Merge remote-tracking branch 'origin/master'
[fw/altos] / doc / altusmetrum.xsl
index 3a8f51d311569b3f6a7a7a61178b705a2f0c7e69..aeb43acb4a0b8c7fdb6616e1feff9a9ec55ae009 100644 (file)
@@ -536,7 +536,7 @@ NAR #88757, TRA #12200
         or radio link via TeleDongle.
       </para>
       <section>
-        <title>Radio Frequencies</title>
+        <title>Radio Frequency</title>
         <para>
          Altus Metrum boards support radio frequencies in the 70cm
          band. By default, the configuration interface provides a
@@ -548,19 +548,6 @@ NAR #88757, TRA #12200
          altimeter and TeleDongle must be configured to the same
          frequency to successfully communicate with each other.
         </para>
-        <para>
-          To set the radio frequency, use the 'c R' command to specify the
-         radio transceiver configuration parameter. This parameter is computed
-         using the desired frequency, 'F', the radio calibration parameter, 'C' (showed by the 'c s' command) and
-         the standard calibration reference frequency, 'S', (normally 434.550MHz):
-         <programlisting>
-           R = F / S * C
-         </programlisting>
-         Round the result to the nearest integer value.
-          As with all 'c' sub-commands, follow this with a 'c w' to write the
-          change to the parameter block in the on-board flash on
-          your altimeter board if you want the change to stay in place across reboots.
-        </para>
       </section>
       <section>
         <title>Apogee Delay</title>
@@ -573,20 +560,14 @@ NAR #88757, TRA #12200
           primary and backup pyrotechnic charges do not fire simultaneously.
         </para>
         <para>
-          To set the apogee delay, use the 'c d' command.
-          As with all 'c' sub-commands, follow this with a 'c w' to write the
-          change to the parameter block in the on-board DataFlash chip.
-        </para>
-        <para>
-          Please note that the Altus Metrum apogee detection algorithm
-          fires exactly at apogee.  If you are also flying an
-          altimeter like the PerfectFlite MAWD, which only supports
-          selecting 0 or 1 seconds of apogee delay, you may wish to
-          set the MAWD to 0 seconds delay and set the TeleMetrum to
-          fire your backup 2 or 3 seconds later to avoid any chance of
-          both charges firing simultaneously.  We've flown several
-          air-frames this way quite happily, including Keith's
-          successful L3 cert.
+          The Altus Metrum apogee detection algorithm fires exactly at
+          apogee.  If you are also flying an altimeter like the
+          PerfectFlite MAWD, which only supports selecting 0 or 1
+          seconds of apogee delay, you may wish to set the MAWD to 0
+          seconds delay and set the TeleMetrum to fire your backup 2
+          or 3 seconds later to avoid any chance of both charges
+          firing simultaneously.  We've flown several air-frames this
+          way quite happily, including Keith's successful L3 cert.
         </para>
       </section>
       <section>
@@ -601,99 +582,79 @@ NAR #88757, TRA #12200
           than the primary so that both pyrotechnic charges don't fire
           simultaneously.
         </para>
-        <para>
-          To set the main deployment altitude, use the 'c m' command.
-          As with all 'c' sub-commands, follow this with a 'c w' to write the
-          change to the parameter block in the on-board DataFlash chip.
-        </para>
       </section>
-    </section>
-    <section>
-      <title>Calibration</title>
-      <para>
-        There are only two calibrations required for a TeleMetrum board, and
-        only one for TeleDongle and TeleMini.
-      </para>
       <section>
-        <title>Radio Frequency</title>
-        <para>
-          The radio frequency is synthesized from a clock based on the 48 MHz
-          crystal on the board.  The actual frequency of this oscillator must be
-          measured to generate a calibration constant.  While our GFSK modulation
-          bandwidth is wide enough to allow boards to communicate even when
-          their oscillators are not on exactly the same frequency, performance
-          is best when they are closely matched.
-          Radio frequency calibration requires a calibrated frequency counter.
-          Fortunately, once set, the variation in frequency due to aging and
-          temperature changes is small enough that re-calibration by customers
-          should generally not be required.
-        </para>
-        <para>
-          To calibrate the radio frequency, connect the UHF antenna port to a
-          frequency counter, set the board to 434.550MHz, and use the 'C'
-          command to generate a CW carrier.  Wait for the transmitter temperature
-          to stabilize and the frequency to settle down.
-          Then, divide 434.550 MHz by the
-          measured frequency and multiply by the current radio cal value show
-          in the 'c s' command.  For an unprogrammed board, the default value
-          is 1186611.  Take the resulting integer and program it using the 'c f'
-          command.  Testing with the 'C' command again should show a carrier
-          within a few tens of Hertz of the intended frequency.
