doc: Convert several more itemizedlists to variablelists
[fw/altos] / doc / altos.xsl
index 9a88a5b562d9cc79e858b8f3c882d3b49bd28b03..5b9e12e8fa4b84d63f24558d9f54d9113e6e98b8 100644 (file)
@@ -1,6 +1,6 @@
 <?xml version="1.0" encoding="utf-8" ?>
 <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
-  "/usr/share/xml/docbook/schema/dtd/4.5/docbookx.dtd">
+"/usr/share/xml/docbook/schema/dtd/4.5/docbookx.dtd">
 
 <book>
   <title>AltOS</title>
       </para>
     </legalnotice>
     <revhistory>
+      <revision>
+        <revnumber>1.1</revnumber>
+        <date>05 November 2012</date>
+        <revremark>Portable version</revremark>
+      </revision>
       <revision>
         <revnumber>0.1</revnumber>
         <date>22 November 2010</date>
   <chapter>
     <title>Overview</title>
     <para>
-      AltOS is a operating system built for the 8051-compatible
-      processor found in the TI cc1111 microcontroller. It's designed
-      to be small and easy to program with. The main features are:
-    <itemizedlist>
-      <listitem>
-       <para>Multi-tasking. While the 8051 doesn't provide separate
-       address spaces, it's often easier to write code that operates
-       in separate threads instead of tying everything into one giant
-       event loop.
-       </para>
-      </listitem>
-      <listitem>
-       <para>Non-preemptive. This increases latency for thread
-       switching but reduces the number of places where context
-       switching can occur. It also simplifies the operating system
-       design somewhat. Nothing in the target system (rocket flight
-       control) has tight timing requirements, and so this seems like
-       a reasonable compromise.
-       </para>
-      </listitem>
-      <listitem>
-       <para>Sleep/wakeup scheduling. Taken directly from ancient
-       Unix designs, these two provide the fundemental scheduling
-       primitive within AltOS.
-       </para>
-      </listitem>
-      <listitem>
-       <para>Mutexes. As a locking primitive, mutexes are easier to
-       use than semaphores, at least in my experience.
-       </para>
-      </listitem>
-      <listitem>
-       <para>Timers. Tasks can set an alarm which will abort any
-       pending sleep, allowing operations to time-out instead of
-       blocking forever.
-       </para>
-      </listitem>
-    </itemizedlist>
+      AltOS is a operating system built for a variety of
+      microcontrollers used in Altus Metrum devices. It has a simple
+      porting layer for each CPU while providing a convenient
+      operating enviroment for the developer. AltOS currently
+      supports three different CPUs:
+      <itemizedlist>
+       <listitem>
+         <para>
+           STM32L series from ST Microelectronics. This ARM Cortex-M3
+           based microcontroller offers low power consumption and a
+           wide variety of built-in peripherals. Altus Metrum uses
+           this in the TeleMega, MegaDongle and TeleLCO projects.
+         </para>
+       </listitem>
+       <listitem>
+         <para>
+           CC1111 from Texas Instruments. This device includes a
+           fabulous 10mW digital RF transceiver along with an
+           8051-compatible processor core and a range of
+           peripherals. This is used in the TeleMetrum, TeleMini,
+           TeleDongle and TeleFire projects which share the need for
+           a small microcontroller and an RF interface.
+         </para>
+       </listitem>
+       <listitem>
+         <para>
+           ATmega32U4 from Atmel. This 8-bit AVR microcontroller is
+           one of the many used to create Arduino boards. The 32U4
+           includes a USB interface, making it easy to connect to
+           other computers. Altus Metrum used this in prototypes of
+           the TeleScience and TelePyro boards; those have been
+           switched to the STM32L which is more capable and cheaper.
+         </para>
+       </listitem>
+      </itemizedlist>
+      Among the features of AltOS are:
+      <itemizedlist>
+       <listitem>
+         <para>Multi-tasking. While microcontrollers often don't
+         provide separate address spaces, it's often easier to write
+         code that operates in separate threads instead of tying
+         everything into one giant event loop.
+         </para>
+       </listitem>
+       <listitem>
+         <para>Non-preemptive. This increases latency for thread
+         switching but reduces the number of places where context
+         switching can occur. It also simplifies the operating system
+         design somewhat. Nothing in the target system (rocket flight
+         control) has tight timing requirements, and so this seems like
+         a reasonable compromise.
+         </para>
+       </listitem>
+       <listitem>
+         <para>Sleep/wakeup scheduling. Taken directly from ancient
+         Unix designs, these two provide the fundemental scheduling
+         primitive within AltOS.
+         </para>
+       </listitem>
+       <listitem>
+         <para>Mutexes. As a locking primitive, mutexes are easier to
+         use than semaphores, at least in my experience.
+         </para>
+       </listitem>
+       <listitem>
+         <para>Timers. Tasks can set an alarm which will abort any
+         pending sleep, allowing operations to time-out instead of
+         blocking forever.
+         </para>
+       </listitem>
+      </itemizedlist>
     </para>
     <para>
       The device drivers and other subsystems in AltOS are
       may add tasks to the scheduler to handle the device. A typical
       main program, thus, looks like:
       <programlisting>
-void
-main(void)
-{
-       ao_clock_init();
+       void
+       main(void)
+       {
+               ao_clock_init();
 
-       /* Turn on the LED until the system is stable */
-       ao_led_init(LEDS_AVAILABLE);
-       ao_led_on(AO_LED_RED);
-       ao_timer_init();
-       ao_cmd_init();
-       ao_usb_init();
-       ao_monitor_init(AO_LED_GREEN, TRUE);
-       ao_rssi_init(AO_LED_RED);
-       ao_radio_init();
-       ao_packet_slave_init();
-       ao_packet_master_init();
-#if HAS_DBG
-       ao_dbg_init();
-#endif
-       ao_config_init();
-       ao_start_scheduler();
-}
+               /* Turn on the LED until the system is stable */
+               ao_led_init(LEDS_AVAILABLE);
+               ao_led_on(AO_LED_RED);
+               ao_timer_init();
+               ao_cmd_init();
+               ao_usb_init();
+               ao_monitor_init(AO_LED_GREEN, TRUE);
+               ao_rssi_init(AO_LED_RED);
+               ao_radio_init();
+               ao_packet_slave_init();
+               ao_packet_master_init();
+               #if HAS_DBG
+               ao_dbg_init();
+               #endif
+               ao_config_init();
+               ao_start_scheduler();
+       }
       </programlisting>
       As you can see, a long sequence of subsystems are initialized
       and then the scheduler is started.
     </para>
   </chapter>
+  <chapter>
+    <title>AltOS Porting Layer</title>
+    <para>
+      AltOS provides a CPU-independent interface to various common
+      microcontroller subsystems, including GPIO pins, interrupts,
+      SPI, I2C, USB and asynchronous serial interfaces. By making
+      these CPU-independent, device drivers, generic OS and
+      application code can all be written that work on any supported
+      CPU. Many of the architecture abstraction interfaces are
+      prefixed with ao_arch.
+    </para>
+    <section>
+      <title>Low-level CPU operations</title>
+      <para>
+       These primitive operations provide the abstraction needed to
+       run the multi-tasking framework while providing reliable
+       interrupt delivery.
+      </para>
+      <section>
+       <title>ao_arch_block_interrupts/ao_arch_release_interrupts</title>
+       <programlisting>
+         static inline void
+         ao_arch_block_interrupts(void);
+         
+         static inline void
+         ao_arch_release_interrupts(void);
+       </programlisting>
+       <para>
+         These disable/enable interrupt delivery, they may not
+         discard any interrupts. Use these for sections of code that
+         must be atomic with respect to any code run from an
+         interrupt handler.
+       </para>
+      </section>
+      <section>
+       <title>ao_arch_save_regs, ao_arch_save_stack,
+       ao_arch_restore_stack</title>
+       <programlisting>
+         static inline void
+         ao_arch_save_regs(void);
+
+         static inline void
+         ao_arch_save_stack(void);
+
+         static inline void
+         ao_arch_restore_stack(void);
+       </programlisting>
+       <para>
+         These provide all of the support needed to switch between
+         tasks.. ao_arch_save_regs must save all CPU registers to the
+         current stack, including the interrupt enable
+         state. ao_arch_save_stack records the current stack location
+         in the current ao_task structure. ao_arch_restore_stack
+         switches back to the saved stack, restores all registers and
+         branches to the saved return address.
+       </para>
+      </section>
+      <section>
+       <title>ao_arch_wait_interupt</title>
+       <programlisting>
+         #define ao_arch_wait_interrupt()
+       </programlisting>
+       <para>
+         This stops the CPU, leaving clocks and interrupts
+         enabled. When an interrupt is received, this must wake up
+         and handle the interrupt. ao_arch_wait_interrupt is entered
+         with interrupts disabled to ensure that there is no gap
+         between determining that no task wants to run and idling the
+         CPU. It must sleep the CPU, process interrupts and then
+         disable interrupts again. If the CPU doesn't have any
+         reduced power mode, this must at the least allow pending
+         interrupts to be processed.
+       </para>
+      </section>
+    </section>
+    <section>
+      <title>GPIO operations</title>
+      <para>
+       These functions provide an abstract interface to configure and
+       manipulate GPIO pins.
+      </para>
+      <section>
+       <title>GPIO setup</title>
+       <para>
+         These macros may be invoked at system initialization time to
+         configure pins as needed for system operation. One tricky
+         aspect is that some chips provide direct access to specific
+         GPIO pins while others only provide access to a whole
+         register full of pins. To support this, the GPIO macros
+         provide both port+bit and pin arguments. Simply define the
+         arguments needed for the target platform and leave the
+         others undefined.
