAL_VALID	RCOSC calibration has been performed at least once			
	0	CHFILT_STARTUP_VALID	Channel filter has settled			
41	3	COLLISION_FOUND	Asserted if a sync word is found during packet reception (i.e. after PKT_SYNC_RXTX has been asserted) if MDMCFG1.COLLISION_DETECT_EN = 1			
	2	SYNC_EVENT	Sync detect (pulse)			
	1	COLLISION_FOUND	Same as 3			
	0	COLLISION_EVENT	Sync found during receive (pulse)			
42	PA	_RAMP_UP	Asserted when ramping is st	arted (for compliance testing)		
43	3	CRC_FAILED	Packet CRC error			
	2	LENGTH_FAILED	Packet length error			
	1	ADDR_FAILED	Packet address error			
	0	UART_FRAMING_ERROR	Packet UART framing error			
44	AC	GC_STABLE_GAIN	AGC has settled to a gain. The AGC gain is reported stable wheneve the current gain setting is equal to the previous gain setting. Thi condition is evaluated each time a new internal RSSI estimate is computed (see Figure 14)		n setting. This	
45	AC	GC_UPDATE	A pulse occurring each time (see Figure 14)	the front end gain has been a	djusted	
46			ADC data (test purposes onl	y)		
	3	ADC_CLOCK	ADC clock			
	2	ADC_Q_DATA_SAMPLE	ADC sample (Q data)			
	1	ADC_CLOCK	ADC clock			
1	0	ADC_I_DATA_SAMPLE	ADC sample (I data)			
47			Reserved (used for test)			

48	HIGHZ	High impedance (tri-state)	
49	EXT_CLOCK	External clock (divided crystal clock). The division factor is controlled through the ECG_CFG.EXT_CLOCK_FREQ register field	
50	CHIP_RDYn	Chip ready (XOSC is stable)	
51	HW0	HW to 0 (HW to 1 achieved with IOCFGx.GPIOx_INV = 1)	
52 - 53		(Reserved (used for test)	
54	CLOCK_32K	32 kHz clock output from internal RC oscillator	
55	WOR_EVENT0	WOR EVENT0	
56	WOR_EVENT1	WOR EVENT1	
57	WOR_EVENT2	WOR EVENT2	
58		Reserved (used for test)	
59	XOSC_STABLE	XOSC is stable (has finished settling)	
60	EXT_OSC_EN	External oscillator enable (used to control e.g. a TCXO). Note that this signal is only asserted is a TCXO is present	
61 - 63		Reserved (used for test)	

Table 10: GPIO Output Pin Mapping

3.4.1.2 MARC MCU Wake-Up

The main purpose of the MCU wake-up feature is to wake up the MCU from power down mode at the right time, i.e., when there is a need of intervention from the MCU side. To use the MARC MCU wake-up feature one of the GPIO pins should be configured to output the MARC_MCU_WAKEUP signal (IOCFGx.GPIOx_CFG = MARC_MCU_WAKEUP (20)). Every time this signal is asserted, the MCU should read MARC_STATUS1.MARC_STATUS_OUT to find the cause of the wake up event and take appropriate action.

Table 11 shows all the different cases that can initiate a MCU wake-up (assertion of $MARC_MCU_WAKEUP$).

SWRU295C Page 22 of 108

MARC_STATUS_OUT	Description
00000000	No failure
0000001	RX timeout occurred. Only valid in RX mode and when not using eWOR
00000010	RX termination based on CS or PQT. Only valid in RX mode and when not using eWOR
00000011	eWOR sync lost (16 slots with no successful reception). Only valid in Feedback eWOR mode (WOR_CFG1.WOR_MODE = 000b)
00000100	Packet discarded due to maximum length filtering. Only valid in RX mode and when RFEND_CFGO.TERM_ON_BAD_PKT is enabled.
	Note: In eWOR Normal & Feedback modes the wake up pulse will not be asserted and the CC112X will go to SLEEP until the next time slot
00000101	Packet discarded due to address filtering. Only valid in RX mode and when RFEND_CFGO.TERM_ON_BAD_PKT is enabled.
	Note: In eWOR Normal & Feedback modes the wake up pulse will not be asserted and the CC112X will go to SLEEP until the next time slot
00000110	Packet discarded due to CRC filtering. Only valid in RX mode and when RFEND_CFG0.TERM_ON_BAD_PKT is enabled.
	Note: In eWOR Normal & Feedback modes the wake up pulse will not be asserted and the CC112X will go to SLEEP until the next time slot
00000111	TX FIFO overflow error occurred (the MCU should flush the TX FIFO)
00001000	TX FIFO underflow error occurred (the MCU should flush the TX FIFO)
00001001	RX FIFO overflow error occurred (the MCU should flush the RX FIFO)
00001010	RX FIFO underflow error occurred (the MCU should flush the RX FIFO)
00001011	TX ON CCA failed. A TX strobe was ignored due to a busy channel. In parallel the TXONCCA_DONE signal is asserted together with the TXONCCA_FAILED signal. These signals can be output on GDO2 and GDO0 respectively by setting IOCFG2/0.GPIO2/0_CFG = 15. The TXONCCA_FAILED signal is also available in the MARC_STATUSO register
01000000	TX finished successfully (the CC112X is ready for the next operation)
10000000	RX finished successfully (a packet is in the RX FIFO ready to be read)

Table 11: MARC_STATUS_OUT

By setting RFEND_CFG0.CAL_END_WAKE_UP_EN = 1, the MCU will be given additional wake up pulses at the end of calibration (MARC_STATUS_OUT will be 0x00).

SWRU295C Page 23 of 108

4 Common Receive and Transmit Configurations

4.1 Modulation Formats

CC112 supports amplitude and frequency shift modulation formats. The desired modulation format is set in the MODCFG DEV E.MOD FORMAT register.

Optionally, the data stream can be Manchester coded by the modulator and decoded by the demodulator. This option is enabled by setting MDMCFG1.MANCHESTER_EN = 1. Note that Manchester encoding/decoding is only performed on the payload (including optional length and address field) and the CRC and that all packet handling features are still available. In applications where preamble and sync word also need to be Manchester encoded, this can be achieved by selecting PREAMBLE_CFG1.PREAMBLE_WORD = 10b or 11b and manually encoding a two byte long sync word and write it to SYNC3/2/1/0.

4.1.1 Frequency Shift Keying

CC112X supports both 2-FSK and 4-FSK modulation. Both can optionally be shaped by a Gaussian filter with BT = 0.5, producing a GFSK modulated signal. This spectrum-shaping feature improves adjacent channel power (ACP) and occupied bandwidth. When selecting 4-(G)FSK, the preamble and sync word is sent using 2-(G)FSK (see Figure 9).

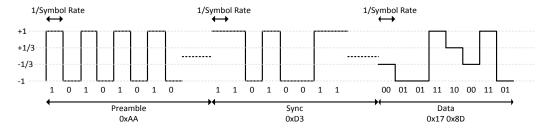


Figure 9: Data Sent Over the Air (SOFT TX DATA CFG. SYMBOL MAP CFG = 00b)

In 'true' 2-FSK systems with abrupt frequency shifting, the spectrum is inherently broad. By making the frequency shift 'softer', the spectrum can be made significantly narrower. Thus, higher data rates can be transmitted in the same bandwidth using GFSK.

When 2-(G)FSK/4-(G)FSK modulation is used, the <code>DEVIATION_M</code> and <code>MODCFG_DEV_E.DEV_E</code> register specifies the expected frequency deviation of incoming signals in RX and should be the same as the TX deviation for demodulation to be performed reliably and robustly.

The frequency deviation is programmed with the <code>DEV_M</code> and <code>DEV_E</code> values in the <code>DEVIATION_M</code> and <code>MODCFG_DEV_E.DEV_E</code> register. The value has an exponent/mantissa form, and the resultant deviation is given by Equation 1 and Equation 2.

$$f_{DEV} = \frac{f_{xosc}}{2^{24}} \cdot (256 + DEV _M) \cdot 2^{DEV _E}$$

$$f_{DEV} = \frac{f_{xosc}}{2^{23}} \cdot DEV _M$$

Equation 1: f_{DEV} (DEVIATION_E > 0) Equation 2: f_{DEV} (DEVIATION_E = 0)

SWRU295C Page 24 of 108

The symbol encoding can be configured through the SOFT_TX_DATA_CFG.SYMBOL_MAP_CFG register field as shown in Table 12^3 (SYMBOL MAP CFG = 00b by default).

Format	Symbol	Coding			
		SYMBOL_MAP_CFG = 00b	SYMBOL_MAP_CFG = 01b	SYMBOL_MAP_CFG = 10b	SYMBOL_MAP_CFG = 11b
2-(G)FSK	'0'	-Deviation [A _{Min}]	+Deviation [A _{Max}]	+Deviation[A _{Max}]	+Deviation [A _{Max}]
OOK/ASK	'1'	+Deviation [A _{Max}]	-Deviation [A _{Min}]	-Deviation [A _{Min}]	-Deviation [A _{Min}]
4-(G)FSK	'00'	-Deviation /3	-Deviation	+Deviation /3	+Deviation
	'01'	-Deviation	-Deviation /3	+Deviation	+Deviation /3
	'10'	+Deviation /3	+Deviation	-Deviation /3	-Deviation
	'11'	+Deviation	+Deviation /3	-Deviation	-Deviation /3

Table 12: Symbol Encoding for 2-(G)FSK and 4-(G)FSK Modulation

4.1.2 Amplitude Modulation (ASK) and on-off keying (OOK)

CC112X supports two different forms of amplitude modulation: On-Off Keying (OOK) and Amplitude Shift Keying (ASK).

OOK modulation simply turns the PA on or off to modulate ones and zeros respectively.

OOK/ASK in **CC112X** allows programming of the modulation depth (the difference between 1 and 0), and shaping of the pulse amplitude. Pulse shaping produces a more bandwidth constrained output spectrum (see Figure 10 for shaped/unshaped spectrum).

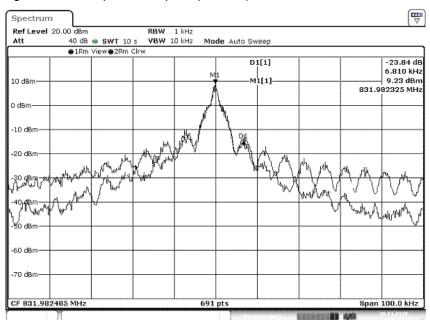


Figure 10: OOK with and without shaping

 $^{^{3}}$ A_{Min} = Minimum Amplitude and A_{Max} = Maximum Amplitude when OOK/ASK is used

_

4.1.3 Minimum Shift Keying

When using MSK⁴, the complete transmission (preamble, sync word, and payload) will be MSK modulated.

MSK modulation is configured by <code>MODCFG_DEV_E.MOD_FORMAT</code> set to 2-(G)FSK modulation and frequency deviation set to ¼ of data rate. Then phase shifts are performed with a constant transition time. Table 13 shows what the frequency deviation should be programmed to for different data rates to achieve a modulation index ~0.5.

Data Rate [ksps]	Frequency Deviation [kHz]	Actual Modulation Index
1.0	0.25	0.49999
1.2	0.3	0.50000
2.4	0.6	0.50000
4.8	1.2	0.50041
9.6	2.4	0.49958
19.6	4.8	0.50010
38.4	9.6	0.49963
50	12.5	0.50048
76.8	19.2	0.49966
100	25.0	0.50048
125	31.25	0.50047

Table 13: MSK Parameters

4.1.4 Custom Frequency Modulation/Analog FM

CC112N supports a simple scheme to do custom frequency modulation/analog FM (e.g. communication with analog legacy voice devices, N-FSK systems). This feature utilizes the high resolution PLL and lets the user in a simple way directly control/read the instantaneous frequency without SPI overhead. Custom frequency modulation is enabled by setting SOFT TX DATA CFG.SOFT TX DATA EN = 1.

One register (SOFT_TX_DATA_IN) is used to set the carrier frequency offset and another register (SOFT_RX_DATA_OUT) is used to read the instantaneous frequency offset. The two registers have the same format (two's complement) to simplify SW control in both TX and RX. Accessing these registers should be done using burst mode combined with setting EXT_CTRL.BURST_ADDR_INCR_EN = 0 to continuously access the same address without any SPI address overhead.

The signal SOFT_TX_DATA_CLK can be output on a GPIO by setting IOCFGx.GPIOx_CFG = 30. This signal will be asserted every time the SOFT_TX_DATA_IN register should be written and should be used as an interrupt to the MCU to synchronize the SPI data to the internal modulation rate. The signal runs at 16x the programmed data rate.

The signal <code>CLKEN_SOFT</code> should be output on a GPIO (<code>IOCFGx.GPIOx_CFG = 29</code>) and used as a trigger to read the <code>SOFT RX DATA OUT</code> samples.

⁴ Identical to offset QPSK with half-sine shaping (data coding may differ).

_

SWRU295C Page 26 of 108

When using custom frequency modulation there are 129 values (referred to as f_{OFFSET}) between $\neg f_{DEV}$ and $+f_{DEV}$ that can be used (see Equation 1 and Equation 2 in Section 4.1.1 for details on how to program the frequency deviation). f_{OFFSET} is given by Equation 3.

$$f_{\mathit{OFFSET}} = \frac{f_{\mathit{DEV}} \cdot \mathit{SOFT_TX_DATA_IN}}{64}$$

Equation 3: f_{OFFSET}⁵

The modulator writes values to the PLL at 16x the programmed data rate. Between the modulator and the PLL there is an optional linear upsampler configured through the PA_CFG0.UPSAMPLER_P register field.

4.1.5 DSSS PN Mode

CC112X supports DSSS PN mode for applications requiring high sensitivity. Preamble and sync word is unchanged, but the payload data bit is spread with a fixed PN gold sequence initialized at the beginning of each packet. The spreading factor is set to 4 hence the effective data rate in kbps is reduced by 4 compared to the programmed data rate (in ksps). The PN gold sequence is generated from a combination of two 7-bits LFSR registers with generator polynomial given by Equation 4 and Equation 5. h1(p) is initialized to 0x04 and h2(p) is initialized to 0x0B.

$$h1(p) = p^7 + p^3 + p^2 + p + 1$$

Equation 4: h1(p)

$$h2(p) = p^7 + p^3 + 1$$

Equation 5: h2(p)

The resulting bit is then XOR'ed with the transmitted bits, where each of the input data bits is mapped into 4 consecutive symbols, as shown in the following Figure 11. The figure shows what is sent on the air when the input data is 101b.

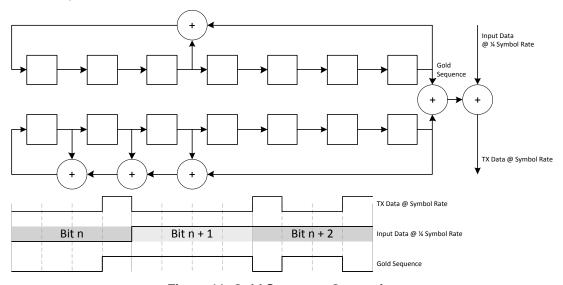


Figure 11: Gold Sequence Generation

The resulting sequence has good autocorrelation properties.

⁵ This equation is only valid when -64 \leq SOFT_TX_DATA_IN \leq +64. SOFT_TX_DATA_IN > 64 corresponds to +f_{DEV} while SOFT_TX_DATA_IN < -64 gives a frequency of -f_{DEV}. SOFT TX DATA IN = -128 is the same as setting SOFT TX DATA IN = 0.

At the receiver, the PN gold sequence is known and is initialized at the beginning of each packet. For every group of 4 incoming symbols, two accumulated distance computation are performed; one assuming that a '0' was sent and the other assuming that a '1' was sent, and the most likely transmitted bit is chosen.

DSSS PN mode is enabled by setting MODCFG DEV E.MODEM MODE = 10b⁶.

When using this mode both FIFO mode and synchronous serial mode are supported (PKT CFG2.PKT FORMAT = 00b or 01b).

4.1.6 DSSS Repeat Mode

CC112X supports DSSS repeat mode for applications requiring high sensitivity. In DSSS repeat mode, preamble is unchanged. The payload data bits are spread using the sync word meaning that the complete sync word is sent for every 1 in the payload and the inverted sync word is sent for every 0 in the payload. Only SYNC CFG0.SYNC MODE = 001b and 010b are supported (11 or 16 bits).

DSSS repeat mode is enabled by setting MODCFG DEV E.MODEM MODE = $01b^6$.

In TX mode all packet handling features are supported, but the packet format must be set to FIFO mode (PKT CFG2.PKT FORMAT = 00b).

In RX mode, none of the packet handling features are supported and synchronous serial mode must be selected (PKT_CFG2.PKT_FORMAT = 01b, MDMCFG1.FIFO_EN = 0 and MDMCFG0.TRANSPARENT_MODE_EN = 0). It is the MCU's responsibility to extract the demodulated data, which are available on GPIO by configuring IOCFGx.GPIOx_CFG = 18 (GPIO3/1 = DSSS_CLK, GPIO2 = DSSS_DATA0 and GPIO0 = DSSS_DATA1). The clock (DSSS_CLK) will run at a frequency twice the programmed data rate and will start as soon as the radio enters RX state.

The receiver uses two correlation filters (see Section 5.6 for more details) to search for sync word and inverted sync word. Each output is connected directly to <code>DSSS_DATA1</code> and <code>DSSS_DATA0</code>. After strobing RX the sync search starts, and when a sync word or inverted sync word is detected the corresponding serial data line will be asserted high, otherwise the data line is low. The output from the correlation filter is high as long as the sync word/inverted sync word is detected, so the MCU needs to do edge detect on the data in order to not duplicate the demodulated data bit. Figure 12 shows how the DSSS signal will look like on the GPIO pins when the following packet is sent on the air using DSSS repeat mode: 0x03, 0x55, 0x55, 0x55. Data rate is 1.2 ksps.

Note. Assertion of <code>DSSS_DATA1</code> and <code>DSSS_DATA0</code> within the first 5 <code>DSSS_CLK</code> edges after entering RX should be ignored.

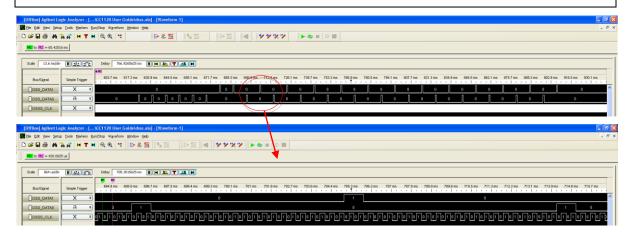


Figure 12. DSSS Repeat Mode

⁶ DSSS PN mode and DSSS repeat mode are not supported for 4'ary modulation formats.

_

4.2 Data Rate Programming

The data rate used in transmit and the data rate expected in receive is programmed by the <code>DATARATE_M</code> and the <code>DATARATE_E</code> configuration settings. The data rate, R_{DATA} , is given by Equation 6 and Equation 7 and is in ksps. Note that <code>DATARATE_M</code> is 20 bits wide and consists of the register fields <code>DATARATE_M_19_16</code>, <code>DATARATE_M_15_8</code> and <code>DATARATE_M_7_0</code> found in <code>DRATE2</code>, <code>DRATE1</code>, and <code>DRATE0</code> respectively.

$$R_{DATA} = \frac{(2^{20} + DATARATE_M) \cdot 2^{DATARATE_E}}{2^{39}} \cdot f_{XOSC}$$

$$R_{DATA} = \frac{DATARATE _M}{2^{38}} \cdot f_{XOSC}$$

Equation 6: Data Rate (DEVIATION E > 0)

Equation 7: Data Rate (DEVIATION E = 0)

Equation 8 and Equation 9 can be used to find suitable register values for a given data rate.

$$DATARATE _E = \left[\log_2 \left(\frac{R_{DATA} \cdot 2^{39}}{f_{XOSC}} \right) - 20 \right]$$

DATARATE
$$_{M} = \frac{R_{DATA} \cdot 2^{39}}{f_{XOSC} \cdot 2^{DATARATE} \cdot E} - 2^{20}$$

Equation 8: DATARATE E

Equation 9: DATARATE_M

If DATARATE_M is rounded to the nearest integer and becomes 2^{20} , one should increment DATARATE E and use DATARATE M = 0 instead.

The data rate can be set up to 100 ksps with the minimum step size according to **Error! Reference source not found.**.

Min Data Rate [ksps]	Typical Data Rate [ksps]	Max Data Rate [ksps]	Data Rate Step Size [ksps]
0	0.04	0.15	0.00014
0.15	0.25	0.3	0.00014
0.61	1.2	1.22	0.0006
1.22	2.4	2.44	0.001
2.44	4.8	4.88	0.002
4.88	9.6	9.76	0.005
19.5	25	39.0	0.018
39.0	50	78.1	0.037
78.1	100	125	0.074

Table 14: Data Rate Step Size

The data rate is programmed as symbol rate meaning that for 4-(G)FSK, DSSS mode, or Manchester coding, the bit rate and symbol rate is not equal. Table 15 shows the relationship between bit rate and symbol rate.

Modulation Format	Bit Rate/Symbol Rate Ratio
2-(G)FSK/OOK/ASK	$\frac{R_{Bit}}{R_{Symbol}} = 1$
Manchester Coding	$\frac{R_{Bit}}{R_{Symbol}} = \frac{1}{2}$
4-(G)FSK	$\frac{R_{Bit}}{R_{Symbol}} = 2$
DSSS Mode	$\frac{R_{Bit}}{R_{Symbol}} = \frac{1}{SpreadingFactor}$

Table 15: Bit Rate vs. Symbol Rate

5 Receive Configuration

5.1 RX Filter Bandwidth

In order to meet different channel width requirements, the RX filter BW is programmable. The CHAN_BW.ADC_CIC_DECFACT and CHAN_BW.BB_CIC_DECFACT register fields control the RX filter BW, together with the CHAN_BW.CHFILT_BYPASS register field and the crystal oscillator frequency. It is recommended to use SmartRF Studio to generate settings for a given RX filter BW.

Equation 10 and Equation 11 give the relation between the register settings and the channel filter bandwidth.

RX Filter BW =
$$\frac{f_{xosc}}{DecimationFactor \cdot BB_CIC_DECFACT \cdot 8}$$

Equation 10: RX Filter BW (CHFILT_BYPASS = 0)

$$\text{RX Filter BW} = \frac{f_{\text{\tiny{NOSC}}}}{DecimationFactor \cdot BB_CIC_DECFACT \cdot 2}$$

Equation 11: RX Filter BW (CHFILT BYPASS = 1)

The decimation Factor is 20 when CHAN_BW.ADC_CIC_DECFACT = 0 and 32 when CHAN BW.ADC CIC DECFACT = 1.

Table 16 and Table 17 list some channel filter bandwidths configurations supported by the **CC112X**.

ADC_CIC_DECFACT = 0		ADC_CIC_DECFACT = 1	
BB_CIC_DECFACT	RX Filter BW [kHz]	BB_CIC_DECFACT	RX Filter BW [kHz]
0x01	250	0x01	156
0x03	83	0x02	78
0x05	50	0x03	52
0x0A	25	0x06	26
0x14	12.5	0x0D	12
0x28	6.25	0x19	6.25

Table 16: RX Filter BW with $f_{XOSC} = 40 \text{ MHz}$ (CC1125) and CHFILT_BYPASS = 0

ADC_CIC_DECFACT = 0		ADC_CIC_DECFACT = 1	
BB_CIC_DECFACT	RX Filter BW [kHz]	BB_CIC_DECFACT	RX Filter BW [kHz]
0x01	200	0x01	125
0x02	100	0x02	62.5
0x04	50	0x03	42
0x08	25	0x05	25
0x10	12.5	0x0A	12

Table 17: RX Filter BW with f_{XOSC} = 32 MHz (CC1120 and CC1125) and CHFILT_BYPASS = 0

By compensating for a frequency offset between the transmitter and the receiver, the filter bandwidth can be reduced and the sensitivity can be improved. The RX filter BW must at least be twice the symbol rate. A narrow bandwidth gives better sensitivity and selectivity at the cost of more accurate RF crystals.

The CHAN BW.ADC CIC DECFACT sets the bandwidth into the digital low-IF mixer.

If the selected RX filter bandwidth is large compared to the symbol rate (10 times of more), sensitivity can be improved by setting MDMCFG0.DATA FILTER EN = 1.

SWRU295C Page 30 of 108

5.2 DC Offset Removal

CC112N supports Low-IF and Zero-IF receiver architecture, which is set by the FREQ_IF_CFG.FREQ_IF register field. For more information see section 8.11. For Zero-IF the DC offset removal must be enabled by setting DCFILT_CFG.DCFILT_FREEZE_COEFF = 0. The DCFILT_CFG configures the DC filter bandwidth, both during settling period and during tracking. There is a tradeoff between bandwidth and settle time. Narrower DC filter bandwidth requires longer settling time, but improves performance.

For best performance, use Low-IF receiver architecture when possible.

5.3 Automatic Gain Control

CC112X contains an Automatic Gain Control (AGC) for adjusting the input signal level to the demodulator.

The AGC behavior depends on the following register fields:

- AGC CFG2.FE PERFORMANCE MODE
 - Sets the correct gain tables to be applied for a given operation mode (See Table 18).
 See the complete register description for what the different modes are.

~39 dB	Index 0	~27 dB	Index 0
~36 dB	Index 1	~24 dB	Index 1
~32 dB	Index 2	~21 dB	Index 2
~39 dB		~18 dB	
~29 dB		~15 dB	
~27 dB		~12 dB	
~24 dB		~9 dB	
~21 dB		~6 dB	
~18 dB		~3 dB	
~15 dB		~0 dB	
~12 dB		~-6 dB	
~9 dB		~-12 dB	
~6 dB		~-18 dB	
~3 dB		~-21 dB	Index 13
~0 dB			
~-6 dB		FE_PERFORM	$MANCE_MODE = 10b$
~-12 dB			
~-18 dB			
~-21 dB	Index 17		

FE PERFORMANCE MODE = 00b or 01b

Table 18: AGC Gain Tables

The AGC_CFG2.AGC_MAX_GAIN and AGC_CFG3.AGC_MIN_GAIN register fields are used to set the table indexes for maximum and minimum gain respectively. For example, setting AGC_MAX_GAIN = 2 and AGC_MIN_GAIN = 15 limits the gain table to 14 entries, where max gain is ~32 dB and min gain is -12 dB. A lower maximum gain will reduce power consumption in the receiver front end, since the highest gain settings are avoided. Limiting max gain also improves worst case linearity in the front-end, something that is very useful when using external LNA.

