Finding the Characteristics of
Arbitrary Transmission Lines

A transmission-line analysis isn't always possible using the
“book” formulas. Heres a way of handling that situation.

ransmission lines, in various

forms, are used in great num-

bers in radio frequency (RF)
equipment. Fig 1 shows five common
transmission lines, as well as a totally
arbitrary transmission line. Although
one may believe that the important
properties of transmission lines, such
as the characteristic impedance are
easily obtainable from readily avail-
able formulas, it is shown that this is
not always the case. This article de-
scribes my efforts to overcome this
when designing a high-power 144- to
146-MHz valve amplifier, although
the technique has much wider use in
the design of microwave circuits, RF
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relays, directional couplers, etc.

Transmission lines such as coaxial
cable, twin-wire feeder, microstrip
and stripline have distributed induc-
tance along the conductors and dis-
tributed capacitance between the
conductors, so a section of line can be
represented by Fig 2.

The values of the distributed capaci-
tance and inductance determine such
properties as the characteristic im-
pedance Z;, which is calculated using
Eq 1.

L
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For example, a transmission line hav-
ing a capacitance of 100 pF/m and an
inductance of 250 nH/m would have a
characteristicimpedance of 50 Q. They
also determine the velocity, v, at which
a radio wave propagates in the trans-

Eq1l

mission line, according to Eq 2:

v=—1—m/s

JLC
Therefore, a transmission line with
C=100 pF/m and L=250 nH/m would
propagate a radio wave at 2x108 m/s.
Since radio waves propagate at
3x108 m/s in free space, the velocity
factor of the transmission line would
be 2x108/3x108 = 0.66. These are com-
mon values for coaxial cables.

Eq 2

Finding the Properties of
Common Types of Transmission
Lines

Given knowledge of the physical
dimensions of coaxial cable and the per-
mittivity of the dielectric, its properties
can easily be found with a few simple
formulas. For example, the character-
istic impedance Z is given by Eq 3:
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where g, is the permittivity of free
space (£7=8.854x10-12 F/m), €, is the
relative permittivity of the dielectric
(g,=1.0 for air, 2.1 for PTFE, 2.3 for
polyethylene etc), D is the inner diam-
eter of the outer conductor and d is the
outer diameter of the inner conductor.
This formula is exact and easy to use
with a scientific calculator.
Microstrip line is more complex to
analyze, but an approximate formula,
good enough for engineering purposes,
can be found in the amateur press.l 2
An exact formula does exist for
microstrip, but it is too complex for
general use. An especially convenient
calculation method is a small, free,
Microsoft Windows program called
Txline written by AWR which calcu-
lates the properties of microstrip and
stripline, as well as three less widely
used transmission line types. (Applied
Wave Research Inc, USA, email
pekarek@appwave.com. Web page:
http://www.appwave.com/.)

Finding the Characteristics of
an Arbitrary Transmission Line

Now consider a transmission line
such as that on the right side of Fig 1.
If you wish to find the characteristics
of a transmission line such as this,
there will definitely be no formulain a
book! While such a transmission line
is not likely to be encountered in prac-
tice, on occasion one does require char-
acteristics of transmission lines that
can not easily (if at all) be found in the
literature. This happened to me when
trying to determine the characteristic
impedance of an air-spaced microstrip
to be used as an anode resonator in a
144- to 146-MHz grounded-grid valve
amplifier using an Eimac 3CX5000A7
triode. (The amplifier has not been
completed yet, nor will it be for at least
a year. The details may be published
at a later date, assuming it works
well.) Using transmission lines as
resonators is a common practice in
VHF valve amplifiers,34 although con-
trary to popular belief, L-C tuned cir-
cuits can be successfully used.> When
using transmission lines, theoretically
any impedance line can be made to
resonate with the valve’s output ca-
pacitance if cut to the correct length,$
but there is an optimum value for Z,
for maximum amplifier bandwidth.”
My aim was to design a transmission
line with the optimal Z;, which for