+       </para>
+       <section>
+         <title>ao_enable_output</title>
+         <programlisting>
+           #define ao_enable_output(port, bit, pin, value)
+         </programlisting>
+         <para>
+           Set the specified port+bit (also called 'pin') for output,
+           initializing to the specified value. The macro must avoid
+           driving the pin with the opposite value if at all
+           possible.
+         </para>
+       </section>
+       <section>
+         <title>ao_enable_input</title>
+         <programlisting>
+           #define ao_enable_input(port, bit, mode)
+         </programlisting>
+         <para>
+           Sets the specified port/bit to be an input pin. 'mode' is
+           a combination of one or more of the following. Note that
+           some platforms may not support the desired mode. In that
+           case, the value will not be defined so that the program
+           will fail to compile.
+           <itemizedlist>
+             <listitem>
+<para>
+               AO_EXTI_MODE_PULL_UP. Apply a pull-up to the pin; a
+               disconnected pin will read as 1.
+</para>
+             </listitem>
+             <listitem>
+<para>
+               AO_EXTI_MODE_PULL_DOWN. Apply a pull-down to the pin;
+               a disconnected pin will read as 0.
+</para>
+             </listitem>
+             <listitem>
+<para>
+               0. Don't apply either a pull-up or pull-down. A
+               disconnected pin will read an undetermined value.
+</para>
+             </listitem>
+           </itemizedlist>
+         </para>
+       </section>
+      </section>
+      <section>
+       <title>Reading and writing GPIO pins</title>
+       <para>
+         These macros read and write individual GPIO pins.
+       </para>
+       <section>
+         <title>ao_gpio_set</title>
+         <programlisting>
+           #define ao_gpio_set(port, bit, pin, value)
+         </programlisting>
+         <para>
+           Sets the specified port/bit or pin to the indicated value
+         </para>
+       </section>
+       <section>
+         <title>ao_gpio_get</title>
+         <programlisting>
+           #define ao_gpio_get(port, bit, pin)
+         </programlisting>
+         <para>
+           Returns either 1 or 0 depending on whether the input to
+           the pin is high or low.
+         </para>
+       </section>
+      </section>
+    </section>
+  </chapter>
   <chapter>
     <title>Programming the 8051 with SDCC</title>
     <para>
@@ -120,6 +324,10 @@ main(void)
       instruction set, it is not completely able to hide the memory
       architecture from the application designer.
     </para>
+    <para>
+      When built on other architectures, the various SDCC-specific
+      symbols are #defined as empty strings so they don't affect the compiler.
+    </para>
     <section>
       <title>8051 memory spaces</title>
       <para>
@@ -137,96 +345,79 @@ main(void)
        code but makes the resulting code far smaller and more
        efficient.
       </para>
-      <variablelist>
-       <title>SDCC 8051 memory spaces</title>
-       <varlistentry>
-         <term>__data</term>
-         <listitem>
-           <para>
-             The 8051 can directly address these 128 bytes of
-             memory. This makes them precious so they should be
-             reserved for frequently addressed values. Oh, just to
-             confuse things further, the 8 general registers in the
-             CPU are actually stored in this memory space. There are
-             magic instructions to 'bank switch' among 4 banks of
-             these registers located at 0x00 - 0x1F. AltOS uses only
-             the first bank at 0x00 - 0x07, leaving the other 24
-             bytes available for other data.
-           </para>
-         </listitem>
-       </varlistentry>
-       <varlistentry>
-         <term>__idata</term>
-         <listitem>
-           <para>
-             There are an additional 128 bytes of internal memory
-             that share the same address space as __data but which
-             cannot be directly addressed. The stack normally
-             occupies this space and so AltOS doesn't place any
-             static storage here.
-           </para>
-         </listitem>
-       </varlistentry>
-       <varlistentry>
-         <term>__xdata</term>
-         <listitem>
-           <para>
-             This is additional general memory accessed through a
-             single 16-bit address register. The CC1111F32 has 32kB
-             of memory available here. Most program data should live
-             in this memory space.
-           </para>
-         </listitem>
-       </varlistentry>
-       <varlistentry>
-         <term>__pdata</term>
-         <listitem>
-           <para>
-             This is an alias for the first 256 bytes of __xdata
-             memory, but uses a shorter addressing mode with
-             single global 8-bit value for the high 8 bits of the
-             address and any of several 8-bit registers for the low 8
-             bits. AltOS uses a few bits of this memory, it should
-             probably use more.
-           </para>
-         </listitem>
-       </varlistentry>
-       <varlistentry>
-         <term>__code</term>
-         <listitem>
-           <para>
-             All executable code must live in this address space, but
-             you can stick read-only data here too. It is addressed
-             using the 16-bit address register and special 'code'
-             access opcodes. Anything read-only should live in this space.
-           </para>
-         </listitem>
-       </varlistentry>
-       <varlistentry>
-         <term>__bit</term>
-         <listitem>
-           <para>
-             The 8051 has 128 bits of bit-addressible memory that
-             lives in the __data segment from 0x20 through
-             0x2f. Special instructions access these bits
-             in a single atomic operation. This isn't so much a
-             separate address space as a special addressing mode for
-             a few bytes in the __data segment.
-           </para>
-         </listitem>
-       </varlistentry>
-       <varlistentry>
-         <term>__sfr, __sfr16, __sfr32, __sbit</term>
-         <listitem>
-           <para>
-             Access to physical registers in the device use this mode
-             which declares the variable name, it's type and the
-             address it lives at. No memory is allocated for these
-             variables.
-           </para>
-         </listitem>
-       </varlistentry>
-      </variablelist>
+      <section>
+       <title>__data</title>
+       <para>
+         The 8051 can directly address these 128 bytes of
+         memory. This makes them precious so they should be
+         reserved for frequently addressed values. Oh, just to
+         confuse things further, the 8 general registers in the
+         CPU are actually stored in this memory space. There are
+         magic instructions to 'bank switch' among 4 banks of
+         these registers located at 0x00 - 0x1F. AltOS uses only
+         the first bank at 0x00 - 0x07, leaving the other 24
+         bytes available for other data.
+       </para>
+      </section>
+      <section>
+       <title>__idata</title>
+       <para>
+         There are an additional 128 bytes of internal memory
+         that share the same address space as __data but which
+         cannot be directly addressed. The stack normally
+         occupies this space and so AltOS doesn't place any
+         static storage here.
+       </para>
+      </section>
+      <section>
+       <title>__xdata</title>
+       <para>
+         This is additional general memory accessed through a
+         single 16-bit address register. The CC1111F32 has 32kB
+         of memory available here. Most program data should live
+         in this memory space.
+       </para>
+      </section>
+      <section>
+       <title>__pdata</title>
+       <para>
+         This is an alias for the first 256 bytes of __xdata
+         memory, but uses a shorter addressing mode with
+         single global 8-bit value for the high 8 bits of the
+         address and any of several 8-bit registers for the low 8
+         bits. AltOS uses a few bits of this memory, it should
+         probably use more.
+       </para>
+      </section>
+      <section>
+       <title>__code</title>
+       <para>
+         All executable code must live in this address space, but
+         you can stick read-only data here too. It is addressed
+         using the 16-bit address register and special 'code'
+         access opcodes. Anything read-only should live in this space.
+       </para>
+      </section>
+      <section>
+       <title>__bit</title>
+       <para>
+         The 8051 has 128 bits of bit-addressible memory that
+         lives in the __data segment from 0x20 through
+         0x2f. Special instructions access these bits
+         in a single atomic operation. This isn't so much a
+         separate address space as a special addressing mode for
+         a few bytes in the __data segment.
+       </para>
+      </section>
+      <section>
+       <title>__sfr, __sfr16, __sfr32, __sbit</title>
+       <para>
+         Access to physical registers in the device use this mode
+         which declares the variable name, it's type and the
+         address it lives at. No memory is allocated for these
+         variables.
+       </para>
+      </section>
     </section>
     <section>
       <title>Function calls on the 8051</title>
@@ -295,7 +486,9 @@ main(void)
          __critical which blocks interrupts during the execution of
          that statement. Keeping critical sections as short as
          possible is key to ensuring that interrupts are handled as
-         quickly as possible.
+         quickly as possible. AltOS doesn't use this form in shared
+         code as other compilers wouldn't know what to do. Use
+         ao_arch_block_interrupts and ao_arch_release_interrupts instead.
        </para>
       </section>
     </section>
@@ -305,192 +498,190 @@ main(void)
     <para>
       This chapter documents how to create, destroy and schedule AltOS tasks.