SWRU295C Page 31 of 108

- AGC_REF.AGC_REFERENCE
 - Sets the reference value for the AGC. The reference value is a compromise between blocker tolerance/selectivity and sensitivity. The AGC reference level must be higher than the minimum SNR to the demodulator. The AGC reduces the analog front end gain when the magnitude output from the channel filter is greater than the AGC reference level. An optimum AGC reference level is given by several conditions, but a rule of thumb is given by Equation 12.

 $AGC_REFERENCE = 10 \cdot \log_{10}(RX \text{ Filter BW}) - 4$

Equation 12: AGC Reference⁷

- AGC CFG1.AGC SYNC BEHAVIOR
 - o Sets the AGC behavior and RSSI update behavior after a sync word is found
- AGC CFG1.AGC WIN SIZE
 - Sets the AGC integration window size for each value. Samples refer to the RX filter sampling frequency, which is 4 times the programmed RX filter BW
- AGC CFG1.AGC SETTLE WAIT
 - o Sets the wait time between AGC gain adjustments
- AGC_CFG2.AGC_MAX_GAIN
 - Sets the maximum gain
- AGC_CFG3.AGC_MIN_GAIN
 - o Sets the minimum gain

See Figure 14 for detailed timing information on different AGC signals.

5.4 Image Compensation

CC112X has support for the ImageExtinct image compensation algorithm that digitally compensates for I/Q mismatch. ImageExtinct removes the image component, removing any issues at the system image frequency. ImageExtinct removes the need for time consuming image calibration steps in system production test, reducing both test time and test cost. This feature is enabled by setting IQIC.IQIC EN = 1. When this feature is enabled the following must be true:

 $f_{IF} > 2 \cdot RX$ Filter BW and $f_{IF} + RX$ Filter BW/2 <= 100 kHz

For *CC1125* f_{IF} + RX Filter BW/2 <= 125 kHz

SWRU295C Page 32 of 108

⁷ For Zero-IF configuration, AGC hysteresis > 3 dB, or modem format which needs SNR > 15 dB a higher AGC reference value is needed

5.5 Bit Synchronization

The bit synchronization algorithm extracts the clock from the incoming symbols. The algorithm requires that the expected data rate is programmed as described in Section 4.2. Re-synchronization is performed continuously to adjust for any offset between the incoming and programmed symbol rate.

It is possible to select between two different bit synchronization algorithms.

TOC_CFG.TOC_LIMIT sets the bit synchronization algorithm and Table 19 below shows the properties of the bit synchronization algorithms.

TOC_LIMIT	Data Rate Offset Tolerance	Required Preamble Length
0	< 2000 ppm	0.5 byte (only for gain adjustment)
1	< 2%	2- 4 bytes
2	Reserved	
3	< 12%	2- 4 bytes

Table 19: Bit Synchronization Property

Using the low tolerance setting, the novel WaveMatch capture logic is enabled. The WaveMatch algorithm does not need any preamble bits for bit synchronization or frequency offset compensation, greatly reducing system settling times and system power consumption (4 bits preamble needed for AGC settling).

5.6 Byte Synchronization, Sync Word Detection

Byte synchronization is achieved by a continuous sync word search using a correlation filter. The sync word is configured through the SYNC3/2/1/0 registers and can be programmed to be 11, 16, 18, 24 or 32 bits. This is done through the SYNC_CFG0.SYNC_MODE register field. In TX mode, these bits are automatically inserted at the start of the packet by the modulator. The MSB in the sync word is sent first. In RX mode, the demodulator uses the sync word to find the start of the incoming packet.

The **GC112N** will continuously calculate a sync word qualifier value to distinguish the sync word from background noise. This value is available in the PQT_SYNC_ERR.SYNC_ERROR register field. If the sync word qualifier value is less than the programmed sync threshold (SYNC_CFG1.SYNC_THR) divided by 2 the demodulator starts to demodulate the packet.

The **CC112N** supports DualSync search which makes it possible to concurrently search for 2 different 16 bit sync words. DualSync search is enabled by settings SYNC_CFG0.SYNC_MODE = 111b. As soon as one of the sync words is found, the RX FIFO starts to fill up.

In addition to continuously calculating a sync word qualifier value the **CC112X** has several other features that can be used to decrease the likelihood of detecting "false" packets.

• Bit Check on Sync Word

This feature is enabled through $SYNC_CFG0.SUW_NUM_ERROR$ and allows for bit check on the last sync word byte. This feature is especially useful if the sync word used has weak correlation properties

Carrier Sense Gating

When MDMCFG1.CARRIER_SENSE_GATE = 1, the demodulator will not start to look for a sync word before CS is asserted. See Section 5.8.1 for more details on CS.

PQT Gating

When SYNC_CFG1.DEM_CFG = 010b or 110b, the demodulator will not start to look for a sync word before a preamble is detected. The preamble detector must be enabled for this feature to work (PREAMBLE CFG0.PQT EN = 1). See Section 5.7 for more details on PQT.

5.7 Preamble Detection

CC112X has a high performance preamble detector which can be turned on by setting PREAMBLE CFG0.PQT EN = 1.

The preamble quality estimator uses an 8 bits wide correlation filter to find a valid preamble. A preamble qualifier value is available through the PQT_SYNC_ERR.PQT_ERROR register field while the threshold is configured with the register field PREAMBLE CFG0.PQT.

A preamble is detected if the preamble qualifier value is less than the programmed PQT threshold. A "Preamble Quality Reached" signal can be observed on one of the GPIO pins by setting IOCFGx.GPIOx_CFG = PQT_REACHED (11). It is also possible to determine if preamble quality is reached by checking the PQT_REACHED bit in the RX_STATUS register. The PQT_REACHED signal will stay asserted as long as a preamble is present but will de-assert on sync found. If the preamble disappears, the signal will de-assert after a timeout defined by the sync word length + 10 symbols after preamble was lost. When SYNC_CFG1.DEM_CFG = 010b or 110b, sync word search is only gated if a preamble is detected.

The PQT can also be used as a qualifier for the optional RX termination timer (see Section 8.5.1 for more details).

A PQT startup timer is available and the startup timer period is programmable through the PREAMBLE_CFGO.PQT_VALID_TIMEOUT register. When PQT_VALID_TIMEOUT = 0, 16 bits must be received before PQT_VALID_TIMEOUT = 1, 43 bits must be received. This enables a tradeoff between speed and accuracy as preamble search will not be gated before PQT_VALID is asserted. PQT_VALID can be monitored on a GPIO pin by setting IOCFGx.GPIOx CFG = PQT VALID (12).

5.8 RSSI

The AGC module returns an estimate on the signal strength received at the antenna called RSSI (Received Signal Strength Indicator). The RSSI is a 12 bits two's complement number with 0.0625 dB resolution hence ranging from -128 to 127 dBm. A value of -128 dBm indicates that the RSSI is invalid. The RSSI can be found by reading RSSI1.RSSI_11_4 and RSSI0.RSSI_3_0. It should be noted that for most applications using the 8 MSB bits of the RSSI, with 1 dB resolution, is good enough.

To get a correct RSSI value a calibrated RSSI offset value should be subtracted from the value given by RSSI[11:0]. The RSSI offset value can be found by input a signal of known strength to the radio when AGC GAIN ADJUST.GAIN ADJUSTMENT is 0x00.

Example:

Assume a -70 dBm signal into the antenna and RSSI[11:0] = 0x200 (32) when AGC_GAIN_ADJUST.GAIN_ADJUSTMENT = 0x00.

This means that the offset is 102 dB as 32 dBm - 102 dB = -70 dBm.

When the offset is known it can be written to the AGC_GAIN_ADJUST.GAIN_ADJUSTMENT register field (GAIN_ADJUSTMENT = $0 \times 9 \text{A}$ (102)). When the same signal is input to the antenna, the RSSI[11:0] register will be 0xBA0 (-70).

The RSSI value is output from a configurable moving average filter in order to reduce uncertainty in the RSSI estimates. It is as such possible to trade RSSI computation speed/update rate against RSSI accuracy. This trade-off is determined by configuring the AGC_CFGO.RSSI_VALID_CNT register. This register field gives the number of new input samples to the moving average filter (internal RSSI estimates) that are required before the next update of the RSSI value⁸. The RSSI_VALID signal will

⁸ By setting the IOCFG3.GPIO3_CFG or IOCFG2.GPIO2_CFG = RSSI_UPDATE (14), a pulse will occur on GPIO3 or GPIO2 each time the RSSI value is updated

be asserted from the first RSSI update. RSSI_VALID is available on a GPIO by setting IOCFGx.GPIOx CFG = RSSI VALID (13) or can be read from the RSSI0 register.

Carrier Sense (CS) indication will also be affected by the setting of AGC_CFG0.RSSI_VALID_CNT. After the RSSI is valid it will be continuously compared to the CS threshold set in the AGC_CS_THR register, but since the RSSI update rate is given by the RSSI_VALID_CNT register field, this will in practice limit the CS update rate as well. The exception is when the CS threshold is changed while in RX mode. The CARRIER_SENSE signal will then be updated immediately (if needed). For more info on CS, see Section 5.8.1. Figure 13 shows when CS is updated with respect to the RSSI.

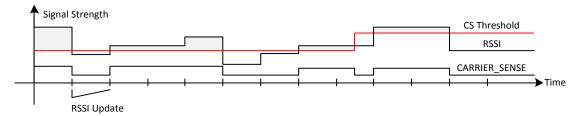


Figure 13: CS vs. RSSI UPDATE

Figure 14 shows an example of the behavior of RSSI specific signals given two different values for the AGC CFGO.RSSI VALID CNT register value (00b and 10b).

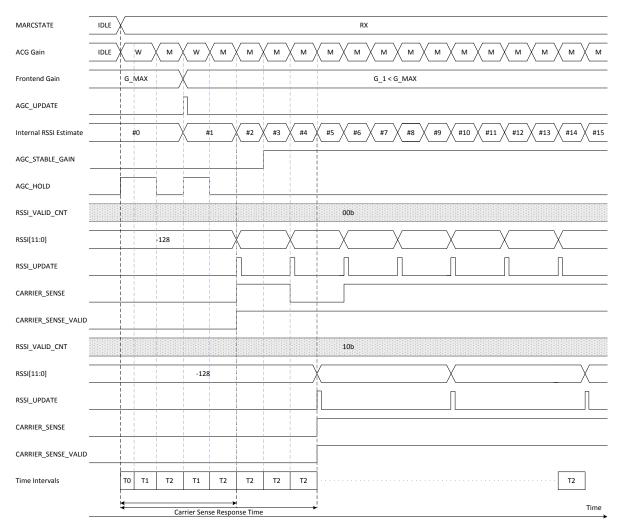


Figure 14: RSSI/CS Timing Diagram

T0: Start-up delay before RSSI measurements can begin. This delay is dependent on demodulator settings and can be found using Table 20, Table 21, and Equation 15.

SWRU295C Page 35 of 108

T1: The time the AGC waits after adjusting the front end gain to allow signal transients to decay before the next signal strength measurement can take place. T1 can be calculated using Equation 13.

T2: The time the AGC uses to measure the signal strength and potentially adjust the gain. T2 can be calculated using Equation 14.

The CS response time is the time it takes before <code>CARRIER_SENSE_VALID</code> is asserted. This is the maximum time the radio will be in RX state when RX termination based on CS is enabled (see Section 8.5.2 for more details). The CS response time is given by Equation 16.

Figure 14 shows an example of how RSSI computation speed/update rate can be traded against RSSI accuracy. In the case where AGC_CFG0.RSSI_VALID_CNT = 00b the number of new input samples to the moving average filter is 2, making the CS response time short but might lead to a less robust CS indication on the second RSSI update. In the case where AGC_CFG0.RSSI_VALID_CNT = 10b (5 samples) there are no failing CS, but the response time is longer.

BB_CIC_DECFACT⁹ is found in register CHAN_BW while AGC_SETTLE_WAIT and AGC_WIN_SIZE register fields are found in the AGC_CFG1 register. CARRIER_SENSE_GATE is found in MDMCFG1 and DCFILT_FREEZE_COEFF is found in DCFILT_CFG. The decimation factor is 20 or 32, given by the CHAN_BW.ADC_CIC_DECFACT register field.

$$T1 = \frac{(16 \cdot AGC_SETTLE_WAIT + 48) \cdot BB_CIC_DECFACT \cdot Decimation\ Factor}{f_{xosc}}$$

Equation 13: T1

$$T2 \le \frac{2^{AGC_WIN_SIZE+4} \cdot BB_CIC_DECFACT \cdot Decimation \ Factor + 46}{f_{XOSC}}$$

Equation 14: T2

Configuration Register Fields/Conditions		ТО
CHAN_BW.CHFILT_BYPASS	CHAN_BW.BB_CIC_DECFACT > 0x01	
0	0	$D_0 + D_2 + D_4$
0	1	$D_0 + D_1 + D_3 + D_5$
1	0	D ₀
1	1	$D_0 + D_1 + D_6$

Table 20: T0 Matrix

SWRU295C Page 36 of 108

⁹ If BB CIC DECFACT = 0, use a value of 1

Delay	Equation
D ₀	16 · Decimation Factor + 74
	f_{xosc}
D ₁ ¹⁰	$(1 - DCFILT _FREEZE _COEFF) \cdot (62 + CARRIER _SENSE _GATE \cdot (2^{(5+x)} - 1)) \cdot Decimation Factor \cdot 2$
	f_{XOSC}
D ₂ ¹⁰	$(62 + CARRIER _ SENSE _ GATE \cdot (2^{(5+x)} - 1)) \cdot Decimation Factor \cdot 2$
	f_{xosc}
D ₃	$(16 \cdot BB _CIC _DECFACT - 2) \cdot Decimation Factor \cdot 2$
	f_{xosc}
D ₄	(35 – DCFILT _ FREEZE _ COEFF) · Decimation Factor · 2
	f_{XOSC}
D ₅	68 · BB _ CIC _ DECFACT · Decimation Factor
	f_{XOSC}
D ₆	$(BB_CIC_DECFACT-2) \cdot Decimation Factor \cdot 2$
	f_{xosc}

Table 21: D₀ - D₆

$$T0 \le \sum Applicable \ Delays \mid_{\text{Current Configurat ion}}$$

Equation 15: T0

The maximum carrier sense response time is given by Equation 16.

CS Response Time
$$\leq T0 + (T1 + T2) \cdot (2^{RSSI_{-}VALID_{-}CNT} + 1)$$

Equation 16: Max CS Response Time

If number of AGC_UPDATE pulses before the first RSSI update is known, the CS response time is given by Equation 17, where x = # of AGC_UPDATE pulses before first RSSI_UPDATE.

CS Response Time
$$\leq T0 + T1 \cdot (x+1) + T2 \cdot (2^{RSSI} - VALID - CNT + 1)$$

Equation 17: CS Response Time (# of gain reductions is known)

SWRU295C Page 37 of 108

 $^{^{10}}$ x = DCFILT_CFG.DCFILT_BW when DCFILT_CFG.DCFILT_BW $\,<\,$ 5, $\,$ else it is 4 $\,$

In cases where AGC_CFG1.AGC_SYNC_BEHAVIOR is set to freeze the RSSI value after a sync word is detected, it is important that preamble and sync word is long enough so that the RSSI represent the RSSI of the packet and not of noise received prior to the preamble.

Assume a data rate of 1.2 ksps and the following register configurations:

Equation 16 can be used to find the max RSSI update rate. For this example it is assumed that the radio has been in RX for some time before a packet is received so T0 can be ignored.

RSSI Update Rate
$$\leq (T1+T2) \cdot (2^{RSSI_{VALID_{CNT}}} + 1)$$

$$T1 = \frac{(16 \cdot AGC_SETTLE_WAIT + 48) \cdot BB_CIC_DECFACT \cdot Decimation\ Factor}{f_{XOSC}} = \frac{(16 \cdot 1 + 48) \cdot 8 \cdot 20}{32 \cdot 10^6} = 320 \text{ us}$$

$$T2 \leq \frac{2^{\text{AGC_WIN_SIZE}+4} \cdot \text{BB_CIC_DECFACT} \cdot \text{Decimation Factor} + 46}{f_{\textit{XOSC}}} = \frac{2^{2+4} \cdot 8 \cdot 20 + 46}{32 \cdot 10^6} = 321.44 \, \text{us}$$

RSSI Update Rate
$$\leq (320 + 321.44) \cdot (2^3 + 1) = 5.77 \text{ ms}$$

To make sure that the RSSI measurement is done during the packet and not on noise, preamble + sync word should be greater than twice the RSSI update rate.

With a data rate of 2.4 ksps this means that a minimum of 28 bits preamble/sync must be received for the RSSI readout to be correct. For this example it is assumed that the radio has been in RX for a time longer than the max CS response time (see Equation 16) when the preamble and sync word is received.

5.8.1 Carrier Sense (CS)

Carrier Sense (CS) is asserted when the RSSI is above a programmable CS threshold, AGC_CS_THR, and de-asserted when RSSI is below the same threshold. The CS threshold should be set high enough so that CS is de-asserted when only background noise is present and low enough so that CS is asserted when a wanted signal is present. Different usage of CS includes:

- Sync word qualifier: When MDMCFG1.CARRIER_SENSE_GATE = 1, the demodulator will not start to look for a sync word before CS is asserted
- Clear Channel Assessment (CCA) and TX on CCA
- Avoid interference from other RF sources in the ISM band
- RX termination

The latter is described in Section 8.5. By setting the <code>IOCFGX.GPIOX_CFG</code> = <code>CARRIER_SENSE</code> (17), GPIOx will indicate if a carrier is present. The CS signal is evaluated each time a new internal RSSI estimate is computed. The <code>CARRIER_SENSE</code> signal must only be interpreted when it is valid, as indicated by <code>CARRIER_SENSE_VALID</code>. This signal can be routed to GPIOX by setting <code>IOCFGX.GPIOX_CFG</code> = <code>CARRIER_SENSE_VALID</code> (16) to help evaluate this in real-time. The two signals can also be read from the <code>RSSIO</code> register.

5.9 Collision Detector

If a packet is currently being received by the radio (data is put in the RX FIFO) when a new packet, with higher signal energy, appears on the air and blocks the packet being received, a collision has found place. A collision can be handled in several different ways.

Not handled. The current packet received will have errors and can be discarded. This method will
work well in most systems as RF protocols have capabilities for re-transmissions to solve these
issues.

SWRU295C Page 38 of 108

- RX can be terminated and resumed later.
- RX can be restarted to receive the new packet. For this to be successful, the new packet must have signal energy that is sufficiently higher than the current packet to allow correct demodulation. This scenario is mainly for high throughput protocols where nodes communicate with several nodes at various distances.

CC112X has several signals that can be used to indicate a collision. These are RSSI_STEP_FOUND, RSSI_STEP_EVENT, COLLISION_FOUND, and COLLISION_EVENT described in Table 10. Section 5.9.1 and Section 5.9.2 give two examples on how collision detection can be implemented.

5.9.1 RSSI Based Detection

During packet reception a collision can be detected as a step in RSSI. When the first packet is detected, the carrier sense level can be changed to a value higher than the RSSI for the current packet. If a new packet with higher signal power appears on the air, a carrier sense interrupt will tell the MCU to restart RX. The SRX strobe can be used to immediately restart the demodulator to catch the incoming packet. Since an SFRX strobe cannot be issued from RX state one should read the NUM RXBYTES register to find out how many bytes belong to the first packet.

5.9.2 Preamble Based Detection

A more robust indicator is to use the preamble detector (enabled by setting $PREAMBLE_CFGO.PQT_EN=1$). If a new message is incoming it will start with a preamble. A PQT interrupt can then be used to indicate a collision. If the data of the current message can contain a 010101 preamble sequence, a check for a step in RSSI should also be done before running the SRX strobe command. Also in this case one should read the NUM_RXBYTES register before strobing SRX over again.

5.10 Clear Channel Assessment (CCA)

The Clear Channel Assessment (CCA) is used to indicate if the current channel is free or busy. The current CCA state is viewable on GPIO1 or GPIO3 by setting <code>IOCFG1/3.GPIO1/3_CFG = CCA_STATUS</code> (15). There are also two other flags related to the CCA feature available. These are <code>TXONCCA_DONE</code> and <code>TXONCCA_FAILED</code> and are available on GPIO2 and GPIO0 respectively by using the same <code>IOCFG</code> configuration as for <code>CCA_STATUS</code>. <code>TXONCCA_DONE</code> is a pulse occurring when a decision has been made as to whether the channel is busy or not and <code>TXONCCA_FAILED</code> indicates if the radio went to TX or not after <code>TXONCCA_DONE</code> was asserted.

PKT CFG2.CCA MODE selects the mode to use when determining CCA.

When an STX or SFSTXON command strobe is given while **CC112N** is in the RX state, the TX or FSTXON state is only entered if the clear channel requirements are fulfilled (CCA_STATUS is asserted). Otherwise, the chip will remain in RX. If the channel then becomes available, the radio will not enter TX or FSTXON state before a new strobe command is sent on the SPI interface¹¹. This feature is called TX on CCA/LBT. Five CCA requirements can be programmed:

- Always (CCA disabled, always goes to TX)
- If RSSI is below threshold
- Unless currently receiving a packet
- Both the above (RSSI below threshold and not currently receiving a packet)
- If RSSI is below threshold and ETSI LBT [2] requirements are met

SWRU295C Page 39 of 108

 $^{^{11}}$ If PKT_CFG2.CCA_MODE = 100b (LBT) the radio will try to enter TX mode again automatically until the channel is clear and TX mode is being entered

5.11 Listen Before Talk (LBT)

ETSI EN 300 220-1 V2.3.1 [2] has specific requirements for LBT. To simplify compliance **CC1121** has built in HW support to automate the LBT algorithm, including random back-offs. The requirements are taken from the ETSI specifications, and a summary is shown below.

5.11.1 LBT Minimum Listening Time

"The minimum listening time is defined as the minimum time that the equipment listens for a received signal at or above the LBT threshold level (.....) immediately prior to transmission to determine whether the intended channel is available for use.

The listening time shall consist of the "minimum fixed listening time" and an additional pseudo random part. If during the listening mode another user is detected on the intended channel, the listening time shall commence from the instant that the intended channel is free again. Alternatively, the equipment may select another channel and again start the listen time before transmission."

Changing channel is not supported in HW and must be performed by the MCU.

5.11.2 Limit for Minimum Listening Time

"The total listen time, t_L , consists of a fixed part, t_F , and a pseudo random part, t_{PS} , as the following:

 $t_L = t_F + t_{PS}$

- a) The fixed part of the minimum listening time, t_F , shall be 5 ms.
- b) The pseudo random listening time t_{PS} shall be randomly varied between 0 ms and a value of 5 ms or more in equal steps of approximately 0,5 ms as the following:
 - If the channel is free from traffic at the beginning of the listen time, t_L , and remains free throughout the fixed part of the listen time, t_F , then the pseudo random part, t_{PS} , is automatically set to zero by the equipment itself.
 - If the channel is occupied by traffic when the equipment either starts to listen or during the listen period, then the listen time commences from the instant that the intended channel is free. In this situation the total listen time t₁ shall comprise t_F and the pseudo random part, t_{PS}.

The limit for total listen time for the receiver consists of the sum of a) and b) together."

If LBT is enabled (PKT_CFG2.CCA_MODE = 100b) the **CC1121** will run the algorithm until successful transmission.

5.12 Link Quality Indicator (LQI)

The Link Quality Indicator is a metric of the current quality of the received signal. If PKT_CFG1.APPEND_STATUS is enabled, the value is automatically added to the last byte appended after the payload. The value can also be read from the LQI_VAL register. The LQI gives an estimate of how easily a received signal can be demodulated. LQI is best used as a relative measurement of the link quality (a low value indicates a better link than what a high value does), since the value is dependent on the modulation format.

6 Transmit Configuration

6.1 PA Output Power Programming

PA power ramping is used to improve spectral efficiency of the system by reducing the out of band signal energy created by abrupt changes in the output power. PA output power ramping is used when starting/ending a transmission and this feature is always enabled. The power ramping is very flexible and can be controlled by a configurable, piecewise linear function.

The RF output power level from the device is programmed with the PA_CFG2.PA_POWER_RAMP register field. The power level resolution is 0.5 dB.

Output Power =
$$\frac{PA_POWER_RAMP + 1}{2} - 18$$

Equation 18: Output Power¹²

Where 3 ≤ PA POWER RAMP ≤ 64

The shaped power ramping is controlled by the PA_CFG1 register. The shaped power ramp up curve passes through two intermediate power levels from off-state to programmed output power level (PA_CFG2.PA_POWER_RAMP). The intermediate power levels and total ramp time can be configured. For the shaped ramp up the output power level is split into 16 sections (see

where 1 equals the output power level). The two intermediate power levels are defined using these 16 sections. The first intermediate power level can be programmed within the power level range 0 - 7/16 through PA_CFG1.FIRST_IPL. The second intermediate power level can be programmed within power range of 0.5 - 15/16 through PA_CFG1.SECOND_IPL. In Figure 15, FIRST_IPL = 011b and SECOND_IPL = 110b.

Figure 15: PA Power Ramping Control (configurable in the grey area)

The PA ramp up time (and ramp down time) is $^3/_8$, $^3/_2$, 3, or 6 symbols and is configured through PA_CFG1.PA_RAMP_SHAPE.

6.2 OOK/ASK Bit Shaping

When using OOK/ASK bit shaping is implemented and the the OOK/ASK shape length is $^{1}/_{32}$, $^{1}/_{16}$, $^{1}/_{8}$, or $^{1}/_{4}$ symbols (configured through PA CFG1.PA RAMP SHAPE).

SWRU295C Page 41 of 108

¹² This equation is an approximation. SmartRF Studio provides recommended values for different output powers based on characterization.

7 Packet Handling Hardware Support

The **CC112X** has built-in hardware support for packet oriented radio protocols.

In transmit mode, the packet handler can be configured to add the following elements to the packet stored in the TX FIFO:

- A programmable number of preamble bytes
- An 11, 16, 18, 24 or 32 bit synchronization word
- A 2 byte CRC checksum computed over the data field.
- Whitening of the data with a PN9 sequence

In receive mode, the packet handling support will de-construct the data packet by implementing the following (if enabled):

- Preamble detection
- Sync word detection
- CRC computation and CRC check
- One byte address check
- Packet length check (length byte checked against a programmable maximum length)
- De-whitening

Optionally, two status bytes (see Table 22 and Table 23) with RSSI value, Link Quality Indication, and CRC status can be appended in the RX FIFO by setting PKT CFG1.APPEND STATUS = 1.

