X-Git-Url: https://git.gag.com/?p=fw%2Faltos;a=blobdiff_plain;f=ao_flight.c;h=bd361b65d0d490a2ded54e9fcb300facf0c8df94;hp=f31b4cd4e617af11e0bbe9237954fba8cf0c85f6;hb=6fb26340b150e831a8a9e25e3b68074c29e48dbe;hpb=acc4fc635edb70ec1ba2dff9f7ac0c8542c72c47 diff --git a/ao_flight.c b/ao_flight.c index f31b4cd4..bd361b65 100644 --- a/ao_flight.c +++ b/ao_flight.c @@ -3,8 +3,7 @@ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. + * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of @@ -16,19 +15,38 @@ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ +#ifndef AO_FLIGHT_TEST #include "ao.h" +#endif /* Main flight thread. */ -__xdata struct ao_adc ao_flight_data; -__data enum flight_state ao_flight_state; -__data uint16_t ao_flight_state_tick; -__data int16_t ao_flight_accel; -__data int16_t ao_flight_pres; -__data int16_t ao_ground_pres; -__data int16_t ao_ground_accel; -__data int16_t ao_min_pres; -__data uint16_t ao_launch_time; +__pdata enum ao_flight_state ao_flight_state; /* current flight state */ +__pdata uint16_t ao_flight_tick; /* time of last data */ +__pdata int16_t ao_flight_accel; /* filtered acceleration */ +__pdata int16_t ao_flight_pres; /* filtered pressure */ +__pdata int16_t ao_ground_pres; /* startup pressure */ +__pdata int16_t ao_ground_accel; /* startup acceleration */ +__pdata int16_t ao_min_pres; /* minimum recorded pressure */ +__pdata uint16_t ao_launch_tick; /* time of launch detect */ +__pdata int16_t ao_main_pres; /* pressure to eject main */ + +/* + * track min/max data over a long interval to detect + * resting + */ +__pdata uint16_t ao_interval_end; +__pdata int16_t ao_interval_cur_min_accel; +__pdata int16_t ao_interval_cur_max_accel; +__pdata int16_t ao_interval_cur_min_pres; +__pdata int16_t ao_interval_cur_max_pres; +__pdata int16_t ao_interval_min_accel; +__pdata int16_t ao_interval_max_accel; +__pdata int16_t ao_interval_min_pres; +__pdata int16_t ao_interval_max_pres; + +__data uint8_t ao_flight_adc; +__pdata int16_t ao_raw_accel, ao_raw_accel_prev, ao_raw_pres; /* Accelerometer calibration * @@ -43,13 +61,24 @@ __data uint16_t ao_launch_time; * * 26.67 mV/g * 32767/3300 counts/mV = 264.8 counts/g * - * Zero g was measured at 16000 (we would expect 16384) + * Zero g was measured at 16000 (we would expect 16384). + * Note that this value is only require to tell if the + * rocket is standing upright. Once that is determined, + * the value of the accelerometer is averaged for 100 samples + * to find the resting accelerometer value, which is used + * for all further flight computations */ +#define GRAVITY 9.80665 +/* convert m/s to velocity count */ +#define VEL_MPS_TO_COUNT(mps) ((int32_t) (((mps) / GRAVITY) * ACCEL_G * 100)) + #define ACCEL_G 265 #define ACCEL_ZERO_G 16000 #define ACCEL_NOSE_UP (ACCEL_ZERO_G - ACCEL_G * 2 /3) -#define ACCEL_BOOST (ACCEL_NOSE_UP - ACCEL_G * 2) +#define ACCEL_BOOST ACCEL_G * 2 +#define ACCEL_INT_LAND (ACCEL_G / 10) +#define ACCEL_VEL_LAND VEL_MPS_TO_COUNT(10) /* * Barometer calibration @@ -59,7 +88,7 @@ __data uint16_t ao_launch_time; * Pressure range: 15-115 kPa * Voltage at 115kPa: 2.82 * Output scale: 27mV/kPa - * + * * If we want to detect launch with the barometer, we need * a large enough bump to