X-Git-Url: https://git.gag.com/?a=blobdiff_plain;f=gnuradio-core%2Fsrc%2Flib%2Fgengen%2Fgr_sig_source_c.cc;fp=gnuradio-core%2Fsrc%2Flib%2Fgengen%2Fgr_sig_source_c.cc;h=154e1d4b14dc024a67effe39a13f382484439fe0;hb=ea29b08aeb54227e6628f655ccfdb96fe4d8c378;hp=0000000000000000000000000000000000000000;hpb=09a1e803a9e6587c78d20cdf16891e5295874668;p=debian%2Fgnuradio diff --git a/gnuradio-core/src/lib/gengen/gr_sig_source_c.cc b/gnuradio-core/src/lib/gengen/gr_sig_source_c.cc new file mode 100644 index 00000000..154e1d4b --- /dev/null +++ b/gnuradio-core/src/lib/gengen/gr_sig_source_c.cc @@ -0,0 +1,242 @@ +/* -*- c++ -*- */ +/* + * Copyright 2004 Free Software Foundation, Inc. + * + * This file is part of GNU Radio + * + * GNU Radio is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 3, or (at your option) + * any later version. + * + * GNU Radio is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with GNU Radio; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 51 Franklin Street, + * Boston, MA 02110-1301, USA. + */ + +// WARNING: this file is machine generated. Edits will be over written + +#ifdef HAVE_CONFIG_H +#include +#endif +#include +#include +#include +#include +#include + + +gr_sig_source_c::gr_sig_source_c (double sampling_freq, gr_waveform_t waveform, + double frequency, double ampl, gr_complex offset) + : gr_sync_block ("sig_source_c", + gr_make_io_signature (0, 0, 0), + gr_make_io_signature (1, 1, sizeof (gr_complex))), + d_sampling_freq (sampling_freq), d_waveform (waveform), d_frequency (frequency), + d_ampl (ampl), d_offset (offset) +{ + d_nco.set_freq (2 * M_PI * d_frequency / d_sampling_freq); +} + +gr_sig_source_c_sptr +gr_make_sig_source_c (double sampling_freq, gr_waveform_t waveform, + double frequency, double ampl, gr_complex offset) +{ + return gr_sig_source_c_sptr (new gr_sig_source_c (sampling_freq, waveform, frequency, ampl, offset)); +} + +int +gr_sig_source_c::work (int noutput_items, + gr_vector_const_void_star &input_items, + gr_vector_void_star &output_items) +{ + gr_complex *optr = (gr_complex *) output_items[0]; + gr_complex t; + + switch (d_waveform){ + +#if 1 // complex? + + case GR_CONST_WAVE: + t = (gr_complex) d_ampl + d_offset; + for (int i = 0; i < noutput_items; i++) // FIXME unroll + optr[i] = t; + break; + + case GR_SIN_WAVE: + case GR_COS_WAVE: + d_nco.sincos (optr, noutput_items, d_ampl); + if (d_offset == gr_complex(0,0)) + break; + + for (int i = 0; i < noutput_items; i++){ + optr[i] += d_offset; + } + break; + + /* Implements a real square wave high from -PI to 0. + * The imaginary square wave leads by 90 deg. + */ + case GR_SQR_WAVE: + for (int i = 0; i < noutput_items; i++){ + if (d_nco.get_phase() < -1*M_PI/2) + optr[i] = gr_complex(d_ampl, 0)+d_offset; + else if (d_nco.get_phase() < 0) + optr[i] = gr_complex(d_ampl, d_ampl)+d_offset; + else if (d_nco.get_phase() < M_PI/2) + optr[i] = gr_complex(0, d_ampl)+d_offset; + else + optr[i] = d_offset; + d_nco.step(); + } + break; + + /* Implements a real triangle wave rising from -PI to 0 and + * falling from 0 to PI. The imaginary triangle wave leads by 90 deg. + */ + case GR_TRI_WAVE: + for (int i = 0; i < noutput_items; i++){ + if (d_nco.get_phase() < -1*M_PI/2){ + optr[i] = gr_complex(d_ampl*d_nco.get_phase()/M_PI + d_ampl, + -1*d_ampl*d_nco.get_phase()/M_PI - d_ampl/2)+d_offset; + } + else if (d_nco.get_phase() < 0){ + optr[i] = gr_complex(d_ampl*d_nco.get_phase()/M_PI + d_ampl, + d_ampl*d_nco.get_phase()/M_PI + d_ampl/2)+d_offset; + } + else if (d_nco.get_phase() < M_PI/2){ + optr[i] = gr_complex(-1*d_ampl*d_nco.get_phase()/M_PI + d_ampl, + d_ampl*d_nco.get_phase()/M_PI + d_ampl/2)+d_offset; + } + else{ + optr[i] = gr_complex(-1*d_ampl*d_nco.get_phase()/M_PI + d_ampl, + -1*d_ampl*d_nco.get_phase()/M_PI + 3*d_ampl/2)+d_offset; + } + d_nco.step(); + } + break; + + /* Implements a real saw tooth wave rising from -PI to PI. + * The imaginary saw tooth wave leads by 90 deg. + */ + case GR_SAW_WAVE: + for (int i = 0; i < noutput_items; i++){ + if (d_nco.get_phase() < -1*M_PI/2){ + optr[i] = gr_complex(d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/2, + d_ampl*d_nco.get_phase()/(2*M_PI) + 5*d_ampl/4)+d_offset; + } + else{ + optr[i] = gr_complex(d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/2, + d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/4)+d_offset; + } + d_nco.step(); + } + break; + +#else // nope... + + case GR_CONST_WAVE: + t = (gr_complex) d_ampl + d_offset; + for (int i = 0; i < noutput_items; i++) // FIXME unroll + optr[i] = t; + break; + + case GR_SIN_WAVE: + d_nco.sin (optr, noutput_items, d_ampl); + if (d_offset == 0) + break; + + for (int i = 0; i < noutput_items; i++){ + optr[i] += d_offset; + } + break; + + case GR_COS_WAVE: + d_nco.cos (optr, noutput_items, d_ampl); + if (d_offset == 0) + break; + + for (int i = 0; i < noutput_items; i++){ + optr[i] += d_offset; + } + break; + + /* The square wave is high from -PI to 0. */ + case GR_SQR_WAVE: + t = (gr_complex) d_ampl + d_offset; + for (int i = 0; i < noutput_items; i++){ + if (d_nco.get_phase() < 0) + optr[i] = t; + else + optr[i] = d_offset; + d_nco.step(); + } + break; + + /* The triangle wave rises from -PI to 0 and falls from 0 to PI. */ + case GR_TRI_WAVE: + for (int i = 0; i < noutput_items; i++){ + double t = d_ampl*d_nco.get_phase()/M_PI; + if (d_nco.get_phase() < 0) + optr[i] = static_cast(t + d_ampl + d_offset); + else + optr[i] = static_cast(-1*t + d_ampl + d_offset); + d_nco.step(); + } + break; + + /* The saw tooth wave rises from -PI to PI. */ + case GR_SAW_WAVE: + for (int i = 0; i < noutput_items; i++){ + t = static_cast(d_ampl*d_nco.get_phase()/(2*M_PI) + d_ampl/2 + d_offset); + optr[i] = t; + d_nco.step(); + } + break; + +#endif + + default: + throw std::runtime_error ("gr_sig_source: invalid waveform"); + } + + return noutput_items; +} + +void +gr_sig_source_c::set_sampling_freq (double sampling_freq) +{ + d_sampling_freq = sampling_freq; + d_nco.set_freq (2 * M_PI * d_frequency / d_sampling_freq); +} + +void +gr_sig_source_c::set_waveform (gr_waveform_t waveform) +{ + d_waveform = waveform; +} + +void +gr_sig_source_c::set_frequency (double frequency) +{ + d_frequency = frequency; + d_nco.set_freq (2 * M_PI * d_frequency / d_sampling_freq); +} + +void +gr_sig_source_c::set_amplitude (double ampl) +{ + d_ampl = ampl; +} + +void +gr_sig_source_c::set_offset (gr_complex offset) +{ + d_offset = offset; +} +