Locking, controllable synthesizer on TX and RX
authorJason Abele <jason@jasonabeleconsulting.com>
Mon, 24 Aug 2009 23:20:03 +0000 (16:20 -0700)
committerJohnathan Corgan <jcorgan@corganenterprises.com>
Mon, 5 Oct 2009 21:37:13 +0000 (14:37 -0700)
    set Charge Pump Current (Icp) per design guide on schem
    set R divider to 3, so that PFD inputs are ~21MHz
    set RF output enable even when looking for AUX

usrp/host/lib/db_wbxng.cc
usrp/host/lib/db_wbxng_adf4350.cc
usrp/host/lib/db_wbxng_adf4350_regs.cc

index 1c7b2326530928f73b4e1d51a9deda457209a7a9..970d8efd610200cd0043123b68ba80843b4dcb5c 100644 (file)
@@ -203,13 +203,19 @@ wbxng_base::set_freq(double freq)
     actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
   */
 
-  freq_t int_freq = (freq_t) (freq/1000);
+  freq_t int_freq = freq_t(freq);
   bool ok = d_common->_set_freq(int_freq);
-  double freq_result = (double) d_common->_get_freq()*1000;
+  double freq_result = (double) d_common->_get_freq();
   struct freq_result_t args = {ok, freq_result};
 
+  /* Wait before reading Lock Detect*/
+  timespec t;
+  t.tv_sec = 0;
+  t.tv_nsec = 10000000;
+  nanosleep(&t, NULL);
+
   fprintf(stderr,"Setting WBXNG frequency, requested %d, obtained %f, lock_detect %d\n", 
-          int_freq*1000, freq_result, _lock_detect());
+          int_freq, freq_result, _lock_detect());
 
   // Offsetting the LO helps get the Tx carrier leakage out of the way.
   // This also ensures that on Rx, we're not getting hosed by the
@@ -291,8 +297,8 @@ wbxng_base_tx::wbxng_base_tx(usrp_basic_sptr _usrp, int which, int _power_on)
   d_common = new adf4350(_usrp, d_which, d_spi_enable);
   
   // power up the transmit side, but don't enable the mixer
-  usrp()->_write_oe(d_which,(PLL_CE|RX_TXN|ENABLE_33|ENABLE_5), (PLL_CE|RX_TXN|ENABLE_33|ENABLE_5));
-  usrp()->write_io(d_which, (power_on()|PLL_CE|RX_TXN|ENABLE_33|ENABLE_5), (PLL_CE|RX_TXN|ENABLE_33|ENABLE_5));
+  usrp()->_write_oe(d_which,(PLL_PDBRF|PLL_CE|RX_TXN|ENABLE_33|ENABLE_5), (PLL_PDBRF|PLL_CE|RX_TXN|ENABLE_33|ENABLE_5));
+  usrp()->write_io(d_which, (power_on()|PLL_PDBRF|PLL_CE|RX_TXN|ENABLE_33|ENABLE_5), (PLL_PDBRF|PLL_CE|RX_TXN|ENABLE_33|ENABLE_5));
   //set_lo_offset(4e6);
 
   //set_gain((gain_min() + gain_max()) / 2.0);  // initialize gain
@@ -314,7 +320,7 @@ wbxng_base_tx::shutdown()
     // do whatever there is to do to shutdown
 
     // Power down and leave the T/R switch in the R position
-    usrp()->write_io(d_which, (power_off()|RX_TXN), (PLL_CE|RX_TXN|ENABLE_33|ENABLE_5));
+    usrp()->write_io(d_which, (power_off()|RX_TXN), (PLL_PDBRF|PLL_CE|RX_TXN|ENABLE_33|ENABLE_5));
 
     /*
     // Power down VCO/PLL
@@ -354,9 +360,9 @@ wbxng_base_tx::set_enable(bool on)
   */
 
   int v;
-  int mask = RX_TXN | ENABLE_5 | ENABLE_33;
+  int mask = PLL_PDBRF | PLL_PDBRF | RX_TXN | ENABLE_5 | ENABLE_33;
   if(on) {
-    v = PLL_CE | ENABLE_5 | ENABLE_33;
+    v = PLL_PDBRF | PLL_CE | ENABLE_5 | ENABLE_33;
   }
   else {
     v = RX_TXN;
index 6e74bf0c1014bf189949b3939c504715d3155108..1facfd8828b8267cf5c25a6a6d948c3634246bea 100644 (file)
 //#include "io.h"
 //#include "spi.h"
 
-#define INPUT_REF_FREQ FREQ_C(32e6)
+#define INPUT_REF_FREQ FREQ_C(64e6)
 #define DIV_ROUND(num, denom) (((num) + ((denom)/2))/(denom))
-#define FREQ_C(freq) ((uint64_t)DIV_ROUND(freq, (uint64_t)1000))
+//#define FREQ_C(freq) ((uint64_t)DIV_ROUND(freq, (uint64_t)1000))
+#define FREQ_C(freq) uint64_t(freq)
 #define INPUT_REF_FREQ_2X (2*INPUT_REF_FREQ)                            /* input ref freq with doubler turned on */
-#define MIN_INT_DIV uint16_t(300)                                        /* minimum int divider, prescaler 4/5 only */
+#define MIN_INT_DIV uint16_t(23)                                        /* minimum int divider, prescaler 4/5 only */
 #define MAX_RF_DIV uint8_t(16)                                          /* max rf divider, divides rf output */
 #define MIN_VCO_FREQ FREQ_C(2.2e9)                                      /* minimum vco freq */
 #define MAX_VCO_FREQ FREQ_C(4.4e9)                                      /* minimum vco freq */
@@ -41,7 +42,7 @@ adf4350::adf4350(usrp_basic_sptr _usrp, int _which, int _spi_enable){
 
