altos: Add computation of MicroPeak Kalman correction coefficients
authorKeith Packard <keithp@keithp.com>
Wed, 16 Jan 2013 23:13:31 +0000 (15:13 -0800)
committerKeith Packard <keithp@keithp.com>
Wed, 16 Jan 2013 23:21:24 +0000 (15:21 -0800)
Signed-off-by: Keith Packard <keithp@keithp.com>
src/Makefile
src/kalman/kalman_micro.5c [new file with mode: 0644]
src/kalman/load_csv.5c
src/util/make-kalman

index 473cc60a9cd7a0304c388f9736a3c7848d5499be..67ad97d1b7e54500ad153b467f73723b4fc6357b 100644 (file)
@@ -8,6 +8,7 @@ vpath make-kalman util
 vpath make-whiten util
 vpath kalman.5c kalman
 vpath kalman_filter.5c kalman
 vpath make-whiten util
 vpath kalman.5c kalman
 vpath kalman_filter.5c kalman
+vpath kalman_micro.5c kalman
 vpath load_csv.5c kalman
 vpath matrix.5c kalman
 
 vpath load_csv.5c kalman
 vpath matrix.5c kalman
 
diff --git a/src/kalman/kalman_micro.5c b/src/kalman/kalman_micro.5c
new file mode 100644 (file)
index 0000000..266a118
--- /dev/null
@@ -0,0 +1,329 @@
+#!/usr/bin/env nickle
+
+/*
+ * Copyright © 2013 Keith Packard <keithp@keithp.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ */
+
+autoimport ParseArgs;
+
+load "load_csv.5c"
+import load_csv;
+
+load "matrix.5c"
+import matrix;
+
+load "kalman_filter.5c"
+import kalman;
+
+load "../util/atmosphere.5c"
+
+real   height_scale = 1.0;
+real   accel_scale = 1.0;
+real   speed_scale = 1.0;
+
+/*
+ * State:
+ *
+ * x[0] = pressure
+ * x[1] = delta pressure
+ * x[2] = delta delta pressure
+ */
+
+/*
+ * Measurement
+ *
+ * z[0] = pressure
+ */
+
+real default_σ_m = 5;
+real default_σ_h = 2.4;       /* pascals */
+
+real[3,3] model_error(t, Φ) = multiply_mat_val ((real[3,3]) {
+               { t**5 / 20, t**4 / 8, t**3 / 6 },
+               { t**4 /  8, t**3 / 3, t**2 / 2 },
+               { t**3 /  6, t**2 / 2, t }
+       }, Φ);
+
+parameters_t param_baro(real t, real σ_m, real σ_h) {
+       if (σ_m == 0) {
+               printf ("Using default σ_m\n");
+               σ_m = default_σ_m;
+       }
+       if (σ_h == 0) {
+               printf ("Using default σ_h\n");
+               σ_h = default_σ_h;
+       }
+
+       σ_m = imprecise(σ_m) * accel_scale;
+       σ_h = imprecise(σ_h) * height_scale;
+
+       t = imprecise(t);
+       return (parameters_t) {
+/*
+ * Equation computing state k from state k-1
+ *
+ * height = height- + velocity- * t + acceleration- * t² / 2
+ * velocity = velocity- + acceleration- * t
+ * acceleration = acceleration-
+ */
+               .a = (real[3,3]) {
+                       { 1, t * height_scale / speed_scale , t**2/2 * height_scale / accel_scale },
+                       { 0, 1, t * speed_scale / accel_scale },
+                       { 0, 0, 1 }
+               },
+/*
+ * Model error covariance. The only inaccuracy in the
+ * model is the assumption that acceleration is constant
+ */
+               .q = model_error (t, σ_m**2),
+
+/*
+ * Measurement error covariance
+ * Our sensors are independent, so
+ * this matrix is zero off-diagonal
+ */
+               .r = (real[1,1]) {
+                       { σ_h ** 2 },
+               },
+/*
+ * Extract measurements from state,
+ * this just pulls out the height
+ * values.
+ */
+               .h = (real[1,3]) {
+                       { 1, 0, 0 },
+               },
+        };
+}
+
+bool   just_kalman = true;
+real   accel_input_scale = 1;
+
+real   error_avg;
+
+void update_error_avg(real e) {
+       if (e < 0)
+               e = -e;
+
+#      if (e > 1000)
+#              e = 1000;
+
+       error_avg -= error_avg / 8;
+       error_avg += (e * e) / 8;
+}
+
+void run_flight(string name, file f, bool summary, real σ_m, real σ_h) {
+       state_t current_both = {
+               .x = (real[3]) { 0, 0, 0 },
+               .p = (real[3,3]) { { 0 ... } ... },
+       };
+       state_t current_accel = current_both;
+       state_t current_baro = current_both;
+       real    t;
+       real    kalman_apogee_time = -1;
+       real    kalman_apogee = 0;
+       real    raw_apogee_time_first;
+       real    raw_apogee_time_last;
+       real    raw_apogee = 0;
+       real    speed = 0;
+       real    prev_acceleration = 0;