     </para>
-    <variablelist>
-      <title>AltOS Task Functions</title>
-      <varlistentry>
-       <term>ao_add_task</term>
-       <listitem>
-         <programlisting>
-void
-ao_add_task(__xdata struct ao_task * task,
-            void (*start)(void),
-            __code char *name);
-         </programlisting>
-         <para>
-           This initializes the statically allocated task structure,
-           assigns a name to it (not used for anything but the task
-           display), and the start address. It does not switch to the
-           new task. 'start' must not ever return; there is no place
-           to return to.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_exit</term>
-       <listitem>
-         <programlisting>
-void
-ao_exit(void)
-         </programlisting>
-         <para>
-           This terminates the current task.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_sleep</term>
-       <listitem>
-         <programlisting>
-void
-ao_sleep(__xdata void *wchan)
-         </programlisting>
-         <para>
-           This suspends the current task until 'wchan' is signaled
-           by ao_wakeup, or until the timeout, set by ao_alarm,
-           fires. If 'wchan' is signaled, ao_sleep returns 0, otherwise
-           it returns 1. This is the only way to switch to another task.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_wakeup</term>
-       <listitem>
-         <programlisting>
-void
-ao_wakeup(__xdata void *wchan)
-         </programlisting>
-         <para>
-           Wake all tasks blocked on 'wchan'. This makes them
-           available to be run again, but does not actually switch
-           to another task.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_alarm</term>
-       <listitem>
-         <programlisting>
-void
-ao_alarm(uint16_t delay)
-         </programlisting>
-         <para>
-           Schedules an alarm to fire in at least 'delay' ticks. If
-           the task is asleep when the alarm fires, it will wakeup
-           and ao_sleep will return 1.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_wake_task</term>
-       <listitem>
-         <programlisting>
-void
-ao_wake_task(__xdata struct ao_task *task)
-         </programlisting>
-         <para>
-           Force a specific task to wake up, independent of which
-           'wchan' it is waiting for.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_start_scheduler</term>
-       <listitem>
-         <programlisting>
-void
-ao_start_scheduler(void)
-         </programlisting>
-         <para>
-           This is called from 'main' when the system is all
-           initialized and ready to run. It will not return.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_clock_init</term>
-       <listitem>
-         <programlisting>
-void
-ao_clock_init(void)
-         </programlisting>
-         <para>
-           This turns on the external 48MHz clock then switches the
-           hardware to using it. This is required by many of the
-           internal devices like USB. It should be called by the
-           'main' function first, before initializing any of the
-           other devices in the system.
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
+    <section>
+      <title>ao_add_task</title>
+      <programlisting>
+       void
+       ao_add_task(__xdata struct ao_task * task,
+                   void (*start)(void),
+                   __code char *name);
+      </programlisting>
+      <para>
+       This initializes the statically allocated task structure,
+       assigns a name to it (not used for anything but the task
+       display), and the start address. It does not switch to the
+       new task. 'start' must not ever return; there is no place
+       to return to.
+      </para>
+    </section>
+    <section>
+      <title>ao_exit</title>
+      <programlisting>
+       void
+       ao_exit(void)
+      </programlisting>
+      <para>
+       This terminates the current task.
+      </para>
+    </section>
+    <section>
+      <title>ao_sleep</title>
+      <programlisting>
+       void
+       ao_sleep(__xdata void *wchan)
+      </programlisting>
+      <para>
+       This suspends the current task until 'wchan' is signaled
+       by ao_wakeup, or until the timeout, set by ao_alarm,
+       fires. If 'wchan' is signaled, ao_sleep returns 0, otherwise
+       it returns 1. This is the only way to switch to another task.
+      </para>
+      <para>
+       Because ao_wakeup wakes every task waiting on a particular
+       location, ao_sleep should be used in a loop that first checks
+       the desired condition, blocks in ao_sleep and then rechecks
+       until the condition is satisfied. If the location may be
+       signaled from an interrupt handler, the code will need to
+       block interrupts around the block of code. Here's a complete
+       example:
+       <programlisting>
+         ao_arch_block_interrupts();
+         while (!ao_radio_done)
+                 ao_sleep(&amp;ao_radio_done);
+         ao_arch_release_interrupts();
+       </programlisting>
+      </para>
+    </section>
+    <section>
+      <title>ao_wakeup</title>
+      <programlisting>
+       void
+       ao_wakeup(__xdata void *wchan)
+      </programlisting>
+      <para>
+       Wake all tasks blocked on 'wchan'. This makes them
+       available to be run again, but does not actually switch
+       to another task. Here's an example of using this:
+       <programlisting>
+         if (RFIF &amp; RFIF_IM_DONE) {
+                 ao_radio_done = 1;
+                 ao_wakeup(&amp;ao_radio_done);
+                 RFIF &amp;= ~RFIF_IM_DONE;
+         }
+       </programlisting>
+       Note that this need not block interrupts as the ao_sleep block
+       can only be run from normal mode, and so this sequence can
+       never be interrupted with execution of the other sequence.
+      </para>
+    </section>
+    <section>
+      <title>ao_alarm</title>
+      <programlisting>
+       void
+       ao_alarm(uint16_t delay);
+
+       void
+       ao_clear_alarm(void);
+      </programlisting>
+      <para>
+       Schedules an alarm to fire in at least 'delay' ticks. If the
+       task is asleep when the alarm fires, it will wakeup and
+       ao_sleep will return 1. ao_clear_alarm resets any pending
+       alarm so that it doesn't fire at some arbitrary point in the
+       future.
+       <programlisting>
+         ao_alarm(ao_packet_master_delay);
+         ao_arch_block_interrupts();
+         while (!ao_radio_dma_done)
+                 if (ao_sleep(&amp;ao_radio_dma_done) != 0)
+                         ao_radio_abort();
+         ao_arch_release_interrupts();
+         ao_clear_alarm();
+       </programlisting>
+       In this example, a timeout is set before waiting for
+       incoming radio data. If no data is received before the
+       timeout fires, ao_sleep will return 1 and then this code
+       will abort the radio receive operation.
+      </para>
+    </section>
+    <section>
+      <title>ao_start_scheduler</title>
+      <programlisting>
+       void
+       ao_start_scheduler(void);
+      </programlisting>
+      <para>
+       This is called from 'main' when the system is all
+       initialized and ready to run. It will not return.
+      </para>
+    </section>
+    <section>
+      <title>ao_clock_init</title>
+      <programlisting>
+       void
+       ao_clock_init(void);
+      </programlisting>
+      <para>
+       This initializes the main CPU clock and switches to it.
+      </para>
+    </section>
   </chapter>
   <chapter>
     <title>Timer Functions</title>
     <para>
-      AltOS sets up one of the cc1111 timers to run at 100Hz and
+      AltOS sets up one of the CPU timers to run at 100Hz and
       exposes this tick as the fundemental unit of time. At each
       interrupt, AltOS increments the counter, and schedules any tasks
-      waiting for that time to pass, then fires off the ADC system to
+      waiting for that time to pass, then fires off the sensors to
       collect current data readings. Doing this from the ISR ensures
-      that the ADC values are sampled at a regular rate, independent
+      that the values are sampled at a regular rate, independent
       of any scheduling jitter.
     </para>
-    <variablelist>
-      <title>AltOS Timer Functions</title>
-      <varlistentry>
-       <term>ao_time</term>
-       <listitem>
-         <programlisting>
-uint16_t
-ao_time(void)
-         </programlisting>
-         <para>
-           Returns the current system tick count. Note that this is
-           only a 16 bit value, and so it wraps every 655.36 seconds.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_delay</term>
-       <listitem>
-         <programlisting>
-void
-ao_delay(uint16_t ticks);
-         </programlisting>
-         <para>
-           Suspend the current task for at least 'ticks' clock units.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_timer_set_adc_interval</term>
-       <listitem>
-         <programlisting>
-void
-ao_timer_set_adc_interval(uint8_t interval);
-         </programlisting>
-         <para>
-           This sets the number of ticks between ADC samples. If set
-           to 0, no ADC samples are generated. AltOS uses this to
-           slow down the ADC sampling rate to save power.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_timer_init</term>
-       <listitem>
-         <programlisting>
-void
-ao_timer_init(void)
-         </programlisting>
-         <para>
-           This turns on the 100Hz tick using the CC1111 timer 1. It
-           is required for any of the time-based functions to
-           work. It should be called by 'main' before ao_start_scheduler.
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
+    <section>
+      <title>ao_time</title>
+      <programlisting>
+       uint16_t
+       ao_time(void)
+      </programlisting>
+      <para>
+       Returns the current system tick count. Note that this is
+       only a 16 bit value, and so it wraps every 655.36 seconds.
+      </para>
+    </section>
+    <section>
+      <title>ao_delay</title>
+      <programlisting>
+       void
+       ao_delay(uint16_t ticks);
+      </programlisting>
+      <para>
+       Suspend the current task for at least 'ticks' clock units.
+      </para>
+    </section>
+    <section>
+      <title>ao_timer_set_adc_interval</title>
+      <programlisting>
+       void
+       ao_timer_set_adc_interval(uint8_t interval);
+      </programlisting>
+      <para>
+       This sets the number of ticks between ADC samples. If set
+       to 0, no ADC samples are generated. AltOS uses this to
+       slow down the ADC sampling rate to save power.
+      </para>
+    </section>
+    <section>
+      <title>ao_timer_init</title>
+      <programlisting>
+       void
+       ao_timer_init(void)
+      </programlisting>
+      <para>
+       This turns on the 100Hz tick. It is required for any of the
+       time-based functions to work. It should be called by 'main'
+       before ao_start_scheduler.
+      </para>
+    </section>
   </chapter>
   <chapter>
     <title>AltOS Mutexes</title>
@@ -502,44 +693,44 @@ ao_timer_init(void)
       already held by the current task or releasing a mutex not held
       by the current task will both cause a panic.
     </para>
-    <variablelist>
-      <title>Mutex Functions</title>
-      <varlistentry>
-       <term>ao_mutex_get</term>
-       <listitem>
-         <programlisting>
-void
-ao_mutex_get(__xdata uint8_t *mutex);
-         </programlisting>
-         <para>
-           Acquires the specified mutex, blocking if the mutex is
-           owned by another task.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_mutex_put</term>
-       <listitem>
-         <programlisting>
-void
-ao_mutex_put(__xdata uint8_t *mutex);
-         </programlisting>
-         <para>
-           Releases the specified mutex, waking up all tasks waiting
-           for it.
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
+    <section>
+      <title>ao_mutex_get</title>
+      <programlisting>
+       void
+       ao_mutex_get(__xdata uint8_t *mutex);
+      </programlisting>
+      <para>
+       Acquires the specified mutex, blocking if the mutex is
+       owned by another task.
