/* * Copyright © 2011 Keith Packard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ namespace matrix { public typedef real[*] vec_t; public typedef real[*,*] mat_t; public mat_t transpose(mat_t m) { int[2] d = dims(m); return (real[d[1],d[0]]) { [i,j] = m[j,i] }; } public void print_mat(string name, mat_t m) { int[2] d = dims(m); printf ("%s {\n", name); for (int y = 0; y < d[0]; y++) { for (int x = 0; x < d[1]; x++) printf (" %14.8f", m[y,x]); printf ("\n"); } printf ("}\n"); } public void print_vec(string name, vec_t v) { int d = dim(v); printf ("%s {", name); for (int x = 0; x < d; x++) printf (" %14.8f", v[x]); printf (" }\n"); } public mat_t multiply(mat_t a, mat_t b) { int[2] da = dims(a); int[2] db = dims(b); assert(da[1] == db[0], "invalid matrix dimensions"); real dot(int rx, int ry) { real r = 0.0; for (int i = 0; i < da[1]; i++) r += a[ry, i] * b[i, rx]; return imprecise(r); } mat_t r = (real[da[0], db[1]]) { [ry,rx] = dot(rx,ry) }; return r; } public mat_t multiply_mat_val(mat_t m, real value) { int[2] d = dims(m); for (int j = 0; j < d[1]; j++) for (int i = 0; i < d[0]; i++) m[i,j] *= value; return m; } public mat_t add(mat_t a, mat_t b) { int[2] da = dims(a); int[2] db = dims(b); assert(da[0] == db[0] && da[1] == db[1], "mismatching dim in plus"); return (real[da[0], da[1]]) { [y,x] = a[y,x] + b[y,x] }; } public mat_t subtract(mat_t a, mat_t b) { int[2] da = dims(a); int[2] db = dims(b); assert(da[0] == db[0] && da[1] == db[1], "mismatching dim in minus"); return (real[da[0], da[1]]) { [y,x] = a[y,x] - b[y,x] }; } public mat_t inverse(mat_t m) { int[2] d = dims(m); real[1,1] inverse_1(real[1,1] m) { return (real[1,1]) { { 1/m[0,0] } }; } if (d[0] == 1 && d[1] == 1) return inverse_1(m); real[2,2] inverse_2(real[2,2] m) { real a = m[0,0], b = m[0,1]; real c = m[1,0], d = m[1,1]; real det = a * d - b * c; return multiply_mat_val((real[2,2]) { { d, -b }, { -c, a } }, 1/det); } if (d[0] == 2 && d[1] == 2) return inverse_2(m); real[3,3] inverse_3(real[3,3] m) { real a = m[0,0], b = m[0,1], c = m[0, 2]; real d = m[1,0], e = m[1,1], f = m[1, 2]; real g = m[2,0], h = m[2,1], k = m[2, 2]; real Z = a*(e*k-f*h) + b*(f*g - d*k) + c*(d*h-e*g); real A = (e*k-f*h), B = (c*h-b*k), C=(b*f-c*e); real D = (f*g-d*k), E = (a*k-c*g), F=(c*d-a*f); real G = (d*h-e*g), H = (b*g-a*h), K=(a*e-b*d); return multiply_mat_val((real[3,3]) { { A, B, C }, { D, E, F }, { G, H, K }}, 1/Z); } if (d[0] == 3 && d[1] == 3) return inverse_3(m); assert(false, "cannot invert %v\n", d); return m; } public mat_t identity(int d) { return (real[d,d]) { [i,j] = (i == j) ? 1 : 0 }; } public vec_t vec_subtract(vec_t a, vec_t b) { int da = dim(a); int db = dim(b); assert(da == db, "mismatching dim in minus"); return (real[da]) { [x] = a[x] - b[x] }; } public vec_t vec_add(vec_t a, vec_t b) { int da = dim(a); int db = dim(b); assert(da == db, "mismatching dim in plus"); return (real[da]) { [x] = a[x] + b[x] }; } public vec_t multiply_vec_mat(vec_t v, mat_t m) { mat_t r2 = matrix::multiply((real[dim(v),1]) { [y,x] = v[y] }, m); return (real[dim(v)]) { [y] = r2[y,0] }; } public vec_t multiply_mat_vec(mat_t m, vec_t v) { mat_t r2 = matrix::multiply(m, (real[dim(v), 1]) { [y,x] = v[y] }); int[2] d = dims(m); return (real[d[0]]) { [y] = r2[y,0] }; } }