     /* Outputs */
     d_usrp->_write_oe(d_which, (CE_PIN | PDB_RF_PIN), (CE_PIN | PDB_RF_PIN));
-    d_usrp->write_io(d_which, (CE_PIN), (CE_PIN | PDB_RF_PIN));
+    d_usrp->write_io(d_which, (CE_PIN | PDB_RF_PIN), (CE_PIN | PDB_RF_PIN));
 
        /* Initialize the pin levels. */
        _enable(true);
@@ -104,7 +105,14 @@ adf4350::_write(uint8_t addr, uint32_t data){
     s[3] = (char)(data & 0xff);
     std::string str(s, 4);
 
+    timespec t;
+    t.tv_sec = 0;
+    t.tv_nsec = 5e6;
+
+    nanosleep(&t, NULL);
     d_usrp->_write_spi(0, d_spi_enable, d_spi_format, str);
+    nanosleep(&t, NULL);
+
     fprintf(stderr, "Wrote to WBXNG SPI address %d with data %8x\n", addr, data);
        /* pulse latch */
     //d_usrp->write_io(d_which, 1, LE_PIN);
@@ -122,7 +130,8 @@ adf4350::_set_freq(freq_t freq){
                d_regs->d_divider_select++; //double the divider
        }
        /* Ramp up the R divider until the N divider is at least the minimum. */
-       d_regs->d_10_bit_r_counter = INPUT_REF_FREQ*MIN_INT_DIV/freq;
+       //d_regs->d_10_bit_r_counter = INPUT_REF_FREQ*MIN_INT_DIV/freq;
+       d_regs->d_10_bit_r_counter = 2;
        uint64_t n_mod;
        do{
                d_regs->d_10_bit_r_counter++;
@@ -141,7 +150,14 @@ adf4350::_set_freq(freq_t freq){
        }while(d_regs->d_int < MIN_INT_DIV);
        /* calculate the band select so PFD is under 125 KHz */
        d_regs->d_8_bit_band_select_clock_divider_value = \
-               INPUT_REF_FREQ/(FREQ_C(125e3)*d_regs->d_10_bit_r_counter) + 1;
+               INPUT_REF_FREQ/(FREQ_C(30e3)*d_regs->d_10_bit_r_counter) + 1;
+    fprintf(stderr, "Band Selection: Div %u, Freq %lu\n", 
+        d_regs->d_8_bit_band_select_clock_divider_value, 
+               INPUT_REF_FREQ/(d_regs->d_8_bit_band_select_clock_divider_value * d_regs->d_10_bit_r_counter) + 1
+    );
+       d_regs->_load_register(5);
+       d_regs->_load_register(3);
+       d_regs->_load_register(1);
        /* load involved registers */
        d_regs->_load_register(2);
        d_regs->_load_register(4);
index bf39c73ca5334394b5c7675ec2d77e1522994b02..2c1660f56dc1ded1558631e126087821d50d4b56 100644 (file)
@@ -12,11 +12,11 @@ const uint8_t adf4350_regs::s_prescaler = 0;
 const uint16_t adf4350_regs::s_phase = 0;
 /* reg 2 */
 const uint8_t adf4350_regs::s_low_noise_and_low_spur_modes = 0;
-const uint8_t adf4350_regs::s_muxout = 3;
+const uint8_t adf4350_regs::s_muxout = 6;
 const uint8_t adf4350_regs::s_reference_doubler = 0;
-const uint8_t adf4350_regs::s_rdiv2 = 1;
+const uint8_t adf4350_regs::s_rdiv2 = 0;
 const uint8_t adf4350_regs::s_double_buff = 0;
-const uint8_t adf4350_regs::s_charge_pump_setting = 7;
+const uint8_t adf4350_regs::s_charge_pump_setting = 5;
 const uint8_t adf4350_regs::s_ldf = 0;
 const uint8_t adf4350_regs::s_ldp = 0;
 const uint8_t adf4350_regs::s_pd_polarity = 1;
@@ -31,11 +31,11 @@ const uint16_t adf4350_regs::s_12_bit_clock_divider_value = 0;
 const uint8_t adf4350_regs::s_feedback_select = 1;
 const uint8_t adf4350_regs::s_vco_power_down = 0;
 const uint8_t adf4350_regs::s_mtld = 0;
-const uint8_t adf4350_regs::s_aux_output_select = 1;
+const uint8_t adf4350_regs::s_aux_output_select = 0;
 const uint8_t adf4350_regs::s_aux_output_enable = 1;
-const uint8_t adf4350_regs::s_aux_output_power = 1;
-const uint8_t adf4350_regs::s_rf_output_enable = 0;
-const uint8_t adf4350_regs::s_output_power = 0;
+const uint8_t adf4350_regs::s_aux_output_power = 3;
+const uint8_t adf4350_regs::s_rf_output_enable = 1;
+const uint8_t adf4350_regs::s_output_power = 3;
 /* reg 5 */
 const uint8_t adf4350_regs::s_ld_pin_mode = 1;