X-Git-Url: https://git.gag.com/?p=fw%2Faltos;a=blobdiff_plain;f=src%2Fcore%2Fao_sample.c;h=adf8399dd702535d960804791669cde9f204a812;hp=b2b8e9f63ff662385054b6a904797f38e6c77ce9;hb=4bebade9e9004bad81df1a423687f3e3f356f1c2;hpb=1c344b760776cd5d8c0297d8db9bf02687381b4e diff --git a/src/core/ao_sample.c b/src/core/ao_sample.c index b2b8e9f6..adf8399d 100644 --- a/src/core/ao_sample.c +++ b/src/core/ao_sample.c @@ -17,35 +17,64 @@ #ifndef AO_FLIGHT_TEST #include "ao.h" +#include +#endif + +#if HAS_GYRO +#include #endif /* * Current sensor values */ +#ifndef PRES_TYPE +#define PRES_TYPE int32_t +#define ALT_TYPE int32_t +#define ACCEL_TYPE int16_t +#endif + __pdata uint16_t ao_sample_tick; /* time of last data */ -__pdata int16_t ao_sample_pres; -__pdata int16_t ao_sample_alt; -__pdata int16_t ao_sample_height; +__pdata pres_t ao_sample_pres; +__pdata alt_t ao_sample_alt; +__pdata alt_t ao_sample_height; #if HAS_ACCEL -__pdata int16_t ao_sample_accel; +__pdata accel_t ao_sample_accel; +#endif +#if HAS_GYRO +__pdata accel_t ao_sample_accel_along; +__pdata accel_t ao_sample_accel_across; +__pdata accel_t ao_sample_accel_through; +__pdata gyro_t ao_sample_roll; +__pdata gyro_t ao_sample_pitch; +__pdata gyro_t ao_sample_yaw; +__pdata angle_t ao_sample_orient; #endif -__data uint8_t ao_sample_adc; +__data uint8_t ao_sample_data; /* * Sensor calibration values */ -__pdata int16_t ao_ground_pres; /* startup pressure */ -__pdata int16_t ao_ground_height; /* MSL of ao_ground_pres */ +__pdata pres_t ao_ground_pres; /* startup pressure */ +__pdata alt_t ao_ground_height; /* MSL of ao_ground_pres */ #if HAS_ACCEL -__pdata int16_t ao_ground_accel; /* startup acceleration */ -__pdata int16_t ao_accel_2g; /* factory accel calibration */ +__pdata accel_t ao_ground_accel; /* startup acceleration */ +__pdata accel_t ao_accel_2g; /* factory accel calibration */ __pdata int32_t ao_accel_scale; /* sensor to m/s² conversion */ #endif +#if HAS_GYRO +__pdata accel_t ao_ground_accel_along; +__pdata accel_t ao_ground_accel_across; +__pdata accel_t ao_ground_accel_through; +__pdata int32_t ao_ground_pitch; +__pdata int32_t ao_ground_yaw; +__pdata int32_t ao_ground_roll; +#endif + static __pdata uint8_t ao_preflight; /* in preflight mode */ static __pdata uint16_t nsamples; @@ -53,6 +82,136 @@ __pdata int32_t ao_sample_pres_sum; #if HAS_ACCEL __pdata int32_t ao_sample_accel_sum; #endif +#if HAS_GYRO +__pdata int32_t ao_sample_accel_along_sum; +__pdata int32_t ao_sample_accel_across_sum; +__pdata int32_t ao_sample_accel_through_sum; +__pdata int32_t ao_sample_pitch_sum; +__pdata int32_t ao_sample_yaw_sum; +__pdata int32_t ao_sample_roll_sum; +static struct ao_quaternion ao_rotation; +#endif + +static void +ao_sample_preflight_add(void) +{ +#if HAS_ACCEL + ao_sample_accel_sum += ao_sample_accel; +#endif + ao_sample_pres_sum += ao_sample_pres; +#if HAS_GYRO + ao_sample_accel_along_sum += ao_sample_accel_along; + ao_sample_accel_across_sum += ao_sample_accel_across; + ao_sample_accel_through_sum += ao_sample_accel_through; + ao_sample_pitch_sum += ao_sample_pitch; + ao_sample_yaw_sum += ao_sample_yaw; + ao_sample_roll_sum += ao_sample_roll; +#endif + ++nsamples; +} + +static void +ao_sample_preflight_set(void) +{ +#if HAS_ACCEL + ao_ground_accel = ao_sample_accel_sum >> 9; + ao_sample_accel_sum = 0; +#endif + ao_ground_pres = ao_sample_pres_sum >> 9; + ao_ground_height = pres_to_altitude(ao_ground_pres); + ao_sample_pres_sum = 0; +#if HAS_GYRO + ao_ground_accel_along = ao_sample_accel_along_sum >> 9; + ao_ground_accel_across = ao_sample_accel_across_sum >> 9; + ao_ground_accel_through = ao_sample_accel_through_sum >> 9; + ao_ground_pitch = ao_sample_pitch_sum; + ao_ground_yaw = ao_sample_yaw_sum; + ao_ground_roll = ao_sample_roll_sum; + ao_sample_accel_along_sum = 0; + ao_sample_accel_across_sum = 0; + ao_sample_accel_through_sum = 0; + ao_sample_pitch_sum = 0; + ao_sample_yaw_sum = 0; + ao_sample_roll_sum = 0; + ao_sample_orient = 0; + + struct ao_quaternion orient; + + /* Take the pad IMU acceleration values and compute our current direction + */ + + ao_quaternion_init_vector(&orient, + (ao_ground_accel_across - ao_config.accel_zero_across), + (ao_ground_accel_through - ao_config.accel_zero_through), + (ao_ground_accel_along - ao_config.accel_zero_along)); + + ao_quaternion_normalize(&orient, + &orient); + + /* Here's up */ + + struct ao_quaternion up = { .r = 0, .x = 0, .y = 0, .z = 1 }; + + if (ao_config.pad_orientation != AO_PAD_ORIENTATION_ANTENNA_UP) + up.z = -1; + + /* Compute rotation to get from up to our current orientation, set + * that as the current rotation vector + */ + ao_quaternion_vectors_to_rotation(&ao_rotation, &up, &orient); +#endif + nsamples = 0; +} + +#if HAS_GYRO + +#define TIME_DIV 200.0f + +static void +ao_sample_rotate(void) +{ +#ifdef AO_FLIGHT_TEST + float dt = (ao_sample_tick - ao_sample_prev_tick) / TIME_DIV; +#else + static const float dt = 1/TIME_DIV; +#endif + float x = ao_mpu6000_gyro((float) ((ao_sample_pitch << 9) - ao_ground_pitch) / 512.0f) * dt; + float y = ao_mpu6000_gyro((float) ((ao_sample_yaw << 9) - ao_ground_yaw) / 512.0f) * dt; + float z = ao_mpu6000_gyro((float) ((ao_sample_roll << 9) - ao_ground_roll) / 512.0f) * dt; + struct ao_quaternion rot; + + ao_quaternion_init_half_euler(&rot, x, y, z); + ao_quaternion_multiply(&ao_rotation, &rot, &ao_rotation); + + /* And normalize to make sure it remains a unit vector */ + ao_quaternion_normalize(&ao_rotation, &ao_rotation); + + /* Compute pitch angle from vertical by taking the pad + * orientation vector and rotating it by the current total + * rotation value. That will be a unit vector pointing along + * the airframe axis. The Z value will be the cosine of the + * change in the angle from vertical since boost. + * + * rot = ao_rotation * vertical * ao_rotation° + * rot = ao_rotation * (0,0,0,1) * ao_rotation° + * = ((a.z, a.y, -a.x, a.r) * (a.r, -a.x, -a.y, -a.z)) .z + * + * = (-a.z * -a.z) + (a.y * -a.y) - (-a.x * -a.x) + (a.r * a.r) + * = a.z² - a.y² - a.x² + a.r² + * + * rot = ao_rotation * (0, 0, 0, -1) * ao_rotation° + * = ((-a.z, -a.y, a.x, -a.r) * (a.r, -a.x, -a.y, -a.z)) .z + * + * = (a.z * -a.z) + (-a.y * -a.y) - (a.x * -a.x) + (-a.r * a.r) + * = -a.z² + a.y² + a.x² - a.r² + */ + + float rotz; + rotz = ao_rotation.z * ao_rotation.z - ao_rotation.y * ao_rotation.y - ao_rotation.x * ao_rotation.x + ao_rotation.r * ao_rotation.r; + + ao_sample_orient = acosf(rotz) * (float) (180.0/M_PI); +} +#endif static void ao_sample_preflight(void) @@ -63,133 +222,102 @@ ao_sample_preflight(void) * data and average them to find the resting values */ if (nsamples < 512) { -#if HAS_ACCEL - ao_sample_accel_sum += ao_sample_accel; -#endif - ao_sample_pres_sum += ao_sample_pres; - ++nsamples; + ao_sample_preflight_add(); } else { - ao_config_get(); #if HAS_ACCEL - ao_ground_accel = ao_sample_accel_sum >> 9; ao_accel_2g = ao_config.accel_minus_g - ao_config.accel_plus_g; ao_accel_scale = to_fix32(GRAVITY * 2 * 16) / ao_accel_2g; #endif - ao_ground_pres = ao_sample_pres_sum >> 9; - ao_ground_height = ao_pres_to_altitude(ao_ground_pres); + ao_sample_preflight_set(); ao_preflight = FALSE; } } +/* + * While in pad mode, constantly update the ground state by + * re-averaging the data. This tracks changes in orientation, which + * might be caused by adjustments to the rocket on the pad and + * pressure, which might be caused by changes in the weather. + */ + +static void +ao_sample_preflight_update(void) +{ + if (nsamples < 512) + ao_sample_preflight_add(); + else if (nsamples < 1024) + ++nsamples; + else + ao_sample_preflight_set(); +} + +#if 0 +#if HAS_GYRO +static int32_t p_filt; +static int32_t y_filt; + +static gyro_t inline ao_gyro(void) { + gyro_t p = ao_sample_pitch - ao_ground_pitch; + gyro_t y = ao_sample_yaw - ao_ground_yaw; + + p_filt = p_filt - (p_filt >> 6) + p; + y_filt = y_filt - (y_filt >> 6) + y; + + p = p_filt >> 6; + y = y_filt >> 6; + return ao_sqrt(p*p + y*y); +} +#endif +#endif + uint8_t ao_sample(void) { - ao_wakeup(DATA_TO_XDATA(&ao_sample_adc)); - ao_sleep(DATA_TO_XDATA(&ao_adc_head)); - while (ao_sample_adc != ao_adc_head) { - __xdata struct ao_adc *ao_adc; + ao_wakeup(DATA_TO_XDATA(&ao_sample_data)); + ao_sleep((void *) DATA_TO_XDATA(&ao_data_head)); + while (ao_sample_data != ao_data_head) { + __xdata struct ao_data *ao_data; /* Capture a sample */ - ao_adc = &ao_adc_ring[ao_sample_adc]; - ao_sample_tick = ao_adc->tick; - ao_sample_pres = ao_adc->pres; - ao_sample_alt = ao_pres_to_altitude(ao_sample_pres); + ao_data = (struct ao_data *) &ao_data_ring[ao_sample_data]; + ao_sample_tick = ao_data->tick; + +#if HAS_BARO + ao_data_pres_cook(ao_data); + ao_sample_pres = ao_data_pres(ao_data); + ao_sample_alt = pres_to_altitude(ao_sample_pres); ao_sample_height = ao_sample_alt - ao_ground_height; +#endif + #if HAS_ACCEL - ao_sample_accel = ao_adc->accel; -#if HAS_ACCEL_REF - /* - * Ok, the math here is a bit tricky. - * - * ao_sample_accel: ADC output for acceleration - * ao_accel_ref: ADC output for the 5V reference. - * ao_cook_accel: Corrected acceleration value - * Vcc: 3.3V supply to the CC1111 - * Vac: 5V supply to the accelerometer - * accel: input voltage to accelerometer ADC pin - * ref: input voltage to 5V reference ADC pin - * - * - * Measured acceleration is ratiometric to Vcc: - * - * ao_sample_accel accel - * ------------ = ----- - * 32767 Vcc - * - * Measured 5v reference is also ratiometric to Vcc: - * - * ao_accel_ref ref - * ------------ = ----- - * 32767 Vcc - * - * - * ao_accel_ref = 32767 * (ref / Vcc) - * - * Acceleration is measured ratiometric to the 5V supply, - * so what we want is: - * - * ao_cook_accel accel - * ------------- = ----- - * 32767 ref - * - * - * accel Vcc - * = ----- * --- - * Vcc ref - * - * ao_sample_accel 32767 - * = ------------ * ------------ - * 32767 ao_accel_ref - * - * Multiply through by 32767: - * - * ao_sample_accel * 32767 - * ao_cook_accel = -------------------- - * ao_accel_ref - * - * Now, the tricky part. Getting this to compile efficiently - * and keeping all of the values in-range. - * - * First off, we need to use a shift of 16 instead of * 32767 as SDCC - * does the obvious optimizations for byte-granularity shifts: - * - * ao_cook_accel = (ao_sample_accel << 16) / ao_accel_ref - * - * Next, lets check our input ranges: - * - * 0 <= ao_sample_accel <= 0x7fff (singled ended ADC conversion) - * 0x7000 <= ao_accel_ref <= 0x7fff (the 5V ref value is close to 0x7fff) - * - * Plugging in our input ranges, we get an output range of 0 - 0x12490, - * which is 17 bits. That won't work. If we take the accel ref and shift - * by a bit, we'll change its range: - * - * 0xe000 <= ao_accel_ref<<1 <= 0xfffe - * - * ao_cook_accel = (ao_sample_accel << 16) / (ao_accel_ref << 1) - * - * Now the output range is 0 - 0x9248, which nicely fits in 16 bits. It - * is, however, one bit too large for our signed computations. So, we - * take the result and shift that by a bit: - * - * ao_cook_accel = ((ao_sample_accel << 16) / (ao_accel_ref << 1)) >> 1 - * - * This finally creates an output range of 0 - 0x4924. As the ADC only - * provides 11 bits of data, we haven't actually lost any precision, - * just dropped a bit of noise off the low end. - */ - ao_sample_accel = (uint16_t) ((((uint32_t) ao_sample_accel << 16) / (ao_accel_ref[ao_sample_adc] << 1))) >> 1; + ao_sample_accel = ao_data_accel_cook(ao_data); if (ao_config.pad_orientation != AO_PAD_ORIENTATION_ANTENNA_UP) - ao_sample_accel = 0x7fff - ao_sample_accel; - ao_adc->accel = ao_sample_accel; + ao_sample_accel = ao_data_accel_invert(ao_sample_accel); + ao_data_set_accel(ao_data, ao_sample_accel); #endif +#if HAS_GYRO + ao_sample_accel_along = ao_data_along(ao_data); + ao_sample_accel_across = ao_data_across(ao_data); + ao_sample_accel_through = ao_data_through(ao_data); + ao_sample_pitch = ao_data_pitch(ao_data); + ao_sample_yaw = ao_data_yaw(ao_data); + ao_sample_roll = ao_data_roll(ao_data); #endif if (ao_preflight) ao_sample_preflight(); - else + else { + if (ao_flight_state < ao_flight_boost) + ao_sample_preflight_update(); ao_kalman(); - ao_sample_adc = ao_adc_ring_next(ao_sample_adc); +#if HAS_GYRO + ao_sample_rotate(); +#endif + } +#ifdef AO_FLIGHT_TEST + ao_sample_prev_tick = ao_sample_tick; +#endif + ao_sample_data = ao_data_ring_next(ao_sample_data); } return !ao_preflight; } @@ -197,6 +325,7 @@ ao_sample(void) void ao_sample_init(void) { + ao_config_get(); nsamples = 0; ao_sample_pres_sum = 0; ao_sample_pres = 0; @@ -204,6 +333,21 @@ ao_sample_init(void) ao_sample_accel_sum = 0; ao_sample_accel = 0; #endif - ao_sample_adc = ao_adc_head; +#if HAS_GYRO + ao_sample_accel_along_sum = 0; + ao_sample_accel_across_sum = 0; + ao_sample_accel_through_sum = 0; + ao_sample_accel_along = 0; + ao_sample_accel_across = 0; + ao_sample_accel_through = 0; + ao_sample_pitch_sum = 0; + ao_sample_yaw_sum = 0; + ao_sample_roll_sum = 0; + ao_sample_pitch = 0; + ao_sample_yaw = 0; + ao_sample_roll = 0; + ao_sample_orient = 0; +#endif + ao_sample_data = ao_data_head; ao_preflight = TRUE; }