Bit	Field Name	Description
7:0	RSSI	RSSI value

Table 22: Received Packet Status Byte 1 (first byte appended after the data)

Bit	Field Name	Description
7	CRC_OK	1: CRC for received data OK (or CRC disabled or TX mode) 0: CRC error in received data
6:0	LQI	Indicating the link quality

Table 23: Received Packet Status Byte 2 (second byte appended after the data)

7.1 Standard Packet Format

The format of the data packet can be configured and consists of the following items (see Figure 16):

- Preamble
- Synchronization word
- Optional length byte
- Optional address byte
- Payload
- Optional 2 byte CRC

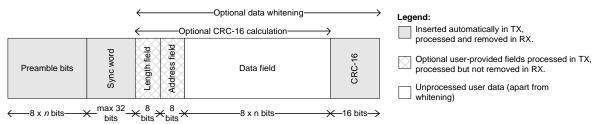


Figure 16: Packet Format

CC112X/CC1175

The preamble pattern is an alternating sequence of ones and zeros (1010··/0101··/ 00110011.../11001100...) programmable through the PREAMBLE CFG1.PREAMBLE WORD register minimum The length of the preamble is programmable through PREAMBLE CFG1.NUM PREAMBLE register field. When strobing TX, the modulator will start transmitting a preamble. When the programmed number of preamble bytes has been transmitted, the modulator will send the sync word and then data from the TX FIFO. If the TX FIFO is empty, the modulator will continue to send preamble bytes until the first byte is written to the TX FIFO. The modulator will then send the sync word and then the data bytes.

The sync word is set in the SYNC3/2/1/0 registers. The sync word provides byte synchronization of the incoming packet. Non-supported sync word lengths can be emulated by using parts of the preamble pattern in the SYNC registers.

CC112X supports both fixed packet length protocols and variable packet length protocols. Variable or fixed packet length mode can be used for packets up to 255 bytes. For longer packets, infinite packet length mode must be used. The packet length is defined as the payload data and the optional address byte, excluding the optional length byte, the optional CRC, and the optional append status.

7.1.1 Fixed Packet Length

Fixed packet length mode is selected by setting $PKT_CFG0.LENGTH_CONFIG = 00$. The desired packet length is set by the PKT_LEN register.

To support non-byte oriented protocols, fixed packet length mode supports packet lengths of n bytes + m bits, where n is programmed through the PKT_LEN register and m is programmed through PKT_CFG0.PKT_BIT_LEN. If m \neq 0, only m bits of the last byte written to the TX FIFO is transmitted and RX mode is terminated when the last m bits of the packet is received. This is very useful in low power systems where it is important not to stay in TX/RX longer than necessary. CRC is not supported when PKT_CFG0.PKT_BIT_LEN \neq 0. In RX, you will read zero's from the (8 - m) LSBs in the last byte in the RX FIFO.

Note: If PKT_LEN = 0x00 and PKT_CFG0.PKT_BIT_LEN $\neq 000$ the packet length is between 1 and 7 bits long (given by the PKT_BIT_LEN register field). If PKT_LEN = 0x00 and PKT_CFG0.PKT_BIT_LEN = 000 the packet length is 256 bytes.

7.1.2 Variable Packet Length

In variable packet length mode, PKT_CFGO.LENGTH_CONFIG = 01, the packet length is configured by the first byte after the sync word. The packet length is defined as the payload data and optional address field, excluding the length byte and the optional CRC. The PKT_LEN register is used to set the maximum packet length allowed in RX. Any packet received with a length byte with a value greater than PKT_LEN will be discarded.

By setting PKT_CFG0.LENGTH_CONFIG = 11b only the 5 LSB of the length byte is used for length configuration while the 3 MSB are treated as normal data. Maximum packet length is hence 32 bytes. The only difference from standard variable length mode is the masking of 3 MSB bits of the received packet length byte, configured through LENGTH CONFIG.

7.1.3 Infinite Packet Length

With PKT_CFG0.LENGTH_CONFIG = 10b, the packet length is set to infinite and transmission and reception will continue until turned off manually. As described in the next section, this can be used to support packet formats with different length configuration than natively supported by **CC112X**.

Note: The minimum packet length supported (excluding the optional length byte and CRC) is one byte of payload data.

SWRU295C Page 43 of 108

7.1.4 Arbitrary Length Field Configuration

The packet length register, PKT_LEN, can be reprogrammed during receive and transmit (this is also the case for the PKT_BIT_LEN register field in the PKT_CFG0 register). In combination with fixed packet length mode (PKT_CFG0.LENGTH_CONFIG = 00) this opens the possibility to have a different length field configuration than supported for variable length packets (in variable packet length mode the length byte is the first byte after the sync word). At the start of reception, the packet length is set to a large value. The MCU reads out enough bytes to interpret the length field in the packet. Then the PKT_LEN value is set according to this value. The end of packet will occur when the byte counter in the packet handler is equal to the PKT_LEN register. Thus, the MCU must be able to program the correct length before the internal counter reaches the packet length.

7.1.5 Packet Length > 255

PKT_CFG0.LENGTH_CONFIG can also be reprogrammed during TX and RX. This opens the possibility to transmit and receive packets that are longer than 256 bytes and still be able to use the packet handling hardware support. At the start of the packet, the infinite packet length mode (PKT_CFG0.LENGTH_CONFIG = 10b) must be active. On the TX side, the PKT_LEN register is set to mod(length, 256). On the RX side the MCU reads out enough bytes to interpret the length field in the packet and sets the PKT_LEN register to mod(length, 256) 13 . When less than 256 bytes remains of the packet, the MCU disables infinite packet length mode and activates fixed packet length mode (PKT_CFG0.LENGTH_CONFIG = 00). When the internal byte counter reaches the PKT_LEN value, the transmission or reception ends (the radio enters the state determined by RFEND_CFG0.TXOFF_MODE or RFEND_CFG1.RXOFF_MODE). Automatic CRC appending/checking can also be used (by setting PKT_CFG1.CRC_CFG = 01 or 10b).

When for example a 600-byte packet is to be transmitted, the MCU should do the following.

- Set PKT CFG0.LENGTH CONFIG = 2
- Pre-program the PKT LEN register to mod(600, 256) = 88
- Transmit at least 345 bytes (600 255), for example by filling the 128-byte TX FIFO three times (384 bytes transmitted)
- Set PKT CFG0.LENGTH CONFIG = 0
- The transmission ends when the packet counter reaches 88. A total of 600 bytes are transmitted.

Internal byte counter in packet handler counts from 0 to 255 and then starts from 0 again

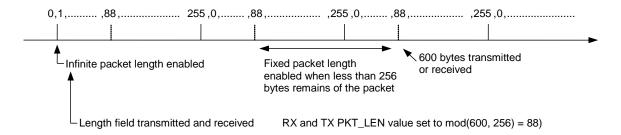


Figure 17: Packet Length > 255

SWRU295C Page 44 of 108

¹³ Given two positive numbers, a dividend x and a divisor y, mod(x, y) can be thought of as the remainder when dividing x by y. For instance, the expression mod(5, 4) would evaluate to 1 because 5 divided by 4 leaves a remainder of 1.

7.1.6 Data Whitening

From a radio perspective, the ideal over the air data are random and DC free. This results in the smoothest power distribution over the occupied bandwidth. This also gives the regulation loops in the receiver uniform operation conditions (no data dependencies).

Real data often contain long sequences of zeros and ones making it difficult to track the data bits. In these cases, performance can be improved by whitening the data before transmitting, and dewhitening the data in the receiver.

With **CC112X**, this can be done automatically. By setting PKT_CFG1.WHITE_DATA = 1, all data, except the preamble and the sync word will be XORed with a 9-bit pseudo-random (PN9) sequence before being transmitted. This is shown in Figure 18. At the receiver end, the data are XORed with the same pseudo-random sequence. In this way, the whitening is reversed, and the original data appear in the receiver. The PN9 sequence is initialized to all 1's.

If **CC112X** is set up to transmit random data, the PN9 whitening sequence will be transmitted (see Table 24).

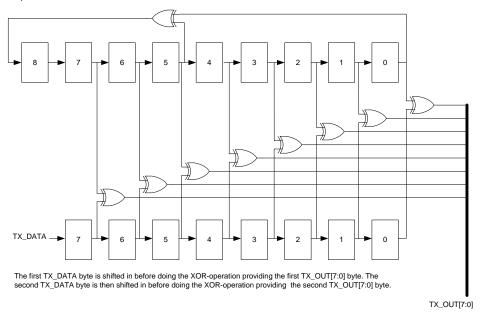


Figure 18: Data Whitening in TX Mode

Assume the following bytes should be transmitted: 0xAB, 0x80, 0xFF, 0x00

The first byte is XORed with 0xFF (initial value)

 $0xAB \oplus 0xFF = 0x54$

Table 24 shows how the bit shifting and XORing of bit 5 and bit 0 gives the bytes that the remaining bytes in the packet should be XORed with.

8 (5 🕀 0)	7	6	5	4	3	2	1	0
1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1
1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	1	1	1
1	1	1	0	0	0	0	1	1
1	1	1	1	0	0	0	0	1
0	1	1	1	1	0	0	0	0
1	0	1	1	1	1	0	0	0
1	1	0	1	1	1	1	0	0
1	1	1	0	1	1	1	1	0
0	1	1	1	0	1	1	1	1
0	0	1	1	1	0	1	1	1
0	0	0	1	1	1	0	1	1
0	0	0	0	1	1	1	0	1
1	0	0	0	0	1	1	1	0
0	1	0	0	0	0	1	1	1
1	0	1	0	0	0	0	1	1
1	1	0	1	0	0	0	0	1
0	1	1	0	1	0	0	0	0
0	0	1	1	0	1	0	0	0
1	0	0	1	1	0	1	0	0
1	1	0	0	1	1	0	1	0

Table 24: PN9 Whitening Sequence

```
0x80 \oplus 0xE1 = 0x61

0xFF \oplus 0x1D = 0xE2

0x00 \oplus 0x9A = 0x9A
```

.

The complete packet will look like this (assume default preamble, sync word, and CRC configuration): 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xOB, 0x51, 0xDE, 0x54, 0x61, 0xE2, 0x9A, 0xF9, 0x9D

7.1.7 Data Byte Swap

If the PKT_CFG1.BYTE_SWAP_EN register field is set than the bits in each byte are swapped, meaning that bit 0 becomes bit 7, bit 1 becomes bit 6 etc. until bit 7 becomes bit 0.

In TX mode all bytes in the TX FIFO are swapped before optional CRC calculation and whitening are performed.

In RX mode the data byte is swapped after all the processing is done, meaning that de-whitening and CRC calculation are done on the original received data, and the swapping is done right before the actual writing to the RX FIFO. This means that if using address filtering (see Section 7.2.1) is used

SWRU295C Page 46 of 108

when PKT_CFG1.BYTE_SWAP_EN = 1, the user should swap the address manually in the DEV_ADDR register in order to match the received address due to the fact that the packet engine compares the address register to the received address before the swapping is done.

Figure 19 shows the data sent over the air vs. the data written to the TX FIFO when byte swap is enabled (assume that whitening and CRC calculation are disabled). If the receiver uses address filtering, the address should be programmed to be 0xEA.

Data written to TX FIFO 0x03 0x57 0x26 0xB2 0 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 Data sent on the air 0xC0 0xEA 0x64 0x4D 1 1 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0

Figure 19: Data Byte Swap

7.1.8 UART Mode

If UART mode is enabled (PKT_CFG0.UART_MODE_EN = 1), the packet engine inserts and removes start/stop bits automatically. In this mode the packet engine will emulate UART back-to-back transmissions typically done over an asynchronous RF interface, to enable communication with simple RF devices without packet support.

The start and stop bits are not handled as data, only inserted/removed in the data stream to/from the modem, hence all packet features are available in this mode. The value of the start/stop bits is configurable through the PKT CFGO.UART SWAP EN register field.

If whitening is enabled, only the data bits are affected, not the start/stop bits.

A "framing error" occurs in RX mode when the designated "start" and "stop" bits are not received as expected. As the "start" bit is used to identify the beginning of an incoming byte it acts as a reference for the remaining bits. If the "start" and "stop" bits are not in their expected value, it means that the data is not in line and a framing error will occur (the UART_FRAMING_ERROR signal will be asserted). Framing errors will not stop the on-going reception.

SWRU295C Page 47 of 108

7.2 Packet Filtering in Receive Mode

CC112X supports three different types of packet-filtering; address filtering, maximum length filtering, and CRC filtering.

7.2.1 Address Filtering

Setting PKT_CFG1.ADDR_CHECK_CFG to any other value than zero enables the address filtering where the packet handler engine will compare the address field in the packet (see Figure 16) with the programmed node address in the DEV_ADDR register. If PKT_CFG1.ADDR_CHECK_CFG = 10b it will in addition check against the 0x00 broadcast address, or both the 0x00 and 0xFF broadcast addresses when PKT_CFG1.ADDR_CHECK_CFG = 11b. If the received address matches a valid address, the packet is received and written into the RX FIFO. If the address match fails, the packet is discarded and the radio controller will either restart RX or go to IDLE dependent on the RFEND_CFG0.TERM_ON_BAD_PACKET_EN setting (the RFEND_CFG1.RXOFF_MODE setting is ignored 14).

7.2.2 Maximum Length Filtering

In variable packet length mode, PKT_CFG0.LENGTH_CONFIG = 01, the PKT_LEN register value is used to set the maximum allowed packet length. If the received length byte has a larger value than this, the packet is discarded and the radio controller will either restart RX or go to IDLE dependent on the RFEND_CFG0.TERM_ON_BAD_PACKET_EN setting (the RFEND_CFG1.RXOFF_MODE setting is ignored).

7.2.3 CRC Filtering

The filtering of a packet when CRC check fails is enabled by setting <code>FIFO_CFG.CRC_AUTOFLUSH = 1</code>. The CRC auto flush function will only flush the packet received with bad CRC, other packets will remain unchanged in the RX FIFO. After auto flushing the faulty packet, the radio controller will either restart RX or go to <code>IDLE</code> dependent on the <code>RFEND_CFG0.TERM_ON_BAD_PACKET_EN</code> setting (the <code>RFEND_CFG1.RXOFF_MODE</code> setting is ignored).

When using the auto flush function, the maximum packet length is 127 bytes in variable packet length mode and 128 bytes in fixed packet length mode. Note that when PKT_CFG1.APPEND_STATUS is enabled, the maximum allowed packet length is reduced by two bytes in order to make room in the RX FIFO for the two status bytes appended at the end of the packet. The MCU must not read from the current packet until the CRC has been checked as OK.

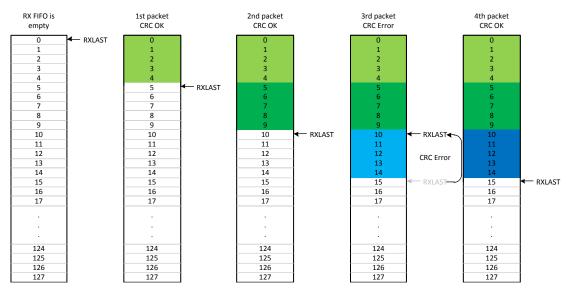


Figure 20: CRC Autoflush of Faulty Packet

 $^{^{\}rm 14}$ RFEND_CFG1 . RXOFF_MODE $\,$ can be changed while in active mode

7.2.4 Auto Acknowledge

By configuring the radio to enter TX after a packet has been received (RFEND_CFG1.RXOFF_MODE = TX) enabling termination on bad packets (RFEND_CFG0.TERM_ON_BAD_PACKET_EN = 1) automatic acknowledgement of packets can be achieved. The Ack. packet should be written to the TX FIFO before RX mode is being entered. With the settings described above, receiving a bad packet (error in address, length, or CRC) will have the radio enter IDLE state while receiving a good packet will cause the radio to enter TX state and transmit the packet residing in the TX FIFO.

7.3 Packet Handling in Transmit Mode

The payload that is to be transmitted must be written into the TX FIFO. The first byte written must be the length byte when variable packet length is enabled (PKT_CFG0.LENGTH_CONFIG = 01b). The length byte has a value equal to the payload of the packet (including the optional address byte). If address recognition is enabled in the receiver (PKT_CFG1.ADDR_CHECK_CFG \neq 00b) the second byte written to the TX FIFO must be the address byte (as the address in not automatically inserted).

If fixed packet length is enabled (PKT_CFG0.LENGTH_CONFIG = 00b), the first byte written to the TX FIFO should be the address (assuming the receiver uses address recognition).

The modulator will first send the programmed number of preamble bytes configured through the PREAMBLE_CFG1.NUM_PREAMBLE register field. If data is available in the TX FIFO, the modulator will send the sync word (programmed through SYNC_CFG0.SYNC_MODE and SYNC3/2/1/0) followed by the payload in the TX FIFO. If CRC is enabled (PKT_CFG1.CRC_CFG = 01b or 10b), the checksum is calculated over all the data pulled from the TX FIFO, and the result is sent as two extra bytes following the payload data. If the TX FIFO runs empty before the complete packet has been transmitted, the radio will enter TX_FIFO_ERR state. The only way to exit this state is by issuing an SFTX strobe. Writing to the TX FIFO after it has underflowed will not restart TX mode.

If whitening is enabled, everything following the sync words will be whitened. Whitening is enabled by setting PKT CFG1.WHITE DATA = 1. For more details on whitening, please see Section 7.1.6.

7.4 Packet Handling in Receive Mode

In receive mode, the radio will search for a valid sync word (if $SYNC_CFG0.SYNC_MODE \neq 0$) and when found, the demodulator has obtained both bit and byte synchronization and will receive the first payload byte. For more details on byte synchronization/sync word detection, please see Section 5.6

If whitening is enabled ($PKT_CFG1.WHITE_DATA = 1$), the data will be de-whitened at this stage.

When variable packet length mode is enabled (PKT_CFG0.LENGTH_CONFIG = 01b), the first byte is the length byte. The packet handler stores this value as the packet length and receives the number of bytes indicated by the length byte. If fixed packet length mode is used (PKT_CFG0.LENGTH_CONFIG = 00), the packet handler will accept the number of bytes programmed through the PKT_LEN.PACKET_LENGHT register field.

Next, the packet handler optionally checks the address (if PKT_CFG1.ADDR_CHECK_CFG \neq 00b) and only continues the reception if the address matches. If automatic CRC check is enabled (PKT_CFG1.CRC_CFG = 01b or 10b), the packet handler computes CRC and matches it with the appended CRC checksum.

At the end of the payload, the packet handler will optionally write two extra packet status bytes (see Table 22 and Table 23) that contain CRC status, LQI, and RSSI value if PKT CFG1.APPEND STATUS = 1.

7.5 Packet Handling in Firmware

When implementing a packet oriented radio protocol in firmware, the MCU needs to know when a packet has been received/transmitted. Additionally, for packets longer than 128 bytes, the RX FIFO needs to be read while in RX and the TX FIFO needs to be refilled while in TX. This means that the MCU needs to know the number of bytes that can be read from or written to the RX FIFO and TX FIFO respectively. There are two possible solutions to get the necessary status information:

SWRU295C Page 49 of 108

a) Interrupt Driven Solution

The GPIO pins can be used in both RX and TX to give an interrupt when a sync word has been received/transmitted or when a complete packet has been received/transmitted by setting IOCFGx.GPIOx_CFG = PKT_SYNC_RXTX (6). In addition, there are four configurations for the IOCFGx.GPIOx_CFG register that can be used as an interrupt source to provide information on how many bytes are in the RX FIFO and TX FIFO respectively (see 7.6 for more details).

b) SPI Polling

The GPIO_STATUS register can be polled at a given rate to get information about the current GPIO values. The NUM_RXBYTES and NUM_TXBYTES registers can be polled at a given rate to get information about the number of bytes in the RX FIFO and TX FIFO respectively. It is also possible to use <code>FIFO_NUM_RXBYTES.FIFO_RXBYTES</code> and <code>FIFO_NUM_TXBYTES.FIFO_TXBYTES</code>. These register fields give the number of bytes available in the RX FIFO and free bytes in the TX FIFO, and both register values saturates at 15.

7.6 TX FIFO and RX FIFO

The **CC112X** contains two 128 byte FIFOs, one for received data and one for transmit data. The SPI interface is used to read from the RX FIFO and write to the TX FIFO. Section 3.2.4 contains details on the SPI FIFO access. The FIFO controller will detect under/overflow in both the RX FIFO and the TX FIFO.

A signal will assert when the number of bytes in the FIFO is equal to or higher than a programmable threshold. This signal can be viewed on the GPIO pins and can be used for interrupt driven FIFO routines to avoid polling the NUM_RXBYTES and NUM_TXBYTES registers. The IOCFGx.GPIOx_CFG = RXFIFO_THR (0) and the IOCFGx.GPIOx_CFG = RXFIFO_THR_PKT (1) configurations are associated with the RX FIFO while the IOCFGx.GPIOx_CFG = TXFIFO_THR (2) and the IOCFGx.GPIOx_CFG = TXFIFO_THR (3) configurations are associated with the TX FIFO.

The 7-bit FIFO_CFG.FIFO_THR setting is used to program threshold points. Table 25 lists the FIFO_THR settings and the corresponding thresholds for the RX and TX FIFO. The threshold value is coded in opposite directions for the two FIFOs to give equal margin to the overflow and underflow conditions when the threshold is reached.

FIFO_THR	Bytes in TX FIFO	Bytes in RX FIFO
0	127	1
1	126	2
2	125	3
126	1	127
127	0	128

Table 25: FIFO THR Settings and the Corresponding FIFO Thresholds

To simplify debug and advanced FIFO features, the full FIFO buffer is memory mapped and can be accessed directly(see Section 3.2.3). Both FIFO content and FIFO data pointers are accessible. This can be used to significantly reduce the SPI traffic, see examples below

- 1. In a hostile RF environment packets are lost and re-transmissions are often required. Normally the packet data must then be written again over the SPI interface. By using the direct FIFO access feature and changing the TXFIRST register to point to the head of the previous message, a re-transmission can be done without writing the packet over the SPI.
- 2. In many protocols only parts of the message is changed between each transmission (e.g. changing a read value from a sensor, incrementing a transmission counter). Direct FIFO access can then be used to change only the new data (the FIFOs are reached through the 0x3E command, see Table 4), leaving the rest of the data unchanged. FIFO data pointers (TXFIRST and TXLAST) can then be manipulated to re-transmit the packet with changed data.

7.7 Transparent and Synchronous Serial Operation

Several features and modes of operation have been included in the **CC112N** to provide backward compatibility with legacy systems that cannot be supported by the built in packet handling functionality. For new systems, it is recommended to use the built-in packet handling features, as they give more robust communication, significantly offload the microcontroller, and simplify software development. Serial mode is only supported for 2'ary modulations formats.

There are two serial modes and they are described in the two following sections.

7.7.1 Synchronous Serial Mode

In the synchronous serial mode, data is transferred on a two-wire serial interface. The **GG112X** provides a clock (IOCFGx.GPIOx_CFG = SERIAL_CLK (8)) that is used to set up new data on the data input line or sample data on the data output line. Data timing recovery is done automatically. The data pin is updated on the falling edge of the clock pin at the programmed data rate. Sync word insertion/detection may or may not be active, depending on the sync mode. If sync word detection is enabled in RX mode (SYNC_CFG0.SYNC_MODE != 000) the serial clock (SERIAL_CLK) will not be output on the GPIO before a sync word is found. When SYNC_MODE = 000 it is recommended to transmit a minimum of 4 bytes preamble.

Define a GPIO pin to be serial data clock for both TX and RX operation. For RX operation, another GPIO pin has to be defined as serial data output (IOCFGx.GPIOx CFG = SERIAL RX (9)).

For TX operation, the GPIO0 pin is explicitly used as serial data input. This is automatically done when in TX. In order to avoid internal I/O conflict, GPIO0 should be defined as tri-state. GPIO0 will be automatically tri-stated in TX if the GPIO0 is defined as serial clock or serial data output (IOCFG0.GPIO0_CFG = 8 or 9). If this is not the case, GPIO0 must be manually tri-stated by setting IOCFG0.GPIO0_CFG = HIGHZ (48).

In synchronous serial mode the TX data must be set up on the falling edge of the data clock output from **CC112X**.

In addition to set PKT CFG2.PKT FORMAT = 01b, the following register fields must be set:

- MDMCFG1.FIFO EN = 0
- MDMCFG0.TRANSPARENT MODE EN = 0
- IOCFGx.GPIOx CFG = 001001b (SERIAL RX. Only necessary for RX mode)
- SERIAL STATUS.IOC SYNC PINS EN = 1 (Only necessary for TX mode)
- PREAMBLE CFG1.NUM PREAMBLE = 000

Synchronous serial mode is often used in applications needing to be backward compatible, and sync detection is disabled ($SYNC_CFG0.SYNC_MODE = 000$) since the format of the sync word often do not match the supported sync word format. Best radio performance is however achieved when $SYNC_MODE != 000$. In cases where the packet has a preamble but not a sync word that matches the sync format supported by the **CC112X**, the radio can simply use the preamble as a sync word. Consider the case where a receiver wants to receive packets with 3 different addresses but no common sync word:

```
Packet 1: 0xAA, 0xAA, 0xAA, 0xAA, Address1, Data 1, Data 2, ...
```

Packet 1: 0xAA, 0xAA, 0xAA, 0xAA, Address2, Data0, Data 1, Data 2, ...

Packet 1: 0xAA, 0xAA, 0xAA, 0xAA, Address3, Data0, Data 1, Data 2, ...

By setting $SYNC_CFGO.SYNC_MODE = 010b$ and SYNC1 = SYNC0 = 0xAA a sync word is detected somewhere within the preamble and the serial clock will be output on a GPIO when $SYNC_EVENT$ is asserted. Now the MCU can manually start searching for the 3 different addresses. When this method is used TOC CFG.TOC LIMIT should be 0.

SWRU295C Page 51 of 108

CC112X/CC1175

7.7.2 Transparent Serial Mode

constant does not do any timing recovery and just outputs the hard limited baseband signal. In transparent serial mode the data rate programming does not affect operation. When transparent mode is enabled, the device is set up to resemble a legacy purely analog front end device with baseband output to support legacy pulse position modulation, PWM modulated signals etc. In transparent mode the signal is digitally demodulated and output on GPIO pins through a programmable interpolation filter (MDMCFGO.TRANSPARENT_INTFACT). The interpolation filter is used to eliminate jitter on the baseband signal. This is useful when using external DSP demodulators as jitter introduce noise in the demodulation process. The rate on the GPIO is ((4 x receiver bandwidth) x interpolation factor).