+       real    height, max_height = 0;
+       state_t apogee_state;
+       parameters_fast_t       fast_baro;
+       real                    fast_delta_t = 0;
+       bool                    fast = true;
+       int                     speed_lock = 0;
+
+       error_avg = 0;
+       for (;;) {
+               record_t        record = parse_record(f, 1.0);
+               if (record.done)
+                       break;
+               if (is_uninit(&t))
+                       t = record.time;
+               real delta_t = record.time - t;
+               if (delta_t < 0.096)
+                       continue;
+#              delta_t = 0.096;        /* pretend that we're getting micropeak-rate data */
+#              record.time = record.time + delta_t;
+               t = record.time;
+               if (record.height > raw_apogee) {
+                       raw_apogee_time_first = record.time;
+                       raw_apogee = record.height;
+               }
+               if (record.height == raw_apogee)
+                       raw_apogee_time_last = record.time;
+
+               real    pressure = record.pressure;
+
+               if (current_baro.x[0] == 0)
+                       current_baro.x[0] = pressure;
+
+               vec_t z_baro = (real[1]) { record.pressure * height_scale };
+
+               real    error_h;
+
+               if (fast) {
+                       if (delta_t != fast_delta_t) {
+                               fast_baro = convert_to_fast(param_baro(delta_t, σ_m, σ_h));
+                               fast_delta_t = delta_t;
+                       }
+
+                       current_baro.x = predict_fast(current_baro.x, fast_baro);
+                       error_h = current_baro.x[0] - pressure;
+                       current_baro.x = correct_fast(current_baro.x, z_baro, fast_baro);
+               } else {
+                       parameters_t p_baro = param_baro(delta_t, σ_m, σ_h);
+
+                       state_t pred_baro = predict(current_baro, p_baro);
+                       error_h = current_baro.x[0] - pressure;
+                       state_t next_baro = correct(pred_baro, z_baro, p_baro);
+                       current_baro = next_baro;
+               }
+
+               update_error_avg(error_h);
+
+               /* Don't check for maximum altitude if we're accelerating upwards */
+               if (current_baro.x[2] / accel_scale < -2 * σ_m)
+                       speed_lock = 10;
+               else if (speed_lock > 0)
+                       speed_lock--;
+
+               height = pressure_to_altitude(current_baro.x[0] / height_scale);
+               if (speed_lock == 0 && height > max_height)
+                       max_height = height;
+
+               printf ("%16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %d %d\n",
+                       record.time,
+                       record.pressure,
+                       pressure_to_altitude(record.pressure),
+                       current_baro.x[0] / height_scale,
+                       current_baro.x[1] / speed_scale,
+                       current_baro.x[2] / accel_scale,
+                       height,
+                       max_height,
+                       error_h,
+                       error_avg,
+                       error_avg > 50000 ? 0 : 95000,
+                       speed_lock > 0 ? 0 : 4500);
+
+               if (kalman_apogee_time < 0) {
+                       if (current_baro.x[1] > 1) {
+                               kalman_apogee = current_both.x[0];
+                               kalman_apogee_time = record.time;
+                       }
+               }
+       }
+       real raw_apogee_time = (raw_apogee_time_last + raw_apogee_time_first) / 2;
+       if (summary && !just_kalman) {
+               printf("%s: kalman (%8.2f m %6.2f s) raw (%8.2f m %6.2f s) error %6.2f s\n",
+                      name,
+                      kalman_apogee, kalman_apogee_time,
+                      raw_apogee, raw_apogee_time,
+                      kalman_apogee_time - raw_apogee_time);
+       }
+}
+
+void main() {