"Notes appear on page 8.
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my particular choice of valve
(8CX5000A7) and resonator configu-
ration (half-wave line with the tube at
the center), was a line impedance of at
least 81 Q. Unfortunately, the pres-
ence of the metal amplifier case
around the microstrip, essential for
safety, could not be ignored. Making
the case sufficiently large, so it was
well away from the microstrip and
could therefore be ignored, was not
practical—I did not want the amplifier
to fill half the shack! Hence my
amplifier’s enclosure was to become an
integral part of an unsymmetrical
shielded stripline transmission line,
as shown in Fig 3, with a metal
stripline of width w and thickness ¢,
placed centrally on the horizontal axis
at a height A above the bottom of a
metal case of internal width W and
internal height H. (The distinction
between microstrip and shielded
stripline is rather vague here. Any
microstrip line enclosed in a metal box
really becomes a shielded stripline. If,
however, the enclosure is large com-
pared with the microstrip, which is
usually the case with low-power cir-
cuits, then for all practical purposes,
the transmission line remains micro-
strip. Although my amplifier was in-
tended to have an air-spaced micro-
strip resonator, the relative size of the
enclosure to the anode line made the
enclosure part of a shielded stripline
resonator.) The term unsymmetrical is
used to indicate that the center con-

ductor is not in the center of the lower
and upper conductors. To the best of
my knowledge, following a computer
search of the Science Citation Index,
listing virtually all professional sci-
ence and engineering publications
since 1981, there is no analytical ex-
pression for the impedance of the
transmission line in Fig 3. Robrish
has, however, found one for an unsym-
metrical stripline that is not shielded
at the sides (equivalent to W being
infinite).8
With a real need to solve a problem,
but with no formula available to me, a
finite difference computer program
was written to solve numerically the
problem of the shielded striplinein Fig
3. This was based on a method in a
book by Dworsky where the interested
reader can find full proofs of all the
mathematics, which is quoted here
without proof.9 The program calcu-
lates the characteristic impedance
(in Q), the capacitance per meter (in
pF/m) and the inductance per meter
(in nH/m) of the transmission line. In
its most basic form, the complete code
is only 66 lines long and is reproduced
in full in Appendix 1. The program ex-
pects the five parameters W, H, w, h
and ¢ to follow the program name on
the command line. Once you under-
stand how the program functions,
modifying it to handle a weird trans-
mission line like that on the right of
Fig 1 is not difficult.
The program can also be used in
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Shielded stripline  Arbitrary

Stripline

Fig 1—Diagram showing a number of common transmission lines. All, except the
twin-wire, are just special cases of the last one and can be analysed by making
minor modifications to the program described here.

Fig 2—A transmission line has a distributed shunt capacitance and distributed
series inductance. Loss terms of series resistance and shunt resistance are

ignored.



designing directional couplers, RF relays or any other item
that contains a transmission line.® By being able to calcu-
late the impedance for any position of a center conductor
relative to the outer, you can usually design a transmission
line for exactly 50-Q using whatever sizes of inner and outer
conductors are readily available. There is no need to
machine the inner to have the right size for a 50-Q line—
you simply place the inner conductor the correct amount
off-center.

Theory

The complete theory of how the program works is quite
complex. Fortunately, neither using the program nor modi-
fying it to handle virtually any transmission line requires
a detailed understanding. Here’s a simplified description
that assumes only one dielectric, although we later extend
this to more than one. The transmission line is assumed to
have constant dimensions along its length. We assume the
outer conductor is earthed, with 0 V on it. We set the inner
conductor to a dc voltage of Vi V. V, will be set equal to 1
V here, although it does not matter what voltage is chosen
aslong asitis nonzero, since its value gets cancelled. Theo-
retically, if we knew the voltage at every single location
over the cross section of the line, we could determine the
capacitance per meter of the transmission line. However,
there are an infinite number of different locations, and as
no computer has an infinite amount of memory, that ap-
proach is impossible.

If, however, we cover the transmission line’s cross sec-
tion with an imaginary square grid, there is now a finite
number of nodes (corners of the squares). This is shown in
Fig 4. We can now store the voltage at every node in a com-
puter. If the grid size is sufficiently small, the voltage will
not change much from one node to the next, and the error
in not knowing the voltage everywhere will be small. The
voltages will be stored in a two-dimensional matrix V; ;
where i ranges from 0 to I, and j ranges from 0 to JJ .
The transmission line’s boundary must lie on the grid, so
odd shaped conductors will have to be approximated. This
is shown in Fig 5 (for the strange transmission line to the
right of Fig 1).