-          As with all 'c' sub-commands, follow this with a 'c w' to write the
-          change to the parameter block in the on-board DataFlash chip.
-        </para>
+       <title>Maximum Flight Log</title>
+       <para>
+         TeleMetrum version 1.1 has 2MB of on-board flash storage,
+         enough to hold over 40 minutes of data at full data rate
+         (100 samples/second). TeleMetrum 1.0 has 1MB of on-board
+         storage. As data are stored at a reduced rate during
+         descent, there's plenty of space to store many flights worth
+         of data.
+       </para>
        <para>
-         when the radio calibration value is changed, the radio
-         frequency value is reset to the same value, so you'll need
-         to recompute and reset the radio frequency value using the
-         new radio calibration value.
+         The on-board flash is partitioned into separate flight logs,
+         each of a fixed maximum size. Increase the maximum size of
+         each log and you reduce the number of flights that can be
+         stored. Decrease the size and TeleMetrum can store more
+         flights.
+       </para>
+       <para>
+         All of the configuration data is also stored in the flash
+         memory, which consumes 64kB on TeleMetrum v1.1 and 256B on
+         TeleMetrum v1.0. This configuration space is not available
+         for storing flight log data.
+       </para>
+       <para>
+         To compute the amount of space needed for a single flight,
+         you can multiply the expected ascent time (in seconds) by
+         800, multiply the expected descent time (in seconds) by 80
+         and add the two together. That will slightly under-estimate
+         the storage (in bytes) needed for the flight. For instance,
+         a flight spending 20 seconds in ascent and 150 seconds in
+         descent will take about (20 * 800) + (150 * 80) = 28000
+         bytes of storage. You could store dozens of these flights in
+         the on-board flash.
+       </para>
+       <para>
+         The default size, 192kB, allows for 10 flights of storage on
+         TeleMetrum v1.1 and 5 flights on TeleMetrum v1.0. This
+         ensures that you won't need to erase the memory before
+         flying each time while still allowing more than sufficient
+         storage for each flight.
        </para>
       </section>
       <section>
-        <title>TeleMetrum Accelerometer</title>
-        <para>
-          The TeleMetrum accelerometer we use has its own 5 volt power supply and
-          the output must be passed through a resistive voltage divider to match
-          the input of our 3.3 volt ADC.  This means that unlike the barometric
-          sensor, the output of the acceleration sensor is not ratio-metric to
-          the ADC converter, and calibration is required.  We also support the
-          use of any of several accelerometers from a Freescale family that
-          includes at least +/- 40g, 50g, 100g, and 200g parts.  Using gravity,
-          a simple 2-point calibration yields acceptable results capturing both
-          the different sensitivities and ranges of the different accelerometer
-          parts and any variation in power supply voltages or resistor values
-          in the divider network.
-        </para>
-        <para>
-          To calibrate the acceleration sensor, use the 'c a 0' command.  You
-          will be prompted to orient the board vertically with the UHF antenna
-          up and press a key, then to orient the board vertically with the
-          UHF antenna down and press a key.
-          As with all 'c' sub-commands, follow this with a 'c w' to write the
-          change to the parameter block in the on-board DataFlash chip.
-        </para>
-        <para>
-          The +1g and -1g calibration points are included in each telemetry
-          frame and are part of the header extracted by ao-dumplog after flight.
-          Note that we always store and return raw ADC samples for each
-          sensor... nothing is permanently "lost" or "damaged" if the
-          calibration is poor.
-        </para>
-        <para>
-         In the unlikely event an accel cal that goes badly, it is possible
-         that TeleMetrum may always come up in 'pad mode' and as such not be
-         listening to either the USB or radio link.  If that happens,
-         there is a special hook in the firmware to force the board back
-         in to 'idle mode' so you can re-do the cal.  To use this hook, you
-         just need to ground the SPI clock pin at power-on.  This pin is
-         available as pin 2 on the 8-pin companion connector, and pin 1 is
-         ground.  So either carefully install a fine-gauge wire jumper
-         between the two pins closest to the index hole end of the 8-pin
-         connector, or plug in the programming cable to the 8-pin connector
-         and use a small screwdriver or similar to short the two pins closest
-         to the index post on the 4-pin end of the programming cable, and
-         power up the board.  It should come up in 'idle mode' (two beeps).
-        </para>
+       <title>Ignite Mode</title>
+       <para>
+         Instead of firing one charge at apogee and another charge at
+         a fixed height above the ground, you can configure the
+         altimeter to fire both at apogee or both during
+         descent. This was added to support an airframe that has two
+         TeleMetrum computers, one in the fin can and one in the
+         nose.
