From: Keith Packard Date: Mon, 28 Oct 2013 06:11:37 +0000 (-0700) Subject: altos: Add functions to init quaternions from vector pairs and euler angles X-Git-Tag: 1.2.9.4~33 X-Git-Url: https://git.gag.com/?p=fw%2Faltos;a=commitdiff_plain;h=c10cb9d31765e6ef0ba737bc484c5aed22a332f9;hp=3b25860b5b3b69642928dd9c30dec4b4b937a88c altos: Add functions to init quaternions from vector pairs and euler angles Our low sampling rate means that the "cheap" hack for integrating quaternion rotations by using sin(x) ≃ x doesn't work, so instead we have to compute the partial rotation the hard way. Signed-off-by: Keith Packard --- diff --git a/src/core/ao_quaternion.h b/src/core/ao_quaternion.h index 6a701a18..6c885500 100644 --- a/src/core/ao_quaternion.h +++ b/src/core/ao_quaternion.h @@ -110,17 +110,68 @@ static inline void ao_quaternion_normalize(struct ao_quaternion *r, } static inline void ao_quaternion_rotate(struct ao_quaternion *r, - struct ao_quaternion *a, - struct ao_quaternion *b) + const struct ao_quaternion *a, + const struct ao_quaternion *b) { struct ao_quaternion c; struct ao_quaternion t; - ao_quaternion_conjugate(&c, b); ao_quaternion_multiply(&t, b, a); + ao_quaternion_conjugate(&c, b); ao_quaternion_multiply(r, &t, &c); } +/* + * Compute a rotation quaternion between two vectors + * + * cos(θ) + u * sin(θ) + * + * where θ is the angle between the two vectors and u + * is a unit vector axis of rotation + */ + +static inline void ao_quaternion_vectors_to_rotation(struct ao_quaternion *r, + const struct ao_quaternion *a, + const struct ao_quaternion *b) +{ + /* + * The cross product will point orthogonally to the two + * vectors, forming our rotation axis. The length will be + * sin(θ), so these values are already multiplied by that. + */ + + float x = a->y * b->z - a->z * b->y; + float y = a->z * b->x - a->x * b->z; + float z = a->x * b->y - a->y * b->x; + + float s_2 = x*x + y*y + z*z; + float s = sqrtf(s_2); + + /* cos(θ) = a · b / (|a| |b|). + * + * a and b are both unit vectors, so the divisor is one + */ + float c = a->x*b->x + a->y*b->y + a->z*b->z; + + float c_half = sqrtf ((1 + c) / 2); + float s_half = sqrtf ((1 - c) / 2); + + /* + * Divide out the sine factor from the + * cross product, then multiply in the + * half sine factor needed for the quaternion + */ + float s_scale = s_half / s; + + r->x = x * s_scale; + r->y = y * s_scale; + r->z = z * s_scale; + + r->r = c_half; + + ao_quaternion_normalize(r, r); +} + static inline void ao_quaternion_init_vector(struct ao_quaternion *r, float x, float y, float z) { @@ -146,4 +197,44 @@ static inline void ao_quaternion_init_zero_rotation(struct ao_quaternion *r) r->x = r->y = r->z = 0; } +/* + * The sincosf from newlib just calls sinf and cosf. This is a bit + * faster, if slightly less precise + */ + +static inline void +ao_sincosf(float a, float *s, float *c) { + float _s = sinf(a); + *s = _s; + *c = sqrtf(1 - _s*_s); +} + +/* + * Initialize a quaternion from 1/2 euler rotation angles (in radians). + * + * Yes, it would be nicer if there were a faster way, but because we + * sample the gyros at only 100Hz, we end up getting angles too large + * to take advantage of sin(x) ≃ x. + * + * We might be able to use just a couple of elements of the sin taylor + * series though, instead of the whole sin function? + */ + +static inline void ao_quaternion_init_half_euler(struct ao_quaternion *r, + float x, float y, float z) +{ + float s_x, c_x; + float s_y, c_y; + float s_z, c_z; + + ao_sincosf(x, &s_x, &c_x); + ao_sincosf(y, &s_y, &c_y); + ao_sincosf(z, &s_z, &c_z); + + r->r = c_x * c_y * c_z + s_x * s_y * s_z; + r->x = s_x * c_y * c_z - c_x * s_y * s_z; + r->y = c_x * s_y * c_z + s_x * c_y * s_z; + r->z = c_x * c_y * s_z - s_x * s_y * c_z; +} + #endif /* _AO_QUATERNION_H_ */