When using transparent serial mode make sure the interfacing MCU/DSP does proper oversampling. In transparent serial mode, several of the support mechanisms for the MCU that are included in **CC112X** will be disabled, such as packet handling hardware, buffering in the FIFO, and so on.

Preamble and sync word insertion/detection is not supported in transparent serial mode.

For TX operation, the GPIO0 pin is explicitly used as serial data input. This is automatically done when in TX. In order to avoid internal I/O conflict, GPIO0 should be defined as tri-state. GPIO0 will be automatically tri-stated in TX if the GPIO0 is defined as serial clock or serial data output (IOCFG0.GPIO0_CFG = 8 or 9). If this is not the case, GPIO0 must be manually tri-stated by setting IOCFG0.GPIO0 CFG = HIGHZ (48).

Data output can be observed on GPIO0/1/2/3. This is set by the IOCFGx.GPIOx CFG fields.

In addition to set PKT CFG2.PKT FORMAT = 11b, the following register fields must be set:

- MDMCFG1.FIFO EN = 0
- MDMCFG0.TRANSPARENT MODE EN = 1
- IOCFGx.GPIOx CFG = 001001b (SERIAL RX. Only necessary for RX mode)
- SERIAL STATUS.IOC SYNC PINS EN = 1 (Only necessary for TX mode)

SWRU295C Page 52 of 108

8 Radio Control

CC112X has a built-in state machine that is used to switch between different operational states (modes). The change of state is done either by using command strobes or by internal events such as TX FIFO underflow.

A simplified state diagram is shown in Figure 2. The numbers refer to the state numbers readable from the MARCSTATE.MARC STATE register field.

8.1 Power-On Start-Up Sequence

When the power supply is turned on, the system must be reset. This is achieved by one of the two sequences described below, i.e. automatic power-on reset (POR) or manual reset.

8.1.1 Automatic POR

A power-on reset circuit is included in the *CC112X*. The internal power-up sequence is completed when CHIP_RDYn goes low. CHIP_RDYn is observed on the SO pin after CSn is pulled low (See Section 3.1.2 for more details).

When the **CC112X** reset is completed, the chip will be in the IDLE state and the crystal oscillator will be running. If the chip has had sufficient time for the crystal oscillator to stabilize after the power-on-reset, the SO pin will go low immediately after taking CSn low. If CSn is taken low before reset is completed, the SO pin will first go high, indicating that the crystal oscillator is not stabilized, before going low as shown in Figure 21.

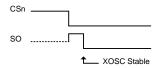


Figure 21: Power-On Reset

8.1.2 Manual Reset

The other reset possibilities on the **CC112X** are issuing using the SRES command strobe or using the RESET_N pin. By issuing a manual reset, all internal registers are set to their default values and the radio will enter IDLE state.

8.2 Crystal Control

The crystal oscillator (XOSC) is either automatically controlled or always on, if <code>XOSC2.XOSC_CORE_PD_OVERRIDE = 1</code>. If the XOSC is forced on, the crystal will always stay on even if an <code>SXOFF</code>, <code>SPWD</code>, or <code>SWOR</code> command strobe has been issued. This can be used to enable fast start-up from <code>SLEEP/XOFF</code> at the expense of a higher current consumption. If <code>XOSC2.XOSC_CORE_PD_OVERRIDE = 0</code>, the XOSC will be turned off if the <code>SXOFF</code>, <code>SPWD</code>, or <code>SWOR</code> command strobes are issued; the state machine then goes to <code>XOFF</code> or <code>SLEEP</code> state. This can only be done from the IDLE state. The XOSC will be automatically turned on again when CSn goes low, and the radio will enter IDLE state. The SO pin on the SPI interface must be pulled low before the SPI interface is ready to be used, as described in Section 3.1.2.

Crystal oscillator start-up time depends on crystal ESR and load capacitances.

8.3 Voltage Regulator Control

The voltage regulator to the digital core is controlled by the radio controller. When the chip enters the SLEEP state which is the state with the lowest current consumption, the voltage regulator is disabled. This occurs after CSn is released when a SPWD or SWOR command strobe has been sent on the SPI interface. The chip is then in the SLEEP state. Setting CSn low again will turn on the regulator and crystal oscillator and make the chip enter the IDLE state.

8.4 Active Modes

CC112X has two active modes: receive (RX) and transmit (TX). These modes are activated directly by the MCU by using the SRX and STX command strobes, or automatically by eWOR (RX mode).

The MCU can manually change the state from RX to TX and vice versa by using the command strobes. If the radio controller is currently in transmit and the SRX strobe is used, the current transmission will be ended and the transition to RX will be done. If the radio controller is in RX when the STX or SFSTXON command strobes are used, the TX-on-CCA function will be used. If the channel is clear, TX (or FSTXON state) is entered. The PKT_CFG2.CCA_MODE setting controls the conditions for clear channel assessment (see Section 5.10 for more details).

The SIDLE command strobe can always be used to force the radio controller to go to the IDLE state.

8.4.1 RX

When RX is activated, the chip will remain in receive mode until:

- · A packet is received
- An SIDLE, SRX¹⁵, STX, or SFSTXON command strobe is being issued
- The RX FIFO overflows/underflows
- The RX termination timer expires
- A CS or PQT based termination takes place

When a packet is successfully received, the radio controller goes to the state indicated by the RFEND_CFG1.RXOFF_MODE setting, i.e. IDLE, FSTXON, TX or RX. When a bad packet is received (packet length/address/CRC error) the radio controller will either restart RX or go to IDLE depending on the RFEND_CFG0.TERM_ON_BAD_PACKET_EN setting.

When an RX FIFO overflow or underflow occurs, the radio will enter RX_FIFO_ERR state. When RX terminates due to the RX termination timer or lack of CS/PQT, the radio will enter IDLE mode (via CALIBRATE depending on the SETTLING_CFG.FS_AUTOCAL setting).

Please see Section 8.6 for details on which states the radio enters after RX when eWOR is used.

8.4.2 TX

Similarly, when TX is active the chip will remain in the TX state until:

- The current packet has been transmitted
- An SIDLE or SRX command strobe is being issued
- The TX FIFO overflows/underflows

When a packet is successfully transmitted, the radio controller goes to the state indicated by the RFEND_CFG0. TXOFF_MODE setting. The possible destinations are the same as for RX.

SWRU295C Page 54 of 108

¹⁵ When an SRX strobe is issued in RX state, RX is restarted (the modulator starts searching for a sync word). If the radio was in the middle of a packet reception, part of the "old" packet will remain in the RX FIFO so <code>NUM_RXBYTES</code> or <code>RX_LAST</code> should be read before strobing <code>SRX</code> to keep track of where the old and new packets are located in the RX FIFO.

8.5 RX Termination

RX can be terminated by the use of an RX termination timer or based on the assertion of CARRIER_SENSE and/or PQT_REACHED. When RX terminates, the chip will always go back to IDLE if eWOR is disabled and back to SLEEP (via IDLE) if eWOR is enabled.

8.5.1 RX Termination Timer

CC112X has functionality to allow for automatic termination of RX after a programmable timeout. The main use for this functionality is in eWOR mode, but it is also useful for other applications as it reduces the need for a dedicated MCU timer. The termination timer starts when the chip has entered RX state, and the timeout is programmable with the RFEND_CFG1.RX_TIME setting. When the timer expires, the radio controller will check the condition for staying in RX.

The programmable conditions are:

- RFEND CFG1.RX TIME QUAL = 0: Continue receive if sync word has been found
- RFEND_CFG1.RX_TIME_QUAL = 1: Continue receive if sync word has been found, or if PQT is reached or CS is asserted

Equation 19 can be used to calculate the RX timeout.

RX Timeout =
$$MAX \left[1, FLOOR \left[\frac{EVENT0}{2^{RX_TIME+3}} \right] \right] \cdot 2^{4WOR_RES} \cdot \frac{1250}{f_{XOSC}}$$

Equation 19: RX Timeout

EVENTO is programmed through WOR_EVENTO_MSB and WOR_EVENTO_LSB, RX_TIME is found in RFEND CFG1 and WOR RES in WOR CFG1.

Figure 22 shows how the radio stays in RX until a packet has been received since a sync word was found before the RX termination timer expired (after 10 ms).

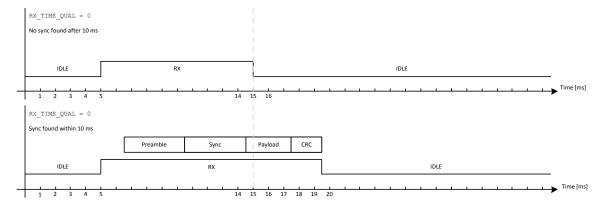


Figure 22: RX Termination when RX TIME QUAL = 0 (RX Timeout = 10 ms)

Figure 23 shows how the radio behaves when RX_TIME_QUAL = 1 (assume that RFEND_CFG0.ANT_DIV_RX_TERM_CFG = 000b). When the RX termination timer expires, the radio will check if a sync word is found or if CARRIER_SENSE or PQT_REACHED has been asserted (to check on PQT_REACHED, PREAMBLE_CFG0.PQT_EN should be set). If this is the case the radio will remain in RX until a packet has been received. This is the case even if the condition for staying in RX is no longer true. As shown in the figure, the radio remains in RX after the 10 ms timeout even if a preamble is no longer present (PQT_REACHED will be de-asserted) as it only checks the condition for staying in RX once when the termination timer expires. The radio will not exit RX mode until a packet has been received.

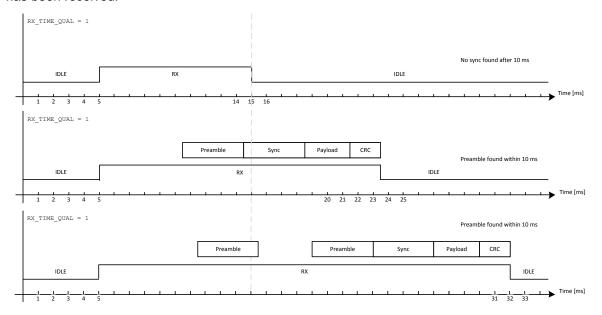


Figure 23: RX Termination when RX TIME QUAL = 1 (RX Timeout = 10 ms)

SWRU295C Page 56 of 108

8.5.2 RX Termination Based on CS

If RFEND_CFG0.ANT_DIV_RX_TERM_CFG = 001b the device will use the first RSSI sample to determine if a carrier is present in the channel. If no carrier is present (CARRIER_SENSE not asserted), RX will terminate. The RSSI samples are continually evaluated, and if the RSSI level falls below the threshold (programmed through the AGC_CS_THR register) RX will terminate if not sync is found. This can be used to achieve very low power by reducing the time in RX mode to a minimum.

Figure 24 shows how RX mode will be terminated based on CS for different scenarios. Note that sync detection will keep the radio in RX until the packet is received regardless of the state of the CARRIER SENSE signal.

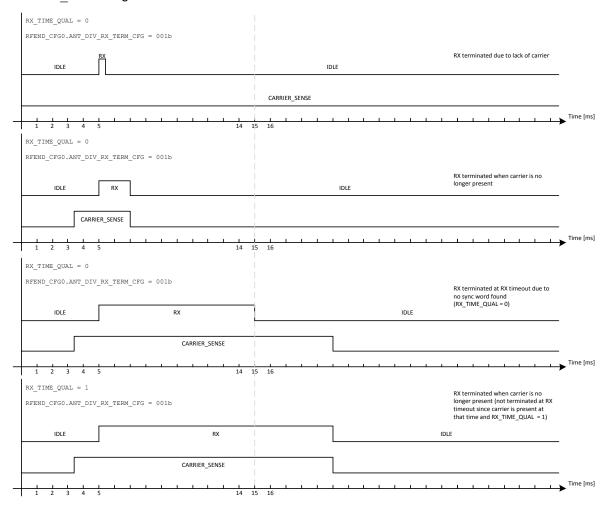


Figure 24: RX Termination Based on CS (RX Timeout = 10 ms)

RX termination based on CS can be used even if the RX termination timer is not used $(RFEND_CFG1.RX_TIME = 111b)$.

8.5.3 RX Termination Based on PQT

If RFEND_CFG0.ANT_DIV_RX_TERM_CFG = 100b the device will use the PQT indication to determine if RX mode should be terminated or not. If no preamble is detected, RX will be terminated. The PQT indication is continually evaluated, and if the PQT level falls below the threshold RX will terminate if no sync is found. This can be used to achieve very low power by reducing the time in RX mode to a minimum.

RX termination based on PQT can be used even if the RX termination timer is not used (RFEND CFG1.RX TIME = 111b).

SWRU295C Page 57 of 108

8.6 Enhanced Wake on Radio (eWOR)

The optional enhanced Wake on Radio (eWOR) functionality enables **CC1121** to periodically wake up from SLEEP and listen for incoming packets without MCU interaction.

When the SWOR strobe command is sent on the SPI interface, the **CC112X** will go to the SLEEP state when CSn is released. Unless an external 32 kHz crystal is used (EXT_CTRL.EXT_32K_CLOCK_EN = 1) the RC oscillator must be enabled by setting WOR_CFGO.RC_PD = 0 before the SWOR strobe is issued, as it is the clock source for the eWOR timer (see Section 8.8 for more info on the RC oscillator). The on-chip eWOR timer will set **CC112X** into IDLE state and then RX state. After a programmable time in RX (see Section 8.5.1), the chip will go back to the SLEEP state, unless a packet is received.

To exit eWOR mode, CSn must be pulled low.

The on-chip eWOR timer will be clocked, independently of eWOR mode, whenever the RC oscillator is running. This preserves the timing when exiting eWOR mode. The on-chip eWOR timer can be reset to the Event 1 value by issuing the SWORRST strobe command. The value of the eWOR timer is available through WOR TIME1 and WOR TIME0.

Every time a sync word is found, the current value of the eWOR timer will be captured and it can be read through the <code>WOR_CAPTURE1</code> and <code>WOR_CAPTURE0</code> registers. This feature is useful in applications where re-synchronization of the eWOR timer is required.

CC112X can be set up to signal the MCU that a packet has been received by using a GPIO pin. When the MCU has read the packet, it can put the chip back into SLEEP with the SWOR strobe from the IDLE state.

8.6.1 WOR EVENT 0, 1, and 2

The eWOR timer has three events, Event 0, Event 1, and Event 2. In the SLEEP state with eWOR activated, reaching Event 0 will turn on the digital regulator and start the crystal oscillator (unless $WOR_CFG1.WOR_MODE = 100b$). Event 1 follows Event 0 after a programmed timeout (t_{Event1}). Figure 25 shows the timing relationship between Event 0 timeout and Event 1 timeout.

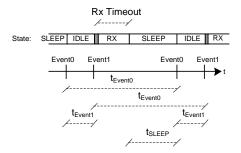


Figure 25: Event 0 and Event 1 Relationship

The time between two consecutive Event 0's is programmed with a mantissa value given by WOR_EVENTO_MSB and WOR_EVENTO_LSB and an exponent value set by WOR_CFG1 . WOR_RES . t_{EventO} is given by Equation 20.

$$t_{Event0} = \frac{1}{f_{RCOSC}} \cdot EVENT0 \cdot 2^{5 \cdot WOR_RES}$$

Equation 20: t_{Event0}

The Event 1 timeout is programmed with a mantissa value decoded by the WOR_CFG1.EVENT1 setting.

SWRU295C Page 58 of 108

WOR_CFG1.EVENT1	WOR_EVENT1	t _{Event1} [μs] (f _{RCOSC} = 32 kHz)
000	4	125
001	6	187.5
010	8	250
011	12	375
100	16	500
101	24	750
110	32	1000
111	48	1500

Table 26: Event 1

Equation 21 gives the Event 1 timeout.

$$t_{\textit{Event1}} = \frac{1}{f_{\textit{RCOSC}}} \cdot WOR _EVENT1$$

Equation 21: t_{Event1}

An SRX strobe is issued on Event 1 if t_{Event1} is larger than the crystal start-up time. If t_{Event1} is shorter than the crystal start-up time (CHIP_RDYn not asserted when Event 1 occurs), the SRX strobe will be issued as soon as CHIP RDYn is asserted.

Event 2 can used to autonomously take the system out of SLEEP at regular intervals to perform RC oscillator calibration. This will improve the accuracy of the timer.

The Event 2 timing is programmed with an exponent value decoded by the $WOR_CFG0.EVENT2_CFG$ setting.

WOR_CFG0.EVENT2_CFG	WOR_EVENT2	t _{Event2} [s] (f _{RCOSC} = 32 kHz)
00	Disabled	
01	15	~1
10	18	~8.2
11	21	~65.5

Table 27: WOR_EVENT2

t_{Event2} is given by Equation 22.

$$t_{\textit{Event 2}} = \frac{2^{\textit{WOR}_{-}\textit{EVENT 2}}}{f_{\textit{RCOSC}}}$$

Equation 22: t_{Event2}

All three events 16 can be monitored on the GPIO pins by setting IOCFGx.GPIOx_CFG = WOR EVENTO/1/2 (54/55/56).

¹⁶ If IOCFGx.GPIOx_CFG = WOR_EVENT2 (56), WOR_CFG0.EVENT2_CFG must be \neq 00b

_

8.6.2 eWOR Modes

The different eWOR modes are programmed through the WOR_CFG1.WOR_MODE register field. The three most common eWOR modes are Feedback Mode, Normal Mode, and Legacy Mode.

Feedback Mode

The radio wakes up on Event 0 and strobes SRX on Event 1. If a good packet is being received the radio enters the state indicated by the RFEND_CFG1.RXOFF_MODE setting. When a bad packet is received (packet length/address/CRC error) the radio will either restart RX or enter SLEEP mode, depending on RFEND_CFG0.TERM_ON_BAD_PACKET_EN. If TERM_ON_BAD_PACKET_EN = 1, the radio will go to IDLE instead of SLEEP after receiving 16 bad packets in a row¹⁷. When this occurs, a GPIO pin can be used to wake up the MCU by setting IOCFGx.GPIOx_CFG = MARC_MCU_WAKEUP (20). Please see Section 3.4.1.2 for more details on MARC MCU Wake-Up.

Normal Mode

This mode is equivalent to Feedback Mode without the bad packet counter feature. This means that the radio can go back to SLEEP when a bad packet is received as long as <code>TERM_ON_BAD_PACKET_EN = 1</code>, but it does not give any feedback to the MCU regarding this.

Legacy Mode

As long as a sync word has been received, the radio will not go back to SLEEP automatically. If a good packet is being received the radio enters the state indicated by the RFEND_CFG1.RXOFF_MODE setting and when a bad packet is received it will either restart RX or enter IDLE mode, depending on RFEND_CFG0.TERM ON BAD_PACKET_EN.

There are also two other modes using the eWOR timer as a general sleep timer or to generate timing signals for the MCU.

Event 1 Mask Mode enables the radio to wake up from SLEEP on Event 0 without going to RX mode while Event 0 Mask Mode keeps the radio in SLEEP mode ignoring all the events. In both cases the WOR_EVENTO/1 signals can still be made available on the GPIO pins to be used by the MCU or other peripherals in the system by setting IOCFGx.GPIOx CFG = WOR EVENTO/1 (55/56).

8.6.3 eWOR Usage

eWOR can be used in systems where a transmitter sends a packet at a given interval (see Figure 26).

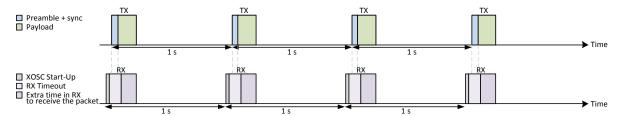


Figure 26: eWOR Mode (RX and TX in sync.)

Under ideal circumstances, the receiver and transmitter is in sync as shown in Figure 26, but in most cases this is not the case. Assume the transmitter is sending packets at a slower rate than the receiver wakes up to look for packet as shown in Figure 26.

¹⁷ To not receive a packet at all is in this content equivalent to receiving a bad packet

_

CC112X/CC1175

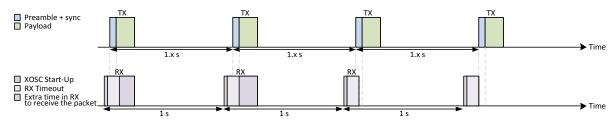


Figure 27: eWOR Mode (RX and TX out of sync.)

In this case, the WOR_CAPTURE1 and WOR_CAPTURE0 registers on the receivers would show a higher and higher value for every packet received, indicating that the transmitter is sending at a slower rate than t_{EVENT0} . The receiver should therefore increase t_{EVENT0} to stay in sync with the transmitter (see Figure 28).

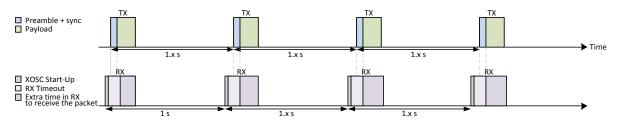


Figure 28: eWOR Mode (RX and TX re-synchronized)

8.7 RX Sniff Mode

For battery operated systems the RX current is an important parameter and to increase battery lifetime a novel RX Sniff Mode feature has been designed for the **GG112N** family to autonomously sniff for RF activity using an ultra low power algorithm. RX Sniff Mode is enabled by using eWOR together with RX termination based on CS (see 8.5.2) or PQT (see 8.5.3).

The **CC112N** platform is designed for extremely fast settling time hence the receiver can be turned on and off quickly. Together with the ability to quickly and reliably detect if there is RF activity or not this is a key parameter to reduce the power consumption.

The **CC1121** family use strong DSP logic to detect a sync word and the preamble is only needed for AGC settling, i.e. settling the gain of the front end. A 4 bits preamble is enough for settling including frequency offset compensation (AFC).

SWRU295C Page 61 of 108

Page 62 of 108

8.7.1 RX Sniff Mode Usage

RX Sniff Mode is extremely useful in cases where you do not know when the transmitter is going to send a packet. Figure 29 shows ordinary RX mode, where the radio must stay continuously in RX to make sure that it will receive the transmitted packet.

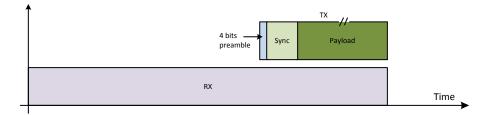


Figure 29: Ordinary RX Mode

By increasing the preamble of the transmitted packet, the receiver can implement RX Sniff Mode and wake up at an interval that ensures that at least 4 bits of preamble is received. RX termination based on CS greatly reduces the time in RX and forces the radio back in SLEEP if there is no signal on the air.

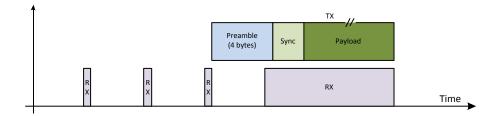


Figure 30: RX Sniff Mode

The wake-up interval (t_{Event0}) can be increased further by letting the receiver look for an 11 bits sync word (16 bits are sent on the air). This way, the 5 MSBs can be used for AGC settling and no preamble is needed (see Figure 31).

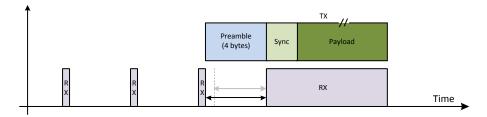


Figure 31: RX Sniff Mode (no preamble)

SWRU295C

8.8 RC Oscillator Calibration

The frequency of the low-power RC oscillator used for the eWOR functionality varies with temperature and supply voltage. In order to keep the frequency as accurate as possible, the RC oscillator should be calibrated whenever possible. Two automatic RC calibration options are available that are controlled by the WOR CFGO.RC MODE setting:

- · RC calibration is enabled when the XOSC is running
- RC calibration is enabled on every 4th time the device is powered up and goes from IDLE to RX (should only be used together with eWOR).

During calibration the eWOR timer will be clocked on a down-divided version of the XOSC clock. When the chip goes to the SLEEP state, the RC oscillator will use the last valid calibration result. The frequency of the RC oscillator is calibrated to the main crystal frequency divided by 1000.

In applications where the radio wakes up very often, typically several times every second, it is possible to do the RC oscillator calibration once and then turn off calibration to reduce the current consumption. If the RC oscillator calibration is turned off, it will have to be manually turned on again to resume calibration. This will be necessary if temperature and supply voltage changes to maintain accuracy.

When the WOR_CFGO.RC_MODE setting is altered from 00b or 01b to 10b or 11b (enabled), an SIDLE command strobe must be issued before the new configuration is taken into account. If it is altered from 10b or 11b to 00b or 01b (disabled), and SPWD, SWOR, or SXOFF strobe must be issued.

When not using eWOR and RC calibration is enabled, staying in TX or RX mode over a long period of time will cause internal heating of the chip, which again might cause the RC OSC period to increase. It is therefore recommended to turn off RCOSC calibration during active mode.

8.9 Antenna Diversity and Multiple Path Transmission

CC112X has two different antenna diversity modes: Single-switch mode and continuous-switch mode.

Single switch mode is useful for very low power schemes where the device only checks each antenna once for a signal and directly returns to power down if a signal is not detected (automated using the eWOR feature). If a signal is found on the first antenna checked, it does not check the second antenna.

Continuous mode is useful when staying in RX for longer intervals.

The antenna diversity algorithm can operate based on PQT or CS. The user can configure how the device will act in regards to antenna diversity and RX termination as described in Table 28.

RFEND_CFG0. ANT_DIV_RX_TERM_CFG	Description
000	Antenna diversity and termination based on CS/PQT are disabled
001	RX termination base on CS is enabled (Antenna diversity OFF). See 8.5.2 for details.
010	Single-switch antenna diversity on CS enabled. One or both antenna is CS evaluated once and RX will terminate if CS failed on both antennas.
011	Continuous-switch antenna diversity on CS enabled. Antennas are switched until CS is asserted or RX timeout occurs (if RX timeout is enabled)
100	RX termination base on PQT is enabled (Antenna diversity OFF). See 8.5.3 for details.
101	Single-switch antenna diversity on PQT enabled. One or both antenna is PQT evaluated once and RX will terminate if PQT is not reached on any of the antennas.
110	Continuous-switch antenna diversity on PQT enabled. Antennas are switched until PQT is reached or RX timeout occurs (if RX timeout is enabled)
111	Reserved

Table 28: RFEND CFG0.ANT DIV RX TERM CFG Setting

8.9.1 Antenna Diversity Features

The device supports antenna diversity by controlling an external RF switch using the ANTENNA_SELECT control signal available on GPIO (IOCFGx.GPIOx_CFG = ANTENNA_SELECT (36)).