+      </para>
+    </section>
+    <section>
+      <title>ao_mutex_put</title>
+      <programlisting>
+       void
+       ao_mutex_put(__xdata uint8_t *mutex);
+      </programlisting>
+      <para>
+       Releases the specified mutex, waking up all tasks waiting
+       for it.
+      </para>
+    </section>
   </chapter>
   <chapter>
-    <title>CC1111 DMA engine</title>
+    <title>DMA engine</title>
+    <para>
+      The CC1111 and STM32L both contain a useful bit of extra
+      hardware in the form of a number of programmable DMA
+      engines. They can be configured to copy data in memory, or
+      between memory and devices (or even between two devices). AltOS
+      exposes a general interface to this hardware and uses it to
+      handle both internal and external devices.
+    </para>
     <para>
-      The CC1111 contains a useful bit of extra hardware in the form
-      of five programmable DMA engines. They can be configured to copy
-      data in memory, or between memory and devices (or even between
-      two devices). AltOS exposes a general interface to this hardware
-      and uses it to handle radio and SPI data.
+      Because the CC1111 and STM32L DMA engines are different, the
+      interface to them is also different. As the DMA engines are
+      currently used to implement platform-specific drivers, this
+      isn't yet a problem.
     </para>
     <para>
       Code using a DMA engine should allocate one at startup
@@ -554,491 +745,516 @@ ao_mutex_put(__xdata uint8_t *mutex);
       hardware device. When copying data from memory to hardware, the
       transfer is usually initiated by software.
     </para>
-    <variablelist>
-      <title>AltOS DMA functions</title>
-      <varlistentry>
-       <term>ao_dma_alloc</term>
-       <listitem>
-         <programlisting>
-uint8_t
-ao_dma_alloc(__xdata uint8_t *done)
-         </programlisting>
-         <para>
-           Allocates a DMA engine, returning the identifier. Whenever
-           this DMA engine completes a transfer. 'done' is cleared
-           when the DMA is started, and then receives the
-           AO_DMA_DONE bit on a successful transfer or the
-           AO_DMA_ABORTED bit if ao_dma_abort was called. Note that
-           it is possible to get both bits if the transfer was
-           aborted after it had finished.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_dma_set_transfer</term>
-       <listitem>
-         <programlisting>
-void
-ao_dma_set_transfer(uint8_t id,
-                   void __xdata *srcaddr,
-                   void __xdata *dstaddr,
-                   uint16_t count,
-                   uint8_t cfg0,
-                   uint8_t cfg1)
-         </programlisting>
-         <para>
-           Initializes the specified dma engine to copy data
-           from 'srcaddr' to 'dstaddr' for 'count' units. cfg0 and
-           cfg1 are values directly out of the CC1111 documentation
-           and tell the DMA engine what the transfer unit size,
-           direction and step are.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_dma_start</term>
-       <listitem>
-         <programlisting>
-void
-ao_dma_start(uint8_t id);
-         </programlisting>
-         <para>
-           Arm the specified DMA engine and await a signal from
-           either hardware or software to start transferring data.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_dma_trigger</term>
-       <listitem>
-         <programlisting>
-void
-ao_dma_trigger(uint8_t id)
-         </programlisting>
-         <para>
-           Trigger the specified DMA engine to start copying data.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_dma_abort</term>
-       <listitem>
-         <programlisting>
-void
-ao_dma_abort(uint8_t id)
-         </programlisting>
-         <para>
-           Terminate any in-progress DMA transation, marking its
-           'done' variable with the AO_DMA_ABORTED bit.
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
+    <section>
+      <title>CC1111 DMA Engine</title>
+      <section>
+       <title>ao_dma_alloc</title>
+       <programlisting>
+         uint8_t
+         ao_dma_alloc(__xdata uint8_t *done)
+       </programlisting>
+       <para>
+         Allocate a DMA engine, returning the identifier.  'done' is
+         cleared when the DMA is started, and then receives the
+         AO_DMA_DONE bit on a successful transfer or the
+         AO_DMA_ABORTED bit if ao_dma_abort was called. Note that it
+         is possible to get both bits if the transfer was aborted
+         after it had finished.
+       </para>
+      </section>
+      <section>
+       <title>ao_dma_set_transfer</title>
+       <programlisting>
+         void
+         ao_dma_set_transfer(uint8_t id,
+         void __xdata *srcaddr,
+         void __xdata *dstaddr,
+         uint16_t count,
+         uint8_t cfg0,
+         uint8_t cfg1)
+       </programlisting>
+       <para>
+         Initializes the specified dma engine to copy data
+         from 'srcaddr' to 'dstaddr' for 'count' units. cfg0 and
+         cfg1 are values directly out of the CC1111 documentation
+         and tell the DMA engine what the transfer unit size,
+         direction and step are.
+       </para>
+      </section>
+      <section>
+       <title>ao_dma_start</title>
+       <programlisting>
+         void
+         ao_dma_start(uint8_t id);
+       </programlisting>
+       <para>
+         Arm the specified DMA engine and await a signal from
+         either hardware or software to start transferring data.
+       </para>
+      </section>
+      <section>
+       <title>ao_dma_trigger</title>
+       <programlisting>
+         void
+         ao_dma_trigger(uint8_t id)
+       </programlisting>
+       <para>
+         Trigger the specified DMA engine to start copying data.
+       </para>
+      </section>
+      <section>
+       <title>ao_dma_abort</title>
+       <programlisting>
+         void
+         ao_dma_abort(uint8_t id)
+       </programlisting>
+       <para>
+         Terminate any in-progress DMA transation, marking its
+         'done' variable with the AO_DMA_ABORTED bit.
+       </para>
+      </section>
+    </section>
+    <section>
+      <title>STM32L DMA Engine</title>
+      <section>
+       <title>ao_dma_alloc</title>
+       <programlisting>
+         uint8_t ao_dma_done[];
+
+         void
+         ao_dma_alloc(uint8_t index);
+       </programlisting>
+       <para>
+         Reserve a DMA engine for exclusive use by one
+         driver.
+       </para>
+      </section>
+      <section>
+       <title>ao_dma_set_transfer</title>
+       <programlisting>
+         void
+         ao_dma_set_transfer(uint8_t id,
+         void *peripheral,
+         void *memory,
+         uint16_t count,
+         uint32_t ccr);
+       </programlisting>
+       <para>
+         Initializes the specified dma engine to copy data between
+         'peripheral' and 'memory' for 'count' units. 'ccr' is a
+         value directly out of the STM32L documentation and tells the
+         DMA engine what the transfer unit size, direction and step
+         are.
+       </para>
+      </section>
+      <section>
+       <title>ao_dma_set_isr</title>
+       <programlisting>
+         void
+         ao_dma_set_isr(uint8_t index, void (*isr)(int))
+       </programlisting>
+       <para>
+         This sets a function to be called when the DMA transfer
+         completes in lieu of setting the ao_dma_done bits. Use this
+         when some work needs to be done when the DMA finishes that
+         cannot wait until user space resumes.
+       </para>
+      </section>
+      <section>
+       <title>ao_dma_start</title>
+       <programlisting>
+         void
+         ao_dma_start(uint8_t id);
+       </programlisting>
+       <para>
+         Arm the specified DMA engine and await a signal from either
+         hardware or software to start transferring data.
+         'ao_dma_done[index]' is cleared when the DMA is started, and
+         then receives the AO_DMA_DONE bit on a successful transfer
+         or the AO_DMA_ABORTED bit if ao_dma_abort was called. Note
+         that it is possible to get both bits if the transfer was
+         aborted after it had finished.
+       </para>
+      </section>
+      <section>
+       <title>ao_dma_done_transfer</title>
+       <programlisting>
+         void
+         ao_dma_done_transfer(uint8_t id);
+       </programlisting>
+       <para>
+         Signals that a specific DMA engine is done being used. This
+         allows multiple drivers to use the same DMA engine safely.
+       </para>
+      </section>
+      <section>
+       <title>ao_dma_abort</title>
+       <programlisting>
+         void
+         ao_dma_abort(uint8_t id)
+       </programlisting>
+       <para>
+         Terminate any in-progress DMA transation, marking its
+         'done' variable with the AO_DMA_ABORTED bit.
+       </para>
+      </section>
+    </section>
   </chapter>
   <chapter>
-    <title>SDCC Stdio interface</title>
+    <title>Stdio interface</title>
     <para>
-      AltOS offers a stdio interface over both USB and the RF packet
-      link. This provides for control of the device localy or
-      remotely. This is hooked up to the stdio functions in SDCC by
-      providing the standard putchar/getchar/flush functions. These
-      automatically multiplex the two available communication
-      channels; output is always delivered to the channel which
-      provided the most recent input.
+      AltOS offers a stdio interface over USB, serial and the RF
+      packet link. This provides for control of the device localy or
+      remotely. This is hooked up to the stdio functions by providing
+      the standard putchar/getchar/flush functions. These
+      automatically multiplex the available communication channels;
+      output is always delivered to the channel which provided the
+      most recent input.
     </para>
-    <variablelist>
-      <title>SDCC stdio functions</title>
-      <varlistentry>
-       <term>putchar</term>
-       <listitem>
-         <programlisting>
-void
-putchar(char c)
-         </programlisting>
-         <para>
-           Delivers a single character to the current console
-           device.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>getchar</term>
-       <listitem>
-         <programlisting>
-char
-getchar(void)
-         </programlisting>
-         <para>
-           Reads a single character from any of the available
-           console devices. The current console device is set to
-           that which delivered this character. This blocks until
-           a character is available.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>flush</term>
-       <listitem>
-         <programlisting>
-void
-flush(void)
-         </programlisting>
-         <para>
-           Flushes the current console device output buffer. Any
-           pending characters will be delivered to the target device.