We already know the voltage at some points on the grid
since the outer is at 0 V dc and the inner at V, which is
1-V dc, but the other voltages can be found easily if we
accept Laplace’s equation.!® We need not bother ourselves
with the details of Laplace’s equation, but must accept that
to satisfy a discrete version of it, and so calculate the volt-
age at every unknown node, we just apply Eq 4 over every
node, except on the transmission line conductors, where the
voltages are fixed at either Oor 1V,

Vi j+Vioyj+ Vi1t Vi
Vij= 1

We do this once at every node, then repeat the process
again and again. We keep doing this since each time we get
a new voltage for the point i,j, it is closer to the true value,
but will probably never exactly get there. Hence if we have
1,000 nodes, we might typically apply Eq 4 100,000 times—
100 times per node. Eq 4 ensures that the voltage at a node
is the average of the voltages at the nodes around it, which
ensures that Laplace’s equation is satisfied.

If you inspect the program you will note that the two
lines that update voltage are equivalent to:

Eq 4

Visr,j+ Vi1 i+ Vijs1t Vi
4

vV, j(new) = r[ ] +(1-r)v; j(old)

Eq5b
where r=1.5. The reason for using Eq 5 instead of Eq 4 is
that the latter speeds the program’s convergence to the
correct value of voltage at every point—it does not affect
the ultimate result.

Having found the voltage V; ; at every node, we can find
the capacitance per meter of the line at dc. The theoretical
basis of this is not trivial, so it is best to accept that the
capacitance per meter is related to the voltage summed
over the rectangle enclosing the transmissions line’s cross
section.

A 1 S |

Co= % = JEO (Vij=Visj+1)2+ (Ve j— Vi jo1)® F/m

Eq6
This looks complex, but in fact takes only 4 lines of code to
complete.

Fig 3—The amplifier whose stripline characteristics were
wanted. Unfortunately, the presence of the amplifier case can
not be ignored when determining the stripline impedance.

OaJmax Imax’ Jmax
V9,7
| Vz,s
\E:
0,0 I .0

max?

Fig 4—The transmission line cross section is covered with a
grid I, by J,, (in this case 12x10), and the voltage Vii is
evaluated at every node.
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Having found the capacitance per meter for an air-spaced

line Cy, the inductance per meter L is given by Eq 7:
KoE

L= 8—00 H/m Eq7
where pg is the permeability of free space = 12.57x
10-7 H/m. If the line is not air-spaced, but is filled with a
single dielectric with relative permittivity €, (where g, > 1),
the true capacitance per meter of the line is:
C=¢.Co Fm Eq 8

Having found the distributed inductance and capaci-
tance, the characteristicimpedance Zis simply found from
Eq 1. If the line is not air-spaced, the velocity of propaga-
tion can be found from Eq 2.

A Simple Computer Program

Appendix 1 lists a finite difference computer program,
writtenin C, which I called ATLC—Arbitrary Transmission
Line Calculator. The program as listed solves the problem
of Fig 3 for arbitrary values of W, H, w, h and ¢. It could,
however, be modified to solve for any transmission line,
such as that in Fig 5, by altering a few lines that set differ-
ent parts of the transmission line to 0 or 1 V. The geometry
of the transmission line would need to be defined in the
source code. The program compiles with no problem on
Microsoft’s Quick C version 2.0 for a PC, using a compact
memory model, gcc version 2.7.2 for a Sun Ultra 1 worksta-
tion and gcc 2.7.2 for Linux. Since the program uses no
special functions, it should compile and run without
any hassle on any modern computer. The program’s
source code (ATLC.C), along with a precompiled executable
(ATLC.EXE) is available by anonymous FTP from
ftp.arrl.org/pub/gex.

