Merge branch 'upstream' into dfsg-orig
[debian/gnuradio] / gnuradio-examples / python / pfb / channelize.py
diff --git a/gnuradio-examples/python/pfb/channelize.py b/gnuradio-examples/python/pfb/channelize.py
new file mode 100755 (executable)
index 0000000..27d87e5
--- /dev/null
@@ -0,0 +1,177 @@
+#!/usr/bin/env python
+#
+# Copyright 2009 Free Software Foundation, Inc.
+# 
+# This file is part of GNU Radio
+# 
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+# 
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+# 
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+# 
+
+from gnuradio import gr, blks2
+import os, time
+import scipy, pylab
+from scipy import fftpack
+from pylab import mlab
+
+class pfb_top_block(gr.top_block):
+    def __init__(self):
+        gr.top_block.__init__(self)
+
+        self._N = 2000000        # number of samples to use
+        self._fs = 9000          # initial sampling rate
+        self._M = 9              # Number of channels to channelize
+
+        # Create a set of taps for the PFB channelizer
+        self._taps = gr.firdes.low_pass_2(1, self._fs, 475.50, 50, 
+                                          attenuation_dB=10, window=gr.firdes.WIN_BLACKMAN_hARRIS)
+
+        # Calculate the number of taps per channel for our own information
+        tpc = scipy.ceil(float(len(self._taps)) /  float(self._M))
+        print "Number of taps:     ", len(self._taps)
+        print "Number of channels: ", self._M
+        print "Taps per channel:   ", tpc
+        
+        # Create a set of signals at different frequencies
+        #   freqs lists the frequencies of the signals that get stored 
+        #   in the list "signals", which then get summed together
+        self.signals = list()
+        self.add = gr.add_cc()
+        freqs = [-4070, -3050, -2030, -1010, 10, 1020, 2040, 3060, 4080]
+        for i in xrange(len(freqs)):
+            self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1))
+            self.connect(self.signals[i], (self.add,i))
+
+        self.head = gr.head(gr.sizeof_gr_complex, self._N)
+
+        # Construct the channelizer filter
+        self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps)
+
+        # Construct a vector sink for the input signal to the channelizer
+        self.snk_i = gr.vector_sink_c()
+
+        # Connect the blocks
+        self.connect(self.add, self.head, self.pfb)
+        self.connect(self.add, self.snk_i)
+
+        # Create a vector sink for each of M output channels of the filter and connect it
+        self.snks = list()
+        for i in xrange(self._M):
+            self.snks.append(gr.vector_sink_c())
+            self.connect((self.pfb, i), self.snks[i])
+                             
+
+def main():
+    tstart = time.time()
+    
+    tb = pfb_top_block()
+    tb.run()
+
+    tend = time.time()
+    print "Run time: %f" % (tend - tstart)
+
+    if 1:
+        fig_in = pylab.figure(1, figsize=(16,9), facecolor="w")
+        fig1 = pylab.figure(2, figsize=(16,9), facecolor="w")
+        fig2 = pylab.figure(3, figsize=(16,9), facecolor="w")
+        
+        Ns = 1000
+        Ne = 10000
+
+        fftlen = 8192
+        winfunc = scipy.blackman
+        fs = tb._fs
+
+        # Plot the input signal on its own figure
+        d = tb.snk_i.data()[Ns:Ne]
+        spin_f = fig_in.add_subplot(2, 1, 1)
+
+        X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs,
+                          window = lambda d: d*winfunc(fftlen),
+                          scale_by_freq=True)
+        X_in = 10.0*scipy.log10(abs(X))
+        f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size))
+        pin_f = spin_f.plot(f_in, X_in, "b")
+        spin_f.set_xlim([min(f_in), max(f_in)+1]) 
+        spin_f.set_ylim([-200.0, 50.0]) 
+
+        spin_f.set_title("Input Signal", weight="bold")
+        spin_f.set_xlabel("Frequency (Hz)")
+        spin_f.set_ylabel("Power (dBW)")
+
+
+        Ts = 1.0/fs
+        Tmax = len(d)*Ts
+        
+        t_in = scipy.arange(0, Tmax, Ts)
+        x_in = scipy.array(d)
+        spin_t = fig_in.add_subplot(2, 1, 2)
+        pin_t = spin_t.plot(t_in, x_in.real, "b")
+        pin_t = spin_t.plot(t_in, x_in.imag, "r")
+
+        spin_t.set_xlabel("Time (s)")
+        spin_t.set_ylabel("Amplitude")
+
+        Ncols = int(scipy.floor(scipy.sqrt(tb._M)))
+        Nrows = int(scipy.floor(tb._M / Ncols))
+        if(tb._M % Ncols != 0):
+            Nrows += 1
+
+        # Plot each of the channels outputs. Frequencies on Figure 2 and
+        # time signals on Figure 3
+        fs_o = tb._fs / tb._M
+        Ts_o = 1.0/fs_o
+        Tmax_o = len(d)*Ts_o
+        for i in xrange(len(tb.snks)):
+            # remove issues with the transients at the beginning
+            # also remove some corruption at the end of the stream
+            #    this is a bug, probably due to the corner cases
+            d = tb.snks[i].data()[Ns:Ne]
+
+            sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i)
+            X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o,
+                              window = lambda d: d*winfunc(fftlen),
+                              scale_by_freq=True)
+            X_o = 10.0*scipy.log10(abs(X))
+            f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size))
+            p2_f = sp1_f.plot(f_o, X_o, "b")
+            sp1_f.set_xlim([min(f_o), max(f_o)+1]) 
+            sp1_f.set_ylim([-200.0, 50.0]) 
+
+            sp1_f.set_title(("Channel %d" % i), weight="bold")
+            sp1_f.set_xlabel("Frequency (Hz)")
+            sp1_f.set_ylabel("Power (dBW)")
+
+            x_o = scipy.array(d)
+            t_o = scipy.arange(0, Tmax_o, Ts_o)
+            sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i)
+            p2_o = sp2_o.plot(t_o, x_o.real, "b")
+            p2_o = sp2_o.plot(t_o, x_o.imag, "r")
+            sp2_o.set_xlim([min(t_o), max(t_o)+1]) 
+            sp2_o.set_ylim([-2, 2]) 
+
+            sp2_o.set_title(("Channel %d" % i), weight="bold")
+            sp2_o.set_xlabel("Time (s)")
+            sp2_o.set_ylabel("Amplitude")
+
+        pylab.show()
+
+
+if __name__ == "__main__":
+    try:
+        main()
+    except KeyboardInterrupt:
+        pass
+