
Using STM32 discovery kits with open source tools

STLINK development team

1

Contents

2

1 Overview

This guide details the use of STMicroelectronics STM32 discovery kits in
an open source environment.

3

2 Installing a GNU toolchain

Any toolchain supporting the cortex m3 should do. You can find the nec-
essary to install such a toolchain here:

https : // github . com/ esden /summon−arm−t o o l c h a i n

Details for the installation are provided in the topmost README file.
This documentation assumes the toolchains is installed in a $TOOLCHAIN PATH.

4

3 Installing STLINK

STLINK is open source software to program and debug ST’s STM32 Dis-
covery kits. Those kits have an onboard chip that translates USB com-
mands sent by the host PC into JTAG/SWD commands. This chip is called
STLINK, (yes, isn’t that confusing? suggest a better name!) and comes in
2 versions (STLINK v1 and v2). From a software point of view, those ver-
sions differ only in the transport layer used to communicate (v1 uses SCSI
passthru commands, while v2 uses raw USB). From a user point of view,
they are identical.

Before continuing, the following dependencies must be met:

• libusb-1.0

STLINK should run on any system meeting the above constraints.

The STLINK software source code is retrieved using:

$> g i t c l one https : // github . com/ texane / s t l i n k s t l i n k . g i t

Everything can be built from the top directory:

$> cd s t l i n k . g i t
$> make

It includes:

• a communication library (stlink.git/libstlink.a),

• a GDB server (stlink.git/gdbserver/st-util),

• a flash manipulation tool (stlink.git/flash/flash).

5

4 Building and running a program in SRAM

A simple LED blinking example is provided in the example directory. It
is built using:

cd s t l i n k . g i t /example/ b l i nk ;
PATH=$TOOLCHAIN PATH/ bin :$PATH make

This builds three files, one for each of the Discovery boards currently avail-
able, linked to run from SRAM. (So no risk of overwriting anything you
didn’t mean to) These blink examples can safely be used to verify that:

• Your installed toolchain is capable of compiling for cortex M3/M4
targets

• stlink is functional

• Your arm-none-eabi-gdb is functional

• Your board is functional

A GDB server must be started to interact with the STM32. Depending
on the discovery kit you are using, you must run one of the 2 commands:

STM32VL d i s cove ry k i t (onboard ST−l i n k)
$> . / st−u t i l −−s t l i n k v 1

STM32L or STM32F4 d i s cove ry k i t (onboard ST−l i n k /V2)
$> . / st−u t i l

Ful l he lp f o r other opt ions (l i s t e n port , v e r s i on)
$> . / st−u t i l −−help

Then, GDB can be used to interact with the kit:

$> $TOOLCHAIN PATH/ bin /arm−none−eabi−gdb

From GDB, connect to the server using:

$> t a r g e t extended l o c a l h o s t :4242

6

By default, the program was linked such that the base address is 0x20000000.
From the architecture memory map, GDB knows this address belongs to
SRAM. To load the program in SRAM, simply use:

$> # Choose one as appropr ia te f o r your Discovery k i t
$> load b l ink 32L . e l f | load blink 32VL . e l f | load b l ink F4 . e l f

GDB automatically set the PC register to the correct value, 0x20000000
in this case. Then, you can run the program using:

$> cont inue

All the LEDs on the board should now be blinking in time (those leds are
near the user and reset buttons).

7

5 Building and flashing a program

FLASH memory reading and writing is done by a separate tool, as shown
below:

change to the f l a s h t o o l d i r e c t o r y
$> cd s t l i n k . g i t / f l a s h ;

s t l i n k v 1 command to read 4096 from f l a s h in to out . bin
$> . / f l a s h read v1 out . bin 0x8000000 4096

s t l i n k v 2 command
$> . / f l a s h read out . bin 0x8000000 4096

s t l i n k v 1 command to wr i t e the f i l e in . bin in to f l a s h
$> . / f l a s h wr i t e v1 in . bin 0x8000000

s t l i n k v 2 command
$> . / f l a s h wr i t e in . bin 0x8000000

A LED blinking example is provided:

bui ld the example , r e s u l t i n g in b l i nk . bin
$> cd s t l i n k . g i t /example/ b l i n k f l a s h
$> PATH=$TOOLCHAIN PATH:$PATH make CONFIG STM32L DISCOVERY=1

wr i t e b l i nk . bin in to FLASH
$> sudo . / f l a s h wr i t e b l i nk . bin 0x08000000

Upon reset, the board LEDs should be blinking.

8

6 Building and installing the CHIBIOS kernel

CHIBIOS is an open source RTOS. More information can be found on the
project website:

http://www.chibios.org/dokuwiki/doku.php

It supports several boards, including the STM32L DISCOVERY kit:

http://www.chibios.org/dokuwiki/doku.php?id=chibios:articles:stm32l discovery

The installation procedure is detailed below:

checkout and bu i ld CHIBIOS f o r STM32L DISCOVERY k i t s
svn checkout https : // c h i b i o s . svn . s o u r c e f o r g e . net / svnroot / c h i b i o s / trunk
cd c h i b i o s / trunk /demos/ARMCM3−STM32L152−DISCOVERY
PATH=$TOOLCHAIN PATH:$PATH make

f l a s h the image in to STM32L
sudo . / f l a s h wr i t e bu i ld /ch . bin 0x08000000

9

7 Notes

7.1 Disassembling THUMB code in GDB

By default, the disassemble command in GDB operates in ARM mode.
The programs running on CORTEX-M3 are compiled in THUMB mode. To
correctly disassemble them under GDB, uses an odd address. For instance,
if you want to disassemble the code at 0x20000000, use:

$> d i sas semble 0x20000001

7.2 libstm32l discovery

The repository includes the STM32L discovery library source code from
ST original firmware packages, available here:

http ://www. s t . com/ i n t e r n e t / evalboard / product /250990. j sp#FIRMWARE

It is built using:

$> cd s t l i n k . g i t /example/ l i b s t m 3 2 l d i s c o v e r y / bu i ld
$> make

An example using the library can be built using:

$> cd s t l i n k . g i t /example/ l cd
$> make

10

8 References

• http://www.st.com/internet/mcu/product/248823.jsp
documentation related to the STM32L mcu

• http://www.st.com/internet/evalboard/product/250990.jsp
documentation related to the STM32L discovery kit

11