+       </para>
+       <para>
+         Providing the ability to use both igniters for apogee or
+         main allows some level of redundancy without needing two
+         flight computers.  In Redundant Apogee or Redundant Main
+         mode, the two charges will be fired two seconds apart.
+       </para>
+      </section>
+      <section>
+       <title>Pad Orientation</title>
+       <para>
+         TeleMetrum measures acceleration along the axis of the
+         board. Which way the board is oriented affects the sign of
+         the acceleration value. Instead of trying to guess which way
+         the board is mounted in the air frame, TeleMetrum must be
+         explicitly configured for either Antenna Up or Antenna
+         Down. The default, Antenna Up, expects the end of the
+         TeleMetrum board connected to the 70cm antenna to be nearest
+         the nose of the rocket, with the end containing the screw
+         terminals nearest the tail.
+       </para>
       </section>
     </section>
 
@@ -1325,10 +1286,10 @@ NAR #88757, TRA #12200
       <section>
         <title>Callsign</title>
         <para>
-          This value is used in command packet mode and is transmitted
-          in each packet sent from TeleDongle and received from
-          TeleMetrum. It is not used in telemetry mode as that transmits
-          packets only from TeleMetrum to TeleDongle. Configure this
+          This value is transmitted in each command packet sent from 
+         TeleDongle and received from an altimeter.  It is not used in 
+         telemetry mode, as the callsign configured in the altimeter board
+         is included in all telemetry packets.  Configure this
           with the AltosUI operators call sign as needed to comply with
           your local radio regulations.
         </para>
@@ -2287,6 +2248,43 @@ NAR #88757, TRA #12200
       Verify you can connect and disconnect from the units while in your
       terminal program by sending the escape-disconnect mentioned above.
     </para>
+        <para>
+          To set the radio frequency, use the 'c R' command to specify the
+         radio transceiver configuration parameter. This parameter is computed
+         using the desired frequency, 'F', the radio calibration parameter, 'C' (showed by the 'c s' command) and
+         the standard calibration reference frequency, 'S', (normally 434.550MHz):
+         <programlisting>
+           R = F / S * C
+         </programlisting>
+         Round the result to the nearest integer value.
+          As with all 'c' sub-commands, follow this with a 'c w' to write the
+          change to the parameter block in the on-board flash on
+          your altimeter board if you want the change to stay in place across reboots.
+        </para>
+        <para>
+          To set the apogee delay, use the 'c d' command.
+          As with all 'c' sub-commands, follow this with a 'c w' to write the
+          change to the parameter block in the on-board DataFlash chip.
+        </para>
+        <para>
+          To set the main deployment altitude, use the 'c m' command.
+          As with all 'c' sub-commands, follow this with a 'c w' to write the
+          change to the parameter block in the on-board DataFlash chip.
+        </para>
+        <para>
+          To calibrate the radio frequency, connect the UHF antenna port to a
+          frequency counter, set the board to 434.550MHz, and use the 'C'
+          command to generate a CW carrier.  Wait for the transmitter temperature
+          to stabilize and the frequency to settle down.
+          Then, divide 434.550 MHz by the
+          measured frequency and multiply by the current radio cal value show
+          in the 'c s' command.  For an unprogrammed board, the default value
+          is 1186611.  Take the resulting integer and program it using the 'c f'
+          command.  Testing with the 'C' command again should show a carrier
+          within a few tens of Hertz of the intended frequency.
+          As with all 'c' sub-commands, follow this with a 'c w' to write the
+          change to the parameter block in the on-board DataFlash chip.
+        </para>
     <para>
       Note that the 'reboot' command, which is very useful on the altimeters,
       will likely just cause problems with the dongle.  The *correct* way
@@ -2353,7 +2351,7 @@ NAR #88757, TRA #12200
       strength providing an indication of the direction from receiver to rocket.
     </para>
     <para>
-      TeleMetrum also provides GPS trekking data, which can further simplify
+      TeleMetrum also provides GPS tracking data, which can further simplify
       locating the rocket once it has landed. (The last good GPS data
       received before touch-down will be on the data screen of 'ao-view'.)
     </para>
@@ -2377,6 +2375,111 @@ NAR #88757, TRA #12200
       once you enable the voice output!
     </para>
   </appendix>
+  <appendix>
+      <title>Calibration</title>
+      <para>
+        There are only two calibrations required for a TeleMetrum board, and
+        only one for TeleDongle and TeleMini.  All boards are shipped from
+        the factory pre-calibrated, but the procedures are documented here
+       in case they are ever needed.  Re-calibration is not supported by
+       AltosUI, you must connect to the board with a serial terminal program
+       and interact directly with the on-board command interpreter to effect
+       calibration.