-xo       </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_add_stdio</term>
-       <listitem>
-         <programlisting>
-void
-ao_add_stdio(char (*pollchar)(void),
-            void (*putchar)(char),
-            void (*flush)(void))
-         </programlisting>
-         <para>
-           This adds another console device to the available
-           list.
-         </para>
-         <para>
-           'pollchar' returns either an available character or
-           AO_READ_AGAIN if none is available. Significantly, it does
-           not block. The device driver must set 'ao_stdin_ready' to
-           1 and call ao_wakeup(&amp;ao_stdin_ready) when it receives
-           input to tell getchar that more data is available, at
-           which point 'pollchar' will be called again.
-         </para>
-         <para>
-           'putchar' queues a character for output, flushing if the output buffer is
-           full. It may block in this case.
-         </para>
-         <para>
-           'flush' forces the output buffer to be flushed. It may
-           block until the buffer is delivered, but it is not
-           required to do so.
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
+    <section>
+      <title>putchar</title>
+      <programlisting>
+       void
+       putchar(char c)
+      </programlisting>
+      <para>
+       Delivers a single character to the current console
+       device.
+      </para>
+    </section>
+    <section>
+      <title>getchar</title>
+      <programlisting>
+       char
+       getchar(void)
+      </programlisting>
+      <para>
+       Reads a single character from any of the available
+       console devices. The current console device is set to
+       that which delivered this character. This blocks until
+       a character is available.
+      </para>
+    </section>
+    <section>
+      <title>flush</title>
+      <programlisting>
+       void
+       flush(void)
+      </programlisting>
+      <para>
+       Flushes the current console device output buffer. Any
+       pending characters will be delivered to the target device.
+      xo         </para>
+    </section>
+    <section>
+      <title>ao_add_stdio</title>
+      <programlisting>
+       void
+       ao_add_stdio(char (*pollchar)(void),
+                          void (*putchar)(char),
+                          void (*flush)(void))
+      </programlisting>
+      <para>
+       This adds another console device to the available
+       list.
+      </para>
+      <para>
+       'pollchar' returns either an available character or
+       AO_READ_AGAIN if none is available. Significantly, it does
+       not block. The device driver must set 'ao_stdin_ready' to
+       1 and call ao_wakeup(&amp;ao_stdin_ready) when it receives
+       input to tell getchar that more data is available, at
+       which point 'pollchar' will be called again.
+      </para>
+      <para>
+       'putchar' queues a character for output, flushing if the output buffer is
+       full. It may block in this case.
+      </para>
+      <para>
+       'flush' forces the output buffer to be flushed. It may
+       block until the buffer is delivered, but it is not
+       required to do so.
+      </para>
+    </section>
   </chapter>
   <chapter>
     <title>Command line interface</title>
     <para>
       AltOS includes a simple command line parser which is hooked up
       to the stdio interfaces permitting remote control of the device
-      over USB or the RF link as desired. Each command uses a single
-      character to invoke it, the remaining characters on the line are
-      available as parameters to the command.
-    </para>
-    <variablelist>
-      <title>AltOS command line parsing functions</title>
-      <varlistentry>
-       <term>ao_cmd_register</term>
-       <listitem>
-         <programlisting>
-void
-ao_cmd_register(__code struct ao_cmds *cmds)
-         </programlisting>
-         <para>
-           This registers a set of commands with the command
-           parser. There is a fixed limit on the number of command
-           sets, the system will panic if too many are registered.
-           Each command is defined by a struct ao_cmds entry:
-           <programlisting>
-struct ao_cmds {
-       char            cmd;
-       void            (*func)(void);
-       const char      *help;
-};
-           </programlisting>
-           'cmd' is the character naming the command. 'func' is the
-           function to invoke and 'help' is a string displayed by the
-           '?' command. Syntax errors found while executing 'func'
-           should be indicated by modifying the global ao_cmd_status
-           variable with one of the following values:
-           <variablelist>
-             <varlistentry>
-               <term>ao_cmd_success</term>
-               <listitem>
-                 <para>
-                   The command was parsed successfully. There is no
-                   need to assign this value, it is the default.
-                 </para>
-               </listitem>
-             </varlistentry>
-             <varlistentry>
-               <term>ao_cmd_lex_error</term>
-               <listitem>
-                 <para>
-                   A token in the line was invalid, such as a number
-                   containing invalid characters. The low-level
-                   lexing functions already assign this value as needed.
-                 </para>
-               </listitem>
-             </varlistentry>
-             <varlistentry>
-               <term>ao_syntax_error</term>
-               <listitem>
-                 <para>
-                   The command line is invalid for some reason other
-                   than invalid tokens.
-                 </para>
-               </listitem>
-             </varlistentry>
-           </variablelist>
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_cmd_lex</term>
-       <listitem>
-         <programlisting>
-void
-ao_cmd_lex(void);
-         </programlisting>
-         <para>
-           This gets the next character out of the command line
-           buffer and sticks it into ao_cmd_lex_c. At the end of the
-           line, ao_cmd_lex_c will get a newline ('\n') character.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_cmd_put16</term>
-       <listitem>
-         <programlisting>
-void
-ao_cmd_put16(uint16_t v);
-         </programlisting>
-         <para>
-           Writes 'v' as four hexadecimal characters.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_cmd_put8</term>
-       <listitem>
-         <programlisting>
-void
-ao_cmd_put8(uint8_t v);
-         </programlisting>
-         <para>
-           Writes 'v' as two hexadecimal characters.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_cmd_white</term>
-       <listitem>
-         <programlisting>
-void
-ao_cmd_white(void)
-         </programlisting>
-         <para>
-           This skips whitespace by calling ao_cmd_lex while
-           ao_cmd_lex_c is either a space or tab. It does not skip
-           any characters if ao_cmd_lex_c already non-white.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_cmd_hex</term>
-       <listitem>
-         <programlisting>
-void
-ao_cmd_hex(void)
-         </programlisting>
-         <para>
-           This reads a 16-bit hexadecimal value from the command
-           line with optional leading whitespace. The resulting value
-           is stored in ao_cmd_lex_i;
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_cmd_decimal</term>
-       <listitem>
-         <programlisting>
-void
-ao_cmd_decimal(void)
-         </programlisting>
-         <para>
-           This reads a 32-bit decimal value from the command
-           line with optional leading whitespace. The resulting value
-           is stored in ao_cmd_lex_u32 and the low 16 bits are stored
-           in ao_cmd_lex_i;
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_match_word</term>
-       <listitem>
-         <programlisting>
-uint8_t
-ao_match_word(__code char *word)
-         </programlisting>
-         <para>
-           This checks to make sure that 'word' occurs on the command
-           line. It does not skip leading white space. If 'word' is
-           found, then 1 is returned. Otherwise, ao_cmd_status is set to
-           ao_cmd_syntax_error and 0 is returned.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_cmd_init</term>
-       <listitem>
-         <programlisting>
-void
-ao_cmd_init(void
-         </programlisting>
-         <para>
-           Initializes the command system, setting up the built-in
-           commands and adding a task to run the command processing
-           loop. It should be called by 'main' before ao_start_scheduler.
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
-  </chapter>
-  <chapter>
-    <title>CC1111 USB target device</title>
-    <para>
-      The CC1111 contains a full-speed USB target device. It can be
-      programmed to offer any kind of USB target, but to simplify
-      interactions with a variety of operating systems, AltOS provides
-      only a single target device profile, that of a USB modem which
-      has native drivers for Linux, Windows and Mac OS X. It would be
-      easy to change the code to provide an alternate target device if
-      necessary.
+      over USB, serial or the RF link as desired. Each command uses a
+      single character to invoke it, the remaining characters on the
+      line are available as parameters to the command.
     </para>
-    <para>
-      To the rest of the system, the USB device looks like a simple
-      two-way byte stream. It can be hooked into the command line
+    <section>
+      <title>ao_cmd_register</title>
+      <programlisting>
+       void
+       ao_cmd_register(__code struct ao_cmds *cmds)
+      </programlisting>
+      <para>
+       This registers a set of commands with the command
+       parser. There is a fixed limit on the number of command
+       sets, the system will panic if too many are registered.
+       Each command is defined by a struct ao_cmds entry:
+       <programlisting>
+         struct ao_cmds {
+                 char          cmd;
+                 void          (*func)(void);
+                 const char    *help;
+         };
+       </programlisting>
+       'cmd' is the character naming the command. 'func' is the
+       function to invoke and 'help' is a string displayed by the
+       '?' command. Syntax errors found while executing 'func'
+       should be indicated by modifying the global ao_cmd_status
+       variable with one of the following values:
+       <variablelist>
+         <varlistentry>
+           <term>ao_cmd_success</term>
+           <listitem>
+             <para>
+               The command was parsed successfully. There is no
+               need to assign this value, it is the default.
+             </para>
+           </listitem>
+         </varlistentry>
+         <varlistentry>
+           <term>ao_cmd_lex_error</term>
+           <listitem>
+             <para>
+               A token in the line was invalid, such as a number
+               containing invalid characters. The low-level
+               lexing functions already assign this value as needed.
+             </para>
+           </listitem>
+         </varlistentry>
+         <varlistentry>
+           <term>ao_syntax_error</term>
+           <listitem>
+             <para>
+               The command line is invalid for some reason other
+               than invalid tokens.
+             </para>
+           </listitem>
+         </varlistentry>
+       </variablelist>
+      </para>
+    </section>
+    <section>
+      <title>ao_cmd_lex</title>
+      <programlisting>
+       void
+       ao_cmd_lex(void);
+      </programlisting>
+      <para>
+       This gets the next character out of the command line
+       buffer and sticks it into ao_cmd_lex_c. At the end of the
+       line, ao_cmd_lex_c will get a newline ('\n') character.