Where possible, the program was written in such a way
that programmers unfamiliar with the C programming lan-
guage should be able to convert it to any language they
like—FORTRAN, BASIC, Pascal, etc. There are just a few
bits that might puzzle such a programmer. First, a C array
of dimensions declared as float arraynname/xj[y], has loca-
tions [0..x—1][0..y—1], which is different from say FOR-
TRAN, where they wound be (1..x)(1..y). The function atoi(),
converts a string of characters to an integer, atof() a string
of characters to a floating point number and the function

fabs() finds the absolute value of a floating point number.
The main() function essentially reads the values of W, H,
w, h and ¢ from the command line, does a few quick checks,
then passes them to the calculation routine, which is some-
thing I often find convenient for numerical programs. How-
ever, you could read W, H, w, h and t in from the keyboard
or disk if you prefer.

The program expects the input dimensions to be in units
of the width (or height) of a grid square—not millimeters or
inches. You must decide the size of grid to use. Generally, if
the largest dimension in your problem is y, then you want to
allocate 40 or more grid squares to y. So for example, if a
stripline is enclosed in a box 400-mm wide x 200-mm high,
use 10 mm = 1 grid square, and hence the problem uses 40
grid squares (W=40) by 20 grid squares (H=20). Then recheck
the results at double the resolution (5 mm = 1 grid square in
this case) and ensure the results are not significantly differ-
ent. The examples and results later demonstrate this. If you
wish to use in excess of a 127 by 127 grid, the array in the
program in Appendix 1 will need to be enlarged.

Mixed Dielectric

If the transmission line contains two or more different
dielectrics with different relative permittivities, such asa
microstrip on a printed circuit board as shown in Fig 6, then
the problem becomes more complex. First, any calculation
of C performed with a program like this is the dc value.
While this does not vary with frequency when there is only
one dielectric, it does when there are more than one. Hence
even if we find C, L and Z, for the dc case, these will be
frequency dependant. However, if the frequency is not too
high (and this is difficult to quantify), the approximations
will be acceptable.

The procedure for finding the characteristic impedance
of a multiple-dielectric microstrip line and a FORTRAN IV
program to perform this are contained in Dworsky’s book.
‘No program will be given, but the basic method is outlined
here. The method is:

1) Calculate the voltage distribution across the trans-
mission line, assuming it’s air-spaced, as before.

2) Calculate the capacitance per meter Cg, assuming the
transmission line has just an air-dielectric, as described
before.

I.0d

max max?’* max

00 " I

Fig 5—Diagram showing how the odd shaped transmission
line on the right of Fig 1 would be approximated on the grid.
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Fig 6—Shielded microstrip with a mixed dielectric. Microstrip
line etched on a PC board and enclosed in a case would
resemble this.



3) Find the inductance per meter, by using Cyin Eq 7.

4) Recalculate the voltage distribution across the trans-
mission line using Eq 4, except when you are at the inter-
face between the two dielectrics. When at the interface, in
order to satisfy Laplace’s equation, we must use Eq 9
instead:

(e1+¢2)
EIVi+1,j+€2Vi—1,j+%(Vi,j+l+vi,j—l)
Vij= (when j=h)
’ 2(e1+e2)
Eq 9

where g1 is the relative permittivity of the dielectric above
the interface—this is probably air, so £=1.0. €5 is the rela-
tive permittivity of the dielectric below the interface—
usually a PC board material.

5) Recalculate the true line capacitance per meter, C,
using the fact that C is:

ogx =L max —

2%

C= 5
2Vo® -0 j=0

1
€j [(Vi,j_Vi+1,j+1)2+(Vi+1,j—Vi,j+1)2] F/m

Eq 10
where ¢; is the permittivity of the dielectric immediately
below row j—that is g5 where j < h and €1 where j > A.

6) Calculate Z, using L calculated in step 3 and C calcu-
lated in step 5.

Since the voltage and capacitance distribution are calcu-
lated twice, the program will take twice as long as a single
dielectric case.

Effects of Boundaries

This finite difference method fully encloses the inner
conductor in a shield, which need not be rectangular. How-
ever, it must exist. If the physical problem being modeled is
not like this, there is a small problem. For example, to model
an air-spaced microstrip (see Fig 1), with no surrounding
metal, we have a problem. One way to solve this is to put the
boundary at a large distance. Try it at a distance of x, then
repeat the calculation at a distance of 2x. If the results are
significantly different, x was not large enough.