not be fooled by noise. At typical * launch elevations (0-2000m), a 200Pa pressure change cooresponds @@ -71,90 +100,282 @@ __data uint16_t ao_launch_time; */ #define BARO_kPa 268 -#define BARO_LAUNCH (BARO_kPa / 5) /* .2kPa */ -#define BARO_APOGEE (BARO_kPa / 10) /* .1kPa */ +#define BARO_LAUNCH (BARO_kPa / 5) /* .2kPa, or about 20m */ +#define BARO_APOGEE (BARO_kPa / 10) /* .1kPa, or about 10m */ +#define BARO_COAST (BARO_kPa * 5) /* 5kpa, or about 500m */ +#define BARO_MAIN (BARO_kPa) /* 1kPa, or about 100m */ +#define BARO_INT_LAND (BARO_kPa / 20) /* .05kPa, or about 5m */ +#define BARO_LAND (BARO_kPa * 5) /* 5kPa or about 1000m */ /* We also have a clock, which can be used to sanity check things in * case of other failures */ -#define BOOST_TICKS_MAX AO_SEC_TO_TICKS(10) +#define BOOST_TICKS_MAX AO_SEC_TO_TICKS(15) + +/* This value is scaled in a weird way. It's a running total of accelerometer + * readings minus the ground accelerometer reading. That means it measures + * velocity, and quite accurately too. As it gets updated 100 times a second, + * it's scaled by 100 + */ +__pdata int32_t ao_flight_vel; +__pdata int32_t ao_max_vel; +__xdata int32_t ao_raw_accel_sum, ao_raw_pres_sum; + +/* Landing is detected by getting constant readings from both pressure and accelerometer + * for a fairly long time (AO_INTERVAL_TICKS) + */ +#define AO_INTERVAL_TICKS AO_SEC_TO_TICKS(20) void ao_flight(void) { - __data static uint8_t nsamples = 0; - + __pdata static uint8_t nsamples = 0; + + ao_flight_adc = ao_adc_head; + ao_raw_accel_prev = 0; + ao_raw_accel = 0; + ao_raw_pres = 0; + ao_interval_cur_min_pres = 0x7fff; + ao_interval_cur_max_pres = -0x7fff; + ao_interval_cur_min_accel = 0x7fff; + ao_interval_cur_max_accel = -0x7fff; for (;;) { ao_sleep(&ao_adc_ring); - ao_adc_get(&ao_flight_data); + while (ao_flight_adc != ao_adc_head) { + ao_raw_accel = ao_adc_ring[ao_flight_adc].accel; + ao_raw_pres = ao_adc_ring[ao_flight_adc].pres; + ao_flight_tick = ao_adc_ring[ao_flight_adc].tick; + /* all of our accelerations are negative, so subtract instead of add to get speed */ + ao_flight_vel -= (int32_t) (((ao_raw_accel + ao_raw_accel_prev) >> 1) - ao_ground_accel); + ao_raw_accel_prev = ao_raw_accel; + ao_flight_adc = ao_adc_ring_next(ao_flight_adc); + } ao_flight_accel -= ao_flight_accel >> 4; - ao_flight_accel += ao_flight_data.accel >> 4; + ao_flight_accel += ao_raw_accel >> 4; ao_flight_pres -= ao_flight_pres >> 4; - ao_flight_pres += ao_flight_data.pres >> 4; - + ao_flight_pres += ao_raw_pres >> 4; + + if (ao_flight_pres < ao_min_pres) + ao_min_pres = ao_flight_pres; + if (ao_flight_vel > ao_max_vel) + ao_max_vel = ao_flight_vel; + + if (ao_flight_pres < ao_interval_cur_min_pres) + ao_interval_cur_min_pres = ao_flight_pres; + if (ao_flight_pres > ao_interval_cur_max_pres) + ao_interval_cur_max_pres = ao_flight_pres; + if (ao_flight_accel < ao_interval_cur_min_accel) + ao_interval_cur_min_accel = ao_flight_accel; + if (ao_flight_accel > ao_interval_cur_max_accel) + ao_interval_cur_max_accel = ao_flight_accel; + + if ((int16_t) (ao_flight_tick - ao_interval_end) >= 0) { + ao_interval_max_pres = ao_interval_cur_max_pres; + ao_interval_min_pres = ao_interval_cur_min_pres; + ao_interval_max_accel = ao_interval_cur_max_accel; + ao_interval_min_accel = ao_interval_cur_min_accel; + ao_interval_end = ao_flight_tick + AO_INTERVAL_TICKS; + ao_interval_cur_min_pres = ao_interval_cur_max_pres = ao_flight_pres; + ao_interval_cur_min_accel = ao_interval_cur_max_accel = ao_flight_accel; + } + switch (ao_flight_state) { case ao_flight_startup: + + /* startup state: + * + * Collect 100 samples of acceleration and pressure + * data and average them to find the resting values + */ if (nsamples < 100) { + ao_raw_accel_sum += ao_raw_accel; + ao_raw_pres_sum += ao_raw_pres; ++nsamples; continue; } - ao_ground_accel = ao_flight_accel; - ao_ground_pres = ao_flight_pres; - ao_min_pres = ao_flight_pres; + ao_ground_accel = (ao_raw_accel_sum / nsamples); + ao_ground_pres = (ao_raw_pres_sum / nsamples); + ao_min_pres = ao_ground_pres; + ao_main_pres = ao_ground_pres - BARO_MAIN; + ao_flight_vel = 0; + ao_max_vel = 0; + + ao_interval_end = ao_flight_tick; + + /* Go to launchpad state if the nose is pointing up */ if (ao_flight_accel < ACCEL_NOSE_UP) { ao_flight_state = ao_flight_launchpad; - ao_flight_state_tick = ao_time(); - ao_report_notify(); + ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); } else { ao_flight_state = ao_flight_idle; - ao_flight_state_tick = ao_time(); - ao_report_notify(); + + /* Turn on the Green LED in idle mode + */ + ao_led_on(AO_LED_GREEN); + ao_timer_set_adc_interval(100); + ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); } + /* signal successful initialization by turning off the LED */ + ao_led_off(AO_LED_RED); break; case ao_flight_launchpad: - if (ao_flight_accel < ACCEL_BOOST || - ao_flight_pres + BARO_LAUNCH < ao_ground_pres) + + /* pad to boost: + * + * accelerometer: > 2g + * OR + * barometer: > 20m vertical motion + * + * The accelerometer should always detect motion before + * the barometer, but we use both to make sure this + * transition is detected + */ + if (ao_flight_accel < ao_ground_accel - ACCEL_BOOST || + ao_flight_pres < ao_ground_pres - BARO_LAUNCH) { ao_flight_state = ao_flight_boost; - ao_flight_state_tick = ao_time(); + ao_launch_tick = ao_flight_tick; ao_log_start(); - ao_report_notify(); + ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); break; } break; case ao_flight_boost: - if (ao_flight_accel > ACCEL_ZERO_G || - (int16_t) (ao_flight_data.tick - ao_launch_time) > BOOST_TICKS_MAX) + + /* boost to coast: + * + * accelerometer: start to fall at > 1/4 G + * OR + * time: boost for more than 15 seconds + * + * Detects motor burn out by the switch from acceleration to + * deceleration, or by waiting until the maximum burn duration + * (15 seconds) has past. + */ + if (ao_flight_accel > ao_ground_accel + (ACCEL_G >> 2) || + (int16_t) (ao_flight_tick - ao_launch_tick) > BOOST_TICKS_MAX) { ao_flight_state = ao_flight_coast; - ao_flight_state_tick = ao_time(); - ao_report_notify(); + ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); break; } - break; + /* fall through ... */ case ao_flight_coast: - if (ao_flight_pres < ao_min_pres) - ao_min_pres = ao_flight_pres; - if (ao_flight_pres - BARO_APOGEE > ao_min_pres) { + + /* boost/coast to apogee detect: + * + * accelerometer: integrated velocity < 200 m/s AND < max_vel - 50m/s + * OR + * barometer: fall at least 500m from max altitude + * + * This extra state is required to avoid mis-detecting + * apogee due to mach transitions. For slow flights (<200m/s) + * we expect to transition right through this stage to + * apogee detect. + */ + if ((ao_flight_vel < VEL_MPS_TO_COUNT(200) && + ao_flight_vel < ao_max_vel - VEL_MPS_TO_COUNT(50)) || + ao_flight_pres > ao_min_pres + BARO_COAST) + { ao_flight_state = ao_flight_apogee; - ao_flight_state_tick = ao_time(); - ao_report_notify(); + ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); } break; case ao_flight_apogee: + + /* apogee to drogue deploy: + * + * accelerometer: integrated velocity < 10m/s + * OR + * barometer: fall at least 10m + * + * If the barometer saturates because the flight + * goes over its measuring range (about 53k'), + * requiring a 10m fall will avoid prematurely + * detecting apogee; the accelerometer will take + * over in that case and the integrated velocity + * measurement should suffice to find apogee + */ + if (ao_flight_vel < VEL_MPS_TO_COUNT(-10) || + ao_flight_pres - BARO_APOGEE > ao_min_pres) + { + ao_ignite(ao_igniter_drogue); + ao_flight_state = ao_flight_drogue; + ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); + } + break; + case ao_flight_drogue: + + /* drogue to main deploy: + * + * accelerometer: abs(velocity) > 50m/s + * OR + * barometer: reach main deploy altitude + */ + if (ao_flight_vel < VEL_MPS_TO_COUNT(-50) || + ao_flight_vel > VEL_MPS_TO_COUNT(50) || + ao_flight_pres >= ao_main_pres) + { + ao_ignite(ao_igniter_main); + ao_flight_state = ao_flight_main; + ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); + } + /* fall through... */ + case ao_flight_main: + + /* drogue/main to land: + * + * accelerometer: value stable and velocity less than 10m/s + * OR + * barometer: altitude stable and within 500m of the launch altitude + */ + if ((ao_flight_vel < ACCEL_VEL_LAND && + (ao_interval_max_accel - ao_interval_min_accel) < ACCEL_INT_LAND) || + (ao_flight_pres > ao_ground_pres - BARO_LAND && + (ao_interval_max_pres - ao_interval_min_pres) < BARO_INT_LAND)) + { + ao_flight_state = ao_flight_landed; + ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); + } + break; + case ao_flight_landed: + ao_log_stop(); break; } } } +#define AO_ACCEL_COUNT_TO_MSS(count) ((count) / 27) +#define AO_VEL_COUNT_TO_MS(count) ((int16_t) ((count) / 2700)) + +void +ao_flight_status(void) +{ + printf("STATE: %7s accel: %d speed: %d altitude: %d\n", + ao_state_names[ao_flight_state], + AO_ACCEL_COUNT_TO_MSS(ACCEL_ZERO_G - ao_flight_accel), + AO_VEL_COUNT_TO_MS(ao_flight_vel), + ao_pres_to_altitude(ao_flight_pres)); +} + static __xdata struct ao_task flight_task; +__code struct ao_cmds ao_flight_cmds[] = { + { 'f', ao_flight_status, "f Display current flight state" }, + { 0, ao_flight_status, NULL } +}; + void ao_flight_init(void) { ao_flight_state = ao_flight_startup; + ao_interval_min_accel = 0; + ao_interval_max_accel = 0x7fff; + ao_interval_min_pres = 0; + ao_interval_max_pres = 0x7fff; + ao_interval_end = AO_INTERVAL_TICKS; - ao_add_task(&flight_task, ao_flight); + ao_add_task(&flight_task, ao_flight, "flight"); + ao_cmd_register(&ao_flight_cmds[0]); } -