
Using STM32 discovery kits with open source tools

STLINK development team

1

Contents

1 Overview 3

2 Installing a GNU toolchain 4

3 Installing STLINK 5

4 Building and running a program 6

5 Reading and writing to flash 7

6 Notes 8

7 References 9

2

1 Overview

This guide details the use of STMicroelectronics STM32 discovery kits in
an opensource environment.

3

2 Installing a GNU toolchain

Any toolchain supporting the cortex m3 should do. You can find the nec-
essary to install such a toolchain here:

https : // github . com/ esden /summon−arm−t o o l c h a i n

Details for the installation are provided in the topmost README file.
This documentation assumes the toolchains is installed in a $TOOLCHAIN PATH.

4

3 Installing STLINK

STLINK is an opensource software to program and debug the discovery
kits. Those kits have an onboard chip that translates USB commands sent
by the host PC into JTAG commands. This chip is called STLINK, which
is confusing since the software has the same name. It comes into 2 versions
(STLINK v1 and v2). From a software point of view, those versions differ
only in the transport layer used to communicate (v1 uses SCSI passthru
commands, while v2 uses raw USB).

Before continuing, the following dependencies are required:

• libusb-1.0

• libsg2

The STLINK software source code is retrieved using:

g i t c l one https : // github . com/ texane / s t l i n k s t l i n k . g i t

The GDB server is called st-util and is built using:

$> cd s t l i n k . g i t ;
$> make ;
$> cd gdbserver ;
$> make ;

5

4 Building and running a program

A simple LED blinking example is provided in the example directory. It is
built using:

cd s t l i n k . g i t /example/ b l i nk ;
PATH=$TOOLCHAIN PATH/ bin :$PATH make ;

A GDB server must be start to interact with the STM32. Depending on
the discovery kit you are using, you must run one of the 2 commands:

STM32VL d i s cove ry k i t
$> sudo . / st−u t i l /dev/ sg2

STM32L d i s cove ry k i t
$> sudo . / st−u t i l

Then, GDB can be used to interact with the kit:

$> $TOOLCHAIN PATH/ bin /arm−none−eabi−gdb

From GDB, connect to the server using:

$> t a r g e t extended l o c a l h o s t :4242

By default, the program was linked such that the base address is 0x20000000.
From the architecture memory map, GDB knows this address belongs to
SRAM. To load the program in SRAM, simply use:

$> load b l ink . e l f

GDB automatically set the PC register to the correct value, 0x20000000
in this case. Then, you can run the program using:

$> cont inue

The board BLUE and GREEN leds should be blinking (those leds are
near the user and reset buttons).

6

5 Reading and writing to flash

Flash memory reading and writing is done by a separate tool. A binary
running in flash is assumed to be linked against address 0x8000000. The
flash tool is then used as shown below:

bui ld the f l a s h t o o l
$> cd s t l i n k . g i t / f l a s h ; make ;

s t l i n k v 1 command to read 4096 from f l a s h in to out . bin
$> . / f l a s h read /dev/ sg2 out . bin 0x8000000 4096

s t l i n k v 2 command
$> . / f l a s h read out . bin 0x8000000 4096

s t l i n k v 1 command to wr i t e the f i l e in . bin in to f l a s h
$> . / f l a s h wr i t e /dev/ sg2 in . bin 0x8000000

s t l i n k v 2 command
$> . / f l a s h wr i t e in . bin 0x8000000

7

6 Notes

6.1 Disassembling THUMB code in GDB

By default, the disassemble command in GDB operates in ARM mode.
The programs running on CORTEX-M3 are compiled in THUMB mode. To
correctly disassemble them under GDB, uses an odd address. For instance,
if you want to disassemble the code at 0x20000000, use:

$> d i sas semble 0x20000001

6.2 libstm32l discovery

The repository includes the STM32L discovery library source code from
ST original firmware packages, available here:

http ://www. s t . com/ i n t e r n e t / evalboard / product /250990. j sp#FIRMWARE

It is built using:

$> cd s t l i n k . g i t /example/ l i b s t m 3 2 l d i s c o v e r y / bu i ld
$> make

An example using the library can be built using:

$> cd s t l i n k . g i t /example/ l cd
$> make

8

7 References

• http://www.st.com/internet/mcu/product/248823.jsp
documentation related to the STM32L mcu

• http://www.st.com/internet/evalboard/product/250990.jsp
documentation related to the STM32L discovery kit

9

