Bump Java library versions
[fw/altos] / altoslib / AltosConvert.java
1 /*
2  * Copyright © 2010 Keith Packard <keithp@keithp.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; version 2 of the License.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License along
14  * with this program; if not, write to the Free Software Foundation, Inc.,
15  * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
16  */
17
18 /*
19  * Sensor data conversion functions
20  */
21 package org.altusmetrum.altoslib_8;
22
23 public class AltosConvert {
24         /*
25          * Pressure Sensor Model, version 1.1
26          *
27          * written by Holly Grimes
28          *
29          * Uses the International Standard Atmosphere as described in
30          *   "A Quick Derivation relating altitude to air pressure" (version 1.03)
31          *    from the Portland State Aerospace Society, except that the atmosphere
32          *    is divided into layers with each layer having a different lapse rate.
33          *
34          * Lapse rate data for each layer was obtained from Wikipedia on Sept. 1, 2007
35          *    at site <http://en.wikipedia.org/wiki/International_Standard_Atmosphere
36          *
37          * Height measurements use the local tangent plane.  The postive z-direction is up.
38          *
39          * All measurements are given in SI units (Kelvin, Pascal, meter, meters/second^2).
40          *   The lapse rate is given in Kelvin/meter, the gas constant for air is given
41          *   in Joules/(kilogram-Kelvin).
42          */
43
44         public static final double GRAVITATIONAL_ACCELERATION = -9.80665;
45         public static final double AIR_GAS_CONSTANT             = 287.053;
46         public static final double NUMBER_OF_LAYERS             = 7;
47         public static final double MAXIMUM_ALTITUDE             = 84852.0;
48         public static final double MINIMUM_PRESSURE             = 0.3734;
49         public static final double LAYER0_BASE_TEMPERATURE      = 288.15;
50         public static final double LAYER0_BASE_PRESSURE = 101325;
51
52         /* lapse rate and base altitude for each layer in the atmosphere */
53         public static final double[] lapse_rate = {
54                 -0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002
55         };
56
57         public static final int[] base_altitude = {
58                 0, 11000, 20000, 32000, 47000, 51000, 71000
59         };
60
61         /* outputs atmospheric pressure associated with the given altitude.
62          * altitudes are measured with respect to the mean sea level
63          */
64         public static double
65         altitude_to_pressure(double altitude)
66         {
67                 double base_temperature = LAYER0_BASE_TEMPERATURE;
68                 double base_pressure = LAYER0_BASE_PRESSURE;
69
70                 double pressure;
71                 double base; /* base for function to determine pressure */
72                 double exponent; /* exponent for function to determine pressure */
73                 int layer_number; /* identifies layer in the atmosphere */
74                 double delta_z; /* difference between two altitudes */
75
76                 if (altitude > MAXIMUM_ALTITUDE) /* FIX ME: use sensor data to improve model */
77                         return 0;
78
79                 /* calculate the base temperature and pressure for the atmospheric layer
80                    associated with the inputted altitude */
81                 for(layer_number = 0; layer_number < NUMBER_OF_LAYERS - 1 && altitude > base_altitude[layer_number + 1]; layer_number++) {
82                         delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
83                         if (lapse_rate[layer_number] == 0.0) {
84                                 exponent = GRAVITATIONAL_ACCELERATION * delta_z
85                                         / AIR_GAS_CONSTANT / base_temperature;
86                                 base_pressure *= Math.exp(exponent);
87                         }
88                         else {
89                                 base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
90                                 exponent = GRAVITATIONAL_ACCELERATION /
91                                         (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
92                                 base_pressure *= Math.pow(base, exponent);
93                         }
94                         base_temperature += delta_z * lapse_rate[layer_number];
95                 }
96
97                 /* calculate the pressure at the inputted altitude */
98                 delta_z = altitude - base_altitude[layer_number];
99                 if (lapse_rate[layer_number] == 0.0) {
100                         exponent = GRAVITATIONAL_ACCELERATION * delta_z
101                                 / AIR_GAS_CONSTANT / base_temperature;
102                         pressure = base_pressure * Math.exp(exponent);
103                 }
104                 else {
105                         base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
106                         exponent = GRAVITATIONAL_ACCELERATION /
107                                 (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
108                         pressure = base_pressure * Math.pow(base, exponent);
109                 }
110
111                 return pressure;
112         }
113
114
115 /* outputs the altitude associated with the given pressure. the altitude
116    returned is measured with respect to the mean sea level */
117         public static double
118         pressure_to_altitude(double pressure)
119         {
120
121                 double next_base_temperature = LAYER0_BASE_TEMPERATURE;
122                 double next_base_pressure = LAYER0_BASE_PRESSURE;
123
124                 double altitude;
125                 double base_pressure;
126                 double base_temperature;
127                 double base; /* base for function to determine base pressure of next layer */
128                 double exponent; /* exponent for function to determine base pressure
