#!/usr/bin/env nickle /* * Copyright © 2013 Keith Packard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ autoimport ParseArgs; load "load_csv.5c" import load_csv; load "matrix.5c" import matrix; load "kalman_filter.5c" import kalman; load "../util/atmosphere.5c" real height_scale = 1.0; real accel_scale = 1.0; real speed_scale = 1.0; /* * State: * * x[0] = pressure * x[1] = delta pressure * x[2] = delta delta pressure */ /* * Measurement * * z[0] = pressure */ real default_σ_m = 5; real default_σ_h = 2.4; /* pascals */ real[3,3] model_error(t, Φ) = multiply_mat_val ((real[3,3]) { { t**5 / 20, t**4 / 8, t**3 / 6 }, { t**4 / 8, t**3 / 3, t**2 / 2 }, { t**3 / 6, t**2 / 2, t } }, Φ); parameters_t param_baro(real t, real σ_m, real σ_h) { if (σ_m == 0) { printf ("Using default σ_m\n"); σ_m = default_σ_m; } if (σ_h == 0) { printf ("Using default σ_h\n"); σ_h = default_σ_h; } σ_m = imprecise(σ_m) * accel_scale; σ_h = imprecise(σ_h) * height_scale; t = imprecise(t); return (parameters_t) { /* * Equation computing state k from state k-1 * * height = height- + velocity- * t + acceleration- * t² / 2 * velocity = velocity- + acceleration- * t * acceleration = acceleration- */ .a = (real[3,3]) { { 1, t * height_scale / speed_scale , t**2/2 * height_scale / accel_scale }, { 0, 1, t * speed_scale / accel_scale }, { 0, 0, 1 } }, /* * Model error covariance. The only inaccuracy in the * model is the assumption that acceleration is constant */ .q = model_error (t, σ_m**2), /* * Measurement error covariance * Our sensors are independent, so * this matrix is zero off-diagonal */ .r = (real[1,1]) { { σ_h ** 2 }, }, /* * Extract measurements from state, * this just pulls out the height * values. */ .h = (real[1,3]) { { 1, 0, 0 }, }, }; } bool just_kalman = true; real accel_input_scale = 1; real error_avg; void update_error_avg(real e) { if (e < 0) e = -e; # if (e > 1000) # e = 1000; error_avg -= error_avg / 8; error_avg += (e * e) / 8; } void run_flight(string name, file f, bool summary, real σ_m, real σ_h) { state_t current_both = { .x = (real[3]) { 0, 0, 0 }, .p = (real[3,3]) { { 0 ... } ... }, }; state_t current_accel = current_both; state_t current_baro = current_both; real t; real kalman_apogee_time = -1; real kalman_apogee = 0; real raw_apogee_time_first; real raw_apogee_time_last; real raw_apogee = 0; real speed = 0; real prev_acceleration = 0; real height, max_height = 0; state_t apogee_state; parameters_fast_t fast_baro; real fast_delta_t = 0; bool fast = true; int speed_lock = 0; error_avg = 0; for (;;) { record_t record = parse_record(f, 1.0); if (record.done) break; if (is_uninit(&t)) t = record.time; real delta_t = record.time - t; if (delta_t < 0.096) continue; # delta_t = 0.096; /* pretend that we're getting micropeak-rate data */ # record.time = record.time + delta_t; t = record.time; if (record.height > raw_apogee) { raw_apogee_time_first = record.time; raw_apogee = record.height; } if (record.height == raw_apogee) raw_apogee_time_last = record.time; real pressure = record.pressure; if (current_baro.x[0] == 0) current_baro.x[0] = pressure; vec_t z_baro = (real[1]) { record.pressure * height_scale }; real error_h; if (fast) { if (delta_t != fast_delta_t) { fast_baro = convert_to_fast(param_baro(delta_t, σ_m, σ_h)); fast_delta_t = delta_t; } current_baro.x = predict_fast(current_baro.x, fast_baro); error_h = current_baro.x[0] - pressure; current_baro.x = correct_fast(current_baro.x, z_baro, fast_baro); } else { parameters_t p_baro = param_baro(delta_t, σ_m, σ_h); state_t pred_baro = predict(current_baro, p_baro); error_h = current_baro.x[0] - pressure; state_t next_baro = correct(pred_baro, z_baro, p_baro); current_baro = next_baro; } update_error_avg(error_h); /* Don't check for maximum altitude if we're accelerating upwards */ if (current_baro.x[2] / accel_scale < -2 * σ_m) speed_lock = 10; else if (speed_lock > 0) speed_lock--; height = pressure_to_altitude(current_baro.x[0] / height_scale); if (speed_lock == 0 && height > max_height) max_height = height; printf ("%16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %d %d\n", record.time, record.pressure, pressure_to_altitude(record.pressure), current_baro.x[0] / height_scale, current_baro.x[1] / speed_scale, current_baro.x[2] / accel_scale, height, max_height, error_h, error_avg, error_avg > 50000 ? 0 : 95000, speed_lock > 0 ? 0 : 4500); if (kalman_apogee_time < 0) { if (current_baro.x[1] > 1) { kalman_apogee = current_both.x[0]; kalman_apogee_time = record.time; } } } real raw_apogee_time = (raw_apogee_time_last + raw_apogee_time_first) / 2; if (summary && !just_kalman) { printf("%s: kalman (%8.2f m %6.2f s) raw (%8.2f m %6.2f s) error %6.2f s\n", name, kalman_apogee, kalman_apogee_time, raw_apogee, raw_apogee_time, kalman_apogee_time - raw_apogee_time); } } void main() { bool summary = false; int user_argind = 1; real time_step = 0.01; string compute = "none"; string prefix = "AO_K"; real σ_m = default_σ_m; real σ_h = default_σ_h; ParseArgs::argdesc argd = { .args = { { .var = { .arg_flag = &summary }, .abbr = 's', .name = "summary", .desc = "Print a summary of the flight" }, { .var = { .arg_real = &time_step, }, .abbr = 't', .name = "time", .expr_name = "", .desc = "Set time step for convergence" }, { .var = { .arg_string = &prefix }, .abbr = 'p', .name = "prefix", .expr_name = "", .desc = "Prefix for compute output" }, { .var = { .arg_string = &compute }, .abbr = 'c', .name = "compute", .expr_name = "{baro,none}", .desc = "Compute Kalman factor through convergence" }, { .var = { .arg_real = &σ_m }, .abbr = 'M', .name = "model", .expr_name = "", .desc = "Model co-variance for acceleration" }, { .var = { .arg_real = &σ_h }, .abbr = 'H', .name = "height", .expr_name = "", .desc = "Measure co-variance for height" }, }, .unknown = &user_argind, }; ParseArgs::parseargs(&argd, &argv); if (compute != "none") { parameters_t param; printf ("/* Kalman matrix for micro %s\n", compute); printf (" * step = %f\n", time_step); printf (" * σ_m = %f\n", σ_m); switch (compute) { case "baro": printf (" * σ_h = %f\n", σ_h); param = param_baro(time_step, σ_m, σ_h); break; } printf (" */\n\n"); mat_t k = converge(param); int[] d = dims(k); int time_inc = floor(1/time_step + 0.5); for (int i = 0; i < d[0]; i++) for (int j = 0; j < d[1]; j++) { string name; if (d[1] == 1) name = sprintf("%s_K%d_%d", prefix, i, time_inc); else name = sprintf("%s_K%d%d_%d", prefix, i, j, time_inc); printf ("#define %s to_fix32(%12.10f)\n", name, k[i,j]); } printf ("\n"); exit(0); } string[dim(argv) - user_argind] rest = { [i] = argv[i+user_argind] }; # height_scale = accel_scale = speed_scale = 1; if (dim(rest) == 0) run_flight("", stdin, summary, σ_m, σ_h); else { for (int i = 0; i < dim(rest); i++) { twixt(file f = File::open(rest[i], "r"); File::close(f)) { run_flight(rest[i], f, summary, σ_m, σ_h); } } } } main();