The device will remember the last antenna used (when not entering SLEEP mode¹⁸) and use the last antenna for the next RX or TX transition. Staying with the same antenna will make sure:

- In RX, that the last antenna used for good reception will be the first one to be checked (minimize time for the next reception)
- In TX, the device will transmit acknowledge with the same antenna that received the packet.

8.10 Random Number Generator

A random number generator is available and can be enabled by setting RNDGEN.RNDGEN_EN = 1. A random number can be read from RNDGEN.RNDGEN_VALUE in any state, but the number will be further randomized when in RX by XORing the feedback with receiver noise.

8.11 Frequency Synthesizer Configuration

If any frequency programming registers are altered when the frequency synthesizer is running, the synthesizer may give an undesired response. Hence, the frequency programming should only be updated when the radio is in the IDLE state.

8.12 RF Programming

RF programming in **CC1121** is given by two factors; the VCO frequency programming and the LO divider programming (RF band selection). The relation is given in Equation 23 below.

$$f_{RF} = \frac{f_{VCO}}{\text{LO Divider}}$$

Equation 23: Radio Frequency

The VCO frequency is given by the 24 bit (unsigned) frequency word FREQ located in the <code>FREQ2</code>, <code>FREQ1</code>, and <code>FREQ0</code> registers. There is also a possibility to perform VCO frequency offset programming, given by the 16 bit (signed) frequency offset word <code>FREQOFF</code> located in the <code>FREQOFF1</code> and <code>FREQOFF0</code> registers. This is intended to adjust for crystal intolerance or fine adjustments of the RF programming.

$$f_{vco} = \frac{FREQ}{2^{16}} \cdot f_{xosc} + \frac{FREQOFF}{2^{18}} \cdot f_{xosc}$$

Equation 24: VCO Frequency

Note that the FREQOFF programming and FREQOFF_EST (found in <code>FREQOFF_EST1</code> and <code>FREQOFF_EST0</code>) have identical formats hence the frequency estimate can be accumulated directly to the FREQOFF programming. This can be done either manually or automatically through the <code>SAFC</code> command strobe. A <code>SAFC</code> command strobe can be issued in any state but does not take effect until the next time the radio enters active mode (TX or RX).

¹⁸ In SLEEP mode the GDIOx pin will be hardwired to 0 or 1 depending on which GDIO pin is used and what the value of <code>IOCFGx GPIOx INV</code> is. Please see Section 3.4 for more details.

_

The LO divider/band select decoding is shown in Table 29.

FS_CFG.FSD_BANDSELECT	LO Divider	RF Band [MHz]
0000 - 0001	-	Not in use
0010	4	820 - 960
0011	-	Not in use
0100	8	410 - 480
0101	-	Not in use
0110	12	273.3 - 320
0111	-	Not in use
1000	16	205 - 240
1001	-	Not in use
1010	20	164 - 192
1011	24	136.7 - 160
1100 - 1111	-	Not in use

Table 29: RF Band Selection Decoding

Since the RF band is determined by the LO divider setting, the different RF bands will also have different frequency resolution. Note that the frequency offset word is related to the VCO frequency programming, and hence any crystal inaccuracy compensation is therefore independent of the selected RF band.

See Table 30 for an overview of the RF resolution.

	RF Programming R	esolution [Hz]
RF Band [MHz]	XOSC @ 32 MHz	XOSC @ 40 MHz
820 - 960	30.5	38.1
410 - 480	15.3	19.1
273.3 - 320	10.2	12.7
205 - 240	7.6	9.5
164 - 192	6.1	7.6
136.7 - 160	5.1	6.4

Table 30: RF Programming Resolution

8.13 IF Programming

The IF frequency is given by Equation 25 below (FREQ IF is found in the FREQ IF CFG register).

$$f_{IF} = \frac{FREQ_IF}{2^{15}} \cdot f_{XOSC}$$

Equation 25: IF Frequency

Note that $FREQ_{IF}$ is given in two's complement format, hence both positive and negative IF are supported.

8.14 FS Calibration

The internal on-chip FS characteristics will vary with temperature and supply voltage changes as well as the desired operating frequency. In order to ensure reliable operation, **CC112X** includes frequency synthesizer self-calibration circuitry. This calibration should be done regularly, and must be performed after turning on power and before using a new radio frequency.

CC112X has one manual calibration option (using the SCAL strobe), and three automatic calibration options that are controlled by the SETTLING CFG.FS AUTOCAL setting:

- Calibrate when going from IDLE to either RX or TX (or FSTXON)
- Calibrate when going from either RX or TX to IDLE automatically
- Calibrate every fourth time when going from either RX or TX to IDLE automatically

If the radio goes from TX or RX to IDLE by issuing an SIDLE strobe, calibration will not be performed.

Note: The calibration values are maintained in SLEEP mode, so the calibration is still valid after waking up from SLEEP mode unless supply voltage or temperature has changed significantly.

8.14.1 CC1125 Category 1 Operation under EN 300 220

In order to meet EN 300 220 [2] Category 1 adjacent channel selectivity requirements FS CHP.CHP CAL CURR must be altered after calibration as shown in Figure 32.

```
cc112xSpiReadReg(CC112X_FS_CHP, &temp, 1);
temp += 0x0C;
cc112xSpiWriteReg(CC112X_FS_CHP, &temp, 1);
```

Figure 32: CC1125 Category 1

8.15 FS Out of Lock Detection

To check whether the PLL is out of lock, the user can enable the lock detector through the FS_LOCK_EN bit in the FS_CFG register. The lock indication can be read through the FSCAL CTRL.LOCK register. The state of the LOCK signal is only valid in RX, TX, and FSTXON state.

SWRU295C Page 66 of 108

9 System Considerations and Guidelines

9.1 Voltage Regulators

CC112X contains several on-chip linear voltage regulators that generate the supply voltages needed by the low-voltage modules. These voltage regulators are invisible to the user, and can be viewed as integral parts of the various modules. The user must however make sure that the absolute maximum ratings and required pin voltages are not exceeded.

By setting the CSn pin low, the voltage regulator to the digital core turns on and the crystal oscillator starts. The SO pin on the SPI interface must go low before the first positive edge of SCLK (setup time is given in Table 1.If the chip is programmed to enter power-down mode (SPWD or SWOR strobe issued), the power will be turned off after CSn goes high. The power and crystal oscillator will be turned on again when CSn goes low.

The voltage regulator for the digital core requires one external decoupling capacitor.

The voltage regulator output should only be used for driving the **CC112X**.

9.2 SRD Regulations

International regulations and national laws regulate the use of radio receivers and transmitters. Short Range Devices (SRDs) for license free operation below 1 GHz are usually operated in the 169 MHz, 433 MHz, 868 MHz, 915 MHz, or 950 MHz frequency bands. The **CC112X** is specifically designed for operation in these bands.

Please note that compliance with regulations is dependent on the complete system performance. It is the customer's responsibility to ensure that the system complies with regulations.

9.3 Frequency Hopping and Multi-Channel Systems

The 433 MHz, 868 MHz, or 915 MHz bands are shared by many systems both in industrial, office, and home environments. It is therefore recommended to use frequency hopping spread spectrum (FHSS) or a multi-channel protocol because frequency diversity makes the system more robust with respect to interference from other systems operating in the same frequency band. FHSS also combats multipath fading.

CC112X is highly suited for FHSS or multi-channel systems due to its agile frequency synthesizer and effective communication interface. Using the packet handling support and data buffering is also beneficial in such systems as these features will significantly offload the host controller.

Charge pump current, VCO current, and VCO capacitance array calibration data is required for each frequency when implementing frequency hopping for **CC112X**. There are 2 ways of obtaining the calibration data from the chip:

- 1) Frequency hopping with calibration for each hop.
- 2) Fast frequency hopping without calibration for each hop can be done by performing the necessary calibration at start-up and saving the resulting FS_CHP, FS_VCO4, and FS_VCO2 register values in MCU memory. Between each frequency hop, the calibration process can then be replaced by writing the calibration values that corresponds to the next RF frequency.

The recommended settings change with frequency. This means that one should always use SmartRF Studio to get the correct settings for a specific frequency before doing a calibration, regardless of which calibration method is being used.

9.4 Continuous Transmissions

In data streaming applications, the **CC112X** opens up for continuous transmissions at an effective data rate of up to 100 ksps (200 kbps). As the modulation is done with a closed loop PLL, there is no limitation in the length of a transmission (open loop modulation used in some transceivers often prevents this kind of continuous data streaming and reduces the effective data rate).

9.5 Battery Operated Systems

In low power applications, the SLEEP state with the crystal oscillator core switched off should be used when the **CC112X** is not active. It is possible to leave the crystal oscillator core running in the SLEEP state if start-up time is critical. The eWOR functionality should be used in low power applications.

10 Register Description

IOCFG3 - GPIO3 Pin Configuration

Bit no.	Name	Reset	R/W	Description
7	GPIO3_ATRAN	0x00	R/W	Analog Transfer Enable 0 Standard digital pad
				1 Pad in analog mode (digital GPIO input and output disabled)
6	GPIO3_INV	0x00	R/W	Invert Output Enable 0 Invert output disabled 1 Invert output enable
5:0	GPIO3_CFG	0x06	R/W	Output Selection Default: PKT_SYNC_RXTX

IOCFG2 - GPIO2 Pin Configuration

Bit no.	Name	Reset	R/W	Description
7	GPIO2_ATRAN	0x00	R/W	Analog Transfer Enable. Refer to IOCFG3
6	GPIO2_INV	0x00	R/W	Invert Output Enable. Refer to IOCFG3
5:0	GPIO2_CFG	0x07	R/W	Output Selection Default: PKT_CRC_OK

IOCFG1 - GPIO1 Pin Configuration

Bit no.	Name	Reset	R/W	Description		
7	GPIO1_ATRAN	0x00	R/W	Analog Transfer Enable. Refer to IOCFG3		
6	GPIO1_INV	0x00	R/W	nvert Output Enable. Refer to IOCFG3		
5:0	GPIO1_CFG	0x30	R/W	Output Selection Default: HIGHZ Note that GPIO1 is shared with the SPI and act as SO when CSn is asserted (active low). The system must ensure pull up/down on this pin		

IOCFG0 - GPIO0 Pin Configuration

Bit no.	Name	Reset	R/W	Description			
7	GPIO0_ATRAN	0x00	R/W	Analog Transfer Enable. Refer to IOCFG3			
6	GPIO0_INV	0x00	R/W	nvert Output Enable. Refer to IOCFG3			
5:0	GPIO0_CFG	0x3C	R/W	Output Selection Default: EXT OSC EN			

SYNC3 - Sync Word Configuration [31:24]

Bit no.	Name	Reset	R/W	Description	
7:0	SYNC31_24	0x93	R/W	Sync Word [31:24]	

SYNC2 - Sync Word Configuration [23:16]

Bit no.	Name	Reset	R/W	Description	
7:0	SYNC23_16	0x0B	R/W	Sync Word [23:16]	

SYNC1 - Sync Word Configuration [15:8]

Bit no.	Name	Reset	R/W	Description	
7:0	SYNC15_8	0x51	R/W	Sync Word [15:8]	

SYNC0 - Sync Word Configuration [7:0]

Bit no.	Name	Reset	R/W	Description	
7:0	SYNC7_0	0xDE	R/W	Sync Word [7:0]	

SWRU295C Page 68 of 108

SYNC_CFG1 - Sync Word Detection Configuration

Bit no.	Name	Reset	R/W	Descri	otion			
7:5	DEM_CFG	0x00	R/W	for a sy preaml	PQT Gating Enable. When PQT gating is enabled the demodulator will not start to look or a sync word before a preamble is detected (i.e. PQT_REACHED is asserted). The preamble detector must be enabled for this feature to work PREAMBLE_CFG0.PQT_EN = 1)			
				000	PQT gating disabled			
				001	Reserved			
				010	PQT gating enabled			
				011	Reserved			
				100	PQT gating disabled			
				101	Reserved			
				110	PQT gating enabled			
				111	Reserved			
4:0	SYNC_THR	0x0A	R/W	Soft Decision Sync Word Threshold. A sync word is accepted when the calculated sync word qualifier value (PQT_SYNC_ERR.SYNC_ERROR) is less than SYNC_THR/2). A low threshold value means a strict sync word qualifier (sync word must be of high quality to be accepted) while a high threshold value will accept sync word of a poorer quality (increased probability of detecting 'false' sync words)				

SYNC_CFG0 - Sync Word Length Configuration

Bit no.	Name	Reset	R/W	Descri	ption
7:5	SYNC_CFG0_NOT_USED	0x00	R		
4:2	SYNC_MODE	0x05	R/W	data) re a GPIC	Vord Length Configuration. When SYNC MODE = 000b, all samples (noise or eceived after RX mode is entered will either be put in the RX FIFO or output on 0 configured as SERIAL_RX. Note that when 4'ary modulation is used the sync ses 2'ary modulation (the baud rate is kept the same)
				000	No sync word
				001	11 bits [SYNC15 8[2:0]:SYNC7 0]
				010	16 bits [SYNC15_8: SYNC7_0]
				011	18 bits [SYNC23_16[1:0]: SYNC15_8: SYNC7_0]
				100	24 bits [SYNC23_16: SYNC15_8: SYNC7_0]
				101	32 bits [SYNC31 24: SYNC23 16: SYNC15 8: SYNC7 0]
				110	16H bits [SYNC31_24: SYNC23_16]
				111	16D bits (DualSync Search). When this setting is used in TX mode [SYNC15_8:SYNC7_0] is transmitted
1:0	SYNC_NUM_ERROR	0x03	R/W	be acc	eck on Sync Word. When SYNC_NUM_ERROR != 11b the sync word will only epted when the programmable conditions below are true. The Bit Error Qualifier useful if the sync word in use has weak correlation properties
				00	0 bit error in last received sync byte (normally SYNC0)
				01	< 2 bit error in last received sync byte (normally SYNC0)
				10	Reserved
				11	Bit Error Qualifier disabled. No check on bit errors

DEVIATION_M - Frequency Deviation Configuration

Bit no.	Name	Reset	R/W	Description
7:0	DEV_M	0x06	R/W	Frequency Deviation (mantissa part)
				DEV_E > 0: $f_{dev} = \frac{f_{xxxc}}{2^{24}} \cdot (256 + DEV_M) \cdot 2^{DEV_E}$
				DEV_E = 0: $f_{dev} = \frac{f_{xosc}}{2^{23}} \cdot DEV _M$

MODCFG_DEV_E - Modulation Format and Frequency Deviation Configuration

Bit no.	Name	Reset	R/W	Descri	ption		
7:6	MODEM_MODE	0x00	R/W	Moden	n Mode Configuration		
				00	Normal mode		
				01	DSSS repeat mode. Requires that SYNC_CFG0.SYNC_MODE = 001b or 010b. TX Mode: PKT_CFG2.PKT_FORMAT = 00b RX Mode: PKT_CFG2.PKT_FORMAT = 01b MDMCFG1.FIFO_EN = 0 MDMCFG0.TRANSPARENT_MODE_EN = 0 In RX mode, data is only available on GPIO by configuring IOCFGx.GPIOx_CFG = 18		
				10	DSSS PN mode. Both FIFO mode and synchronous serial mode are supported (PKT_CFG2.PKT_FORMAT = 00b or 01b)		
				11	Reserved		
5:3	MOD_FORMAT	0x00	R/W	Modulation Format			
				000	2-FSK		
				001	2-GFSK		
				010	Reserved		
				011	ASK/OOK		
				100	4-FSK		
				101	4-GFSK		
				110	SC-MSK unshaped (CC1125, TX only). For CC1120, CC1121, and CC1175 this setting is reserved		
				111	SC-MSK shaped (CC1125, TX only). For CC1120, CC1121, and CC1175 this setting is reserved		
2:0	DEV_E	0x03	R/W	Frequency Deviation (exponent part) $ \text{DEV_E} > 0: \ f_{dev} = \frac{f_{xose}}{2^{24}} \cdot (256 + DEV_M) \cdot 2^{DEV_E} $ $ \text{DEV_E} = 0: \ f_{dev} = \frac{f_{xose}}{2^{23}} \cdot DEV_M $			

DCFILT_CFG - Digital DC Removal Configuration

Bit no.	Name	Reset	R/W	Description		
7	DCFILT_CFG_NOT_USED	0x00	R			
6	DCFILT_FREEZE_COEFF	0x01	R/W	DC Filter Override 0 DC filter algorithm estimates and compensates for DC error 1 Manual DC compensation through registers DCFILTOFFSET_I1, DCFILTOFFSET I0, DCFILTOFFSET Q1, and DCFILTOFFSET Q0		
5:3	DCFILT_BW_SETTLE	0x01	R/W	Settling period after AGC adjustment $ Sample \ Rate = \frac{f_{XOSC}}{2 \cdot Decimation \ Factor} $ The decimation factor is 20 or 32, depending on the CHAN_BW.ADC_CIC_DECFACT setting		
2:0	DCFILT_BW	0x04	R/W			

PREAMBLE_CFG1 - Preamble Length Configuration

Bit no.	Name	Reset	R/W	Descrip	tion		
7:6	PREAMBLE_CFG1_NOT_USED	0x00	R				
5:2	NUM_PREAMBLE	0x05	R/W	Sets the minimum number of preamble bits to be transmitted			
				0000	No preamble		
				0001	0.5 byte		
				0010	1 byte		
				0011	1.5 bytes		
				0100	2 bytes		
				0101	3 bytes		
				0110	4 bytes		
				0111	5 bytes		
				1000	6 bytes		
				1001	7 bytes		
				1010	8 bytes		
				1011	12 bytes		
				1100	24 bytes		
				1101	30 bytes		
				1110	Reserved		
				1111	Reserved		
1:0	PREAMBLE_WORD	0x00	R/W	byte loo	le Byte Configuration. PREAMBLE_WORD determines how a preamble iks like. Note that when 4'ary modulation is used the preamble uses 2'are tion (the baud rate is kept the same)		
				00	10101010 (0xAA)		
				01	01010101 (0x55)		
				10	00110011 (0x33)		
				11	11001100 (0xCC)		

PREAMBLE_CFG0 - Preamble Length Configuration

Bit no.	Name	Reset	R/W	Description	
7:6	PREAMBLE_CFG0_NOT_USED	0x00	R		
5	PQT_EN	0x01	R/W	Preamble Detection Enable	
				0 Preamble detection disabled	
				1 Preamble detection enabled	
4	PQT_VALID_TIMEOUT	0x00	R/W	PQT Start-up Timer. PQT VALID TIMEOUT sets the number of symbols that must be received before PQT_VALID is asserted	
				0 16 symbols	
				1 43 symbols	
3:0	PQT	0x0A	R/W	Soft Decision PQT. A preamble is detected when the calculated preamble qualifier value (PQT_SYNC_ERR.PQT_ERROR) is less than PQT). A low threshold value means a strict preamble qualifier (preamble must be of high quality to be accepted) while a high threshold value will accept preamble of a poorer quality (increased probability of detecting 'false' preamble)	

FREQ_IF_CFG - RX Mixer Frequency Configuration

	•	-		_
Bit no.	Name	Reset	R/W	Description
7:0	FREQ_IF	0x40	R/W	Digital Receiver Mixer Frequency
				$f_{IF} = \frac{f_{XOSC} \cdot FREQ_IF}{2^{15}}$
				Note that FREQ_IF is two's complement, hence both positive and negative IF is supported

IQIC - Digital Image Channel Compensation Configuration

Bit no.	Name	Reset	R/W	Description
7	IQIC_EN	0x01	R/W	IQ Image Compensation Enable. When this bit is set the following must be true: $f_{if} > 2$ -RX Filter BW and $f_{if} + RX$ Filter BW/2 <= 100 kHz (For CC1125 $f_{if} + RX$ Filter BW/2 <= 125 kHz)
				0 IQ image compensation disabled
				1 IQ image compensation enabled
6	IQIC_UPDATE_COEFF_EN	0x01	R/W	IQIC Update Coefficients Enable
				0 IQIC update coefficient disabled (IQIE_I1, IQIE_I0, IQIE_Q1, IQIE_Q0 registers are not updated)
				IQIC update coefficients enabled (IQIE_I1, IQIE_I0, IQIE_Q1, IQIE_Q0 registers are updated)
5:4	IQIC_BLEN_SETTLE	0x00	R/W	IQIC Block Length when Settling. The IQIC module will do a coarse estimation of IQ imbalance coefficients during settling mode. Long block length increases settling time and improves image rejection
				00 8 samples
				01 32 samples
				10 128 samples
				11 256 samples
3:2	IQIC_BLEN	0x01	R/W	IQIC Block Length. Long block length increases settling time and improves image rejection
				00 8 samples
				01 32 samples
				10 128 samples
				11 256 samples
1:0	IQIC_IMGCH_LEVEL_THR	0x00	R/W	IQIC Image Channel Level Threshold. Image rejection will be activated when image carrier is present. The IQIC image channel level threshold is an image carrier detector. High threshold imply that image carrier must be high to enable IQIC compensation module
				00 >256
				01 >512
				10 >1024
				11 >2048

CHAN_BW - Channel Filter Configuration

Bit no.	Name	Reset	R/W	Description			
7	CHFILT_BYPASS	0x00	R/W	Channel Filter	el Filter Bypass. Note: CHFILT_BYPASS changes the RX filter bandwidth. ing the channel filter will reduce the settling time at the expense of selectivity		
				RX Fil	ation factor given by ADC el filter disabled (bypass	f_{XOSC} Factor \cdot BB_CIC_D	
6	ADC_CIC_DECFACT	0x00	R/W	program the R	CFACT is a table index RX filter bandwidth. ADC ation factor 20 ation factor 32		
5:0	BB_CIC_DECFACT	0x14	R/W	BB_CIC_DEC:		filter BW by changing	decimation factor in the
				Device	ADC_CIC_DECFACT	BB_CIC_DECFACT	Min RX Filter BW
				CC1120	20	1 - 25	8 kHz
				CC1120	32	1 - 16	7.8 kHz
				CC1121	20	1 - 4	50 kHz
				CC1121	32	1 - 3	41.7 kHz
				CC1125	20	1 - 44	5.7 kHz
				CC1125	32	1 - 44	3.5 kHz

MDMCFG1 - General Modem Parameter Configuration

Bit no.	Name	Reset	R/W	Description
7	CARRIER_SENSE_GATE	0x00	R/W	When CARRIER_SENSE_GATE is 1, the demodulator will not start to look for a sync word before CARRIER_SENSE is asserted
				0 Search for sync word regardless of CS
				1 Do not start sync search before CARRIER_SENSE is asserted
6	FIFO_EN	0x01	R/W	FIFO Enable. Specifies if data to/from modem will be passed through the FIFOs or directly to the serial pin
				0 Data in/out through the serial pin(s) (the FIFOs are bypassed)
				1 Data in/out through the FIFOs
5	MANCHESTER_EN	0x00	R/W	Manchester Enable. Manchester coding is only applicable to payload data including optional CRC. Manchester coding is not supported for 4-(G)FSK
				0 NRZ
				1 Manchester encoding/decoding
4	4 INVERT_DATA_EN 0x00		R/W	Invert Data Enable. Invert payload data stream in RX and TX (only applicable to payload data including optional CRC)
				0 Invert data disabled
				1 Invert data enabled
3	COLLISION_DETECT_EN	0x00	R/W	Collision Detect Enable. After a sync word is detected, the receiver will always receive a packet. If collision detection is enabled, the receiver will continue to search for sync. If a new sync word is found during packet reception, a collision is detected and the COLLISION FOUND flag will be asserted
				0 Collision detect disabled
				1 collision detect enabled
2:1	DVGA_GAIN	0x03	R/W	Fixed DVGA gain configuration
				00 0 dB DVGA
				01 3 dB DVGA
				10 6 dB DVGA
				11 9 dB DVGA
0	SINGLE_ADC_EN	0x00	R/W	Configure the number of active receive channels. If this bit is set the power consumption will be reduced but the sensitivity level will be reduced by ~3 dB. Image rejection will not work
				0 IQ-channels
				1 Only I-channel

MDMCFG0 - General Modem Parameter Configuration

Bit no.	Name	Reset	R/W	Description	
7	MDMCFG0_NOT_USED	0x00	R		
6	TRANSPARENT_MODE_EN	0x00	R/W	Transparent Mode Enable	
				0 Transparent mode disabled	
				1 Transparent mode enabled	
5:4	TRANSPARENT_INTFACT	0x00	R/W	Transparent Signal Interpolation Factor. The sample rate gives the jitter of the samples and the sample rate is given by	
				Sample Rate = $\frac{f_{XOSC} \cdot \text{Interpolation Factor}}{\text{Decimation Factor} \cdot BB _ CIC _ DECFACT \cdot 2}$	
			The decimation factor is given by CHAN_BW.ADC_CIC_DECFACT while t interpolation factor is given below		
				00 1x transparent signal interpolated one time before output (reset)	
				01 2x transparent signal interpolated two times before output	
				10 4x transparent signal interpolated four times before output	
				11 Reserved	
3	DATA_FILTER_EN	0x01	R/W	Transparent Data Filter and Extended Data Filter Enable. Note that TRANSPARENT_MODE_EN = 0 this bit should only be set when RX filter bandwidth/data rate > 10 and TOC_CFG.TOC_LIMIT = 0 TRANSPARENT_MODE_EN DATA_FILTER_EN	
				00 Transparent data filter disabled and extended data filter disabled	
				01 Transparent data filter disabled and extended data filter enabled	
				Transparent data filter disabled and extended data filter disabled	
				11 Transparent data filter enabled and extended data filter disabled	
2	VITERBI_EN	0x01	R/W	Viterbi Detection Enable. Enabling Viterbi detection improves the sensitivity. The latency from the antenna to the signal is available in the RXFIFO or on the GPIO is increased by 5 bits for 2-ary modulation formats and 10 bits for 4-ary modulation formats. Minimum packet length = 2 bytes when Viterbi Detection and 4-(G)FSK is enabled	
				0 Viterbi detection disabled	
				1 Viterbi detection enabled	
1:0	MDMCFG0_RESERVED1_0	0x01	R/W	For test purposes only, use values from SmartRF Studio	

DRATE2 - Data Rate Configuration Exponent and Mantissa [19:16]

Name	Reset	R/W	Description	
DATARATE_E	0x04	R/W	Data Rate (exponent pa	art)
			DATARATE_E > 0: R_D	$A_{ATA} = \frac{(2^{20} + DATARATE _M) \cdot 2^{DATARATE _E}}{2^{39}} \cdot f_{XOSC}$
			DATARATE_E = 0: R_D	$D_{ATA} = \frac{DATARATE _M}{2^{38}} \cdot f_{XOSC}$
			Modulation Format	Bit Rate/Data Rate Ratio
			2-(G)FSK	1
			4-(G)FSK	2
			Manchester Coding	0.5
			DSSS Mode	1/Spreading Factor
DATARATE_M_19_16	0x03	R/W	Data Rate (mantissa pa	art [19:16])
			DATARATE_E > 0: R_D	$A_{ATA} = \frac{(2^{20} + DATARATE_M) \cdot 2^{DATARATE_E}}{2^{39}} \cdot f_{XOSC}$
			DATARATE_E = 0: R_D	$_{DATA} = \frac{DATARATE _M}{2^{38}} \cdot f_{XOSC}$
	DATARATE_E	DATARATE_E 0x04	DATARATE_E 0x04 R/W	DATARATE_E 0x04 R/W Data Rate (exponent particle) DATARATE_E > 0: R DATARATE_E = 0: R Modulation Format 2-(G)FSK 4-(G)FSK Manchester Coding DSSS Mode DATARATE_M_19_16 0x03 R/W Data Rate (mantissa particle) DATARATE_E > 0: R DATARATE_E > 0: R

DRATE1 - Data Rate Configuration Mantissa [15:8]

Bit no.	Name	Reset	R/W	Description
7:0	DATARATE_M_15_8	0xA9	R/W	Data Rate (mantissa part [15:8]). See DRATE2

DRATE0 - Data Rate Configuration Mantissa [7:0]

В	it no.	Name	Reset	R/W	Description
7	:0	DATARATE_M_7_0	0x2A	R/W	Data Rate (mantissa part [7:0]). See DRATE2

AGC_REF - AGC Reference Level Configuration

Bit no.	Name	Reset	R/W	Description	
7:0	AGC_REFERENCE	0x36	R/W	SNR to the demo magnitude outpur reference level is formula:	Level. The AGC reference level must be higher than the minimum odulator. The AGC reduces the analog front end gain when the t from channel filter > AGC reference level. An optimum AGC is given by several conditions, but a rule of thumb is to use the $ENCE = 10 \cdot \log_{10}(RX Filter BW) - 4$
				RX Filter BW	AGC_REFERENCE
				10 kHz	0x24
				20 kHz	0x27
				50 kHz	0x2B
				200 kHz	0x31
					guration, AGC hysteresis > 3 dB, or modem format which needs gher AGC reference value is needed.

