]> git.gag.com Git - debian/gnuradio/commitdiff
Improved the pnac ofdm sync block. This is based on a VTC'99 paper by Tufvesson,...
authortrondeau <trondeau@221aa14e-8319-0410-a670-987f0aec2ac5>
Thu, 17 Apr 2008 14:37:19 +0000 (14:37 +0000)
committertrondeau <trondeau@221aa14e-8319-0410-a670-987f0aec2ac5>
Thu, 17 Apr 2008 14:37:19 +0000 (14:37 +0000)
git-svn-id: http://gnuradio.org/svn/gnuradio/trunk@8217 221aa14e-8319-0410-a670-987f0aec2ac5

gnuradio-core/src/python/gnuradio/blks2impl/ofdm_sync_pnac.py

index 89f70ed2b489ff6a66d69c4d63dd5a5e9a3ff396..10a125964188d786e6fa6f311da1ccd4640dbf3d 100644 (file)
@@ -26,7 +26,25 @@ from gnuradio import gr
 
 class ofdm_sync_pnac(gr.hier_block2):
     def __init__(self, fft_length, cp_length, kstime, logging=False):
-        
+        """
+        OFDM synchronization using PN Correlation and initial cross-correlation:
+        F. Tufvesson, O. Edfors, and M. Faulkner, "Time and Frequency Synchronization for OFDM using
+        PN-Sequency Preambles," IEEE Proc. VTC, 1999, pp. 2203-2207.
+
+        This implementation is meant to be a more robust version of the Schmidl and Cox receiver design.
+        By correlating against the preamble and using that as the input to the time-delayed correlation,
+        this circuit produces a very clean timing signal at the end of the preamble. The timing is 
+        more accurate and does not have the problem associated with determining the timing from the
+        plateau structure in the Schmidl and Cox.
+
+        This implementation appears to require that the signal is received with a normalized power or signal
+        scalling factor to reduce ambiguities intorduced from partial correlation of the cyclic prefix and
+        the peak detection. A better peak detection block might fix this.
+
+        Also, the cross-correlation falls apart as the frequency offset gets larger and completely fails
+        when an integer offset is introduced. Another thing to look at.
+        """
+
        gr.hier_block2.__init__(self, "ofdm_sync_pnac",
                                gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
                                 gr.io_signature2(2, 2, gr.sizeof_float, gr.sizeof_char)) # Output signature
@@ -42,7 +60,6 @@ class ofdm_sync_pnac(gr.hier_block2):
         kstime = [k.conjugate() for k in kstime[0:fft_length//2]]
         kstime.reverse()
         self.crosscorr_filter = gr.fir_filter_ccc(1, kstime)
-        self.connect(self.crosscorr_filter, gr.file_sink(gr.sizeof_gr_complex, "crosscorr.dat"))
         
         # Create a delay line
         self.delay = gr.delay(gr.sizeof_gr_complex, fft_length/2)
@@ -51,63 +68,58 @@ class ofdm_sync_pnac(gr.hier_block2):
         self.conjg = gr.conjugate_cc();
         self.corr = gr.multiply_cc();
 
-        # Create a moving sum filter for the corr output
-        moving_sum_taps = [1.0 for i in range(fft_length//2)]
-        self.moving_sum_filter = gr.fir_filter_ccf(1,moving_sum_taps)
-
         # Create a moving sum filter for the input
-        self.inputmag2 = gr.complex_to_mag_squared()
-        movingsum2_taps = [1.0 for i in range(fft_length//2)]
-        self.inputmovingsum = gr.fir_filter_fff(1,movingsum2_taps)
-        self.square = gr.multiply_ff()
-        self.normalize = gr.divide_ff()
+        self.mag = gr.complex_to_mag_squared()
+        movingsum_taps = (fft_length//1)*[1.0,]
+        self.power = gr.fir_filter_fff(1,movingsum_taps)
      
         # Get magnitude (peaks) and angle (phase/freq error)
         self.c2mag = gr.complex_to_mag_squared()
         self.angle = gr.complex_to_arg()
-
+        self.compare = gr.sub_ff()
+        
         self.sample_and_hold = gr.sample_and_hold_ff()
 
         #ML measurements input to sampler block and detect
-        self.sub1 = gr.add_const_ff(-1)
-        self.pk_detect = gr.peak_detector_fb(0.20, 0.20, 30, 0.001)
+        self.threshold = gr.threshold_ff(0,0,0)      # threshold detection might need to be tweaked
+        self.peaks = gr.float_to_char()
 
         self.connect(self, self.input)
 
         # Cross-correlate input signal with known preamble
         self.connect(self.input, self.crosscorr_filter)
 
-        # use the output of the cross-correlation as input to Schmidl&Cox
+        # use the output of the cross-correlation as input time-shifted correlation
         self.connect(self.crosscorr_filter, self.delay)
         self.connect(self.crosscorr_filter, (self.corr,0))
         self.connect(self.delay, self.conjg)
         self.connect(self.conjg, (self.corr,1))
-        self.connect(self.corr, self.moving_sum_filter)
-        self.connect(self.moving_sum_filter, self.c2mag)
-        self.connect(self.moving_sum_filter, self.angle)
+        self.connect(self.corr, self.c2mag)
+        self.connect(self.corr, self.angle)
         self.connect(self.angle, (self.sample_and_hold,0))
+        
+        # Get the power of the input signal to compare against the correlation
+        self.connect(self.crosscorr_filter, self.mag, self.power)
 
-        # Get the power of the input signal to normalize the output of the correlation
-        self.connect(self.crosscorr_filter, self.inputmag2, self.inputmovingsum)
-        self.connect(self.inputmovingsum, (self.square,0))
-        self.connect(self.inputmovingsum, (self.square,1))
-        self.connect(self.square, (self.normalize,1))
-        self.connect(self.c2mag, (self.normalize,0))
-
-        self.connect(self.normalize, self.sub1, self.pk_detect)
-        self.connect(self.pk_detect, (self.sample_and_hold,1))
+        # Compare the power to the correlator output to determine timing peak
+        # When the peak occurs, it peaks above zero, so the thresholder detects this
+        self.connect(self.c2mag, (self.compare,0))
+        self.connect(self.power, (self.compare,1))
+        self.connect(self.compare, self.threshold)
+        self.connect(self.threshold, self.peaks, (self.sample_and_hold,1))
 
         # Set output signals
         #    Output 0: fine frequency correction value
         #    Output 1: timing signal
         self.connect(self.sample_and_hold, (self,0))
-        self.connect(self.pk_detect, (self,1))
+        self.connect(self.peaks, (self,1))
 
         if logging:
+            self.connect(self.compare, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-compare_f.dat"))
             self.connect(self.c2mag, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-theta_f.dat"))
-            self.connect(self.normalize, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-normalized_f.dat"))
-            self.connect(self.sub1, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-sub1_f.dat"))
+            self.connect(self.power, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-inputpower_f.dat"))
             self.connect(self.angle, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-epsilon_f.dat"))
-            self.connect(self.pk_detect, gr.file_sink(gr.sizeof_char, "ofdm_sync_pnac-peaks_b.dat"))
+            self.connect(self.threshold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-threshold_f.dat"))
+            self.connect(self.peaks, gr.file_sink(gr.sizeof_char, "ofdm_sync_pnac-peaks_b.dat"))
             self.connect(self.sample_and_hold, gr.file_sink(gr.sizeof_float, "ofdm_sync_pnac-sample_and_hold_f.dat"))
             self.connect(self.input, gr.file_sink(gr.sizeof_gr_complex, "ofdm_sync_pnac-input_c.dat"))