+       bool    summary = false;
+       int     user_argind = 1;
+       real    time_step = 0.01;
+       string  compute = "none";
+       string  prefix = "AO_K";
+       real    σ_m = default_σ_m;
+       real    σ_h = default_σ_h;
+
+       ParseArgs::argdesc argd = {
+               .args = {
+                       { .var = { .arg_flag = &summary },
+                         .abbr = 's',
+                         .name = "summary",
+                         .desc = "Print a summary of the flight" },
+                       { .var = { .arg_real = &time_step, },
+                         .abbr = 't',
+                         .name = "time",
+                         .expr_name = "<time-step>",
+                         .desc = "Set time step for convergence" },
+                       { .var = { .arg_string = &prefix },
+                         .abbr = 'p',
+                         .name = "prefix",
+                         .expr_name = "<prefix>",
+                         .desc = "Prefix for compute output" },
+                       { .var = { .arg_string = &compute },
+                         .abbr = 'c',
+                         .name = "compute",
+                         .expr_name = "{baro,none}",
+                         .desc = "Compute Kalman factor through convergence" },
+                       { .var = { .arg_real = &σ_m },
+                         .abbr = 'M',
+                         .name = "model",
+                         .expr_name = "<model-accel-error>",
+                         .desc = "Model co-variance for acceleration" },
+                       { .var = { .arg_real = &σ_h },
+                         .abbr = 'H',
+                         .name = "height",
+                         .expr_name = "<measure-height-error>",
+                         .desc = "Measure co-variance for height" },
+               },
+
+               .unknown = &user_argind,
+       };
+
+       ParseArgs::parseargs(&argd, &argv);
+
+       if (compute != "none") {
+               parameters_t    param;
+
+               printf ("/* Kalman matrix for micro %s\n", compute);
+               printf (" *     step = %f\n", time_step);
+               printf (" *     σ_m = %f\n", σ_m);
+               switch (compute) {
+               case "baro":
+                       printf (" *     σ_h = %f\n", σ_h);
+                       param = param_baro(time_step, σ_m, σ_h);
+                       break;
+               }
+               printf (" */\n\n");
+               mat_t k = converge(param);
+               int[] d = dims(k);
+               int time_inc = floor(1/time_step + 0.5);
+               for (int i = 0; i < d[0]; i++)
+                       for (int j = 0; j < d[1]; j++) {
+                               string name;
+                               if (d[1] == 1)
+                                       name = sprintf("%s_K%d_%d", prefix, i, time_inc);
+                               else
+                                       name = sprintf("%s_K%d%d_%d", prefix, i, j, time_inc);
+                               printf ("#define %s to_fix32(%12.10f)\n", name, k[i,j]);
+                       }
+               printf ("\n");
+               exit(0);
+       }
+       string[dim(argv) - user_argind] rest = { [i] = argv[i+user_argind] };
+
+       #       height_scale = accel_scale = speed_scale = 1;
+
+       if (dim(rest) == 0)
+               run_flight("<stdin>", stdin, summary, σ_m, σ_h);
+       else {
+               for (int i = 0; i < dim(rest); i++) {
+                       twixt(file f = File::open(rest[i], "r"); File::close(f)) {
+                               run_flight(rest[i], f, summary, σ_m, σ_h);
+                       }
+               }
+       }
+}
+main();
index 15e831664c8b2b05b19e4a86f72a8b011b4a9198..0086c6db90a06c496e76dd2d247fecd26b271368 100644 (file)
@@ -31,6 +31,7 @@ namespace load_csv {
                real    time;
                real    height;
                real    acceleration;
                real    time;
                real    height;
                real    acceleration;
+               real    pressure;
        } record_t;
 