+      </para>
+      <section>
+        <title>Radio Frequency</title>
+        <para>
+          The radio frequency is synthesized from a clock based on the 48 MHz
+          crystal on the board.  The actual frequency of this oscillator 
+          must be measured to generate a calibration constant.  While our 
+          GFSK modulation
+          bandwidth is wide enough to allow boards to communicate even when
+          their oscillators are not on exactly the same frequency, performance
+          is best when they are closely matched.
+          Radio frequency calibration requires a calibrated frequency counter.
+          Fortunately, once set, the variation in frequency due to aging and
+          temperature changes is small enough that re-calibration by customers
+          should generally not be required.
+        </para>
+        <para>
+          To calibrate the radio frequency, connect the UHF antenna port to a
+          frequency counter, set the board to 434.550MHz, and use the 'C'
+          command in the on-board command interpreter to generate a CW 
+          carrier.  For TeleMetrum, this is best done over USB.  For TeleMini,
+         note that the only way to escape the 'C' command is via power cycle
+         since the board will no longer be listening for commands once it
+         starts generating a CW carrier.
+       </para>
+       <para>
+         Wait for the transmitter temperature to stabilize and the frequency 
+          to settle down.  Then, divide 434.550 MHz by the
+          measured frequency and multiply by the current radio cal value show
+          in the 'c s' command.  For an unprogrammed board, the default value
+          is 1186611.  Take the resulting integer and program it using the 'c f'
+          command.  Testing with the 'C' command again should show a carrier
+          within a few tens of Hertz of the intended frequency.
+          As with all 'c' sub-commands, follow this with a 'c w' to write the
+          change to the parameter block in the on-board DataFlash chip.
+        </para>
+       <para>
+         Note that any time you re-do the radio frequency calibration, the
+         radio frequency is reset to the default 434.550 Mhz.  If you want
+         to use another frequency, you will have to set that again after
+         calibration is completed.
+       </para>
+      </section>
+      <section>
+        <title>TeleMetrum Accelerometer</title>
+        <para>
+          The TeleMetrum accelerometer we use has its own 5 volt power 
+         supply and
+          the output must be passed through a resistive voltage divider to match
+          the input of our 3.3 volt ADC.  This means that unlike the barometric
+          sensor, the output of the acceleration sensor is not ratio-metric to
+          the ADC converter, and calibration is required.  Explicitly 
+         calibrating the accelerometers also allows us to load any device
+         from a Freescale family that includes at least +/- 40g, 50g, 100g, 
+         and 200g parts.  Using gravity,
+          a simple 2-point calibration yields acceptable results capturing both
+          the different sensitivities and ranges of the different accelerometer
+          parts and any variation in power supply voltages or resistor values
+          in the divider network.
+        </para>
+        <para>
+          To calibrate the acceleration sensor, use the 'c a 0' command.  You
+          will be prompted to orient the board vertically with the UHF antenna
+          up and press a key, then to orient the board vertically with the
+          UHF antenna down and press a key.  Note that the accuracy of this
+         calibration depends primarily on how perfectly vertical and still
+         the board is held during the cal process.  As with all 'c' 
+         sub-commands, follow this with a 'c w' to write the
+          change to the parameter block in the on-board DataFlash chip.
+        </para>
+        <para>
+          The +1g and -1g calibration points are included in each telemetry
+          frame and are part of the header stored in onboard flash to be
+         downloaded after flight.  We always store and return raw ADC 
+         samples for each sensor... so nothing is permanently "lost" or 
+         "damaged" if the calibration is poor.
+        </para>
+        <para>
+         In the unlikely event an accel cal goes badly, it is possible
+         that TeleMetrum may always come up in 'pad mode' and as such not be
+         listening to either the USB or radio link.  If that happens,
+         there is a special hook in the firmware to force the board back
+         in to 'idle mode' so you can re-do the cal.  To use this hook, you
+         just need to ground the SPI clock pin at power-on.  This pin is
+         available as pin 2 on the 8-pin companion connector, and pin 1 is
+         ground.  So either carefully install a fine-gauge wire jumper
+         between the two pins closest to the index hole end of the 8-pin
+         connector, or plug in the programming cable to the 8-pin connector
+         and use a small screwdriver or similar to short the two pins closest
+         to the index post on the 4-pin end of the programming cable, and
+         power up the board.  It should come up in 'idle mode' (two beeps),
+        allowing a re-cal.
+        </para>
+      </section>
+  </appendix>
   <appendix
       xmlns:xi="http://www.w3.org/2001/XInclude">
     <title>Release Notes</title>