+      </para>
+    </section>
+    <section>
+      <title>ao_cmd_put16</title>
+      <programlisting>
+       void
+       ao_cmd_put16(uint16_t v);
+      </programlisting>
+      <para>
+       Writes 'v' as four hexadecimal characters.
+      </para>
+    </section>
+    <section>
+      <title>ao_cmd_put8</title>
+      <programlisting>
+       void
+       ao_cmd_put8(uint8_t v);
+      </programlisting>
+      <para>
+       Writes 'v' as two hexadecimal characters.
+      </para>
+    </section>
+    <section>
+      <title>ao_cmd_white</title>
+      <programlisting>
+       void
+       ao_cmd_white(void)
+      </programlisting>
+      <para>
+       This skips whitespace by calling ao_cmd_lex while
+       ao_cmd_lex_c is either a space or tab. It does not skip
+       any characters if ao_cmd_lex_c already non-white.
+      </para>
+    </section>
+    <section>
+      <title>ao_cmd_hex</title>
+      <programlisting>
+       void
+       ao_cmd_hex(void)
+      </programlisting>
+      <para>
+       This reads a 16-bit hexadecimal value from the command
+       line with optional leading whitespace. The resulting value
+       is stored in ao_cmd_lex_i;
+      </para>
+    </section>
+    <section>
+      <title>ao_cmd_decimal</title>
+      <programlisting>
+       void
+       ao_cmd_decimal(void)
+      </programlisting>
+      <para>
+       This reads a 32-bit decimal value from the command
+       line with optional leading whitespace. The resulting value
+       is stored in ao_cmd_lex_u32 and the low 16 bits are stored
+       in ao_cmd_lex_i;
+      </para>
+    </section>
+    <section>
+      <title>ao_match_word</title>
+      <programlisting>
+       uint8_t
+       ao_match_word(__code char *word)
+      </programlisting>
+      <para>
+       This checks to make sure that 'word' occurs on the command
+       line. It does not skip leading white space. If 'word' is
+       found, then 1 is returned. Otherwise, ao_cmd_status is set to
+       ao_cmd_syntax_error and 0 is returned.
+      </para>
+    </section>
+    <section>
+      <title>ao_cmd_init</title>
+      <programlisting>
+       void
+       ao_cmd_init(void
+      </programlisting>
+      <para>
+       Initializes the command system, setting up the built-in
+       commands and adding a task to run the command processing
+       loop. It should be called by 'main' before ao_start_scheduler.
+      </para>
+    </section>
+  </chapter>
+  <chapter>
+    <title>USB target device</title>
+    <para>
+      AltOS contains a full-speed USB target device driver. It can be
+      programmed to offer any kind of USB target, but to simplify
+      interactions with a variety of operating systems, AltOS provides
+      only a single target device profile, that of a USB modem which
+      has native drivers for Linux, Windows and Mac OS X. It would be
+      easy to change the code to provide an alternate target device if
+      necessary.
+    </para>
+    <para>
+      To the rest of the system, the USB device looks like a simple
+      two-way byte stream. It can be hooked into the command line
       interface if desired, offering control of the device over the
       USB link. Alternatively, the functions can be accessed directly
       to provide for USB-specific I/O.
     </para>
-    <variablelist>
-      <title>AltOS USB functions</title>
-      <varlistentry>
-       <term>ao_usb_flush</term>
-       <listitem>
-         <programlisting>
-void
-ao_usb_flush(void);
-         </programlisting>
-         <para>
-           Flushes any pending USB output. This queues an 'IN' packet
-           to be delivered to the USB host if there is pending data,
-           or if the last IN packet was full to indicate to the host
-           that there isn't any more pending data available.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_usb_putchar</term>
-       <listitem>
-         <programlisting>
-void
-ao_usb_putchar(char c);
-         </programlisting>
-         <para>
-           If there is a pending 'IN' packet awaiting delivery to the
-           host, this blocks until that has been fetched. Then, this
-           adds a byte to the pending IN packet for delivery to the
-           USB host. If the USB packet is full, this queues the 'IN'
-           packet for delivery.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_usb_pollchar</term>
-       <listitem>
-         <programlisting>
-char
-ao_usb_pollchar(void);
-         </programlisting>
-         <para>
-           If there are no characters remaining in the last 'OUT'
-           packet received, this returns AO_READ_AGAIN. Otherwise, it
-           returns the next character, reporting to the host that it
-           is ready for more data when the last character is gone.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_usb_getchar</term>
-       <listitem>
-         <programlisting>
-char
-ao_usb_getchar(void);
-         </programlisting>
-         <para>
-           This uses ao_pollchar to receive the next character,
-           blocking while ao_pollchar returns AO_READ_AGAIN.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_usb_disable</term>
-       <listitem>
-         <programlisting>
-void
-ao_usb_disable(void);
-         </programlisting>
-         <para>
-           This turns off the USB controller. It will no longer
-           respond to host requests, nor return characters. Calling
-           any of the i/o routines while the USB device is disabled
-           is undefined, and likely to break things. Disabling the
-           USB device when not needed saves power.
-         </para>
-         <para>
-           Note that neither TeleDongle nor TeleMetrum are able to
-           signal to the USB host that they have disconnected, so
-           after disabling the USB device, it's likely that the cable
-           will need to be disconnected and reconnected before it
-           will work again.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_usb_enable</term>
-       <listitem>
-         <programlisting>
-void
-ao_usb_enable(void);
-         </programlisting>
-         <para>
-           This turns the USB controller on again after it has been
-           disabled. See the note above about needing to physically
-           remove and re-insert the cable to get the host to
-           re-initialize the USB link.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_usb_init</term>
-       <listitem>
-         <programlisting>
-void
-ao_usb_init(void);
-         </programlisting>
-         <para>
-           This turns the USB controller on, adds a task to handle
-           the control end point and adds the usb I/O functions to
-           the stdio system. Call this from main before
-           ao_start_scheduler.
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
+    <section>
+      <title>ao_usb_flush</title>
+      <programlisting>
+       void
+       ao_usb_flush(void);
+      </programlisting>
+      <para>
+       Flushes any pending USB output. This queues an 'IN' packet
+       to be delivered to the USB host if there is pending data,
+       or if the last IN packet was full to indicate to the host
+       that there isn't any more pending data available.
+      </para>
+    </section>
+    <section>
+      <title>ao_usb_putchar</title>
+      <programlisting>
+       void
+       ao_usb_putchar(char c);
+      </programlisting>
+      <para>
+       If there is a pending 'IN' packet awaiting delivery to the
+       host, this blocks until that has been fetched. Then, this
+       adds a byte to the pending IN packet for delivery to the
+       USB host. If the USB packet is full, this queues the 'IN'
+       packet for delivery.
+      </para>
+    </section>
+    <section>
+      <title>ao_usb_pollchar</title>
+      <programlisting>
+       char
+       ao_usb_pollchar(void);
+      </programlisting>
+      <para>
+       If there are no characters remaining in the last 'OUT'
+       packet received, this returns AO_READ_AGAIN. Otherwise, it
+       returns the next character, reporting to the host that it
+       is ready for more data when the last character is gone.
+      </para>
+    </section>
+    <section>
+      <title>ao_usb_getchar</title>
+      <programlisting>
+       char
+       ao_usb_getchar(void);
+      </programlisting>
+      <para>
+       This uses ao_pollchar to receive the next character,
+       blocking while ao_pollchar returns AO_READ_AGAIN.
+      </para>
+    </section>
+    <section>
+      <title>ao_usb_disable</title>
+      <programlisting>
+       void
+       ao_usb_disable(void);
+      </programlisting>
+      <para>
+       This turns off the USB controller. It will no longer
+       respond to host requests, nor return characters. Calling
+       any of the i/o routines while the USB device is disabled
+       is undefined, and likely to break things. Disabling the
+       USB device when not needed saves power.
+      </para>
+      <para>
+       Note that neither TeleDongle nor TeleMetrum are able to
+       signal to the USB host that they have disconnected, so
+       after disabling the USB device, it's likely that the cable
+       will need to be disconnected and reconnected before it
+       will work again.
+      </para>
+    </section>
+    <section>
+      <title>ao_usb_enable</title>
+      <programlisting>
+       void
+       ao_usb_enable(void);
+      </programlisting>
+      <para>
+       This turns the USB controller on again after it has been
+       disabled. See the note above about needing to physically
+       remove and re-insert the cable to get the host to
+       re-initialize the USB link.
+      </para>
+    </section>
+    <section>
+      <title>ao_usb_init</title>
+      <programlisting>
+       void
+       ao_usb_init(void);
+      </programlisting>
+      <para>
+       This turns the USB controller on, adds a task to handle
+       the control end point and adds the usb I/O functions to
+       the stdio system. Call this from main before
+       ao_start_scheduler.
+      </para>
+    </section>
   </chapter>
   <chapter>
-    <title>CC1111 Serial peripheral</title>
+    <title>Serial peripherals</title>
     <para>
       The CC1111 provides two USART peripherals. AltOS uses one for
       asynch serial data, generally to communicate with a GPS device,
@@ -1052,390 +1268,345 @@ ao_usb_init(void);
       To prevent loss of data, AltOS provides receive and transmit
       fifos of 32 characters each.