        public record_t parse_record(file f, real accel_scale) {
        } record_t;
 
        public record_t parse_record(file f, real accel_scale) {
@@ -40,16 +41,28 @@ namespace load_csv {
                int time_off = 4;
                int height_off = 11;
                int accel_off = 8;
                int time_off = 4;
                int height_off = 11;
                int accel_off = 8;
-               if (string_to_integer(data[0]) == 2) {
+               int pres_off = 9;
+               switch (string_to_integer(data[0])) {
+               case 2:
                        time_off = 4;
                        accel_off = 9;
                        time_off = 4;
                        accel_off = 9;
+                       pres_off = 10;
                        height_off = 12;
                        height_off = 12;
+                       break;
+               case 5:
+                       time_off = 4;
+                       accel_off = 10;
+                       pres_off = 11;
+                       height_off = 13;
+                       break;
                }
                return (record_t) {
                        .done = false,
                }
                return (record_t) {
                        .done = false,
-                               .time = string_to_real(data[time_off]),
-                               .height = imprecise(string_to_real(data[height_off])),
-                               .acceleration = imprecise(string_to_real(data[accel_off]) * accel_scale) };
+                       .time = string_to_real(data[time_off]),
+                       .height = imprecise(string_to_real(data[height_off])),
+                       .acceleration = imprecise(string_to_real(data[accel_off]) * accel_scale),
+                       .pressure = imprecise(string_to_real(data[pres_off]))
+               };
        }
 
        public void dump(file f) {
        }
 
        public void dump(file f) {
index fd33bab0e9fab5b53bf4596c3e564de7247f35ad..580a45158a4285c4fdf28a8d33ce659de8a01222 100644 (file)
@@ -6,6 +6,7 @@ SIGMA_BOTH="-M 2 -H 6 -A 2"
 SIGMA_BARO="-M 2 -H 6 -A 2"
 SIGMA_ACCEL="-M 2 -H 4 -A 4"
 SIGMA_BOTH_NOISY_ACCEL="-M 2 -H 6 -A 3"
 SIGMA_BARO="-M 2 -H 6 -A 2"
 SIGMA_ACCEL="-M 2 -H 4 -A 4"
 SIGMA_BOTH_NOISY_ACCEL="-M 2 -H 6 -A 3"
+SIGMA_MICRO="-M 10"
 
 echo '#if NOISY_ACCEL'
 echo
 
 echo '#if NOISY_ACCEL'
 echo
@@ -39,3 +40,4 @@ nickle kalman.5c -p AO_BARO -c baro -t 0.01 $SIGMA_BARO
 nickle kalman.5c -p AO_BARO -c baro -t 0.1 $SIGMA_BARO
 nickle kalman.5c -p AO_BARO -c baro -t 1 $SIGMA_BARO
 
 nickle kalman.5c -p AO_BARO -c baro -t 0.1 $SIGMA_BARO
 nickle kalman.5c -p AO_BARO -c baro -t 1 $SIGMA_BARO
 
+nickle kalman_micro.5c -p AO_MK_BARO -c baro -t 0.096 $SIGMA_MICRO
\ No newline at end of file