Testing the Program

Any numerical program requires very thorough testing
as, unlike many programs such as games and word-
processors, data can look believable even though it is total
rubbish. Some people may be skeptical since the theoreti-
cal basis of the program has not been rigorously justified
here—although it is in Dworsky’s book. To test the pro-
gram, a number of transmission lines were analysed under
conditions where the results could be checked by other
means. For example:

Test 1) The characteristic impedance Z; of a thin (¢=0),
air-spaced (g,=1) microstrip of width 5 mm and height
5 mm was calculated using an empirical formula (Note 1)
and found to be 126.15 Q. The finite difference program was
then set to find the impedance of a shielded stripline, using
1 grid point = 0.5 mm. Therefore the line was 5/0.5=10 grid
points wide (w=10) and 5/0.5=10 grid points high (A=10).
This was enclosed in a shield 63-mm wide (therefore W=
63/0.5=126) x 63-mm high (therefore H=63/0.5=126). The
shield being so large compared to the stripline, its effect
should be minimal and so the results should be similar. The
program terminated after performing 1140 iterations in
954 seconds on a 25-MHz 486 PC and returned a Z; of
123.2 Q, which is acceptably close, with a difference of
-2.3%. Of course, the shield, even at this distance, may
affect Z; by a few percent. To check this for certain, the

program was run with a 0.25 mm = 1-grid-point resolution
(therefore w=20, h=20, #=0) and a screen 300-mm wide
(W=300/0.25=1200) by 300-mm high (H=300/0.25=1200) on
a fast Sun Ultra 1 computer. Zy was then 124.8 Q, a differ-
ence of just —1.1% from the expected value. This could be
due to errors in the empirical formula, which is not 100%
accurate.

Test 2) The characteristic impedance Z of an air-spaced
shielded stripline with a width of 19 grid points (w=19), 1
grid point thick (¢=1) placed centrally along both the x and
y axes, in a shield of 99 (W=99) x 49 (H=49) grid points was
calculated. Since it was placed centrally, A=24. According to
Dworsky, this has a theoretical impedance of 109 Q. The
program took 104 seconds on the 25-MHz 486 to perform 400
iterations and return Z; =108.7 Q, an error of only —0.28%.

Results

For the amplifier being designed, the anode line needed
to be at least 90 mm above the ground for practical rea-
sons—to clear the valve chimney. According to the Txline
program mentioned earlier, choosing a stripline 160-mm
wide and 1-mm thick, and assuming no surrounding metal
case, the line impedance would be 94.5 Q. This would have
been acceptable as it exceeded the 81 Q minimum needed.
However, thisignored the presence of the metal case, which
was 200-mm wide by 290-mm high.

For a finite difference simulation of the problem, a scale
of 5 mm = 1 grid point was used, as this gave convenient
numbers while also executing quickly. Hence the case
width (W) was set at 290/5=58 grid points, the case height
(H) to 200/5=40 grid points, the stripline width (w) to
160/5=32 and the stripline height (k) to 90/5=18. The
stripline thickness should have been 1/5 = 0.2 grid points,
but this is clearly impossible, so this was rounded to the
nearest integer: 0. Below is the output of the computer
simulation. Note that Z; slowly converges upwards, as the
program makes better and better estimates of the true
voltage distribution across the transmission lines cross
section.

C:\2D_ATLC>atlc 568 40 32 18 0
10 ¢=77.91pF/m 1=142.85nH/m Z0=42.820003 Ohms
20 ¢=60.06pF/m 1=185.30nH/m Z0=55.544252 Ohms
30 ¢=53.14pF/m 1=209.45nH/m Z0=62.782017 Ohms
40 ¢=50.13pF/m 1=222.03nH/m Z0=66.553549 Ohms
50 ¢=48.81pF/m 1=228.01nH/m Z0=68.347540 Ohms
60 ¢=48.23pF/m 1=230.76nH/m Z0=69.170590 Ohms
70 ¢=47.97pF/m 1=232.01nH/m Z0=69.544214 Ohms
80 ¢=47.85pF/m 1=232.57nH/m Z0=69.713328 Ohms
90 ¢=47.80pF/m 1=232.82nH/m Z0=69.789547 Ohms
100 ¢c=47.78pF/m 1=232.94nH/m Z0=69.823501 Ohms
110 ¢=47.77pF/m 1=232.99nH/m Z0=69.838244 Ohms
120 ¢=47.76pF/m 1=233.01nH/m Z0=69.844314 Ohms
130 ¢=47.76pF/m 1=233.01nH/m Z0=69.846544 Ohms
140 ¢=47.76pF/m 1=233.02nH/m Z0=69.847136 Ohms