AGC_CS_THR - Carrier Sense Threshold Configuration

Bit no.	Name	Reset	R/W	Description
7:0	AGC_CS_THRESHOLD	0x00	R/W	AGC Carrier Sense Threshold. Two's complement number with 1 dB resolution

AGC_GAIN_ADJUST - RSSI Offset Configuration

Bit no.	Name	Reset	R/W	Description
7:0	GAIN_ADJUSTMENT	0x00	R/W	AGC Gain Adjustment. This register is used to adjust RSSI [11:0] to the actual carrier input signal level to compensate for interpolation gains (two's complement with 1 dB resolution)

AGC_CFG3 - AGC Configuration

Bit no.	Name	Reset	R/W	Description
7	RSSI_STEP_THR	0x01	R/W	AGC has a built in function to signal if there has been a step in the RSSI value 0 RSSI threshold is 3 dB 1 RSSI threshold is 6 dB
6:5	AGC_ASK_BW	0x00	R/W	Controls the bandwidth of the data filter in ASK/OOK mode (this register field is not used for other modulation formats) 00
4:0	AGC_MIN_GAIN	0x11	R/W	AGC Minimum Gain. Limits the AGC minimum gain compared to the preset gain table range. AGC_MIN_GAIN can have a value in the range 0 to 17 when AGC_CFG2.FE_PERFORMANCE_MODE = 00b or 01b and 0 to 13 when AGC_CFG2.FE_PERFORMANCE_MODE = 10b

AGC_CFG2 - AGC Configuration

Bit no.	Name	Reset	R/W	Description	
7	START_PREVIOUS_GAIN_EN	0x00	R/W	Receiver starts with maximum gain value Receiver starts from previous gain value	
6:5	FE_PERFORMANCE_MODE	0x01	R/W	Controls which gain tables to be applied	
				00 Optimized linearity mode	
				01 Normal operation mode	
				10 Low power mode with reduced gain range	
				11 Reserved	
4:0	AGC_MAX_GAIN	0x00	R/W	AGC Maximum Gain. Limits the AGC maximum gain compared to the preset gain table range. AGC_MAX_GAIN can have a value in the range 0 to 17 when AGC_CFG2.FE_PERFORMANCE_MODE = 00b or 01b and 0 to 13 when AGC_CFG2.FE_PERFORMANCE_MODE = 10b	

AGC_CFG1 - AGC Configuration

enabled) 011 Freeze both AGC gain and RSSI 100 No AGC gain freeze. Keep computing/updating RSSI 101 Freeze both AGC gain and RSSI 110 No AGC gain freeze. Keep computing/updating RSSI (AGC slow menabled) 111 Freeze both AGC gain and RSSI 4:2 AGC_WIN_SIZE 0x02 R/W AGC integration window size for each value. Samples refer to the RX filter sampling frequency, which is programmed to be 4 times the desired RX filter 0x00 8 samples 0x1 16 samples 0x1 64 samples	Bit no.	Name	Reset	R/W	Descriptio	on	
001 AGC gain freeze. Keep computing/updating RSSI (AGC slow menabled) 011 Freeze both AGC gain and RSSI 100 No AGC gain freeze. Keep computing/updating RSSI (AGC slow menabled) 101 Freeze both AGC gain and RSSI 100 No AGC gain freeze. Keep computing/updating RSSI 101 Freeze both AGC gain and RSSI 110 No AGC gain freeze. Keep computing/updating RSSI (AGC slow menabled) 111 Freeze both AGC gain and RSSI 4:2 AGC_WIN_SIZE 0x02 R/W AGC integration window size for each value. Samples refer to the RX filter sampling frequency, which is programmed to be 4 times the desired RX filter 000 8 samples 001 16 samples 001 32 samples 011 64 samples	7:5	AGC_SYNC_BEHAVIOR	0x05	R/W	AGC beha	avior after sync word detection	7
010 No AGC gain freeze. Keep computing/updating RSSI (AGC slow menabled) 011 Freeze both AGC gain and RSSI 100 No AGC gain freeze. Keep computing/updating RSSI 101 Freeze both AGC gain and RSSI 110 No AGC gain freeze. Keep computing/updating RSSI (AGC slow menabled) 111 Freeze both AGC gain and RSSI 111 Freeze both AGC gain and RSSI 112 AGC_WIN_SIZE 0x02 R/W AGC integration window size for each value. Samples refer to the RX filter sampling frequency, which is programmed to be 4 times the desired RX filter on 16 samples 001 16 samples 010 32 samples 011 64 samples					000 N	lo AGC gain freeze. Keep computing/updating RSSI	
enabled) 011 Freeze both AGC gain and RSSI 100 No AGC gain freeze. Keep computing/updating RSSI 101 Freeze both AGC gain and RSSI 110 No AGC gain freeze. Keep computing/updating RSSI (AGC slow menabled) 111 Freeze both AGC gain and RSSI 4:2 AGC_WIN_SIZE 0x02 R/W AGC integration window size for each value. Samples refer to the RX filter sampling frequency, which is programmed to be 4 times the desired RX filter 0x00 8 samples 0x1 16 samples 0x1 64 samples					001 A	AGC gain freeze. Keep computing/updating RSSI	
100 No AGC gain freeze. Keep computing/updating RSSI 101 Freeze both AGC gain and RSSI 110 No AGC gain freeze. Keep computing/updating RSSI (AGC slow menabled) 111 Freeze both AGC gain and RSSI 4:2 AGC_WIN_SIZE 0x02 R/W AGC integration window size for each value. Samples refer to the RX filter sampling frequency, which is programmed to be 4 times the desired RX filter 000 8 samples 001 16 samples 010 32 samples 011 64 samples						No AGC gain freeze. Keep computing/updating RSSI (AGC slow mode enabled)	
4:2 AGC_WIN_SIZE Ox02 R/W AGC integration window size for each value. Samples refer to the RX filter sampling frequency, which is programmed to be 4 times the desired RX filter 000 8 samples 010 32 samples 011 64 samples					011 F	reeze both AGC gain and RSSI	Ĭ
4:2 AGC_WIN_SIZE Ox02 R/W AGC integration window size for each value. Samples refer to the RX filter sampling frequency, which is programmed to be 4 times the desired RX filter 000 8 samples Ox01 16 samples Ox02 011 64 samples					100 N	lo AGC gain freeze. Keep computing/updating RSSI	Ĭ
enabled) 111 Freeze both AGC gain and RSSI 4:2 AGC_WIN_SIZE 0x02 R/W AGC integration window size for each value. Samples refer to the RX filter sampling frequency, which is programmed to be 4 times the desired RX filter 000 8 samples 001 16 samples 010 32 samples 011 64 samples					101 F	reeze both AGC gain and RSSI	Ш
4:2 AGC_WIN_SIZE 0x02 R/W AGC integration window size for each value. Samples refer to the RX filter sampling frequency, which is programmed to be 4 times the desired RX filter 000 8 samples 001 16 samples 010 32 samples 011 64 samples						No AGC gain freeze. Keep computing/updating RSSI (AGC slow mode enabled)	
sampling frequency, which is programmed to be 4 times the desired RX filter 000 8 samples 001 16 samples 010 32 samples 011 64 samples					111 F	reeze both AGC gain and RSSI	
001 16 samples 010 32 samples 011 64 samples	4:2	AGC_WIN_SIZE	0x02	R/W			
010 32 samples 011 64 samples					000 8	samples	
011 64 samples					001 10	6 samples	
					010 3	2 samples	
100 129 comples					011 6	4 samples	
100 120 samples					100 1	28 samples	
101 256 samples					101 2	56 samples	
1:0 AGC_SETTLE_WAIT 0x02 R/W Sets the wait time between AGC gain adjustments	1:0	AGC_SETTLE_WAIT	0x02	R/W	Sets the w	vait time between AGC gain adjustments	
00 24 samples					00 24	4 samples	Ш
01 32 samples					01 3	2 samples	
10 40 samples					10 40	0 samples	
11 48 samples					11 4	8 samples	

AGC_CFG0 - AGC Configuration

Bit no.	Name	Reset	R/W	Description
7:6	AGC_HYST_LEVEL	0x03	R/W	AGC Hysteresis Level. The difference between the desired signal level and the actual signal level must be larger than AGC hysteresis level before the AGC changes the front end gain
				00 2 dB
				01 4 dB
				10 7 dB
				11 10 dB
5:4	AGC_SLEWRATE_LIMIT	0x00	R/W	AGC Slew Rate Limit. Limits the maximum front end gain adjustment
				00 60 dB
				01 30 dB
				10 18 dB
				11 9 dB
3:2	RSSI_VALID_CNT	0x00	R/W	Gives the number of new input samples to the moving average filter (internal RSSI estimates) that are required before the next update of the RSSI value. The RSSI_VALID signal will be asserted from the first RSSI update. RSSI_VALID is available on a GPIO or can be read from the RSSIO register
				00 2
				01 3
				10 5
				11 9
1:0	AGC_ASK_DECAY	0x03	R/W	Controls decay steps in ASK/OOK mode
				00 1/16 IIR decay
				01 1/32 IIR decay
				10 1/64 IIR decay
				11 1/128 IIR decay

FIFO_CFG - FIFO Configuration

Bit no.	Name	Reset	R/W	Description
7	CRC_AUTOFLUSH	0x01	R/W	Automatically flushes the last packet received in the RX FIFO if a CRC error occurred. If this bit has been turned off and should be turned on again, an SFRX strobe must first be issued
6:0	FIFO_THR	0x00	R/W	Threshold value for the RX and TX FIFO. The threshold value is coded in opposite directions for the two FIFOs to give equal margin to the overflow and underflow conditions when the threshold is reached. I.e.; FIFO THR = 0 means that there are 127 bytes in the TX FIFO and 1 byte in the RX FIFO, while FIFO_THR = 127 means that there are 0 bytes in the TX FIFO and 128 bytes in the RX FIFO when the thresholds are reached

DEV_ADDR - Device Address Configuration

Bit no	. Name	Reset	R/W	Description
7:0	DEVICE_ADDR	0x00	R/W	Address used for packet filtering in RX

SETTLING_CFG - Frequency Synthesizer Calibration and Settling Configuration

Bit no.	Name	Reset	R/W	Description		
7:5	SETTLING_CFG_NOT_USED	0x00	R			
4:3	FS_AUTOCAL	0x01	R/W	Auto calibration is performed:		
				00 Never (manually calibrate using SCAL strobe)		
				01 When going from IDLE to RX or TX (or FSTXON)		
				10 When going from RX or TX back to IDLE automatically		
				11 Every 4th time when going from RX or TX to IDLE automatically		
2:1	LOCK_TIME	0x01	R/W Sets the time for the frequency synthesizer to settle to lock state. The table show settling after calibration and settling when switching between TX and RX. Use varifrom SmartRF Studio			
				00 50/20 μs		
				01 75/30 μs		
				10 100/40 μs		
				11 150/60 µs		
0	FSREG_TIME	0x01	R/W	Frequency Synthesizer Regulator Settling Time. Use values from SmartRF Studio 0 30 µs 1 60 µs		

CC112X/CC1175

FS_CFG - Frequency Synthesizer Configuration

Bit no.	Name	Reset	R/W	Description					
7:5	FS_CFG_NOT_USED	0x00	R						
4	FS_LOCK_EN	0x00	R/W	Out of Lock De	etector Enable				
				0	Out of lock detector disabled				
				1	Out of lock detector enabled				
3:0	FSD_BANDSELECT	0x02	R/W	Band Select S	etting for LO Divider				
				0000	Not in use				
				0001	Not in use				
				0010	820.0 - 960.0 MHz band (LO divider = 4)				
				0011	Not in use				
				0100	410.0 - 480.0 MHz band (LO divider = 8)				
				0101	Not in use				
				0110	273.3 - 320.0 MHz band (LO divider = 12)				
								0111	Not in use
				1000	205.0 - 240.0 MHz band (LO divider = 16)				
				1001	Not in use				
				1010	164.0 - 192.0 MHz band (LO divider = 20)				
				1011	136.7 - 160.0 MHz band (LO divider = 24)				
				1100 - 1111	Not in use				

WOR_CFG1 - eWOR Configuration, Reg 1

Bit no.	Name	Reset	R/W	Description			
7:6	WOR_RES	0x00	R/W	eWOR Timer	Resolution. Controls the t _{Event0} and RX timeout resolution		
				and	$-\cdot EVENT0 \cdot 2^{S*WOR_RES}$ SC $MAN \left[1 ELOOD \left[EVENT0 \right] \right]_{24WOR_RES} 1250$		
				KA IIIIeout	$= MAX \left[1, FLOOR \left[\frac{EVENT0}{2^{RX_TIME+3}} \right] \right] \cdot 2^{4WOR_RES} \cdot \frac{1250}{f_{XOSC}}$		
				00	High resolution		
				01	Medium high resolution		
				10	Medium low resolution		
				11	Low resolution		
5:3	WOR_MODE	0x01	R/W	eWOR Mode			
				000	Feedback mode		
				001	Normal mode		
				010	Legacy mode		
				011	Event1 mask mode		
				100	Event0 mask mode		
				111	Reserved		
2:0	EVENT1	0x00	R/W	Event 1 Times $t_{Event1} = \frac{1}{f_{RCOS}}$	out		
				EVENT1	WOR_EVENT1		
				000	4		
				001	6		
				010	8		
				011	12		
				100	16		
				101	24		
				110	32		
				111	48		

WOR_CFG0 - eWOR Configuration, Reg 0

Bit no.	Name	Reset	R/W	Description	
7:6	WOR_CFG_NOT_USED	0x00	R		
5	DIV_256HZ_EN	0x01	R/W	Clock Division Er	nable. Enables clock division in SLEEP mode
				0	Clock division disabled
				1	Clock division enabled
4:3	EVENT2_CFG	0x00	R/W	Event 2 Timeout	
				2 ^{WOR_EV}	VENT 2
				$t_{Event2} = {f_{RCO}}$	SC
				EVENT2_CFG	WOR_EVENT2
				00	Disabled
				01	15
				10	18
				11	21
2:1	RC_MODE	0x00	R/W		ion Mode. Configures when the RCOSC calibration sequence is bration is enabled, WOR_CFG0.RC_PD must be 0
				00	RCOSC calibration disabled
				01	RCOSC calibration disabled
				10	RCOSC calibration enabled
				11	RCOSC calibration is enabled on every 4th time the device is powered up and goes from IDLE to RX. This setting should only be used together with eWOR
0	RC_PD	0x01	R/W	RCOSC Power D	Down Signal
				0	RCOSC is running
				1	RCOSC is in power down

WOR_EVENT0_MSB - Event 0 Configuration

Bit no.	Name	Reset	R/W	Description
7:0	EVENT0_15_8	0x00	R/W	Event 0 Timeout (MSB)
				$t_{Event0} = \frac{1}{f_{RCOSC}} \cdot EVENT0 \cdot 2^{5*WOR_RES}$

WOR_EVENTO_LSB - Event 0 Configuration

Bit no.	Name	Reset	R/W	Description	
7:0	EVENT0_7_0	0x00	R/W	Event 0 Timeout (LSB)	
				$t_{Event0} = \frac{1}{f_{RCOSC}} \cdot EVENT0 \cdot 2^{5\%WOR_RES}$	

PKT_CFG2 - Packet Configuration, Reg 2

Bit no.	Name	Reset	R/W	Description	Description		
7:6	PKT_CFG2_NOT_USED	0x00	R				
5	PKT_CFG2_RESERVED5	0x00	R/W	For test purp	poses only, use values from SmartRF Studio		
4:2	CCA_MODE	0x01	R/W	CCA Mode.	Selects when to set the CCA signal		
				000	Always give a clear channel indication		
				001	Indicates clear channel when RSSI is below threshold		
				010	Indicates clear channel unless currently receiving a packet		
				011	Indicates clear channel when RSSI is below threshold and currently not receiving a packet		
				100	Indicates clear channel when RSSI is below threshold and ETSI LBT requirements are met		
				101 - 111	Reserved		
1:0	PKT_FORMAT	0x00	R/W	Packet Forn	nat Configuration		
				00	Normal mode/FIFO mode (MDMCFG1.FIFO_EN must be set to 1 and MDMCFG0.TRANSPARENT_MODE_EN must be set to 0)		
				01	Synchronous serial mode (MDMCFG1.FIFO_EN must be set to 0 and MDMCFG0.TRANSPARENT_MODE_EN must be set to 0). This mode is only supported for 2'ary modulation formats		
				10	Random mode. Send random data using PN9 generator (Set TXLAST != TXFIRST before strobing STX)		
				11	Transparent serial mode (MDMCFG1.FIFO EN must be set to 0 and MDMCFG0.TRANSPARENT MODE EN must be set to 1). This mode is only supported for 2'ary modulation formats		

PKT_CFG1 - Packet Configuration, Reg 1

Bit no.	Name	Reset	R/W	Description	Description		
7	PKT_CFG1_NOT_USED	0x00	R				
6	WHITE_DATA	0x00	R/W	Whitening En	able		
				0	Data whitening disabled		
				1	Data whitening enabled		
5:4	ADDR_CHECK_CFG	0x00	R/W	Address Ched	ck Configuration. Controls how address check is performed in RX mode		
				00	No address check		
				01	Address check, no broadcast		
				10	Address check, 0x00 broadcast		
				11	Address check, 0x00 and 0xFF broadcast		
3:2	CRC_CFG	0x01	R/W	CRC Configuration			
				00	CRC disabled for TX and RX		
					CRC calculation in TX mode and CRC check in RX mode enabled. CRC16(X ¹⁶ +X ¹⁵ +X ² +1) Init Ones		
					CRC calculation in TX mode and CRC check in RX mode enabled. CRC16(X^{16} + X^{12} + X^{5} +1) Init Zeros		
				11	Reserved		
1	BYTE_SWAP_EN	0x00	R/W		Byte Swap Enable. In RX, all bits in the received data byte are swapped to the RX FIFO. In TX, all bits in the TX FIFO data byte are swapped before tted		
				0	Data byte swap disabled		
				1	Data byte swap enabled		
0	APPEND_STATUS	0x01	R/W		s Bytes to RX FIFO. The status bytes contain info about CRC, RSSI, and CT_CFG1.CRC_CFG = 0, the CRC_OK field in the status byte will be 0		
				0	Status byte not appended		
				1	Status byte appended		

PKT_CFG0 - Packet Configuration, Reg 0

Bit no.	Name	Reset	R/W	Description		
7	PKT_CFG0_RESERVED7	0x00	R/W	For test purposes only, use values from SmartRF Studio		
6:5	LENGTH_CONFIG	0x00	R/W	Packet Length Configuration		
				Fixed packet length mode. Packet Length configured through the PKT_LEN register		
				O1 Variable packet length mode. Packet length configured by the first byte received after sync word		
				10 Infinite packet length mode		
				Variable packet length mode. Length configured by the 5 LSB of the first byte received after sync word		
4:2	PKT_BIT_LEN	0x00	R/W	/W In fixed packet length mode this field (when not zero) indicates the number of bits to send/receive after PKT LEN number of bytes are sent/received. CRC is not supported when PKT_LEN_BIT != 0		
1	UART_MODE_EN	0x00	R/W	UART Mode Enable. When enabled, the packet engine will insert/remove a start and stop bit to/from the transmitted/received bytes		
				0 UART mode disabled		
				1 UART mode enabled		
0	UART_SWAP_EN	0x00 R/W Swap Start and Stop bits values		Swap Start and Stop bits values		
				0 Swap disabled. Start/stop bits values are '1'/'0'		
				1 Swap enabled. Start/stop bits values are '0'/1'		

RFEND_CFG1 - RFEND Configuration, Reg 1

Bit no.	Name	Reset	R/W	escription				
7:6	RFEND_CFG1_NOT_USED	0x00	R					
5:4	RXOFF_MODE	0x00	R/W	RXOFF Mode. Determines the state the radio will enter after receiving a good packet 00				
3:1	RX_TIME	0x07	R/W	RX Timeout for sync word search in RX $ \text{RX Timeout} = MAX \left[1, FLOOR \left[\frac{EVENT0}{2^{RX}_TIME+3} \right] \right] \cdot 2^{4WOR_RES} \cdot \frac{1250}{f_{XOSC}} $ The RX timeout is disabled when RX TIME = 111b				
0	RX_TIME_QUAL	0x01	R/W	RX Timeout Qualifier O Continue RX mode on RX timeout if sync word is found 1 Continue RX mode on RX timeout if sync word has been found, or if PQT is reached or CS is asserted				

RFEND_CFG0 - RFEND Configuration, Reg 0

Bit no.	Name	Reset	R/W	Description			
7	RFEND_CFG0_NOT_USED	0x00	R				
6	CAL_END_WAKE_UP_EN	0x00	R/W		additional wake-up pulses on the end of calibration. To be used together with C MCU WAKEUP signal (MARC STATUS OUT will be 0x00)		
				0	Disable additional wake-up pulse		
				1	Enable additional wake-up pulse		
5:4	TXOFF_MODE	0x00	R/W	TXOFF	Mode		
				00	IDLE		
				01	FSTXON		
				10	TX		
				11	RX		
3	TERM_ON_BAD_PACKET_EN	0x00	R/W	Termina	ite on Bad Packet Enable		
				0	Terminate on bad packet disabled. When a bad packet is received (address, length, or CRC error) the radio enters the state determined by RFEND_CFG1.RXOFF_MODE		
				1	Terminate on bad packet enabled. RFEND_CFG1.RXOFF_MODE is ignored and the radio enters IDLE mode (or SLEEP mode if eWOR is used) when a bad packet has been received		
2:0	ANT_DIV_RX_TERM_CFG	0x00	R/W	Direct R	X Termination and Antenna Diversity Configuration		
				000	Antenna diversity and termination based on CS/PQT are disabled		
				001	RX termination based on CS is enabled (Antenna diversity OFF)		
				010	Single-switch antenna diversity on CS enabled. One or both antenna is CS evaluated once and RX will terminate if CS failed on both antennas		
				011	Continuous-switch antenna diversity on CS enabled. Antennas are switched until CS is asserted or RX timeout occurs (if RX timeout is enabled)		
				100	RX termination based on PQT is enabled (Antenna diversity OFF)		
				101	Single-switch antenna diversity on PQT enabled. One or both antennas are PQT evaluated once and RX will terminate if PQT is not reached on any of the antennas		
				110	Continuous-switch antenna diversity on PQT enabled. Antennas are switched until PQT is reached or RX timeout occurs (if RX timeout is enabled)		
				111	Reserved		

PA_CFG2 - Power Amplifier Configuration, Reg 2

Bit no.	Name	Reset	R/W	Description
7	PA_CFG2_NOT_USED	0x00	R	
6	PA_CFG2_RESERVED6	0x01	R/W	For test purposes only, use values from SmartRF Studio
5:0	PA_POWER_RAMP	0x3F	R/W	PA Power Ramp Target Level
				Output Power = $\frac{PA_POWER_RAMP + 1}{2} - 18$
				Valid PA_POWER_RAMP range is >= 0x03. PA_POWER_RAMP = {0x00, 0x01, 0x02} are special power levels. PA_POWER_RAMP = 0x00 is OOK off state (<-50 dBm)