     </para>
-    <variablelist>
-      <title>AltOS serial functions</title>
-      <varlistentry>
-       <term>ao_serial_getchar</term>
-       <listitem>
-         <programlisting>
-char
-ao_serial_getchar(void);
-         </programlisting>
-         <para>
-           Returns the next character from the receive fifo, blocking
-           until a character is received if the fifo is empty.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_serial_putchar</term>
-       <listitem>
-         <programlisting>
-void
-ao_serial_putchar(char c);
-         </programlisting>
-         <para>
-           Adds a character to the transmit fifo, blocking if the
-           fifo is full. Starts transmitting characters.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_serial_drain</term>
-       <listitem>
-         <programlisting>
-void
-ao_serial_drain(void);
-         </programlisting>
-         <para>
-           Blocks until the transmit fifo is empty. Used internally
-           when changing serial speeds.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_serial_set_speed</term>
-       <listitem>
-         <programlisting>
-void
-ao_serial_set_speed(uint8_t speed);
-         </programlisting>
-         <para>
-           Changes the serial baud rate to one of
-           AO_SERIAL_SPEED_4800, AO_SERIAL_SPEED_9600 or
-           AO_SERIAL_SPEED_57600. This first flushes the transmit
-           fifo using ao_serial_drain.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_serial_init</term>
-       <listitem>
-         <programlisting>
-void
-ao_serial_init(void)
-         </programlisting>
-         <para>
-           Initializes the serial peripheral. Call this from 'main'
-           before jumping to ao_start_scheduler. The default speed
-           setting is AO_SERIAL_SPEED_4800.
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
+    <section>
+      <title>ao_serial_getchar</title>
+      <programlisting>
+       char
+       ao_serial_getchar(void);
+      </programlisting>
+      <para>
+       Returns the next character from the receive fifo, blocking
+       until a character is received if the fifo is empty.
+      </para>
+    </section>
+    <section>
+      <title>ao_serial_putchar</title>
+      <programlisting>
+       void
+       ao_serial_putchar(char c);
+      </programlisting>
+      <para>
+       Adds a character to the transmit fifo, blocking if the
+       fifo is full. Starts transmitting characters.
+      </para>
+    </section>
+    <section>
+      <title>ao_serial_drain</title>
+      <programlisting>
+       void
+       ao_serial_drain(void);
+      </programlisting>
+      <para>
+       Blocks until the transmit fifo is empty. Used internally
+       when changing serial speeds.
+      </para>
+    </section>
+    <section>
+      <title>ao_serial_set_speed</title>
+      <programlisting>
+       void
+       ao_serial_set_speed(uint8_t speed);
+      </programlisting>
+      <para>
+       Changes the serial baud rate to one of
+       AO_SERIAL_SPEED_4800, AO_SERIAL_SPEED_9600 or
+       AO_SERIAL_SPEED_57600. This first flushes the transmit
+       fifo using ao_serial_drain.
+      </para>
+    </section>
+    <section>
+      <title>ao_serial_init</title>
+      <programlisting>
+       void
+       ao_serial_init(void)
+      </programlisting>
+      <para>
+       Initializes the serial peripheral. Call this from 'main'
+       before jumping to ao_start_scheduler. The default speed
+       setting is AO_SERIAL_SPEED_4800.
+      </para>
+    </section>
   </chapter>
   <chapter>
     <title>CC1111 Radio peripheral</title>
-    <para>
-      The CC1111 radio transceiver sends and receives digital packets
-      with forward error correction and detection. The AltOS driver is
-      fairly specific to the needs of the TeleMetrum and TeleDongle
-      devices, using it for other tasks may require customization of
-      the driver itself. There are three basic modes of operation:
-      <orderedlist>
-       <listitem>
-         <para>
-           Telemetry mode. In this mode, TeleMetrum transmits telemetry
-           frames at a fixed rate. The frames are of fixed size. This
-           is strictly a one-way communication from TeleMetrum to
-           TeleDongle.
-         </para>
-       </listitem>
-       <listitem>
-         <para>
-           Packet mode. In this mode, the radio is used to create a
-           reliable duplex byte stream between TeleDongle and
-           TeleMetrum. This is an asymmetrical protocol with
-           TeleMetrum only transmitting in response to a packet sent
-           from TeleDongle. Thus getting data from TeleMetrum to
-           TeleDongle requires polling. The polling rate is adaptive,
-           when no data has been received for a while, the rate slows
-           down. The packets are checked at both ends and invalid
-           data are ignored.
-         </para>
-         <para>
-           On the TeleMetrum side, the packet link is hooked into the
-           stdio mechanism, providing an alternate data path for the
-           command processor. It is enabled when the unit boots up in
-           'idle' mode.
-         </para>
-         <para>
-           On the TeleDongle side, the packet link is enabled with a
-           command; data from the stdio package is forwarded over the
-           packet link providing a connection from the USB command
-           stream to the remote TeleMetrum device.
-         </para>
-       </listitem>
-       <listitem>
-         <para>
-           Radio Direction Finding mode. In this mode, TeleMetrum
-           constructs a special packet that sounds like an audio tone
-           when received by a conventional narrow-band FM
-           receiver. This is designed to provide a beacon to track
-           the device when other location mechanisms fail.
-         </para>
-       </listitem>
-      </orderedlist>
-    </para>
-    <variablelist>
-      <title>AltOS radio functions</title>
-      <varlistentry>
-       <term>ao_radio_set_telemetry</term>
-       <listitem>
-         <programlisting>
-void
-ao_radio_set_telemetry(void);
-         </programlisting>
-         <para>
-           Configures the radio to send or receive telemetry
-           packets. This includes packet length, modulation scheme and
-           other RF parameters. It does not include the base frequency
-           or channel though. Those are set at the time of transmission
-           or reception, in case the values are changed by the user.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_radio_set_packet</term>
-       <listitem>
-         <programlisting>
-void
-ao_radio_set_packet(void);
-         </programlisting>
-         <para>
-           Configures the radio to send or receive packet data.  This
-           includes packet length, modulation scheme and other RF
-           parameters. It does not include the base frequency or
-           channel though. Those are set at the time of transmission or
-           reception, in case the values are changed by the user.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_radio_set_rdf</term>
-       <listitem>
-         <programlisting>
-void
-ao_radio_set_rdf(void);
-         </programlisting>
-         <para>
-           Configures the radio to send RDF 'packets'. An RDF 'packet'
-           is a sequence of hex 0x55 bytes sent at a base bit rate of
-           2kbps using a 5kHz deviation. All of the error correction
-           and data whitening logic is turned off so that the resulting
-           modulation is received as a 1kHz tone by a conventional 70cm
-           FM audio receiver.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_radio_idle</term>
-       <listitem>
-         <programlisting>
-void
-ao_radio_idle(void);
-         </programlisting>
-         <para>
-           Sets the radio device to idle mode, waiting until it reaches
-           that state. This will terminate any in-progress transmit or
-           receive operation.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_radio_get</term>
-       <listitem>
-         <programlisting>
-void
-ao_radio_get(void);
-         </programlisting>
-         <para>
-           Acquires the radio mutex and then configures the radio
-           frequency using the global radio calibration and channel
-           values.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_radio_put</term>
-       <listitem>
-         <programlisting>
-void
-ao_radio_put(void);
-         </programlisting>
-         <para>
-           Releases the radio mutex.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_radio_abort</term>
-       <listitem>
-         <programlisting>
-void
-ao_radio_abort(void);
-         </programlisting>
-         <para>
-           Aborts any transmission or reception process by aborting the
-           associated DMA object and calling ao_radio_idle to terminate
-           the radio operation.
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
-    <variablelist>
-      <title>AltOS radio telemetry functions</title>
+    <section>
+      <title>Radio Introduction</title>
+      <para>
+       The CC1111 radio transceiver sends and receives digital packets
+       with forward error correction and detection. The AltOS driver is
+       fairly specific to the needs of the TeleMetrum and TeleDongle
+       devices, using it for other tasks may require customization of
+       the driver itself. There are three basic modes of operation:
+       <orderedlist>
+         <listitem>
+           <para>
+             Telemetry mode. In this mode, TeleMetrum transmits telemetry
+             frames at a fixed rate. The frames are of fixed size. This
+             is strictly a one-way communication from TeleMetrum to
+             TeleDongle.
+           </para>
+         </listitem>
+         <listitem>
+           <para>
+             Packet mode. In this mode, the radio is used to create a
+             reliable duplex byte stream between TeleDongle and
+             TeleMetrum. This is an asymmetrical protocol with
+             TeleMetrum only transmitting in response to a packet sent
+             from TeleDongle. Thus getting data from TeleMetrum to
+             TeleDongle requires polling. The polling rate is adaptive,
+             when no data has been received for a while, the rate slows
+             down. The packets are checked at both ends and invalid
+             data are ignored.
+           </para>
+           <para>
+             On the TeleMetrum side, the packet link is hooked into the
+             stdio mechanism, providing an alternate data path for the
+             command processor. It is enabled when the unit boots up in
+             'idle' mode.
+           </para>
+           <para>
+             On the TeleDongle side, the packet link is enabled with a
+             command; data from the stdio package is forwarded over the
+             packet link providing a connection from the USB command
+             stream to the remote TeleMetrum device.
+           </para>
+         </listitem>
+         <listitem>
+           <para>
+             Radio Direction Finding mode. In this mode, TeleMetrum
+             constructs a special packet that sounds like an audio tone
+             when received by a conventional narrow-band FM
+             receiver. This is designed to provide a beacon to track
+             the device when other location mechanisms fail.
+           </para>
+         </listitem>
+       </orderedlist>
+      </para>
+    </section>
+    <section>
+      <title>ao_radio_set_telemetry</title>
+       <programlisting>
+         void
+         ao_radio_set_telemetry(void);
+       </programlisting>
+       <para>
+         Configures the radio to send or receive telemetry
+         packets. This includes packet length, modulation scheme and
+         other RF parameters. It does not include the base frequency
+         or channel though. Those are set at the time of transmission
+         or reception, in case the values are changed by the user.