129                                     of next layer */
130                 double coefficient;
131                 int layer_number; /* identifies layer in the atmosphere */
132                 int delta_z; /* difference between two altitudes */
133
134                 if (pressure < 0)  /* illegal pressure */
135                         return -1;
136                 if (pressure < MINIMUM_PRESSURE) /* FIX ME: use sensor data to improve model */
137                         return MAXIMUM_ALTITUDE;
138
139                 /* calculate the base temperature and pressure for the atmospheric layer
140                    associated with the inputted pressure. */
141                 layer_number = -1;
142                 do {
143                         layer_number++;
144                         base_pressure = next_base_pressure;
145                         base_temperature = next_base_temperature;
146                         delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
147                         if (lapse_rate[layer_number] == 0.0) {
148                                 exponent = GRAVITATIONAL_ACCELERATION * delta_z
149                                         / AIR_GAS_CONSTANT / base_temperature;
150                                 next_base_pressure *= Math.exp(exponent);
151                         }
152                         else {
153                                 base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
154                                 exponent = GRAVITATIONAL_ACCELERATION /
155                                         (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
156                                 next_base_pressure *= Math.pow(base, exponent);
157                         }
158                         next_base_temperature += delta_z * lapse_rate[layer_number];
159                 }
160                 while(layer_number < NUMBER_OF_LAYERS - 1 && pressure < next_base_pressure);
161
162                 /* calculate the altitude associated with the inputted pressure */
163                 if (lapse_rate[layer_number] == 0.0) {
164                         coefficient = (AIR_GAS_CONSTANT / GRAVITATIONAL_ACCELERATION)
165                                 * base_temperature;
166                         altitude = base_altitude[layer_number]
167                                 + coefficient * Math.log(pressure / base_pressure);
168                 }
169                 else {
170                         base = pressure / base_pressure;
171                         exponent = AIR_GAS_CONSTANT * lapse_rate[layer_number]
172                                 / GRAVITATIONAL_ACCELERATION;
173                         coefficient = base_temperature / lapse_rate[layer_number];
174                         altitude = base_altitude[layer_number]
175                                 + coefficient * (Math.pow(base, exponent) - 1);
176                 }
177
178                 return altitude;
179         }
180
181         public static double
182         cc_battery_to_voltage(double battery)
183         {
184                 return battery / 32767.0 * 5.0;
185         }
186
187         public static double
188         cc_ignitor_to_voltage(double ignite)
189         {
190                 return ignite / 32767 * 15.0;
191         }
192
193         public static double
194         barometer_to_pressure(double count)
195         {
196                 return ((count / 16.0) / 2047.0 + 0.095) / 0.009 * 1000.0;
197         }
198
199         static double
200         thermometer_to_temperature(double thermo)
201         {
202                 return (thermo - 19791.268) / 32728.0 * 1.25 / 0.00247;
203         }
204
205         static double mega_adc(int raw) {
206                 return raw / 4095.0;
207         }
208
209         static public double mega_battery_voltage(int v_batt) {
210                 if (v_batt != AltosLib.MISSING)
211                         return 3.3 * mega_adc(v_batt) * (5.6 + 10.0) / 10.0;
212                 return AltosLib.MISSING;
213         }
214
215         static double mega_pyro_voltage(int raw) {
216                 if (raw != AltosLib.MISSING)
217                         return 3.3 * mega_adc(raw) * (100.0 + 27.0) / 27.0;
218                 return AltosLib.MISSING;
219         }
220
221         static double tele_mini_voltage(int sensor) {
222                 double  supply = 3.3;
223
224                 return sensor / 32767.0 * supply * 127/27;
225         }
226
227         static double tele_gps_voltage(int sensor) {
228                 double  supply = 3.3;
229
230                 return sensor / 32767.0 * supply * (5.6 + 10.0) / 10.0;
231         }
232
233         static double tele_bt_3_battery(int raw) {
234                 if (raw == AltosLib.MISSING)
235                         return AltosLib.MISSING;
236                 return 3.3 * mega_adc(raw) * (5.1 + 10.0) / 10.0;
237         }
238
239         static double easy_mini_voltage(int sensor, int serial) {
240                 double  supply = 3.3;
241                 double  diode_offset = 0.0;
242
243                 /* early prototypes had a 3.0V regulator */
244                 if (serial < 1000)
245                         supply = 3.0;
246
247                 /* Purple v1.0 boards had the sensor after the
248                  * blocking diode, which drops about 150mV
249                  */
250                 if (serial < 1665)
251                         diode_offset = 0.150;
252
253                 return sensor / 32767.0 * supply * 127/27 + diode_offset;
254         }
255
256         public static double radio_to_frequency(int freq, int setting, int cal, int channel) {
257                 double  f;
258
259                 if (freq > 0)
260                         f = freq / 1000.0;
261                 else {
262                         if (setting <= 0)
263                                 setting = cal;
264                         f = 434.550 * setting / cal;
265                         /* Round to nearest 50KHz */
266                         f = Math.floor (20.0 * f + 0.5) / 20.0;