The 140 iterations took 17 seconds on the 25-MHz 486
PC. To check that the data was reasonable, the program
was rerun using double the resolution (2.5 mm between
grid points). This took 272 seconds, but the result, Z; =
70.1 Q, differed by less than 0.4% from the previous, much
faster run. Hence there was no appreciable difference
except a 16-fold increase in execution time. A much more
accurate calculation, using a 280 x 200 grid, where the
thickness of the stripline could be taken into account prop-
erly (¢ did not have to be set to zero), showed the correct
result to be nearer 68.6 Q but took 9111 s (just over 2.5
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hours). Hence a calculation performed
in 17 seconds has an error of probably
less than 2%, which should be of ad-
equate accuracy.

The results show that the ampli-
fier case reduces the impedance of the
stripline from 94.5 Q to 68.6 Q, below
the minimum acceptable value of 81 Q.
Since the line impedance is altered by
the amplifier case, the resonantlength
of a line is also altered. The program
allows many “what if ?” calculations—
whatifthe line was narrower, the case
bigger, the line thicker, etc.

Computational Problems

The program is computationally
intensive and will therefore be slow if
the highest accuracy is desired, al-
though such accuracy is usually not
necessary. The program’s execution
time increases with the square of the
array area used for calculation, so dou-
bling the resolution means a 16 times
increase in execution time. A com-
puter with some built-in floating point
hardware is essential for this—a fast
386 with a 387 math chip, or better
still, a 486 or Pentium machine. This
is not the application to demonstrate
that your Commodore 64 or Sinclair
Spectrum was worth hanging on to!
The amount of memory used by the
program is determined by the array
size used for storing the voltages. A
127x127 array of single-precision
floating point numbers (4 bytes each)
uses just under 64 kbytes, which is the
limit on some PC compilers for a single
array. Using a decent compiler will al-

low much bigger arrays, but the execu-
tion time will slow. However, 127x127
seems adequate for most applications.
The way to be sure you are using
sufficiently fine resolution is to try
doubling it to see if the results
differ significantly. If you have the
memory, it would be wise to use
double-precision numbers for the ar-
ray to reduce rounding errors.

Discussion

Itoh has compared a number of dif-
ferent numerical methods for analysing
passive microwave structures and finds
the finite difference method to be the
slowest and use the most memory!!!
However, it does have two distinct ad-
vantages over other methods. First, it
is very general, and second, the prob-
lem requires no pre-processing. These
advantages far outweigh its disadvan-
tages for amateur use.

If the program was written as a
Windows application, it would be pos-
sible to define the transmission line’s
outline with a mouse, which would be
easier than the method used here for
complex shapes. Different colors could
be used for different dielectrics.

A three-dimensional (3-D) version
of this program could be written,
which would make analysing trans-
mission lines with discontinuities
along their length possible. However,
this is probably not a viable option for
current home computers—but it will
bein afew years. The memory require-
ments for a 3-D model would not be
excessive even by current standards—

a 100x100x100 array of double-
precision numbers needing only about
8 Mbytes of RAM—but would probably
take about a week to execute on a fast
200-MHz Pentium processor.
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Appendix 1—Source Code for ATLC.C

Note: Some compilers may need the line ‘#include <stdlib.h>'—others may not.

#include <stdio.h»> /* ATLC - Arbitrary Transmission Line Calculator.

#include <math.h> /* By D.

#include <stdlib.h>

Kirkby G8WRB.