+       </para>
+    </section>
+    <section>
+      <title>ao_radio_set_packet</title>
+       <programlisting>
+         void
+         ao_radio_set_packet(void);
+       </programlisting>
+       <para>
+         Configures the radio to send or receive packet data.  This
+         includes packet length, modulation scheme and other RF
+         parameters. It does not include the base frequency or
+         channel though. Those are set at the time of transmission or
+         reception, in case the values are changed by the user.
+       </para>
+    </section>
+    <section>
+      <title>ao_radio_set_rdf</title>
+       <programlisting>
+         void
+         ao_radio_set_rdf(void);
+       </programlisting>
+       <para>
+         Configures the radio to send RDF 'packets'. An RDF 'packet'
+         is a sequence of hex 0x55 bytes sent at a base bit rate of
+         2kbps using a 5kHz deviation. All of the error correction
+         and data whitening logic is turned off so that the resulting
+         modulation is received as a 1kHz tone by a conventional 70cm
+         FM audio receiver.
+       </para>
+    </section>
+    <section>
+      <title>ao_radio_idle</title>
+       <programlisting>
+         void
+         ao_radio_idle(void);
+       </programlisting>
+       <para>
+         Sets the radio device to idle mode, waiting until it reaches
+         that state. This will terminate any in-progress transmit or
+         receive operation.
+       </para>
+    </section>
+    <section>
+      <title>ao_radio_get</title>
+       <programlisting>
+         void
+         ao_radio_get(void);
+       </programlisting>
+       <para>
+         Acquires the radio mutex and then configures the radio
+         frequency using the global radio calibration and channel
+         values.
+       </para>
+    </section>
+    <section>
+      <title>ao_radio_put</title>
+       <programlisting>
+         void
+         ao_radio_put(void);
+       </programlisting>
+       <para>
+         Releases the radio mutex.
+       </para>
+    </section>
+    <section>
+      <title>ao_radio_abort</title>
+       <programlisting>
+         void
+         ao_radio_abort(void);
+       </programlisting>
+       <para>
+         Aborts any transmission or reception process by aborting the
+         associated DMA object and calling ao_radio_idle to terminate
+         the radio operation.
+       </para>
+    </section>
+    <section>
+      <title>Radio Telemetry</title>
       <para>
        In telemetry mode, you can send or receive a telemetry
        packet. The data from receiving a packet also includes the RSSI
        and status values supplied by the receiver. These are added
        after the telemetry data.
       </para>
-      <varlistentry>
-       <term>ao_radio_send</term>
-       <listitem>
-         <programlisting>
-void
-ao_radio_send(__xdata struct ao_telemetry *telemetry);
-         </programlisting>
-         <para>
-           This sends the specific telemetry packet, waiting for the
-           transmission to complete. The radio must have been set to
-           telemetry mode. This function calls ao_radio_get() before
-           sending, and ao_radio_put() afterwards, to correctly
-           serialize access to the radio device.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_radio_recv</term>
-       <listitem>
-         <programlisting>
-void
-ao_radio_recv(__xdata struct ao_radio_recv *radio);
-         </programlisting>
-         <para>
-           This blocks waiting for a telemetry packet to be received.
-           The radio must have been set to telemetry mode. This
-           function calls ao_radio_get() before receiving, and
-           ao_radio_put() afterwards, to correctly serialize access
-           to the radio device. This returns non-zero if a packet was
-           received, or zero if the operation was aborted (from some
-           other task calling ao_radio_abort()).
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
-    <variablelist>
-      <title>AltOS radio direction finding function</title>
+      <section>
+       <title>ao_radio_send</title>
+       <programlisting>
+         void
+         ao_radio_send(__xdata struct ao_telemetry *telemetry);
+       </programlisting>
+       <para>
+         This sends the specific telemetry packet, waiting for the
+         transmission to complete. The radio must have been set to
+         telemetry mode. This function calls ao_radio_get() before
+         sending, and ao_radio_put() afterwards, to correctly
+         serialize access to the radio device.
+       </para>
+      </section>
+      <section>
+       <title>ao_radio_recv</title>
+       <programlisting>
+         void
+         ao_radio_recv(__xdata struct ao_radio_recv *radio);
+       </programlisting>
+       <para>
+         This blocks waiting for a telemetry packet to be received.
+         The radio must have been set to telemetry mode. This
+         function calls ao_radio_get() before receiving, and
+         ao_radio_put() afterwards, to correctly serialize access
+         to the radio device. This returns non-zero if a packet was
+         received, or zero if the operation was aborted (from some
+         other task calling ao_radio_abort()).
+       </para>
+      </section>
+    </section>
+    <section>
+      <title>Radio Direction Finding</title>
       <para>
        In radio direction finding mode, there's just one function to
        use
       </para>
-      <varlistentry>
-       <term>ao_radio_rdf</term>
-       <listitem>
-         <programlisting>
-void
-ao_radio_rdf(int ms);
-         </programlisting>
-         <para>
-           This sends an RDF packet lasting for the specified amount
-           of time. The maximum length is 1020 ms.
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
-    <variablelist>
-      <title>Packet mode functions</title>
+      <section>
+       <title>ao_radio_rdf</title>
+       <programlisting>
+         void
+         ao_radio_rdf(int ms);
+       </programlisting>
+       <para>
+         This sends an RDF packet lasting for the specified amount
+         of time. The maximum length is 1020 ms.
+       </para>
+      </section>
+    </section>
+    <section>
+      <title>Radio Packet Mode</title>
       <para>
        Packet mode is asymmetrical and is configured at compile time
        for either master or slave mode (but not both). The basic I/O
        functions look the same at both ends, but the internals are
        different, along with the initialization steps.
       </para>
-      <varlistentry>
-       <term>ao_packet_putchar</term>
-       <listitem>
-         <programlisting>
-void
-ao_packet_putchar(char c);
-         </programlisting>
-         <para>
-           If the output queue is full, this first blocks waiting for
-           that data to be delivered. Then, queues a character for
-           packet transmission. On the master side, this will
-           transmit a packet if the output buffer is full. On the
-           slave side, any pending data will be sent the next time
-           the master polls for data.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_packet_pollchar</term>
-       <listitem>
-         <programlisting>
-char
-ao_packet_pollchar(void);
-         </programlisting>
-         <para>
-           This returns a pending input character if available,
-           otherwise returns AO_READ_AGAIN. On the master side, if
-           this empties the buffer, it triggers a poll for more data.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_packet_slave_start</term>
-       <listitem>
-         <programlisting>
-void
-ao_packet_slave_start(void);
-         </programlisting>
-         <para>
-           This is available only on the slave side and starts a task
-           to listen for packet data.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_packet_slave_stop</term>
-       <listitem>
-         <programlisting>
-void
-ao_packet_slave_stop(void);
-         </programlisting>
-         <para>
-           Disables the packet slave task, stopping the radio receiver.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_packet_slave_init</term>
-       <listitem>
-         <programlisting>
-void
-ao_packet_slave_init(void);
-         </programlisting>
-         <para>
-           Adds the packet stdio functions to the stdio package so
-           that when packet slave mode is enabled, characters will
-           get send and received through the stdio functions.
-         </para>
-       </listitem>
-      </varlistentry>
-      <varlistentry>
-       <term>ao_packet_master_init</term>
-       <listitem>
-         <programlisting>
-void
-ao_packet_master_init(void);
-         </programlisting>
-         <para>
-           Adds the 'p' packet forward command to start packet mode.
-         </para>
-       </listitem>
-      </varlistentry>
-    </variablelist>
+      <section>
+       <title>ao_packet_putchar</title>
+       <programlisting>
+         void
+         ao_packet_putchar(char c);
+       </programlisting>
+       <para>
+         If the output queue is full, this first blocks waiting for
+         that data to be delivered. Then, queues a character for
+         packet transmission. On the master side, this will
+         transmit a packet if the output buffer is full. On the
+         slave side, any pending data will be sent the next time
+         the master polls for data.
+       </para>
+      </section>
+      <section>
+       <title>ao_packet_pollchar</title>
+       <programlisting>
+         char
+         ao_packet_pollchar(void);
+       </programlisting>
+       <para>
+         This returns a pending input character if available,
+         otherwise returns AO_READ_AGAIN. On the master side, if
+         this empties the buffer, it triggers a poll for more data.
+       </para>
+      </section>
+      <section>
+       <title>ao_packet_slave_start</title>
+       <programlisting>
+         void
+         ao_packet_slave_start(void);
+       </programlisting>
+       <para>
+         This is available only on the slave side and starts a task
+         to listen for packet data.
+       </para>
+      </section>
+      <section>
+       <title>ao_packet_slave_stop</title>
+       <programlisting>
+         void
+         ao_packet_slave_stop(void);
+       </programlisting>
+       <para>
+         Disables the packet slave task, stopping the radio receiver.
+       </para>
+      </section>
+      <section>
+       <title>ao_packet_slave_init</title>
+       <programlisting>
+         void
+         ao_packet_slave_init(void);
+       </programlisting>
+       <para>
+         Adds the packet stdio functions to the stdio package so
+         that when packet slave mode is enabled, characters will
+         get send and received through the stdio functions.
+       </para>
+      </section>
+      <section>
+       <title>ao_packet_master_init</title>
+       <programlisting>
+         void
+         ao_packet_master_init(void);
+       </programlisting>
+       <para>
+         Adds the 'p' packet forward command to start packet mode.
+       </para>
+      </section>
+    </section>
   </chapter>
 </book>