X-Git-Url: https://git.gag.com/?a=blobdiff_plain;f=gnuradio-examples%2Fpython%2Fpfb%2Fchannelize.py;fp=gnuradio-examples%2Fpython%2Fpfb%2Fchannelize.py;h=27d87e558b4ee37d2351423b0f8a3391eafc01d6;hb=8a9ddbb0675f9bfcc6e03b457fba6c79474a3693;hp=0000000000000000000000000000000000000000;hpb=82d471b9b4a8b389b5da44b19c69c36420828382;p=debian%2Fgnuradio diff --git a/gnuradio-examples/python/pfb/channelize.py b/gnuradio-examples/python/pfb/channelize.py new file mode 100755 index 00000000..27d87e55 --- /dev/null +++ b/gnuradio-examples/python/pfb/channelize.py @@ -0,0 +1,177 @@ +#!/usr/bin/env python +# +# Copyright 2009 Free Software Foundation, Inc. +# +# This file is part of GNU Radio +# +# GNU Radio is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 3, or (at your option) +# any later version. +# +# GNU Radio is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with GNU Radio; see the file COPYING. If not, write to +# the Free Software Foundation, Inc., 51 Franklin Street, +# Boston, MA 02110-1301, USA. +# + +from gnuradio import gr, blks2 +import os, time +import scipy, pylab +from scipy import fftpack +from pylab import mlab + +class pfb_top_block(gr.top_block): + def __init__(self): + gr.top_block.__init__(self) + + self._N = 2000000 # number of samples to use + self._fs = 9000 # initial sampling rate + self._M = 9 # Number of channels to channelize + + # Create a set of taps for the PFB channelizer + self._taps = gr.firdes.low_pass_2(1, self._fs, 475.50, 50, + attenuation_dB=10, window=gr.firdes.WIN_BLACKMAN_hARRIS) + + # Calculate the number of taps per channel for our own information + tpc = scipy.ceil(float(len(self._taps)) / float(self._M)) + print "Number of taps: ", len(self._taps) + print "Number of channels: ", self._M + print "Taps per channel: ", tpc + + # Create a set of signals at different frequencies + # freqs lists the frequencies of the signals that get stored + # in the list "signals", which then get summed together + self.signals = list() + self.add = gr.add_cc() + freqs = [-4070, -3050, -2030, -1010, 10, 1020, 2040, 3060, 4080] + for i in xrange(len(freqs)): + self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1)) + self.connect(self.signals[i], (self.add,i)) + + self.head = gr.head(gr.sizeof_gr_complex, self._N) + + # Construct the channelizer filter + self.pfb = blks2.pfb_channelizer_ccf(self._M, self._taps) + + # Construct a vector sink for the input signal to the channelizer + self.snk_i = gr.vector_sink_c() + + # Connect the blocks + self.connect(self.add, self.head, self.pfb) + self.connect(self.add, self.snk_i) + + # Create a vector sink for each of M output channels of the filter and connect it + self.snks = list() + for i in xrange(self._M): + self.snks.append(gr.vector_sink_c()) + self.connect((self.pfb, i), self.snks[i]) + + +def main(): + tstart = time.time() + + tb = pfb_top_block() + tb.run() + + tend = time.time() + print "Run time: %f" % (tend - tstart) + + if 1: + fig_in = pylab.figure(1, figsize=(16,9), facecolor="w") + fig1 = pylab.figure(2, figsize=(16,9), facecolor="w") + fig2 = pylab.figure(3, figsize=(16,9), facecolor="w") + + Ns = 1000 + Ne = 10000 + + fftlen = 8192 + winfunc = scipy.blackman + fs = tb._fs + + # Plot the input signal on its own figure + d = tb.snk_i.data()[Ns:Ne] + spin_f = fig_in.add_subplot(2, 1, 1) + + X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, + window = lambda d: d*winfunc(fftlen), + scale_by_freq=True) + X_in = 10.0*scipy.log10(abs(X)) + f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) + pin_f = spin_f.plot(f_in, X_in, "b") + spin_f.set_xlim([min(f_in), max(f_in)+1]) + spin_f.set_ylim([-200.0, 50.0]) + + spin_f.set_title("Input Signal", weight="bold") + spin_f.set_xlabel("Frequency (Hz)") + spin_f.set_ylabel("Power (dBW)") + + + Ts = 1.0/fs + Tmax = len(d)*Ts + + t_in = scipy.arange(0, Tmax, Ts) + x_in = scipy.array(d) + spin_t = fig_in.add_subplot(2, 1, 2) + pin_t = spin_t.plot(t_in, x_in.real, "b") + pin_t = spin_t.plot(t_in, x_in.imag, "r") + + spin_t.set_xlabel("Time (s)") + spin_t.set_ylabel("Amplitude") + + Ncols = int(scipy.floor(scipy.sqrt(tb._M))) + Nrows = int(scipy.floor(tb._M / Ncols)) + if(tb._M % Ncols != 0): + Nrows += 1 + + # Plot each of the channels outputs. Frequencies on Figure 2 and + # time signals on Figure 3 + fs_o = tb._fs / tb._M + Ts_o = 1.0/fs_o + Tmax_o = len(d)*Ts_o + for i in xrange(len(tb.snks)): + # remove issues with the transients at the beginning + # also remove some corruption at the end of the stream + # this is a bug, probably due to the corner cases + d = tb.snks[i].data()[Ns:Ne] + + sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i) + X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, + window = lambda d: d*winfunc(fftlen), + scale_by_freq=True) + X_o = 10.0*scipy.log10(abs(X)) + f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size)) + p2_f = sp1_f.plot(f_o, X_o, "b") + sp1_f.set_xlim([min(f_o), max(f_o)+1]) + sp1_f.set_ylim([-200.0, 50.0]) + + sp1_f.set_title(("Channel %d" % i), weight="bold") + sp1_f.set_xlabel("Frequency (Hz)") + sp1_f.set_ylabel("Power (dBW)") + + x_o = scipy.array(d) + t_o = scipy.arange(0, Tmax_o, Ts_o) + sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i) + p2_o = sp2_o.plot(t_o, x_o.real, "b") + p2_o = sp2_o.plot(t_o, x_o.imag, "r") + sp2_o.set_xlim([min(t_o), max(t_o)+1]) + sp2_o.set_ylim([-2, 2]) + + sp2_o.set_title(("Channel %d" % i), weight="bold") + sp2_o.set_xlabel("Time (s)") + sp2_o.set_ylabel("Amplitude") + + pylab.show() + + +if __name__ == "__main__": + try: + main() + except KeyboardInterrupt: + pass +