/* Microsoft

Compiles okay with

Quick C,

#define Imax 126 /* Voltage array size will be 0..Imax
#define Jmax 126 /* ie v[0..Imax][[0..Jmax]
float v(Imax+1] [Jmax+1]; /* Declare an array to hold the voltages

void arbitrary_transmission_line{int W,

void main{int argc, char **argv)
{
int W, H, w, h, t;
if((argct!=6) )
{

9

printf (“Usage: %s

8 QEX

/* Read parameters from command

/* integers for number of grid squares to

/* Check the number of command line arguments

Wi{shield)

int H, int w, int h, int t);

are

H(shield) width height

version 2.0 and GNU C.

line

use.

thickness\n”,

ver 1.0 */
*/
*/
*/
*/
*/

here */

*/

correct */

argv([0]);



exit(1l); /* Exit - program called with wrong number of arguments */

}
W=atoi(argv([1l}); /* Read shield width (in grid points) from command line. */
H=atoi(argv[2]); /* Read shield height (in grid points) from command 1ine. */
w=atoi(argv([3}); /* Read strip width (in grid points) from command line. */
h=atoi(argv(4]); /* Read strip height (in grid points) from command line. */
t=atol(argv([5]); /* Read strip thickness (in grid points) from command line. */
LE((W>Imax) | | (H>Jmax) | | (h+t>H-1) | | (Ww>W-2) | [ (h<0) || (<0} | [ (W<0) | | {H<O)) /* Basic checks */
{
printf(“Sorry - one of the arguments is silly - too big, too small ?\n*);
exit(2);
}
arbitrary_transmission_line(W,H,w,h,t); /* Calculate L, C and Zo */

void arbitrary_transmission_line(int W, int H, int w, int h, int t)

{

double Eo=8.854e-12, Er=1.0, mu=12.57e-7, ¢, 1, Zo, vnew,r=1.5, c_old;
int i, j, k=0, done=0;
for(i=0;i<=W;i=1i+1) /* Zero the voltage array. Its essential that the */
for(j=0;J<=H;j=3+1) /* outer is at 0V, but desirable for everywhere to */
v[i][j1=0.0; /* start at 0 V. */
for(i={(W-w)/2;i<=(W-w)/2+w;i=i+1) /* Put stripline in centre of x axis, */
for(j=h;j<=h+t;j=j+1) l /* and between h and h+t on the y axis, */
v[i]1[j]1=1.0; /* then set stripline there to 1 V */
do{ /* Set up a relaxation loop, to find the voltage at every point */
k=k+1l; /* increment the counter used to count the iterations */
for(i=1;i<=W-1;i=i+1) /* Data at i=0 must stay fixed at v=0 */
for(j=1;j<=H-1;j=j+1) /* as this is a ‘boundary condition’ */
if(v({i]l[j1t=1.0) /*ie. don‘t do this where the stripline is */
{
vnew=r* (vIi+1] [F1+v[i-1] [FI1+vIi]1[+11+v[i]1[F-11)/4+(1-r)*v[i]l[5];
v[il[j]l=vnew; /* New voltage is calculated */
}
if(k%10==0) /* Now we have v distribution we find C every 10 iterations */
{
c_old=c; ¢=0.0;
for(i=0;i<=W-1;1i=i+1) /* Sum v over cross-section to get C, which */
for(j=0;j<=H-1;3j=3+1) /* is easy for a rectangular cross section */

C:c+pow(v[i][j]-v[i+l}[j+l],2.0)+pow(v[i+l][j]~v[i][j+l],2.0);

C=Cc*Eo/2.0; /* Find capacitance - only correct if air-spaced */
l=mu*Eo/c; /* Calculate the line inductance - always correct */
C=C*Er; /* Correct the capacitance if line has a dielectric */
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Zo=sqgrt(l/c); /* Calculate the characteristic impedance */
printf(“%5d4d ¢=%.21fpF/m 1=%.21fnH/m Zo=%1f Ohms\n”,k,c*1lel2,1*1e9,Z0);

if(fabs(c_old-c)/c < 0.00001) /* Until they differ by < 0.001 % */

done=1; /* Little change in calculated value of C - so we finish*/
else
done=0; /* Large change in calculated value of C - lets continue */
}
}while (done==0); /* Repeat for until the capacitance has converged */

} /* End line of program - line 66 */

10 QEX



Notes - added on 24/12/1999 (after publication)

1) Thereisan error in equation 3 - the €o should not be there.
2) An updated (Windows 95/98/NT) version of the programme may be found on my web site -
http://www.medphys.ucl.ac.uk/~davek