PA_CFG1 - Power Amplifier Configuration, Reg 1

Bit no.	Name	Reset	R/W	Descrip	Description					
7:5	FIRST_IPL	0x02	R/W		First intermediate power level. The first intermediate power level can be programmed within the power level range 0 - 7/16 in steps of 1/16					
4:2	SECOND_IPL	0x05	R/W		Second intermediate power level. The second intermediate power level can be programmed within the power level range 8/16 - 15/16 in steps of 1/16					
1:0	RAMP_SHAPE	0x02	R/W	PA Ramp Time and ASK/OOK Shape Length. Note that only certain values of PA_CFGO.UPSAMPLER_P complies with the different ASK/OOK shape lengths						
				00	3/8 symbol ramp time and 1/32 Symbol ASK/OOK shape length (legal UPSAMPLER P values: 16, 32, 64)					
				01	3/2 symbol ramp time and 1/16 Symbol ASK/OOK shape length (legal UPSAMPLER_P values: 8, 16, 32, 64)					
				10	3 symbol ramp time and 1/8 Symbol ASK/OOK shape length (legal UPSAMPLER_P values: 4, 8, 16, 32, 64)					
				11	6 symbol ramp time and 1/4 Symbol ASK/OOK shape length (legal UPSAMPLER_P values: 2, 4, 8, 16, 32, 64)					

PA_CFG0 - Power Amplifier Configuration, Reg 0

Bit no.	Name	Reset	R/W	Description			
7	PA_CFG0_NOT_USED	0x00	R				
6:3	ASK_DEPTH	0x0F	R/W	ASK/OOK Depth (2 dB step size)			
				$A_{MAX} = \frac{(PA_POWER_RAMP + 1)}{2} - 18$			
				$A_{MIN} = \frac{(PA_POWER_RAMP + 1)}{2} - 18 - 2 \cdot ASK_DEPTH$			
				PA_POWER_RAMP must be >= 0x03 and PA_POWER_RAMP - 4·ASK_DEPTH >= 0x00. For OOK with maximum depth the PA_POWER_RAMP - 4·ASK_DEPTH must always be all zero hence for ASK/OOK with maximum depth the maximum ASK/OOK output power is 12.5 dBm			
2:0	UPSAMPLER_P	0x04	R/W	<code>UPSAMPLER_P</code> configures the variable upsampling factor P for the TX upsampler. The total upsampling factor = 16·P. The upsampler factor P must satisfy the following: Data Rate· $16 \cdot P < f_{xosc}/4$			
				000 TX upsampler factor P = 1 (bypassed)			
				001 TX upsampler factor P = 2			
				010 TX upsampler factor P = 4			
				011 TX upsample factor P = 8			
				100 TX upsampler Factor P = 16			
				101 TX upsampler Factor P = 32			
				110 TX upsampler Factor P = 64			
				111 Not used			

PKT_LEN - Packet Length Configuration

Bit no.	Name	Reset	R/W	Description
7:0	PACKET_LENGTH	0x03	R/W	In fixed length mode this field indicates the packet length, and a value of 0 indicates the length to be 256 bytes. In variable length packet mode, this value indicates the maximum allowed length packets

IF_MIX_CFG - IF Mix Configuration

Bit no.	Name	Reset	R/W	Description
7:4	IF_MIX_CFG_NOT_USED	0x00	R	
3:0	IF_MIX_CFG_RESERVED3_0	0x04	R/W	For test purposes only, use values from SmartRF Studio

FREQOFF_CFG - Frequency Offset Correction Configuration

Bit no.	Name	Reset	R/W	Description					
7:6	FREQOFF_CFG_NOT_USED	0x00	R						
5	FOC_EN	0x01	R/W Frequency Offset Correction Enable 0 Frequency offset correction disabled 1 Frequency offset correction enabled		ncy Offset Correction Enable				
				0	Frequency offset correction disabled				
				1	Frequency offset correction enabled				
4:3	FOC_CFG	0x00	R/W	RX filter	ncy Offset Correction Configuration. FOC_CFG != 00b enables more narrow r BW than FOC_CFG = 00b but needs longer settle time. When FOC in FS is the device automatically switch to 'FOC after channel filter' when a sync detected				
				00	FOC after channel filter (typical 0 - 1 preamble bytes for settling)				
				01	FOC in FS enabled. Loop gain factor is 1/128 (typical 2 - 4 preamble bytes for settling)				
				10	FOC in FS enabled. Loop gain factor is 1/256 (typical 2 - 4 preamble bytes for settling)				
				11	FOC in FS enabled. Loop gain factor is 1/512 (typical 2 - 4 preamble bytes for settling)				
2	FOC_LIMIT	0x00	R/W		mit. This is the maximum frequency offset correction in the frequency izer. Only valid when FOC CFG != 00b				
				0	RX filter bandwidth/4				
				1	RX filter bandwidth/8				
1:0	FOC_KI_FACTOR	0x00	R/W		ncy Offset Correction. GO.TRANSPARENT MODE EN FOC KI FACTOR				
				000	Frequency offset compensation disabled after sync detected (typical setting for short packets)				
				001	Frequency offset compensation during packet reception with loop gain factor = 1/32 (fast loop)				
				010	Frequency offset compensation during packet reception with loop gain factor = 1/64				
				011	Frequency offset compensation during packet reception with loop gain factor = 1/128 (slow loop)				
				100	Frequency offset compensation with Loop Gain factor 1/128 (fast loop)				
				101	Frequency offset compensation with Loop Gain factor 1/256				
				110	Frequency offset compensation with Loop Gain factor 1/512				
				111	Frequency offset compensation with Loop Gain factor 1/1024 (slow loop)				

TOC_CFG - Timing Offset Correction Configuration

Bit no.	Name	Reset	R/W	Description			
7:6	TOC_LIMIT	0x00	R/W	the rec	Offset Correction Limit. TOC_LIMIT specifies maximum data rate offset eiver are able to handle. TOC_LIMIT != 00b requires 2 - 4 bytes ble for data rate offset loop to settle		
				00	< 2000 ppm		
				01	< 20000 ppm		
				10	Reserved		
				11	< 120000 ppm (MDMCFG1.CARRIER_SENSE_GATE must be set)		
5:3	TOC_PRE_SYNC_BLOCKLEN	0x01	R/W	calcula TOC_C	TOC_LIMIT = 0 the receiver uses a block based time offset error tion algorithm where the block length is configurable through register FG. Before a sync word is found (PKT_SYNC_RXTX is asserted) the RE_SYNC_BLOCKLEN sets the actual block length used for the time offset im		
				000	8 symbols integration window		
				001	16 symbols integration window		
				010	32 symbols integration window		
				011	64 symbols integration window		
				100	128 symbols integration window		
				101	256 symbols integration window		
				110	Reserved		
				111	Reserved		
				If TOC_	LIMIT != 0: Symbol by Symbol Timing Error Proportional Scale Factor		
				X00	Proportional scale factor = 8/16		
				X01	Proportional scale factor = 6/16		
				X10	Proportional scale factor = 2/16		
				X11	Proportional scale factor = 1/16		
				1XX	Proportional scale factor = 1/16 after sync found		
2:0	TOC_POST_SYNC_BLOCKLEN	0x03	R/W	TOC_P	TOC_LIMIT = 0 the receiver uses a block based time offset error tion algorithm where the block length is configurable through register FG. After a sync word is found (PKT_SYNC_RXTX is asserted) the OST_SYNC_BLOCKLEN sets the actual block length used for the time algorithm		
				000	8 symbols integration window		
				001	16 symbols integration window		
				010	32 symbols integration window		
				011	64 symbols integration window		
				100	128 symbols integration window		
				101	256 symbols integration window		
				110	Reserved		
				111	Reserved		
				If TOC	LIMIT != 0: Symbol by Symbol Timing Error Proportional Scale Factor		
				x00	Integral scale factor = 8/32		
				x01	Integral scale factor = 6/32		
				x10	Integral scale factor = 2/32		
				x11	Integral Scale Factor = 1/32		
				1xx	Integral Scale Factor = 1/32 after sync found		
				L	3		

MARC_SPARE - MARC Spare

	Bit no.	Name	Reset	R/W	Description
	7:4	MARC_SPARE_NOT_USED	0x00	R	
ſ	3:0	MARC_SPARE_RESERVED3_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

ECG_CFG - External Clock Frequency Configuration

Bit no.	Name	Reset		Description	on
7:5	ECG_CFG_NOT_USED	0x00	R		
4:0	EXT_CLOCK_FREQ	0x00	R/W	External 0	Clock Frequency. Controls division factor
				00000	64
				00001	62
				00010	60
				00011	58
				00100	56
				00101	54
				00110	52
				00111	50
				01000	48
				01001	46
				01010	44
				01011	42
				01100	40
				01101	38
				01110	36
				01111	34
				10000	32
				10001	30
				10010	28
				10011	26
				10100	24
				10101	22
				10110	20
				10111	18
				11000	16
				11001	14
				11010	12
				11011	10
				11100	8
				11101	6
				11110	4
				11111	3
				-	

SOFT_TX_DATA_CFG - Soft TX Data Configuration

Bit no.	Name	Reset	R/W	Description						
7	SOFT_TX_DATA_CFG_NOT_USED	0x00	R							
6:5	SYMBOL_MAP_CFG	0x00	R/W	Symbol Map Configuration. Configures the modulated symbol mapping definition from data bit to modulated symbols. For 2'ary modulation schemes the symbol mapping definition is as follows:						
					SYMBOL_MA	AP_CFG				
				Data Bit	00	01	10	11		
				0	-Dev [A _{MIN}]	Dev [A _{MAX}]	Dev [A _{MAX}]	Dev [A _{MAX}]		
				1	Dev [A _{MAX}]	-Dev [A _{MIN}]	-Dev [A _{MIN}]	-Dev [A _{MIN}]		
				OOK/ASK: A _{MAX} = Maximum Amplitude, A _{MIN} = Minimum Amplitude For 4'ary modulation schemes the symbol mapping definition is as follows:						
					SYMBOL_N	SYMBOL_MAP_CFG				
				Data Bit (MSB,LSB)	00	01	10	11		
				00	-Dev/3	-Dev	Dev/3	Dev		
				01	-Dev	-Dev/3	Dev	Dev/3		
				10	Dev/3	Dev	-Dev/3	-Dev		
				11	Dev	Dev/3	-Dev	-Dev/3		
4:1	SOFT_TX_DATA_CFG_RESERVED4_1	0x00	R/W	For test purposes only, use values from SmartRF Studio						
0	SOFT_TX_DATA_EN	0x00	R/W	Soft TX Data Mode Enable						
				0 Soft TX o	0 Soft TX data mode disabled					
				1 Soft TX of	lata mode enabl	ed (write freq	uency word d	irectly)		

EXT_CTRL - External Control Configuration

Bit no.	Name	Reset	R/W	Description
7:3	EXT_CTRL_NOT_USED	0x00	R	
2	PIN_CTRL_EN	0x00	R/W	Pin Control Enable. Pin control reuses the SPI interface pins to execute SRX, STX, SPWD, and IDLE strobes 0
1	EXT_32K_CLOCK_EN	0x00	R/W	External 32k Clock Enable 0
0	BURST_ADDR_INCR_EN	0x01	R/W	Burst Address Increment Enable 0

RCCAL_FINE - RC Oscillator Calibration (fine)

E	Bit no.	Name	Reset	R/W	Description
	7	RCCAL_FINE_NOT_USED	0x00	R	
-	6:0	RCC_FINE	0x00	R/W	32 kHz RCOSC calibrated fine value

RCCAL_COARSE - RC Oscillator Calibration (coarse)

ı	Bit no.	Name	Reset	R/W	Description
	7	RCCAL_COARSE_NOT_USED	0x00	R	
Γ	6:0	RCC_COARSE	0x00	R/W	32 kHz RCOSC calibrated coarse value

RCCAL_OFFSET - RC Oscillator Calibration Clock Offset

Bit no.	Name	Reset	R/W	Description
7:5	RCCAL_OFFSET_NOT_USED	0x00	R	
4:0	RCC_CLOCK_OFFSET_RESERVED4_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

FREQOFF1 - Frequency Offset (MSB)

1	Bit no.	Name	Reset	R/W	Description
	7:0	FREQ_OFF_15_8	0x00	R/W	Frequency Offset [15:8]. Updated by user or SAFC strobe. The value is in two's complement format

FREQOFF0 - Frequency Offset (LSB)

E	Bit no.	Name	Reset	R/W	Description
	7:0	FREQ_OFF_7_0	0x00	R/W	Frequency Offset [7:0]. Updated by user or SAFC strobe. The value is in two's complement format

FREQ2 - Frequency Configuration [23:16]

Bit no.	Name	Reset	R/W	Description
7:0	FREQ_23_16	0x00	R/W	Frequency [23:16]
				$f_{\mathit{RF}} = \frac{f_{\mathit{VCO}}}{\mathrm{LO\ Divider}}$ where
				$f_{VCO} = \frac{FREQ}{2^{16}} \cdot f_{XOSC} + \frac{FREQOFF}{2^{18}} \cdot f_{XOSC}$ and the LO Divider is given by FS_CFG.FSD_BANDSELECT

FREQ1 - Frequency Configuration [15:8]

Bit no.	Name	Reset	R/W	Description
7:0	FREQ_15_8	0x00	R/W	Frequency [15:8]. See FREQ2

FREQ0 - Frequency Configuration [7:0]

Bit no.	Name	Reset	R/W	Description
7:0	FREQ_7_0	0x00	R/W	Frequency [7:0]. See FREQ2

IF_ADC2 - Analog to Digital Converter Configuration, Reg 2

Bit no.	Name	Reset	R/W	Description
7:2	IF_ADC2_NOT_USED	0x00	R	
1:0	IF_ADC2_RESERVED1_0	0x02	R/W	For test purposes only, use values from SmartRF Studio

IF_ADC1 - Analog to Digital Converter Configuration, Reg 1

Bit no.	Name	Reset	R/W	Description
7:0	IF_ADC1_RESERVED7_0	0xA6	R/W	For test purposes only, use values from SmartRF Studio

IF_ADC0 - Analog to Digital Converter Configuration, Reg 0

	Bit no.	Name	Reset	R/W	Description
	7:3	IF_ADC0_NOT_USED	0x00	R	
ſ	2:0	IF_ADC0_RESERVED2_0	0x04	R/W	For test purposes only, use values from SmartRF Studio

FS_DIG1

В	it no.	Name	Reset	R/W	Description
7	':4	FS_DIG1_NOT_USED	0x00	R	
3	3:0	FS_DIG1_RESERVED3_0	0x08	R/W	For test purposes only, use values from SmartRF Studio

FS_DIG0

Bit no.	Name	Reset	R/W	Description	
7:4	FS_DIG0_RESERVED7_4	0x05	R/W	For test purposes only, use values from SmartRF Studio	
3:2	RX_LPF_BW	0x02	R/W	W FS loop bandwidth in RX	
				00 101.6 kHz	
				01 131.7 kHz	
				10 150 kHz	
				11 170.8 kHz	
1:0	TX_LPF_BW	0x02	R/W	FS loop bandwidth in TX	
				00 101.6 kHz	
				01 131.7 kHz	
				10 150.0 kHz	
				11 170.8 kHz	

FS_CAL3

Bit no.	Name	Reset	R/W	R/W Description	
7:5	FS_CAL3_NOT_USED	0x00	R		
4	KVCO_HIGH_RES_CFG	0x00	R/W	R/W KVCO High Resolution Enable	
				0 High resolution disabled (normal resolution mode)	
				High resolution enabled (increased charge pump calibration, but will extend the calibration time)	d
3:0	FS_CAL3_RESERVED3_0	0x00	R/W	R/W For test purposes only, use values from SmartRF Studio	

FS_CAL2

ı	Bit no.	Name	Reset	R/W	N Description	
ı	7:6	FS_CAL2_NOT_USED	0x00	R		
ı	5:0	VCDAC_START	0x20	R/W	VCDAC start value. Use value from SmartRF Studio	

FS_CAL1

Bit no.	Name	Reset	R/W	Description
7:0	FS_CAL1_RESERVED7_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

FS_CAL0

Bit no.	Name	Reset	R/W	Description		
7:4	FS_CAL0_NOT_USED	0x00	R			
3:2	LOCK_CFG	0x00	R/W	Out of lock detector average time		
				00	Average the measurement over 512 cycles	
				01	Average the measurement over 1024 cycles	
				10	Average the measurement over 256 cycles	
				11 I	Infinite average	
1:0	FS_CAL0_RESERVED1_0	0x00	R/W	For test purposes only, use values from SmartRF Studio		

FS_CHP - Charge Pump Configuration

Bit no.	Name	Reset	R/W	/W Description	
7:6	FS_CHP_NOT_USED	0x00	R		
5:0	CHP_CAL_CURR	0x28	R/W	Charge Pump Current and Calibration. Use values from SmartRF Studio	

FS_DIVTWO - Divide by 2

Bit no.	Name	Reset	R/W	W Description	
7:2	FS_DIVTWO_NOT_USED	0x00	R		
1:0	FS_DIVTWO_RESERVED1_0	0x01	R/W	For test purposes only, use values from SmartRF Studio	

FS_DSM1 - Digital Synthesizer Module Configuration, Reg 1

Bit no.	Name	Reset	R/W	Description
7:3	FS_DSM1_NOT_USED	0x00	R	
2:0	FS_DSM1_RESERVED2_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

FS_DSM0 - Digital Synthesizer Module Configuration, Reg 0

Bit	no. Name	Reset	R/W	Description
7:0	FS_DSM0_RESERVED7_0	0x03	R/W	For test purposes only, use values from SmartRF Studio

FS_DVC1 - Divider Chain Configuration, Reg 1

Bit no.	Name	Reset	R/W	Description
7:0	FS_DVC1_RESERVED7_0	0xFF	R/W	For test purposes only, use values from SmartRF Studio

FS_DVC0 - Divider Chain Configuration, Reg 0

Bit no.	Name	Reset	R/W	Description
7:5	FS_DVC0_NOT_USED	0x00	R	
4:0	FS_DVC0_RESERVED4_0	0x1F	R/W	For test purposes only, use values from SmartRF Studio

FS_LBI - Local Bias Configuration

Bit no.	Name	Reset	R/W	Description
7:0	FS_LBI_NOT_USED	0x00	R	

FS_PFD - Phase Frequency Detector Configuration

Bit no	. Name	Reset	R/W	Description
7	FSD_PFD_NOT_USED	0x00	R	
6:0	FS_PFD_RESERVED6_0	0x51	R/W	For test purposes only, use values from SmartRF Studio

FS_PRE - Prescaler Configuration

Bit no.	Name	Reset	R/W	Description
7	FS_PRE_NOT_USED	0x00	R	
6:0	FS_PRE_RESERVED6_0	0x2C	R/W	For test purposes only, use values from SmartRF Studio

FS_REG_DIV_CML

Bit	no. Name	Reset	R/W	Description
7:5	FS_REG_DIV_CML_NOT_USED	0x00	R	
4:0	FS_REG_DIV_CML_RESERVED4_0	0x11	R/W	For test purposes only, use values from SmartRF Studio

FS_SPARE

Bit no.	Name	Reset	R/W	Description
7:0	FS_SPARE_RESERVED7_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

FS_VCO4 - VCO Configuration, Reg 4

Bit no.	Name	Reset	R/W	Description
7:5	FS_VCO4_NOT_USED	0x00	R	
4:0	FSD_VCO_CAL_CURR	0x14	R/W	VCO current set during calibration

FS_VCO3 - VCO Configuration, Reg 3

Bit no.	Name	Reset	R/W	Description
7:1	FS_VCO3_NOT_USED	0x00	R	
0	FS_VCO3_RESERVED0	0x00	R/W	For test purposes only, use values from SmartRF Studio

FS_VCO2 - VCO Configuration, Reg 2

Bit no	. Name	Reset	R/W	Description
7	FS_VCO2_NOT_USED	0x00	R	
6:0	FSD_VCO_CAL_CAPARR	0x00	R/W	VCO cap-array configuration set during calibration

FS_VCO1 - VCO Configuration, Reg 1

Bit no.	Name	Reset	R/W	Description	
7:2	FSD_VCDAC	0x00	R/W	VCO VCDAC Configuration. Used in open-loop CAL mode. Note that avdd is the internal VCO regulated voltage	
				000000 VCDAC out = min 160 mV	
				1111111 VCDAC out = max avdd - 160 mV	
1:0	FS_VCO1_RESERVED1_0	0x00	R/W	For test purposes only, use values from SmartRF Studio	

FS_VCO0 - VCO Configuration, Reg 0

Bit no.	Name	Reset	R/W	Description
7	FS_VCO0_RESERVED7	0x01	R/W	For test purposes only, use values from SmartRF Studio
6:0	FS_VCO0_RESERVED6_0	0x01	R/W	For test purposes only, use values from SmartRF Studio

GBIAS6 - Global Bias Configuration, Reg 6

Bit no.	Name	Reset	R/W	Description
7:6	GBIAS6_NOT_USED	0x00	R	
5:0	GBIAS6_RESERVED5_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

GBIAS5 - Global Bias Configuration, Reg 5

Bit no.	Name	Reset	R/W	Description
7:4	GBIAS5_NOT_USED	0x00	R	
3:0	GBIAS5_RESERVED3_0	0x02	R/W	For test purposes only, use values from SmartRF Studio

GBIAS4 - Global Bias Configuration, Reg 4

Bit no.	Name	Reset	R/W	Description
7:6	GBIAS4_NOT_USED	0x00	R	
5:0	GBIAS4_RESERVED5_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

GBIAS3 - Global Bias Configuration, Reg 3

Bit no.	Name	Reset	R/W	Description
7:6	GBIAS3_NOT_USED	0x00	R	
5:0	GBIAS3_RESERVED5_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

GBIAS2 - Global Bias Configuration, Reg 2

ı	Bit no.	Name	Reset	R/W	Description
ı	7	GBIAS2_NOT_USED	0x00	R	
ı	6:0	GBIAS2_RESERVED6_0	0x10	R/W	For test purposes only, use values from SmartRF Studio

GBIAS1 - Global Bias Configuration, Reg 1

Bit no.	Name	Reset	R/W	Description
7:5	GBIAS1_NOT_USED	0x00	R	
4:0	GBIAS1_RESERVED4_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

GBIAS0 - Global Bias Configuration, Reg 0

ı	Bit no.	Name	Reset	R/W	Description
ı	7:2	GBIAS0_NOT_USED	0x00	R	
ı	1:0	GBIAS0_RESERVED1_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

IFAMP - Intermediate Frequency Amplifier Configuration

Bit no.	Name	Reset	R/W	Description
7:2	IFAMP_NOT_USED	0x00	R	
1:0	IFAMP_RESERVED1_0	0x01	R/W	For test purposes only, use values from SmartRF Studio

LNA - Low Noise Amplifier Configuration

Bit no.	Name	Reset	R/W	Description
7:2	LNA_NOT_USED	0x00	R	
1:0	LNA_RESERVED1_0	0x01	R/W	For test purposes only, use values from SmartRF Studio

RXMIX - RX Mixer Configuration

ı	Bit no.	Name	Reset	R/W	Description
ı	7:2	RXMIX_NOT_USED	0x00	R	
ı	1:0	RXMIX_RESERVED1_0	0x01	R/W	For test purposes only, use values from SmartRF Studio

XOSC5 - Crystal Oscillator Configuration, Reg 5

ı	Bit no.	Name	Reset	R/W	Description
	7:4	XOSC5_NOT_USED	0x00	R	
	3:0	XOSC5_RESERVED3_0	0x0C	R/W	For test purposes only, use values from SmartRF Studio

XOSC4 - Crystal Oscillator Configuration, Reg 4

1	Bit no.	Name	Reset	R/W	Description
1	7:0	XOSC4_RESERVED7_0	0xA0	R/W	For test purposes only, use values from SmartRF Studio

XOSC3 - Crystal Oscillator Configuration, Reg 3

Bit no.	Name	Reset	R/W	Description
7:0	XOSC3_RESERVED7_0	0x03	R/W	For test purposes only, use values from SmartRF Studio

XOSC2 - Crystal Oscillator Configuration, Reg 2

Bit no.	Name	Reset	R/W	Description
7:4	XOSC2_NOT_USED	0x00	R	
3:1	XOSC2_RESERVED3_1	0x02	R/W	For test purposes only, use values from SmartRF Studio
0	XOSC_CORE_PD_OVERRIDE	0x00	R/W	0 The XOSC will be turned off if the SXOFF, SPWD, or SWOR command strobes are issued
				1 The XOSC is forced on even if an SXOFF, SPWD, or SWOR command strobe has been issued. This can be used to enable fast start-up from SLEEP/XOFF on the expense of a higher current consumption

XOSC1 - Crystal Oscillator Configuration, Reg 1

Bit no.	Name	Reset	R/W	Description
7:3	XOSC1_NOT_USED	0x00	R	
2	XOSC1_RESERVED2	0x00	R/W	For test purposes only, use values from SmartRF Studio
1	XOSC_BUF_SEL	0x00	R/W	XOSC Buffer Select. Selects internal XOSC buffer for RF PLL 0 Low power, single ended buffer (differential buffer is shut down)
				1 Low phase noise, differential buffer (low power buffer still used for digital clock)
0	XOSC_STABLE	0x01	R	XOSC is stable (has finished settling)

XOSC0 - Crystal Oscillator Configuration, Reg 0

Bit no.	Name	Reset	R/W	Description
7:2	XOSC0_NOT_USED	0x00	R	
1:0	XOSC0_RESERVED1_0	0x00	R	For test purposes only

ANALOG_SPARE

Bit no.	Name	Reset	R/W	Description
7:0	ANALOG_SPARE_RESERVED7_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

PA_CFG3 - Power Amplifier Configuration, Reg 3

Bit no.	Name	Reset	R/W	Description
7:3	PA_CFG3_NOT_USED	0x00	R	
2:0	PA_CFG3_RESERVED2_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

WOR_TIME1 - eWOR Timer Status (MSB)

Bit no.	Name	Reset	R/W	Description
7:0	WOR_STATUS_15_8	0x00	R	eWOR timer counter value [15:8]

SWRU295C Page 95 of 108

WOR_TIME0 - eWOR Timer Status (LSB)

Bit no.	Name	Reset	R/W	Description
7:0	WOR_STATUS_7_0	0x00	R	eWOR timer counter value [7:0]

WOR_CAPTURE1 - eWOR Timer Capture (MSB)

Bit no.	Name	Reset	R/W	Description
7:0	WOR_CAPTURE_15_8	0x00	R	eWOR timer capture value [15:8]. Capture timer value on sync detect to simplify timer resynchronization

WOR_CAPTURE0 - eWOR Timer Capture (LSB)

Bit no.	Name	Reset	R/W	Description
7:0	WOR_CAPTURE_7_0	0x00	R	eWOR Timer Capture Value [7:0]. Capture timer value on sync detect to simplify timer resynchronization