267                 }
268                 return f + channel * 0.100;
269         }
270
271         public static int radio_frequency_to_setting(double frequency, int cal) {
272                 double  set = frequency / 434.550 * cal;
273
274                 return (int) Math.floor (set + 0.5);
275         }
276
277         public static int radio_frequency_to_channel(double frequency) {
278                 int     channel = (int) Math.floor ((frequency - 434.550) / 0.100 + 0.5);
279
280                 if (channel < 0)
281                         channel = 0;
282                 if (channel > 9)
283                         channel = 9;
284                 return channel;
285         }
286
287         public static double radio_channel_to_frequency(int channel) {
288                 return 434.550 + channel * 0.100;
289         }
290
291         public static int[] ParseHex(String line) {
292                 String[] tokens = line.split("\\s+");
293                 int[] array = new int[tokens.length];
294
295                 for (int i = 0; i < tokens.length; i++)
296                         try {
297                                 array[i] = Integer.parseInt(tokens[i], 16);
298                         } catch (NumberFormatException ne) {
299                                 return null;
300                         }
301                 return array;
302         }
303
304         public static double meters_to_feet(double meters) {
305                 return meters * (100 / (2.54 * 12));
306         }
307
308         public static double feet_to_meters(double feet) {
309                 return feet * 12 * 2.54 / 100.0;
310         }
311
312         public static double meters_to_miles(double meters) {
313                 return meters_to_feet(meters) / 5280;
314         }
315
316         public static double miles_to_meters(double miles) {
317                 return feet_to_meters(miles * 5280);
318         }
319
320         public static double meters_to_mph(double mps) {
321                 return meters_to_miles(mps) * 3600;
322         }
323
324         public static double mph_to_meters(double mps) {
325                 return miles_to_meters(mps) / 3600;
326         }
327
328         public static double meters_to_mach(double meters) {
329                 return meters / 343;            /* something close to mach at usual rocket sites */
330         }
331
332         public static double meters_to_g(double meters) {
333                 return meters / 9.80665;
334         }
335
336         public static double c_to_f(double c) {
337                 return c * 9/5 + 32;
338         }
339
340         public static double f_to_c(double c) {
341                 return (c - 32) * 5/9;
342         }
343
344         public static boolean imperial_units = false;
345
346         public static AltosDistance distance = new AltosDistance();
347
348         public static AltosHeight height = new AltosHeight();
349
350         public static AltosSpeed speed = new AltosSpeed();
351
352         public static AltosAccel accel = new AltosAccel();
353
354         public static AltosTemperature temperature = new AltosTemperature();
355
356         public static AltosOrient orient = new AltosOrient();
357
358         public static AltosVoltage voltage = new AltosVoltage();
359
360         public static AltosLatitude latitude = new AltosLatitude();
361
362         public static AltosLongitude longitude = new AltosLongitude();
363
364         public static String show_gs(String format, double a) {
365                 a = meters_to_g(a);
366                 format = format.concat(" g");
367                 return String.format(format, a);
368         }
369
370         public static String say_gs(double a) {
371                 return String.format("%6.0 gees", meters_to_g(a));
372         }
373
374         public static int checksum(int[] data, int start, int length) {
375                 int     csum = 0x5a;
376                 for (int i = 0; i < length; i++)
377                         csum += data[i + start];
378                 return csum & 0xff;
379         }
380
381         public static double beep_value_to_freq(int value) {
382                 if (value == 0)
383                         return 4000;
384                 return 1.0/2.0 * (24.0e6/32.0) / (double) value;
385         }
386
387         public static int beep_freq_to_value(double freq) {
388                 if (freq == 0)
389                         return 94;
390                 return (int) Math.floor (1.0/2.0 * (24.0e6/32.0) / freq + 0.5);
391         }
392
393         public static final int BEARING_LONG = 0;
394         public static final int BEARING_SHORT = 1;
395         public static final int BEARING_VOICE = 2;
396
397         public static String bearing_to_words(int length, double bearing) {
398                 String [][] bearing_string = {
399                         {
400                                 "North", "North North East", "North East", "East North East",
401                                 "East", "East South East", "South East", "South South East",
402                                 "South", "South South West", "South West", "West South West",
403                                 "West", "West North West", "North West", "North North West"
404                         }, {
405                                 "N", "NNE", "NE", "ENE",
406                                 "E", "ESE", "SE", "SSE",
407                                 "S", "SSW", "SW", "WSW",
408                                 "W", "WNW", "NW", "NNW"
409                         }, {
410                                 "north", "nor nor east", "north east", "east nor east",
411                                 "east", "east sow east", "south east", "sow sow east",
412                                 "south", "sow sow west", "south west", "west sow west",
413                                 "west", "west nor west", "north west", "nor nor west "
414                         }
415                 };
416                 return bearing_string[length][(int)((bearing / 90 * 8 + 1) / 2)%16];
417         }
418 }