BIST - MARC BIST

Bit no.	Name	Reset	R/W	Description
7:4	BIST_NOT_USED	0x00	R	
3:0	BIST_RESERVED3_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

DCFILTOFFSET_I1 - DC Filter Offset I (MSB)

Bit no.	Name	Reset	R/W	Description
7:0	DCFILT_OFFSET_I_15_8	0x00	R/W	DC Compensation, Real Value [15:8]

DCFILTOFFSET_I0 - DC Filter Offset I (LSB)

Bit no.	Name	Reset	R/W	Description
7:0	DCFILT_OFFSET_I_7_0	0x00	R/W	DC Compensation, Real Value [7:0]

DCFILTOFFSET_Q1 - DC Filter Offset Q (MSB)

E	Bit no.	Name	Reset	R/W	Description
	7:0	DCFILT_OFFSET_Q_15_8	0x00	R/W	DC Compensation, Imaginary Value [15:8]

DCFILTOFFSET_Q0 - DC Filter Offset Q (LSB)

Bit no.	Name	Reset	R/W	Description
7:0	DCFILT_OFFSET_Q_7_0	0x00	R/W	DC Compensation, Imaginary Value [7:0]

IQIE_I1 (0x2F6D) - IQ Imbalance Value I (MSB)

Bit n	o. Name	Reset	R/W	Description	
7:0	IQIE_I_15_8	0x00	R/W	IQ Imbalance Value, Real Part [15:8]	

IQIE_I0 - IQ Imbalance Value I (LSB)

Bit no.	Name	Reset	R/W	Description
7:0	IQIE_I_7_0	0x00	R/W	IQ Imbalance Value, Real Part [7:0]

IQIE_Q1 - IQ Imbalance Value Q (MSB)

Bit no.	Name	Reset	R/W	Description
7:0	IQIE_Q_15_8	0x00	R/W	IQ Imbalance Value, Imaginary Part [15:8]

IQIE_Q0 - IQ Imbalance Value Q (LSB)

Bit no.	Name	Reset	R/W	Description
7:0	IQIE_Q_7_0	0x00	R/W	IQ Imbalance Value, Imaginary Part [7:0]

SWRU295C Page 96 of 108

RSSI1 - Received Signal Strength Indicator (MSB)

Bit no.	Name	Reset	R/W	Description
7:0	RSSI_11_4	0x80	R	Received Signal Strength Indicator. 8 MSB of RSSI[11:0]. RSSI[11:0] is a two's complement number with 0.0625 dB resolution hence ranging from -128 to 127 dBm. A value of -128 dBm indicates that the RSSI is invalid. To get a correct RSSI value a calibrated RSSI offset value should be subtracted from the value given by RSSI[11:0]. This RSSI offset value can either be subtracted from RSSI[11:0] manually or the offset can be written to AGC_GAIN_ADJUST.GAIN_ADJUSTMENT meaning that RSSI[11:0] will give a correct value directly

RSSI0 - Received Signal Strength Indicator (LSB)

Bit no.	Name	Reset	R/W	Description	
7	RSSI0_NOT_USED	0x00	R		
6:3	RSSI_3_0	0x00	R	Received Signal Strength Indicator. 4 LSB of RSSI[11:0]. See RSSI1	
2	CARRIER_SENSE	0x00	R	Carrier Sense	
				0 No carrier detected	
				1 Carrier detected	
1	CARRIER_SENSE_VALID	0x00	R	Carrier Sense Valid	
				0 Carrier Sense not valid	
				1 Carrier Sense valid	
0	RSSI_VALID	0x00	R	RSSI Valid	
				0 RSSI not valid	
				1 RSSI valid	

Page 97 of 108

MARCSTATE - MARC State

Bit no.	Name	Reset	R/W	Descripti	on
7	MARCSTATE_NOT_USED	0x00	R		
6:5 MARC_2PIN_STATE 0x02 R		MARC 2	Pin State Value		
				00	SETTLING
				01	TX
				10	IDLE
				11	RX
4:0	MARC_STATE	0x01	R	MARC St	ate
				00000	SLEEP
				00001	IDLE
				00010	XOFF
				00011	BIAS_SETTLE_MC
				00100	REG_SETTLE_MC
				00101	MANCAL
				00110	BIAS_SETTLE
				00111	REG_SETTLE
				01000	STARTCAL
				01001	BWBOOST
				01010	FS_LOCK
				01011	IFADCON
				01100	ENDCAL
				01101	RX
				01110	RX_END
				01111	Reserved
				10000	TXRX_SWITCH
				10001	RX_FIFO_ERR
				10010	FSTXON
				10011	TX
				10100	TX_END
				10101	RXTX_SWITCH
				10110	TX_FIFO_ERR
				10111	IFADCON_TXRX

LQI_VAL - Link Quality Indicator Value

Bit no.	Name	Reset	R/W	scription	
7	CRC_OK	0x00	R	C OK	
				CRC check not ok (bit error)	
				CRC check ok (no bit error)	
6:0	LQI	0x00	R	Link Quality Indicator. 0 when not valid. A low value indicates a better link than what a high value does	

PQT_SYNC_ERROR - Preamble and Sync Word Error

Bit no.	Name	Reset	R/W	Description
7:4	PQT_ERROR	0x0F	R	Preamble Qualifier Value. The actual preamble qualifier value can be greater than 15 but since PQT_ERROR is only 4 bits wide PQT_ERROR = MIN[actual PQT qualifier value] modulo 16. This means that if PQT _ERROR = 0001b the actual preamble qualifier value is either 1 or 17. When a sync word is detected (PKT_SYNC_RXTX is asserted) the PQT_ERROR register field is not updated again before RX mode is re-entered. As long as the radio is in RX searching for a sync word the register field will be updated continuously
3:0	SYNC_ERROR	0x0F	R	Sync Word Qualifier Value. The actual sync word qualifier value can be greater than 15 but since <code>SYNC_ERROR</code> is only 4 bits wide <code>SYNC_ERROR = FLOOR[actual sync word qualifier value/2]</code> modulo 16. This means that if <code>SYNC_ERROR = 0001b</code> the actual sync word qualifier value is either 2, 3, 34, or 35. When a sync word is received (<code>PKT_SYNC_RXTX</code> is asserted) the <code>SYNC_ERROR</code> register field is not updated again before RX mode is re-entered. As long as the radio is in RX searching for a sync word the register field will be updated continuously

DEM_STATUS - Demodulator Status

Bit no.	Name	Reset	R/W	Description
7	RSSI_STEP_FOUND	0x00	R	Asserted if RSSI step is found during packet reception
6	COLLISION_FOUND	0x00	R	Asserted if a sync word is detected during packet reception (i.e. after PKT_SYNC_RXTX has been asserted) if MDMCFG1.COLLISION_DETECT_EN = 1
5	SYNC_LOW0_HIGH1	0x00	R	DualSync Detect. Only valid when SYNC CFG0.SYNC MODE = 111b. When SYNC_EVENT is asserted this bit can be checked to see which sync word is found. O Sync word found = [SYNC15_8:SYNC7_0]
4:1	DEM_STATUS_RESERVED4_1	0x00	R	For test purposes only
0	IMAGE_FOUND	0x00	R	Image Found Detector
				0 No image found
				1 Image found

FREQOFF_EST1 - Frequency Offset Estimate (MSB)

Bit no.	Name	Reset	R/W	Description
7:0	DEM_FOE_15_8	0x00	R	Frequency Offset Estimate [15:8] MSB
				$\label{eq:FOE} Frequency\ Offset\ Estimate = \frac{DEM\ _FOE\cdot f_{XOSC}}{LO\ Divider\cdot 2^{18}}$ The value is in two's complement format. The LO Divider value can be found in FS_CFG.FSD_BANDSELECT register field

FREQOFF_EST0 - Frequency Offset Estimate (LSB)

Bit no.	Name	Reset	R/W	Description
7:0	DEM_FOE_7_0	0x00	R	Frequency Offset Estimate [7:0] LSB
				Frequency Offset Estimate = $\frac{DEM_FOE \cdot f_{XOSC}}{\text{LO Divider} \cdot 2^{18}}$ The value is in two's complement format. The LO Divider value can be found in
				FS_CFG.FSD_BANDSELECT register field

AGC_GAIN3 - AGC Gain, Reg 3

Bit no.	Name	Reset	R/W	Description
7	AGC_GAIN3_NOT_USED	0x00	R	
6:0	AGC_FRONT_END_GAIN	0x00	R	AGC Front End Gain. Actual applied gain with 1 dB resolution

AGC_GAIN2 - AGC Gain, Reg 2

Bit no.	Name	Reset	R/W	Desc	cription
7	AGC_DRIVES_FE_GAIN	0x01	R/W	Ove	rride AGC gain control
				1	AGC controls front end gain
				0	Front end gain controlled by registers AGC GAIN2, AGC GAIN1, and AGC GAIN0
6:3	AGC_LNA_CURRENT	0x0A	R/W	Use	values from SmartRF Studio
2:0	AGC_LNA_R_DEGEN	0x01	R/W	Use	values from SmartRF Studio

AGC_GAIN1 - AGC Gain, Reg 1

Bit no.	Name	Reset	R/W	Description
7:5	AGC_GAIN1_NOT_USED	0x00	R	
4:3	AGC_LNA_R_LOAD	0x00	R/W	Use values from SmartRF Studio
2:0	AGC_LNA_R_RATIO	0x00	R/W	Use values from SmartRF Studio

AGC_GAIN0 - AGC Gain, Reg 0

Bit no.	Name	Reset	R/W	Description
7	AGC_GAIN0_NOT_USED	0x00	R	
6:5	AGC_IF_MODE	0x01	R/W	Use values from SmartRF Studio
4:0	AGC_IFAMP_GAIN	0x1F	R/W	Use values from SmartRF Studio

${\bf SOFT_RX_DATA_OUT \cdot Soft\ Decision\ Symbol\ Data}$

Bit no.	Name	Reset	R/W	Description
7:0	SOFT_RX_DATA	0x00	R	8-bit signed soft-decision symbol data, either from normal receiver or transparent receiver. Can be read using burst mode to do custom demodulation $f_{\mathit{OFFSET}} = \frac{f_{\mathit{DEV}} \cdot \mathit{SOFT} _\mathit{RX} _\mathit{DATA}}{64}$ (two's complement format). f_{DEV} is the programmed frequency deviation

SOFT_TX_DATA_IN - Soft TX Data Input Register

Bit no.	Name	Reset	R/W	Description
7:0	SOFT_TX_DATA	0x00	R/W	8-bit signed soft TX data input register for custom SW controlled modulation. Can be accessed using burst mode to get arbitrary modulation $f_{OFFSET} = \frac{f_{DEV} \cdot SOFT_TX_DATA}{64}$
				$f_{OFFSET} = \frac{5DEV}{64}$ (two's complement format). f _{DEV} is the programmed frequency deviation

ASK_SOFT_RX_DATA - AGC ASK Soft Decision Output

Bit no.	Name	Reset	R/W	Description
7:6	ASK_SOFT_NOT_USED	0x00	R	
5:0	ASK_SOFT_RX_DATA_RESERVED5_0	0x30	R	For test purposes only

RNDGEN - Random Number Value

Bit no.	Name	Reset	R/W	Description
7	RNDGEN_EN	0x00	R/W	Random Number Generator Enable
				0 Random number generator disabled
				1 Random number generator enabled
6:0	RNDGEN_VALUE	0x7F	R	Random Number Value. Number generated by 7 bit LFSR register $(X^7 + X^6 + 1)$. Number will be further randomized when in RX by XORing the feedback with receiver noise.

MAGN2 - Signal Magnitude after CORDIC [16]

Bit no.	Name	Reset	R/W	Description
7:1	MAGN_NOT_USED	0x00	R	
0	DEM_MAGN_16	0x00	R	Instantaneous signal magnitude after CORDIC, 17-bit [16]

MAGN1 - Signal Magnitude after CORDIC [15:8]

Bit no.	Name	Reset	R/W	Description
7:0	DEM_MAGN_15_8	0x00	R	Instantaneous signal magnitude after CORDIC, 17-bit [15:8]

MAGN0 - Signal Magnitude after CORDIC [7:0]

Bit no.	Name	Reset	R/W	Description
7:0	DEM_MAGN_7_0	0x00	R	Instantaneous signal magnitude after CORDIC, 17-bit [7:0]

ANG1 - Signal Angular after CORDIC [9:8]

Bit no.	Name	Reset	R/W	Description	
7:2	ANG1_NOT_USED	0x00	R		
1:0	DEM_ANGULAR_9_8	0x00	R	Instantaneous signal angular after CORDIC, 10-bit [9:8]	

ANG0 - Signal Angular after CORDIC [7:0]

Bit no.	Name	Reset	R/W	Description	
7:0	DEM_ANGULAR_7_0	0x00	R	Instantaneous signal angular after CORDIC, 10-bit [7:0]	

CHFILT_I2 - Channel Filter Data Real Part [18:16]

Bit no.	Name	Reset	R/W	Description	
7:4	CHFILT_I2_NOT_USED	0x00	R		
3	DEM_CHFILT_STARTUP_VALID	0x01	R	Channel filter data not valid Channel filter data valid (asserted after 16 channel filter samples)	
2:0	DEM_CHFILT_I_18_16	0x00	R	Channel filter data, real part, 19-bit [18:16]	

CHFILT_I1 - Channel Filter Data Real Part [15:8]

Bit no.	Name	Reset	R/W	Description
7:0	DEM_CHFILT_I_15_8	0x00	R	Channel filter data, real part, 19-bit [15:8]

CHFILT_I0 - Channel Filter Data Real Part [7:0]

Bit no.	Name	Reset	R/W	Description
7:0	DEM_CHFILT_I_7_0	0x00	R	Channel filter data, real part, 19-bit [7:0]

CHFILT_Q2 - Channel Filter Data Imaginary Part [18:16]

Bit no.	Name	Reset	R/W	Description
7:3	CHFILT_Q2_NOT_USED	0x00	R	
2:0	DEM_CHFILT_Q_18_16	0x00	R	Channel filter data, imaginary part, 19-bit [18:16]

CHFILT_Q1 - Channel Filter Data Imaginary Part [15:8]

Bit no.	Name	Reset	R/W	Description	
7:0	DEM_CHFILT_Q_15_8	0x00	R	Channel filter data, imaginary part, 19-bit [15:8]	

CHFILT_Q0 - 0x00 Channel Filter Data Imaginary Part [7:0]

Bit no.	Name	Reset	R/W	Description
7:0	DEM_CHFILT_Q_7_0	0x00	R	Channel filter data, imaginary part, 19-bit [7:0]

GPIO_STATUS - GPIO Status

Bit no.	Name	Reset	R/W	Description	
7:4	GPIO_STATUS_RESERVED7_4	0x00	R	For test purposes only	
3:0	GPIO_STATE	0x00	R	State of GPIO pins. SERIAL_STATUS.IOC_SYNC_PINS_EN must be 1	

FSCAL_CTRL

Bit no.	Name	Reset	R/W	Description	
7	FSCAL_CTRL_NOT_USED	0x00	R		
6:1	FSCAL_CTRL_RESERVED6_1	0x00	R/W	For test purposes only, use values from SmartRF Studio	
0	LOCK	0x01	R	Out of Lock Indicator (FS_CFG.FS_LOCK_EN must be 1). The state of this signal is only valid in RX, TX, and FSTXON state 0	

PHASE_ADJUST

ı	Bit no.	Name	Reset	R/W	Description
ı	7:0	PHASE_ADJUST_RESERVED7_0	0x00	R	For test purposes only

PARTNUMBER - Part Number

Bit no.	Name	Reset	R/W	Description	
7:0	PARTNUM	0x00	R	Chip ID	
				0x40 CC	1121
				0x48 CC	1120
				0x58 CC	1125
				0x5A CC	1175

PARTVERSION - Part Revision

1	Bit no.	Name	Reset	R/W	Description
1	7:0	PARTVER	0x00	R	Chip Revision

SERIAL_STATUS - Serial Status

Bit no.	Name	Reset	R/W	Description
7:5	SERIAL_STATUS_NOT_USED	0x00	R	
4	CLK32K	0x00	R	Internal 32 kHz RC oscillator clock
3	IOC_SYNC_PINS_EN	0x00	R/W	Enable synchronizer for IO pins. Required for transparent TX and for reading GPIO_STATUS.GPIO_STATE
2	SOFT_TX_DATA_CLK	0x00	R	Modulator soft data clock (16 times higher than the programmed data rate)
1	SERIAL_RX	0x00	R	Serial RX data
0	SERIAL_RX_CLK	0x00	R	Serial RX data clock

RX_STATUS - RX Status

Bit no.	Name	Reset	R/W	Description
7	SYNC_FOUND	0x00	R	Asserted simultaneously as SYNC_EVENT. De-asserted when an SRX strobe has been issued
6	RXFIFO_FULL	0x00	R	Asserted when number of bytes is greater than the RX FIFO threshold. Deasserted when the RX FIFO is empty
5	RXFIFO_OVER_THR	0x00	R	Asserted when number of bytes is greater than the RX FIFO threshold. Deasserted when the RX FIFO is drained below (or is equal) to the same threshold
4	RXFIFO_EMPTY	0x00	R	High when no bytes reside in the RX FIFO
3	RXFIFO_OVERFLOW	0x00	R	Asserted when the RX FIFO has overflowed (the radio has received more bytes after the RXFIFO is full). De-asserted when the RX FIFO is flushed
2	RXFIFO_UNDERFLOW	0x00	R	Asserted if the user try to read from an empty RX FIFO. De-asserted when the RX FIFO is flushed
1	PQT_REACHED	0x00	R	Asserted when a preamble is detected (the preamble qualifier value is less than the programmed PQT threshold). If SYNC_EVENT is not asserted within sync length + 10 symbols after this signal is asserted, the signal will de-assert. If SYNC_EVENT is asserted within this period, the signal will not be de-asserted before an SRX strobe is being issued
0	PQT_VALID	0x01	R	Asserted after 16 or 43 bits are received (depending on the PREAMBLE_CFG0.PQT_VALID_TIMEOUT setting) or after a preamble is detected

TX_STATUS - TX Status

Bit no.	Name	Reset	R/W	Description
7:6	TX_STATUS_NOT_USED	0x00	R	
5	TX_STATUS_RESERVED5	0x00	R	For test purposes only
4	SYNC_SENT	0x00	R	Last bit of sync word has been sent
3	TXFIFO_FULL	0x00	R	Asserted when the TX FIFO is full. De-asserted when the number of bytes is below threshold
2	TXFIFO_OVER_THR	0x00	R	Asserted when number of bytes is greater than or equal to the TX FIFO threshold
1	TXFIFO_OVERFLOW	0x00	R	Asserted when the TX FIFO has overflowed (The user have tried to write to a full TX FIFO). De-asserted when the TX FIFO is flushed
0	TXFIFO_UNDERFLOW	0x00	R	Asserted when the TX FIFO has underflowed (TX FIFO is empty before the complete packet is sent). De-asserted when the TX FIFO is flushed

MARC_STATUS1 - MARC Status , Reg 1

Bit no.	Name	Reset	R/W	Description	
7:0	MARC_STATUS_OUT	0x00	R	This register should be read to find what caused the MARC_MCU_WAKEUP signal to be asserted	
				00000000 No failure	
				00000001 RX timeout occurred	
				00000010 RX termination based on CS or PQT	
				00000011 eWOR sync lost (16 slots with no successful reception)	
				00000100 Packet discarded due to maximum length filtering	
				00000101 Packet discarded due to address filtering	
				00000110 Packet discarded due to CRC filtering	
				00000111 TX FIFO overflow error occurred	
				00001000 TX FIFO underflow error occurred	
				00001001 RX FIFO overflow error occurred	
				00001010 RX FIFO underflow error occurred	
				00001011 TX ON CCA failed	
				01000000 TX finished successfully	

MARC_STATUS0 - MARC Status , Reg 0

Bit no.	Name	Reset	R/W	Description
7:4	MARC_STATUS_NOT_USED	0x00	R	
3	MARC_STATUS0_RESERVED3	0x00	R	For test purposes only
2	TXONCCA_FAILED	0x00	R	This bit can be read after the TXONCCA DONE signal has been asserted O
1	MCU_WAKE_UP	0x00	R	MCU wake up signal. Read MARC_STATUS1.MARC_STATUS_OUT to find the cause of the wake up event
0	RCC_CAL_VALID	0x00	R	RCOSC has been calibrated at least once

PA_IFAMP_TEST

Bit no.	Name	Reset	R/W	Description
7:5	PA_IFAMP_TEST_NOT_USED	0x00	R	
4:0	PA_IFAMP_TEST_RESERVED4_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

FSRF_TEST

Bit no.	Name	Reset	R/W	Description
7	FSRF_TEST_NOT_USED	0x00	R	
6:0	FSRF_TEST_RESERVED6_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

PRE_TEST

1	Bit no.	Name	Reset	R/W	Description
	7:5	PRE_TEST_NOT_USED	0x00	R	
	4:0	PRE_TEST_RESERVED4_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

PRE_OVR

Bit no.	Name	Reset	R/W	Description
7:0	PRE_OVR_RESERVED7_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

ADC_TEST - ADC Test

Bit no.	Name	Reset	R/W	Description
7:6	ADC_TEST_NOT_USED	0x00	R	
5:0	ADC_TEST_RESERVED5_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

DVC_TEST - DVC Test

Bit no.	Name	Reset	R/W	Description
7:5	DVC_TEST_NOT_USED	0x00	R	
4:0	DVC_TEST_RESERVED4_0	0x0B	R/W	For test purposes only, use values from SmartRF Studio

ATEST

	Bit no.	Name	Reset	R/W	Description
	7	ATEST_NOT_USED	0x00	R	
1	6:0	ATEST_RESERVED6_0	0x40	R/W	For test purposes only, use values from SmartRF Studio

ATEST_LVDS

Bit no.	Name	Reset	R/W	Description
7:4	ATEST_LVDS_NOT_USED	0x00	R	
3:0	ATEST_LVDS_RESERVED3_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

ATEST_MODE

Bit no.	Name	Reset R/W		Description
7:0	ATEST_MODE_RESERVED7_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

XOSC_TEST1

Bit no.	Name	Reset	R/W	Description
7:0	XOSC_TEST1_RESERVED7_0	0x3C	R/W	For test purposes only, use values from SmartRF Studio

XOSC_TEST0

Bit no.	Name	Reset	R/W	Description
7:0	XOSC_TEST0_RESERVED7_0	0x00	R/W	For test purposes only, use values from SmartRF Studio

RXFIRST - RX FIFO Pointer (first entry)

Bit no.	Name	Reset	R/W	Description
7:0	RX_FIRST	0x00	R	Pointer to the first entry in the RX FIFO

TXFIRST - TX FIFO Pointer (first entry)

Bit no.	Name	Reset	R/W	Description
7:0	TX_FIRST	0x00	R	Pointer to the first entry in the TX FIFO

RXLAST - RX FIFO Pointer (last entry)

Bit no.	Name	Reset	R/W	Description
7:0	RX_LAST	0x00	R	Pointer to the last entry in the RX FIFO

TXLAST - TX FIFO Pointer (last entry)

Bit no.	Name	Reset	R/W	Description
7:0	TX_LAST	0x00	R	Pointer to the last entry in the TX FIFO

SWRU295C Page 104 of 108

NUM_TXBYTES - TX FIFO Status (occupied entries)

Bit no.	Name	Reset	R/W	Description
7:0	TXBYTES	0x00	R	Number of bytes in the TX FIFO

NUM_RXBYTES - RX FIFO Status (occupied entries)

	Bit no.	Name	Reset	R/W	Description
1	7:0	RXBYTES	0x00	R	Number of bytes in the RX FIFO

FIFO_NUM_TXBYTES - TX FIFO Status (free entries)

Bit no.	Name	Reset	R/W	Description
7:4	FIFO_NUM_TXBYTES_NOT_USED	0x00	R	
3:0	FIFO_TXBYTES	0x0F	R	Number of free entries in the TX FIF0. 1111b means that there are 15 or more free entries

FIFO_NUM_RXBYTES - RX FIFO Status (available bytes)

Bit no.	Name	Reset	R/W	Description
7:4	FIFO_NUM_RXBYTES_NOT_USED	0x00	R	
3:0	FIFO_RXBYTES	0x00	R	Number of available bytes in the RX FIFO. 1111b means that there are 15 or more bytes available to read

Page 105 of 108

11 Soldering Information

The recommendations for lead-free reflow in IPC/JEDEC J-STD-020 should be followed.

12 Development Kit Ordering Information

Orderable Evaluation Module	Description	
CC1120DK	Performance Line Development Kit	
CC1120EMK-169	CC1120 Evaluation Module Kit 169 MHz	
CC1120EMK-420-470	Evaluation Module Kit 420-470 MHz	
CC1120EMK-868-915	CC1120 Evaluation Module Kit 868-915 MHz	
CC1120EMK-955	CC1120 Evaluation Module 955 MHz	
CC1121EMK-868-915	CC1121 Evaluation Module Kit 868-915 MHz	

Table 31: Development Kit Ordering Information

13 References

- [1] SmartRF Studio (SWRC176.zip)
- [2] EN 300 220 V2.3.1: "Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment to be used in the 25 MHz to 1000 MHz frequency range with power levels rang up to 500 mW" (www.etsi.org)

14 General Information

14.1 Document History

Revision	Date	Description/Changes
SWRU295	30.06.2011	Advance Information
SWRU295A	24.11.2011	Advance Information. Register description added
SWRU295B	06.01.2012	First Release
SWRU295C	27.03.2012	Removed the IRQ0M and IRQ0F registers from Section 10.
		Changed the register description of the <code>IQIC.IQIC_UPDATE_COEFF_EN</code> register field.
		Footnote added to Equation 18 saying that the equation is only an approximation.
		Added Section 8.14.1 regarding CC1125 Category 1 Operation under EN 300 220
		Added info to Section 9.3 regarding which registers should be saved after start-up when performing fast frequency hopping without calibration for each hop.
		In Section 4.1.5 and Section 4.1.6 a footnote is added saying that DSSS PN mode and DSSS repeat mode are not supported for 4'ary modulation formats.
		Note. Assertion of DSSS_DATA1 and DSSS_DATA0 within the first 5 DSSS_CLK edges after entering RX should be ignored.
		Changes made to T0 in Table 20.

Table 32: Document History

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

Automotive and Transportation www.ti.com/automotive

e2e.ti.com

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

		•	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Products

Audio

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti.com/audio

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated