X-Git-Url: https://git.gag.com/?a=blobdiff_plain;f=example%2Flibs_stm%2Fsrc%2Fstm32l1xx%2Fstm32l1xx_rcc.c;fp=example%2Flibs_stm%2Fsrc%2Fstm32l1xx%2Fstm32l1xx_rcc.c;h=dbce5fa2f2df5620099cf1ecca35dd449c95e2ae;hb=29cf5d590c76ef157d9697a5871b12b8af770f00;hp=0000000000000000000000000000000000000000;hpb=77f2d8b76c218e9edceaba71c6cc4f8724da49a1;p=fw%2Fstlink diff --git a/example/libs_stm/src/stm32l1xx/stm32l1xx_rcc.c b/example/libs_stm/src/stm32l1xx/stm32l1xx_rcc.c new file mode 100644 index 0000000..dbce5fa --- /dev/null +++ b/example/libs_stm/src/stm32l1xx/stm32l1xx_rcc.c @@ -0,0 +1,1575 @@ +/** + ****************************************************************************** + * @file stm32l1xx_rcc.c + * @author MCD Application Team + * @version V1.0.0 + * @date 31-December-2010 + * @brief This file provides firmware functions to manage the following + * functionalities of the Reset and clock control (RCC) peripheral: + * - Internal/external clocks, PLL, CSS and MCO configuration + * - System, AHB and APB busses clocks configuration + * - Peripheral clocks configuration + * - Interrupts and flags management + * + * @verbatim + * + * =================================================================== + * RCC specific features + * =================================================================== + * + * After reset the device is running from MSI (2 MHz) with Flash 0 WS, + * all peripherals are off except internal SRAM, Flash and JTAG. + * - There is no prescaler on High speed (AHB) and Low speed (APB) busses; + * all peripherals mapped on these busses are running at MSI speed. + * - The clock for all peripherals is switched off, except the SRAM and FLASH. + * - All GPIOs are in input floating state, except the JTAG pins which + * are assigned to be used for debug purpose. + * + * Once the device started from reset, the user application has to: + * - Configure the clock source to be used to drive the System clock + * (if the application needs higher frequency/performance) + * - Configure the System clock frequency and Flash settings + * - Configure the AHB and APB busses prescalers + * - Enable the clock for the peripheral(s) to be used + * - Configure the clock source(s) for peripherals whose clocks are not + * derived from the System clock (ADC, RTC/LCD and IWDG) + * + * @endverbatim + * + ****************************************************************************** + * @attention + * + * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS + * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE + * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY + * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING + * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE + * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS. + * + *

© COPYRIGHT 2010 STMicroelectronics

+ ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32l1xx_rcc.h" + +/** @addtogroup STM32L1xx_StdPeriph_Driver + * @{ + */ + +/** @defgroup RCC + * @brief RCC driver modules + * @{ + */ + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ + +/* ------------ RCC registers bit address in the alias region ----------- */ +#define RCC_OFFSET (RCC_BASE - PERIPH_BASE) + +/* --- CR Register ---*/ + +/* Alias word address of HSION bit */ +#define CR_OFFSET (RCC_OFFSET + 0x00) +#define HSION_BitNumber 0x00 +#define CR_HSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4)) + +/* Alias word address of MSION bit */ +#define MSION_BitNumber 0x08 +#define CR_MSION_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (MSION_BitNumber * 4)) + +/* Alias word address of PLLON bit */ +#define PLLON_BitNumber 0x18 +#define CR_PLLON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4)) + +/* Alias word address of CSSON bit */ +#define CSSON_BitNumber 0x1C +#define CR_CSSON_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4)) + +/* --- CSR Register ---*/ + +/* Alias word address of LSION bit */ +#define CSR_OFFSET (RCC_OFFSET + 0x34) +#define LSION_BitNumber 0x00 +#define CSR_LSION_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4)) + +/* Alias word address of RTCEN bit */ +#define RTCEN_BitNumber 0x16 +#define CSR_RTCEN_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (RTCEN_BitNumber * 4)) + +/* Alias word address of RTCRST bit */ +#define RTCRST_BitNumber 0x17 +#define CSR_RTCRST_BB (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (RTCRST_BitNumber * 4)) + + +/* ---------------------- RCC registers mask -------------------------------- */ +/* RCC Flag Mask */ +#define FLAG_MASK ((uint8_t)0x1F) + +/* CR register byte 3 (Bits[23:16]) base address */ +#define CR_BYTE3_ADDRESS ((uint32_t)0x40023802) + +/* ICSCR register byte 4 (Bits[31:24]) base address */ +#define ICSCR_BYTE4_ADDRESS ((uint32_t)0x40023807) + +/* CFGR register byte 3 (Bits[23:16]) base address */ +#define CFGR_BYTE3_ADDRESS ((uint32_t)0x4002380A) + +/* CFGR register byte 4 (Bits[31:24]) base address */ +#define CFGR_BYTE4_ADDRESS ((uint32_t)0x4002380B) + +/* CIR register byte 2 (Bits[15:8]) base address */ +#define CIR_BYTE2_ADDRESS ((uint32_t)0x4002380D) + +/* CIR register byte 3 (Bits[23:16]) base address */ +#define CIR_BYTE3_ADDRESS ((uint32_t)0x4002380E) + +/* CSR register byte 2 (Bits[15:8]) base address */ +#define CSR_BYTE2_ADDRESS ((uint32_t)0x40023835) + +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ + +static __I uint8_t PLLMulTable[9] = {3, 4, 6, 8, 12, 16, 24, 32, 48}; +static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9}; + +/* Private function prototypes -----------------------------------------------*/ +/* Private functions ---------------------------------------------------------*/ + +/** @defgroup RCC_Private_Functions + * @{ + */ + +/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions + * @brief Internal and external clocks, PLL, CSS and MCO configuration functions + * +@verbatim + =============================================================================== + Internal/external clocks, PLL, CSS and MCO configuration functions + =============================================================================== + + This section provide functions allowing to configure the internal/external clocks, + PLL, CSS and MCO. + + 1. HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through + the PLL as System clock source. + + 2. MSI (multi-speed internal), multispeed low power RC (65.536 KHz to 4.194 MHz) + MHz used as System clock source. + + 3. LSI (low-speed internal), 37 KHz low consumption RC used as IWDG and/or RTC + clock source. + + 4. HSE (high-speed external), 1 to 24 MHz crystal oscillator used directly or + through the PLL as System clock source. Can be used also as RTC clock source. + + 5. LSE (low-speed external), 32 KHz oscillator used as RTC clock source. + + 6. PLL (clocked by HSI or HSE), for System clock and USB (48 MHz). + + 7. CSS (Clock security system), once enable and if a HSE clock failure occurs + (HSE used directly or through PLL as System clock source), the System clock + is automatically switched to MSI and an interrupt is generated if enabled. + The interrupt is linked to the Cortex-M3 NMI (Non-Maskable Interrupt) + exception vector. + + 8. MCO (microcontroller clock output), used to output SYSCLK, HSI, MSI, HSE, PLL, + LSI or LSE clock (through a configurable prescaler) on PA8 pin. + +@endverbatim + * @{ + */ + +/** + * @brief Resets the RCC clock configuration to the default reset state. + * @note - The default reset state of the clock configuration is given below: + * - MSI ON and used as system clock source (MSI range is not modified + * by this function, it keep the value configured by user application) + * - HSI, HSE and PLL OFF + * - AHB, APB1 and APB2 prescaler set to 1. + * - CSS and MCO OFF + * - All interrupts disabled + * - However, this function doesn't modify the configuration of the + * - Peripheral clocks + * - LSI, LSE and RTC clocks + * @param None + * @retval None + */ +void RCC_DeInit(void) +{ + + /* Set MSION bit */ + RCC->CR |= (uint32_t)0x00000100; + + /* Reset SW[1:0], HPRE[3:0], PPRE1[2:0], PPRE2[2:0], MCOSEL[2:0] and MCOPRE[2:0] bits */ + RCC->CFGR &= (uint32_t)0x88FFC00C; + + /* Reset HSION, HSEON, CSSON and PLLON bits */ + RCC->CR &= (uint32_t)0xEEFEFFFE; + + /* Reset HSEBYP bit */ + RCC->CR &= (uint32_t)0xFFFBFFFF; + + /* Reset PLLSRC, PLLMUL[3:0] and PLLDIV[1:0] bits */ + RCC->CFGR &= (uint32_t)0xFF02FFFF; + + /* Disable all interrupts */ + RCC->CIR = 0x00000000; +} + +/** + * @brief Configures the External High Speed oscillator (HSE). + * @note - After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application + * software should wait on HSERDY flag to be set indicating that HSE clock + * is stable and can be used to clock the PLL and/or system clock. + * - HSE state can not be changed if it is used directly or through the + * PLL as system clock. In this case, you have to select another source + * of the system clock then change the HSE state (ex. disable it). + * - The HSE is stopped by hardware when entering STOP and STANDBY modes. + * @note This function reset the CSSON bit, so if the Clock security system(CSS) + * was previously enabled you have to enable it again after calling this + * function. + * @param RCC_HSE: specifies the new state of the HSE. + * This parameter can be one of the following values: + * @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after + * 6 HSE oscillator clock cycles. + * @arg RCC_HSE_ON: turn ON the HSE oscillator + * @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock + * @retval None + */ +void RCC_HSEConfig(uint8_t RCC_HSE) +{ + /* Check the parameters */ + assert_param(IS_RCC_HSE(RCC_HSE)); + + /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/ + *(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE_OFF; + + /* Set the new HSE configuration -------------------------------------------*/ + *(__IO uint8_t *) CR_BYTE3_ADDRESS = RCC_HSE; + +} + +/** + * @brief Waits for HSE start-up. + * @note This functions waits on HSERDY flag to be set and return SUCCESS if + * this flag is set, otherwise returns ERROR if the timeout is reached + * and this flag is not set. The timeout value is defined by the constant + * HSE_STARTUP_TIMEOUT in stm32l1xx.h file. You can tailor it depending + * on the HSE crystal used in your application. + * @param None + * @retval An ErrorStatus enumeration value: + * - SUCCESS: HSE oscillator is stable and ready to use + * - ERROR: HSE oscillator not yet ready + */ +ErrorStatus RCC_WaitForHSEStartUp(void) +{ + __IO uint32_t StartUpCounter = 0; + ErrorStatus status = ERROR; + FlagStatus HSEStatus = RESET; + + /* Wait till HSE is ready and if timeout is reached exit */ + do + { + HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY); + StartUpCounter++; + } while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET)); + + if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET) + { + status = SUCCESS; + } + else + { + status = ERROR; + } + return (status); +} + +/** + * @brief Adjusts the Internal Multi Speed oscillator (MSI) calibration value. + * @note The calibration is used to compensate for the variations in voltage + * and temperature that influence the frequency of the internal MSI RC. + * Refer to the Application Note AN3300 for more details on how to + * calibrate the MSI. + * @param MSICalibrationValue: specifies the MSI calibration trimming value. + * This parameter must be a number between 0 and 0xFF. + * @retval None + */ +void RCC_AdjustMSICalibrationValue(uint8_t MSICalibrationValue) +{ + + /* Check the parameters */ + assert_param(IS_RCC_MSI_CALIBRATION_VALUE(MSICalibrationValue)); + + *(__IO uint8_t *) ICSCR_BYTE4_ADDRESS = MSICalibrationValue; +} + +/** + * @brief Configures the Internal Multi Speed oscillator (MSI) clock range. + * @note - After restart from Reset or wakeup from STANDBY, the MSI clock is + * around 2.097 MHz. The MSI clock does not change after wake-up from + * STOP mode. + * - The MSI clock range can be modified on the fly. + * @param RCC_MSIRange: specifies the MSI Clock range. + * This parameter must be one of the following values: + * @arg RCC_MSIRange_0: MSI clock is around 65.536 KHz + * @arg RCC_MSIRange_1: MSI clock is around 131.072 KHz + * @arg RCC_MSIRange_2: MSI clock is around 262.144 KHz + * @arg RCC_MSIRange_3: MSI clock is around 524.288 KHz + * @arg RCC_MSIRange_4: MSI clock is around 1.048 MHz + * @arg RCC_MSIRange_5: MSI clock is around 2.097 MHz (default after Reset or wake-up from STANDBY) + * @arg RCC_MSIRange_6: MSI clock is around + * + * @retval None + */ +void RCC_MSIRangeConfig(uint32_t RCC_MSIRange) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_MSIRange)); + + tmpreg = RCC->ICSCR; + + /* Clear MSIRANGE[2:0] bits */ + tmpreg &= ~RCC_ICSCR_MSIRANGE; + + /* Set the MSIRANGE[2:0] bits according to RCC_MSIRange value */ + tmpreg |= (uint32_t)RCC_MSIRange; + + /* Store the new value */ + RCC->ICSCR = tmpreg; +} + +/** + * @brief Enables or disables the Internal Multi Speed oscillator (MSI). + * @note - The MSI is stopped by hardware when entering STOP and STANDBY modes. + * It is used (enabled by hardware) as system clock source after + * startup from Reset, wakeup from STOP and STANDBY mode, or in case + * of failure of the HSE used directly or indirectly as system clock + * (if the Clock Security System CSS is enabled). + * - MSI can not be stopped if it is used as system clock source. + * In this case, you have to select another source of the system + * clock then stop the MSI. + * - After enabling the MSI, the application software should wait on + * MSIRDY flag to be set indicating that MSI clock is stable and can + * be used as system clock source. + * @param NewState: new state of the MSI. + * This parameter can be: ENABLE or DISABLE. + * @note When the MSI is stopped, MSIRDY flag goes low after 6 MSI oscillator + * clock cycles. + * @retval None + */ +void RCC_MSICmd(FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + *(__IO uint32_t *) CR_MSION_BB = (uint32_t)NewState; +} + +/** + * @brief Adjusts the Internal High Speed oscillator (HSI) calibration value. + * @note The calibration is used to compensate for the variations in voltage + * and temperature that influence the frequency of the internal HSI RC. + * Refer to the Application Note AN3300 for more details on how to + * calibrate the HSI. + * @param HSICalibrationValue: specifies the HSI calibration trimming value. + * This parameter must be a number between 0 and 0x1F. + * @retval None + */ +void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RCC_HSI_CALIBRATION_VALUE(HSICalibrationValue)); + + tmpreg = RCC->ICSCR; + + /* Clear HSITRIM[4:0] bits */ + tmpreg &= ~RCC_ICSCR_HSITRIM; + + /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */ + tmpreg |= (uint32_t)HSICalibrationValue << 8; + + /* Store the new value */ + RCC->ICSCR = tmpreg; +} + +/** + * @brief Enables or disables the Internal High Speed oscillator (HSI). + * @note - After enabling the HSI, the application software should wait on + * HSIRDY flag to be set indicating that HSI clock is stable and can + * be used to clock the PLL and/or system clock. + * - HSI can not be stopped if it is used directly or through the PLL + * as system clock. In this case, you have to select another source + * of the system clock then stop the HSI. + * - The HSI is stopped by hardware when entering STOP and STANDBY modes. + * @param NewState: new state of the HSI. + * This parameter can be: ENABLE or DISABLE. + * @note When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator + * clock cycles. + * @retval None + */ +void RCC_HSICmd(FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + *(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState; +} + +/** + * @brief Configures the External Low Speed oscillator (LSE). + * @note - As the LSE is in the RTC domain and write access is denied to this + * domain after reset, you have to enable write access using + * PWR_RTCAccessCmd(ENABLE) function before to configure the LSE + * (to be done once after reset). + * - After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application + * software should wait on LSERDY flag to be set indicating that LSE clock + * is stable and can be used to clock the RTC. + * @param RCC_LSE: specifies the new state of the LSE. + * This parameter can be one of the following values: + * @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after + * 6 LSE oscillator clock cycles. + * @arg RCC_LSE_ON: turn ON the LSE oscillator + * @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock + * @retval None + */ +void RCC_LSEConfig(uint8_t RCC_LSE) +{ + /* Check the parameters */ + assert_param(IS_RCC_LSE(RCC_LSE)); + + /* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/ + *(__IO uint8_t *) CSR_BYTE2_ADDRESS = RCC_LSE_OFF; + + /* Set the new LSE configuration -------------------------------------------*/ + *(__IO uint8_t *) CSR_BYTE2_ADDRESS = RCC_LSE; +} + +/** + * @brief Enables or disables the Internal Low Speed oscillator (LSI). + * @note - After enabling the LSI, the application software should wait on + * LSIRDY flag to be set indicating that LSI clock is stable and can + * be used to clock the IWDG and/or the RTC. + * - LSI can not be disabled if the IWDG is running. + * @param NewState: new state of the LSI. + * This parameter can be: ENABLE or DISABLE. + * @note When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator + * clock cycles. + * @retval None + */ +void RCC_LSICmd(FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + *(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState; +} + +/** + * @brief Configures the PLL clock source and multiplication factor. + * @note This function must be used only when the PLL is disabled. + * + * @param RCC_PLLSource: specifies the PLL entry clock source. + * This parameter can be one of the following values: + * @arg RCC_PLLSource_HSI: HSI oscillator clock selected as PLL clock source + * @arg RCC_PLLSource_HSE: HSE oscillator clock selected as PLL clock source + * @note The minimum input clock frequency for PLL is 2 MHz (when using HSE as + * PLL source). + * + * @param RCC_PLLMul: specifies the PLL multiplication factor, which drive the PLLVCO clock + * This parameter can be: + * @arg RCC_PLLMul_3: PLL clock source multiplied by 3 + * @arg RCC_PLLMul_4: PLL clock source multiplied by 4 + * @arg RCC_PLLMul_6: PLL clock source multiplied by 6 + * @arg RCC_PLLMul_8: PLL clock source multiplied by 8 + * @arg RCC_PLLMul_12: PLL clock source multiplied by 12 + * @arg RCC_PLLMul_16: PLL clock source multiplied by 16 + * @arg RCC_PLLMul_24: PLL clock source multiplied by 24 + * @arg RCC_PLLMul_32: PLL clock source multiplied by 32 + * @arg RCC_PLLMul_48: PLL clock source multiplied by 48 + * @note The application software must set correctly the PLL multiplication + * factor to avoid exceeding + * - 96 MHz as PLLVCO when the product is in range 1 + * - 48 MHz as PLLVCO when the product is in range 2 + * - 24 MHz when the product is in range 3 + * @note When using the USB the PLLVCO should be 96MHz + * + * @param RCC_PLLDiv: specifies the PLL division factor. + * This parameter can be: + * @arg RCC_PLLDiv_2: PLL Clock output divided by 2 + * @arg RCC_PLLDiv_3: PLL Clock output divided by 3 + * @arg RCC_PLLDiv_4: PLL Clock output divided by 4 + * @note The application software must set correctly the output division to avoid + * exceeding 32 MHz as SYSCLK. + * + * @retval None + */ +void RCC_PLLConfig(uint8_t RCC_PLLSource, uint8_t RCC_PLLMul, uint8_t RCC_PLLDiv) +{ + /* Check the parameters */ + assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource)); + assert_param(IS_RCC_PLL_MUL(RCC_PLLMul)); + assert_param(IS_RCC_PLL_DIV(RCC_PLLDiv)); + + *(__IO uint8_t *) CFGR_BYTE3_ADDRESS = (uint8_t)(RCC_PLLSource | ((uint8_t)(RCC_PLLMul | (uint8_t)(RCC_PLLDiv)))); +} + +/** + * @brief Enables or disables the PLL. + * @note - After enabling the PLL, the application software should wait on + * PLLRDY flag to be set indicating that PLL clock is stable and can + * be used as system clock source. + * - The PLL can not be disabled if it is used as system clock source + * - The PLL is disabled by hardware when entering STOP and STANDBY modes. + * @param NewState: new state of the PLL. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_PLLCmd(FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + *(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState; +} + +/** + * @brief Enables or disables the Clock Security System. + * @note If a failure is detected on the HSE oscillator clock, this oscillator + * is automatically disabled and an interrupt is generated to inform the + * software about the failure (Clock Security System Interrupt, CSSI), + * allowing the MCU to perform rescue operations. The CSSI is linked to + * the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector. + * @param NewState: new state of the Clock Security System. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_ClockSecuritySystemCmd(FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + *(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState; +} + +/** + * @brief Selects the clock source to output on MCO pin (PA8). + * @note PA8 should be configured in alternate function mode. + * @param RCC_MCOSource: specifies the clock source to output. + * This parameter can be one of the following values: + * @arg RCC_MCOSource_NoClock: No clock selected + * @arg RCC_MCOSource_SYSCLK: System clock selected + * @arg RCC_MCOSource_HSI: HSI oscillator clock selected + * @arg RCC_MCOSource_MSI: MSI oscillator clock selected + * @arg RCC_MCOSource_HSE: HSE oscillator clock selected + * @arg RCC_MCOSource_PLLCLK: PLL clock selected + * @arg RCC_MCOSource_LSI: LSI clock selected + * @arg RCC_MCOSource_LSE: LSE clock selected + * @param RCC_MCODiv: specifies the MCO prescaler. + * This parameter can be one of the following values: + * @arg RCC_MCODiv_1: no division applied to MCO clock + * @arg RCC_MCODiv_2: division by 2 applied to MCO clock + * @arg RCC_MCODiv_4: division by 4 applied to MCO clock + * @arg RCC_MCODiv_8: division by 8 applied to MCO clock + * @arg RCC_MCODiv_16: division by 16 applied to MCO clock + * @retval None + */ +void RCC_MCOConfig(uint8_t RCC_MCOSource, uint8_t RCC_MCODiv) +{ + /* Check the parameters */ + assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource)); + assert_param(IS_RCC_MCO_DIV(RCC_MCODiv)); + + /* Select MCO clock source and prescaler */ + *(__IO uint8_t *) CFGR_BYTE4_ADDRESS = RCC_MCOSource | RCC_MCODiv; +} + +/** + * @} + */ + +/** @defgroup RCC_Group2 System AHB and APB busses clocks configuration functions + * @brief System, AHB and APB busses clocks configuration functions + * +@verbatim + =============================================================================== + System, AHB and APB busses clocks configuration functions + =============================================================================== + + This section provide functions allowing to configure the System, AHB, APB1 and + APB2 busses clocks. + + 1. Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI, + HSE and PLL. + The AHB clock (HCLK) is derived from System clock through configurable prescaler + and used to clock the CPU, memory and peripherals mapped on AHB bus (DMA and GPIO). + APB1 (PCLK1) and APB2 (PCLK2) clocks are derived from AHB clock through + configurable prescalers and used to clock the peripherals mapped on these busses. + You can use "RCC_GetClocksFreq()" function to retrieve the frequencies of these clocks. + +Note: All the peripheral clocks are derived from the System clock (SYSCLK) except: +==== - The USB 48 MHz clock which is derived from the PLL VCO clock. + - The ADC clock which is always the HSI clock. A divider by 1, 2 or 4 allows + to adapt the clock frequency to the device operating conditions. + - The RTC/LCD clock which is derived from the LSE, LSI or 1 MHz HSE_RTC (HSE + divided by a programmable prescaler). + The System clock (SYSCLK) frequency must be higher or equal to the RTC/LCD + clock frequency. + - IWDG clock which is always the LSI clock. + + 2. The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 32 MHz. + Depending on the device voltage range, the maximum frequency should be + adapted accordingly: + +----------------------------------------------------------------+ + | Wait states | HCLK clock frequency (MHz) | + | |------------------------------------------------| + | (Latency) | voltage range | voltage range | + | | 1.65 V - 3.6 V | 2.0 V - 3.6 V | + | |----------------|---------------|---------------| + | | VCORE = 1.2 V | VCORE = 1.5 V | VCORE = 1.8 V | + |-------------- |----------------|---------------|---------------| + |0WS(1CPU cycle)|0 < HCLK <= 2 |0 < HCLK <= 8 |0 < HCLK <= 16 | + |---------------|----------------|---------------|---------------| + |1WS(2CPU cycle)|2 < HCLK <= 4 |8 < HCLK <= 16 |16 < HCLK <= 32| + +----------------------------------------------------------------+ + + 3. After reset, the System clock source is the MSI (2 MHz) with 0 WS, Flash + 32-bit access is enabled and prefetch is disabled. + + It is recommended to use the following software sequences to tune the number + of wait states needed to access the Flash memory with the CPU frequency (HCLK). + - Increasing the CPU frequency (in the same voltage range) + - Program the Flash 64-bit access, using "FLASH_ReadAccess64Cmd(ENABLE)" function + - Check that 64-bit access is taken into account by reading FLASH_ACR + - Program Flash WS to 1, using "FLASH_SetLatency(FLASH_Latency_1)" function + - Check that the new number of WS is taken into account by reading FLASH_ACR + - Modify the CPU clock source, using "RCC_SYSCLKConfig()" function + - If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function + - Check that the new CPU clock source is taken into account by reading + the clock source status, using "RCC_GetSYSCLKSource()" function + - Decreasing the CPU frequency (in the same voltage range) + - Modify the CPU clock source, using "RCC_SYSCLKConfig()" function + - If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function + - Check that the new CPU clock source is taken into account by reading + the clock source status, using "RCC_GetSYSCLKSource()" function + - Program the new number of WS, using "FLASH_SetLatency()" function + - Check that the new number of WS is taken into account by reading FLASH_ACR + - Enable the Flash 32-bit access, using "FLASH_ReadAccess64Cmd(DISABLE)" function + - Check that 32-bit access is taken into account by reading FLASH_ACR + +@endverbatim + * @{ + */ + +/** + * @brief Configures the system clock (SYSCLK). + * @note - The MSI is used (enabled by hardware) as system clock source after + * startup from Reset, wake-up from STOP and STANDBY mode, or in case + * of failure of the HSE used directly or indirectly as system clock + * (if the Clock Security System CSS is enabled). + * - A switch from one clock source to another occurs only if the target + * clock source is ready (clock stable after startup delay or PLL locked). + * If a clock source which is not yet ready is selected, the switch will + * occur when the clock source will be ready. + * You can use RCC_GetSYSCLKSource() function to know which clock is + * currently used as system clock source. + * @param RCC_SYSCLKSource: specifies the clock source used as system clock source + * This parameter can be one of the following values: + * @arg RCC_SYSCLKSource_MSI: MSI selected as system clock source + * @arg RCC_SYSCLKSource_HSI: HSI selected as system clock source + * @arg RCC_SYSCLKSource_HSE: HSE selected as system clock source + * @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source + * @retval None + */ +void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource)); + + tmpreg = RCC->CFGR; + + /* Clear SW[1:0] bits */ + tmpreg &= ~RCC_CFGR_SW; + + /* Set SW[1:0] bits according to RCC_SYSCLKSource value */ + tmpreg |= RCC_SYSCLKSource; + + /* Store the new value */ + RCC->CFGR = tmpreg; +} + +/** + * @brief Returns the clock source used as system clock. + * @param None + * @retval The clock source used as system clock. The returned value can be one + * of the following values: + * - 0x00: MSI used as system clock + * - 0x04: HSI used as system clock + * - 0x08: HSE used as system clock + * - 0x0C: PLL used as system clock + */ +uint8_t RCC_GetSYSCLKSource(void) +{ + return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS)); +} + +/** + * @brief Configures the AHB clock (HCLK). + * @note Depending on the device voltage range, the software has to set correctly + * these bits to ensure that the system frequency does not exceed the + * maximum allowed frequency (for more details refer to section above + * "CPU, AHB and APB busses clocks configuration functions") + * @param RCC_SYSCLK: defines the AHB clock divider. This clock is derived from + * the system clock (SYSCLK). + * This parameter can be one of the following values: + * @arg RCC_SYSCLK_Div1: AHB clock = SYSCLK + * @arg RCC_SYSCLK_Div2: AHB clock = SYSCLK/2 + * @arg RCC_SYSCLK_Div4: AHB clock = SYSCLK/4 + * @arg RCC_SYSCLK_Div8: AHB clock = SYSCLK/8 + * @arg RCC_SYSCLK_Div16: AHB clock = SYSCLK/16 + * @arg RCC_SYSCLK_Div64: AHB clock = SYSCLK/64 + * @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128 + * @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256 + * @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512 + * @retval None + */ +void RCC_HCLKConfig(uint32_t RCC_SYSCLK) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RCC_HCLK(RCC_SYSCLK)); + + tmpreg = RCC->CFGR; + + /* Clear HPRE[3:0] bits */ + tmpreg &= ~RCC_CFGR_HPRE; + + /* Set HPRE[3:0] bits according to RCC_SYSCLK value */ + tmpreg |= RCC_SYSCLK; + + /* Store the new value */ + RCC->CFGR = tmpreg; +} + +/** + * @brief Configures the Low Speed APB clock (PCLK1). + * @param RCC_HCLK: defines the APB1 clock divider. This clock is derived from + * the AHB clock (HCLK). + * This parameter can be one of the following values: + * @arg RCC_HCLK_Div1: APB1 clock = HCLK + * @arg RCC_HCLK_Div2: APB1 clock = HCLK/2 + * @arg RCC_HCLK_Div4: APB1 clock = HCLK/4 + * @arg RCC_HCLK_Div8: APB1 clock = HCLK/8 + * @arg RCC_HCLK_Div16: APB1 clock = HCLK/16 + * @retval None + */ +void RCC_PCLK1Config(uint32_t RCC_HCLK) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RCC_PCLK(RCC_HCLK)); + + tmpreg = RCC->CFGR; + + /* Clear PPRE1[2:0] bits */ + tmpreg &= ~RCC_CFGR_PPRE1; + + /* Set PPRE1[2:0] bits according to RCC_HCLK value */ + tmpreg |= RCC_HCLK; + + /* Store the new value */ + RCC->CFGR = tmpreg; +} + +/** + * @brief Configures the High Speed APB clock (PCLK2). + * @param RCC_HCLK: defines the APB2 clock divider. This clock is derived from + * the AHB clock (HCLK). + * This parameter can be one of the following values: + * @arg RCC_HCLK_Div1: APB2 clock = HCLK + * @arg RCC_HCLK_Div2: APB2 clock = HCLK/2 + * @arg RCC_HCLK_Div4: APB2 clock = HCLK/4 + * @arg RCC_HCLK_Div8: APB2 clock = HCLK/8 + * @arg RCC_HCLK_Div16: APB2 clock = HCLK/16 + * @retval None + */ +void RCC_PCLK2Config(uint32_t RCC_HCLK) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RCC_PCLK(RCC_HCLK)); + + tmpreg = RCC->CFGR; + + /* Clear PPRE2[2:0] bits */ + tmpreg &= ~RCC_CFGR_PPRE2; + + /* Set PPRE2[2:0] bits according to RCC_HCLK value */ + tmpreg |= RCC_HCLK << 3; + + /* Store the new value */ + RCC->CFGR = tmpreg; +} + +/** + * @brief Returns the frequencies of the System, AHB and APB busses clocks. + * @note - The frequency returned by this function is not the real frequency + * in the chip. It is calculated based on the predefined constant and + * the source selected by RCC_SYSCLKConfig(): + * + * - If SYSCLK source is MSI, function returns constant the MSI value + * as defined by the MSI range, refer to RCC_MSIRangeConfig() + * + * - If SYSCLK source is HSI, function returns constant HSI_VALUE(*) + * + * - If SYSCLK source is HSE, function returns constant HSE_VALUE(**) + * + * - If SYSCLK source is PLL, function returns constant HSE_VALUE(**) + * or HSI_VALUE(*) multiplied/divided by the PLL factors. + * + * (*) HSI_VALUE is a constant defined in stm32l1xx.h file (default value + * 16 MHz) but the real value may vary depending on the variations + * in voltage and temperature, refer to RCC_AdjustHSICalibrationValue(). + * + * (**) HSE_VALUE is a constant defined in stm32l1xx.h file (default value + * 8 MHz), user has to ensure that HSE_VALUE is same as the real + * frequency of the crystal used. Otherwise, this function may + * return wrong result. + * + * - The result of this function could be not correct when using fractional + * value for HSE crystal. + * + * @param RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold + * the clocks frequencies. + * @retval None + */ +void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks) +{ + uint32_t tmp = 0, pllmul = 0, plldiv = 0, pllsource = 0, presc = 0, msirange = 0; + + /* Get SYSCLK source -------------------------------------------------------*/ + tmp = RCC->CFGR & RCC_CFGR_SWS; + + switch (tmp) + { + case 0x00: /* MSI used as system clock */ + msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE ) >> 13; + RCC_Clocks->SYSCLK_Frequency = (32768 * (1 << (msirange + 1))); + break; + case 0x04: /* HSI used as system clock */ + RCC_Clocks->SYSCLK_Frequency = HSI_VALUE; + break; + case 0x08: /* HSE used as system clock */ + RCC_Clocks->SYSCLK_Frequency = HSE_VALUE; + break; + case 0x0C: /* PLL used as system clock */ + /* Get PLL clock source and multiplication factor ----------------------*/ + pllmul = RCC->CFGR & RCC_CFGR_PLLMUL; + plldiv = RCC->CFGR & RCC_CFGR_PLLDIV; + pllmul = PLLMulTable[(pllmul >> 18)]; + plldiv = (plldiv >> 22) + 1; + + pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; + + if (pllsource == 0x00) + { + /* HSI oscillator clock selected as PLL clock source */ + RCC_Clocks->SYSCLK_Frequency = (((HSI_VALUE) * pllmul) / plldiv); + } + else + { + /* HSE selected as PLL clock source */ + RCC_Clocks->SYSCLK_Frequency = (((HSE_VALUE) * pllmul) / plldiv); + } + break; + default: /* MSI used as system clock */ + msirange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE ) >> 13; + RCC_Clocks->SYSCLK_Frequency = (32768 * (1 << (msirange + 1))); + break; + } + /* Compute HCLK, PCLK1, PCLK2 and ADCCLK clocks frequencies ----------------*/ + /* Get HCLK prescaler */ + tmp = RCC->CFGR & RCC_CFGR_HPRE; + tmp = tmp >> 4; + presc = APBAHBPrescTable[tmp]; + /* HCLK clock frequency */ + RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc; + + /* Get PCLK1 prescaler */ + tmp = RCC->CFGR & RCC_CFGR_PPRE1; + tmp = tmp >> 8; + presc = APBAHBPrescTable[tmp]; + /* PCLK1 clock frequency */ + RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc; + + /* Get PCLK2 prescaler */ + tmp = RCC->CFGR & RCC_CFGR_PPRE2; + tmp = tmp >> 11; + presc = APBAHBPrescTable[tmp]; + /* PCLK2 clock frequency */ + RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc; +} + +/** + * @} + */ + +/** @defgroup RCC_Group3 Peripheral clocks configuration functions + * @brief Peripheral clocks configuration functions + * +@verbatim + =============================================================================== + Peripheral clocks configuration functions + =============================================================================== + + This section provide functions allowing to configure the Peripheral clocks. + + 1. The RTC/LCD clock which is derived from the LSE, LSI or 1 MHz HSE_RTC (HSE + divided by a programmable prescaler). + + 2. After restart from Reset or wakeup from STANDBY, all peripherals are off + except internal SRAM, Flash and JTAG. Before to start using a peripheral you + have to enable its interface clock. You can do this using RCC_AHBPeriphClockCmd() + , RCC_APB2PeriphClockCmd() and RCC_APB1PeriphClockCmd() functions. + + 3. To reset the peripherals configuration (to the default state after device reset) + you can use RCC_AHBPeriphResetCmd(), RCC_APB2PeriphResetCmd() and + RCC_APB1PeriphResetCmd() functions. + + 4. To further reduce power consumption in SLEEP mode the peripheral clocks can + be disabled prior to executing the WFI or WFE instructions. You can do this + using RCC_AHBPeriphClockLPModeCmd(), RCC_APB2PeriphClockLPModeCmd() and + RCC_APB1PeriphClockLPModeCmd() functions. + +@endverbatim + * @{ + */ + +/** + * @brief Configures the RTC and LCD clock (RTCCLK / LCDCLK). + * @note - As the RTC clock configuration bits are in the RTC domain and write + * access is denied to this domain after reset, you have to enable write + * access using PWR_RTCAccessCmd(ENABLE) function before to configure + * the RTC clock source (to be done once after reset). + * - Once the RTC clock is configured it can't be changed unless the RTC + * is reset using RCC_RTCResetCmd function, or by a Power On Reset (POR) + * - The RTC clock (RTCCLK) is used also to clock the LCD (LCDCLK). + * + * @param RCC_RTCCLKSource: specifies the RTC clock source. + * This parameter can be one of the following values: + * @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock + * @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock + * @arg RCC_RTCCLKSource_HSE_Div2: HSE divided by 2 selected as RTC clock + * @arg RCC_RTCCLKSource_HSE_Div4: HSE divided by 4 selected as RTC clock + * @arg RCC_RTCCLKSource_HSE_Div8: HSE divided by 8 selected as RTC clock + * @arg RCC_RTCCLKSource_HSE_Div16: HSE divided by 16 selected as RTC clock + * + * @note - If the LSE or LSI is used as RTC clock source, the RTC continues to + * work in STOP and STANDBY modes, and can be used as wakeup source. + * However, when the HSE clock is used as RTC clock source, the RTC + * cannot be used in STOP and STANDBY modes. + * + * - The maximum input clock frequency for RTC is 1MHz (when using HSE as + * RTC clock source). + * + * @retval None + */ +void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource) +{ + uint32_t tmpreg = 0; + + /* Check the parameters */ + assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource)); + + if ((RCC_RTCCLKSource & RCC_CSR_RTCSEL_HSE) == RCC_CSR_RTCSEL_HSE) + { + /* If HSE is selected as RTC clock source, configure HSE division factor for RTC clock */ + tmpreg = RCC->CR; + + /* Clear RTCPRE[1:0] bits */ + tmpreg &= ~RCC_CR_RTCPRE; + + /* Configure HSE division factor for RTC clock */ + tmpreg |= (RCC_RTCCLKSource & RCC_CR_RTCPRE); + + /* Store the new value */ + RCC->CR = tmpreg; + } + + RCC->CSR &= ~RCC_CSR_RTCSEL; + + /* Select the RTC clock source */ + RCC->CSR |= (RCC_RTCCLKSource & RCC_CSR_RTCSEL); +} + +/** + * @brief Enables or disables the RTC clock. + * @note This function must be used only after the RTC clock source was selected + * using the RCC_RTCCLKConfig function. + * @param NewState: new state of the RTC clock. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_RTCCLKCmd(FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + *(__IO uint32_t *) CSR_RTCEN_BB = (uint32_t)NewState; +} + +/** + * @brief Forces or releases the RTC peripheral and associated resources reset. + * @note This function resets the RTC peripheral, RTC clock source selection + * (in RCC_CSR) and the backup registers. + * @param NewState: new state of the RTC reset. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_RTCResetCmd(FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + *(__IO uint32_t *) CSR_RTCRST_BB = (uint32_t)NewState; +} + +/** + * @brief Enables or disables the AHB peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + * @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock. + * This parameter can be any combination of the following values: + * @arg RCC_AHBPeriph_GPIOA + * @arg RCC_AHBPeriph_GPIOB + * @arg RCC_AHBPeriph_GPIOC + * @arg RCC_AHBPeriph_GPIOD + * @arg RCC_AHBPeriph_GPIOE + * @arg RCC_AHBPeriph_GPIOH + * @arg RCC_AHBPeriph_CRC + * @arg RCC_AHBPeriph_FLITF (has effect only when the Flash memory is in power down mode) + * @arg RCC_AHBPeriph_DMA1 + * @param NewState: new state of the specified peripheral clock. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph)); + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + if (NewState != DISABLE) + { + RCC->AHBENR |= RCC_AHBPeriph; + } + else + { + RCC->AHBENR &= ~RCC_AHBPeriph; + } +} + +/** + * @brief Enables or disables the High Speed APB (APB2) peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + * @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock. + * This parameter can be any combination of the following values: + * @arg RCC_APB2Periph_SYSCFG + * @arg RCC_APB2Periph_TIM9 + * @arg RCC_APB2Periph_TIM10 + * @arg RCC_APB2Periph_TIM11 + * @arg RCC_APB2Periph_ADC1 + * @arg RCC_APB2Periph_SPI1 + * @arg RCC_APB2Periph_USART1 + * @param NewState: new state of the specified peripheral clock. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + if (NewState != DISABLE) + { + RCC->APB2ENR |= RCC_APB2Periph; + } + else + { + RCC->APB2ENR &= ~RCC_APB2Periph; + } +} + +/** + * @brief Enables or disables the Low Speed APB (APB1) peripheral clock. + * @note After reset, the peripheral clock (used for registers read/write access) + * is disabled and the application software has to enable this clock before + * using it. + * @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock. + * This parameter can be any combination of the following values: + * @arg RCC_APB1Periph_TIM2 + * @arg RCC_APB1Periph_TIM3 + * @arg RCC_APB1Periph_TIM4 + * @arg RCC_APB1Periph_TIM6 + * @arg RCC_APB1Periph_TIM7 + * @arg RCC_APB1Periph_LCD + * @arg RCC_APB1Periph_WWDG + * @arg RCC_APB1Periph_SPI2 + * @arg RCC_APB1Periph_USART2 + * @arg RCC_APB1Periph_USART3 + * @arg RCC_APB1Periph_I2C1 + * @arg RCC_APB1Periph_I2C2 + * @arg RCC_APB1Periph_USB + * @arg RCC_APB1Periph_PWR + * @arg RCC_APB1Periph_DAC + * @arg RCC_APB1Periph_COMP + * @param NewState: new state of the specified peripheral clock. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + if (NewState != DISABLE) + { + RCC->APB1ENR |= RCC_APB1Periph; + } + else + { + RCC->APB1ENR &= ~RCC_APB1Periph; + } +} + +/** + * @brief Forces or releases AHB peripheral reset. + * @param RCC_AHBPeriph: specifies the AHB peripheral to reset. + * This parameter can be any combination of the following values: + * @arg RCC_AHBPeriph_GPIOA + * @arg RCC_AHBPeriph_GPIOB + * @arg RCC_AHBPeriph_GPIOC + * @arg RCC_AHBPeriph_GPIOD + * @arg RCC_AHBPeriph_GPIOE + * @arg RCC_AHBPeriph_GPIOH + * @arg RCC_AHBPeriph_CRC + * @arg RCC_AHBPeriph_FLITF (has effect only when the Flash memory is in power down mode) + * @arg RCC_AHBPeriph_DMA1 + * @param NewState: new state of the specified peripheral reset. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph)); + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + if (NewState != DISABLE) + { + RCC->AHBRSTR |= RCC_AHBPeriph; + } + else + { + RCC->AHBRSTR &= ~RCC_AHBPeriph; + } +} + +/** + * @brief Forces or releases High Speed APB (APB2) peripheral reset. + * @param RCC_APB2Periph: specifies the APB2 peripheral to reset. + * This parameter can be any combination of the following values: + * @arg RCC_APB2Periph_SYSCFG + * @arg RCC_APB2Periph_TIM9 + * @arg RCC_APB2Periph_TIM10 + * @arg RCC_APB2Periph_TIM11 + * @arg RCC_APB2Periph_ADC1 + * @arg RCC_APB2Periph_SPI1 + * @arg RCC_APB2Periph_USART1 + * @param NewState: new state of the specified peripheral reset. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + if (NewState != DISABLE) + { + RCC->APB2RSTR |= RCC_APB2Periph; + } + else + { + RCC->APB2RSTR &= ~RCC_APB2Periph; + } +} + +/** + * @brief Forces or releases Low Speed APB (APB1) peripheral reset. + * @param RCC_APB1Periph: specifies the APB1 peripheral to reset. + * This parameter can be any combination of the following values: + * @arg RCC_APB1Periph_TIM2 + * @arg RCC_APB1Periph_TIM3 + * @arg RCC_APB1Periph_TIM4 + * @arg RCC_APB1Periph_TIM6 + * @arg RCC_APB1Periph_TIM7 + * @arg RCC_APB1Periph_LCD + * @arg RCC_APB1Periph_WWDG + * @arg RCC_APB1Periph_SPI2 + * @arg RCC_APB1Periph_USART2 + * @arg RCC_APB1Periph_USART3 + * @arg RCC_APB1Periph_I2C1 + * @arg RCC_APB1Periph_I2C2 + * @arg RCC_APB1Periph_USB + * @arg RCC_APB1Periph_PWR + * @arg RCC_APB1Periph_DAC + * @arg RCC_APB1Periph_COMP + * @param NewState: new state of the specified peripheral clock. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + if (NewState != DISABLE) + { + RCC->APB1RSTR |= RCC_APB1Periph; + } + else + { + RCC->APB1RSTR &= ~RCC_APB1Periph; + } +} + +/** + * @brief Enables or disables the AHB peripheral clock during SLEEP mode. + * @note - Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * - After wakeup from SLEEP mode, the peripheral clock is enabled again. + * - By default, all peripheral clocks are enabled during SLEEP mode. + * @param RCC_AHBPeriph: specifies the AHB peripheral to gates its clock. + * This parameter can be any combination of the following values: + * @arg RCC_AHBPeriph_GPIOA + * @arg RCC_AHBPeriph_GPIOB + * @arg RCC_AHBPeriph_GPIOC + * @arg RCC_AHBPeriph_GPIOD + * @arg RCC_AHBPeriph_GPIOE + * @arg RCC_AHBPeriph_GPIOH + * @arg RCC_AHBPeriph_CRC + * @arg RCC_AHBPeriph_FLITF (has effect only when the Flash memory is in power down mode) + * @arg RCC_AHBPeriph_SRAM + * @arg RCC_AHBPeriph_DMA1 + * @param NewState: new state of the specified peripheral clock. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_AHBPeriphClockLPModeCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_RCC_AHB_LPMODE_PERIPH(RCC_AHBPeriph)); + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + if (NewState != DISABLE) + { + RCC->AHBLPENR |= RCC_AHBPeriph; + } + else + { + RCC->AHBLPENR &= ~RCC_AHBPeriph; + } +} + +/** + * @brief Enables or disables the APB2 peripheral clock during SLEEP mode. + * @note - Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * - After wakeup from SLEEP mode, the peripheral clock is enabled again. + * - By default, all peripheral clocks are enabled during SLEEP mode. + * @param RCC_APB2Periph: specifies the APB2 peripheral to gates its clock. + * This parameter can be any combination of the following values: + * @arg RCC_APB2Periph_SYSCFG + * @arg RCC_APB2Periph_TIM9 + * @arg RCC_APB2Periph_TIM10 + * @arg RCC_APB2Periph_TIM11 + * @arg RCC_APB2Periph_ADC1 + * @arg RCC_APB2Periph_SPI1 + * @arg RCC_APB2Periph_USART1 + * @param NewState: new state of the specified peripheral clock. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_APB2PeriphClockLPModeCmd(uint32_t RCC_APB2Periph, FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph)); + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + if (NewState != DISABLE) + { + RCC->APB2LPENR |= RCC_APB2Periph; + } + else + { + RCC->APB2LPENR &= ~RCC_APB2Periph; + } +} + +/** + * @brief Enables or disables the APB1 peripheral clock during SLEEP mode. + * @note - Peripheral clock gating in SLEEP mode can be used to further reduce + * power consumption. + * - After wakeup from SLEEP mode, the peripheral clock is enabled again. + * - By default, all peripheral clocks are enabled during SLEEP mode. + * @param RCC_APB1Periph: specifies the APB1 peripheral to gates its clock. + * This parameter can be any combination of the following values: + * @arg RCC_APB1Periph_TIM2 + * @arg RCC_APB1Periph_TIM3 + * @arg RCC_APB1Periph_TIM4 + * @arg RCC_APB1Periph_TIM6 + * @arg RCC_APB1Periph_TIM7 + * @arg RCC_APB1Periph_LCD + * @arg RCC_APB1Periph_WWDG + * @arg RCC_APB1Periph_SPI2 + * @arg RCC_APB1Periph_USART2 + * @arg RCC_APB1Periph_USART3 + * @arg RCC_APB1Periph_I2C1 + * @arg RCC_APB1Periph_I2C2 + * @arg RCC_APB1Periph_USB + * @arg RCC_APB1Periph_PWR + * @arg RCC_APB1Periph_DAC + * @arg RCC_APB1Periph_COMP + * @param NewState: new state of the specified peripheral clock. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_APB1PeriphClockLPModeCmd(uint32_t RCC_APB1Periph, FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph)); + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + if (NewState != DISABLE) + { + RCC->APB1LPENR |= RCC_APB1Periph; + } + else + { + RCC->APB1LPENR &= ~RCC_APB1Periph; + } +} + +/** + * @} + */ + +/** @defgroup RCC_Group4 Interrupts and flags management functions + * @brief Interrupts and flags management functions + * +@verbatim + =============================================================================== + Interrupts and flags management functions + =============================================================================== + +@endverbatim + * @{ + */ + +/** + * @brief Enables or disables the specified RCC interrupts. + * @note The CSS interrupt doesn't have an enable bit; once the CSS is enabled + * and if the HSE clock fails, the CSS interrupt occurs and an NMI is + * automatically generated. The NMI will be executed indefinitely, and + * since NMI has higher priority than any other IRQ (and main program) + * the application will be stacked in the NMI ISR unless the CSS interrupt + * pending bit is cleared. + * @param RCC_IT: specifies the RCC interrupt sources to be enabled or disabled. + * This parameter can be any combination of the following values: + * @arg RCC_IT_LSIRDY: LSI ready interrupt + * @arg RCC_IT_LSERDY: LSE ready interrupt + * @arg RCC_IT_HSIRDY: HSI ready interrupt + * @arg RCC_IT_HSERDY: HSE ready interrupt + * @arg RCC_IT_PLLRDY: PLL ready interrupt + * @arg RCC_IT_MSIRDY: MSI ready interrupt + * @param NewState: new state of the specified RCC interrupts. + * This parameter can be: ENABLE or DISABLE. + * @retval None + */ +void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState) +{ + /* Check the parameters */ + assert_param(IS_RCC_IT(RCC_IT)); + assert_param(IS_FUNCTIONAL_STATE(NewState)); + + if (NewState != DISABLE) + { + /* Perform Byte access to RCC_CIR[12:8] bits to enable the selected interrupts */ + *(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT; + } + else + { + /* Perform Byte access to RCC_CIR[12:8] bits to disable the selected interrupts */ + *(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT; + } +} + +/** + * @brief Checks whether the specified RCC flag is set or not. + * @param RCC_FLAG: specifies the flag to check. + * This parameter can be one of the following values: + * @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready + * @arg RCC_FLAG_MSIRDY: MSI oscillator clock ready + * @arg RCC_FLAG_HSERDY: HSE oscillator clock ready + * @arg RCC_FLAG_PLLRDY: PLL clock ready + * @arg RCC_FLAG_LSERDY: LSE oscillator clock ready + * @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready + * @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset + * @arg RCC_FLAG_PINRST: Pin reset + * @arg RCC_FLAG_PORRST: POR/PDR reset + * @arg RCC_FLAG_SFTRST: Software reset + * @arg RCC_FLAG_IWDGRST: Independent Watchdog reset + * @arg RCC_FLAG_WWDGRST: Window Watchdog reset + * @arg RCC_FLAG_LPWRRST: Low Power reset + * @retval The new state of RCC_FLAG (SET or RESET). + */ +FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG) +{ + uint32_t tmp = 0; + uint32_t statusreg = 0; + FlagStatus bitstatus = RESET; + + /* Check the parameters */ + assert_param(IS_RCC_FLAG(RCC_FLAG)); + + /* Get the RCC register index */ + tmp = RCC_FLAG >> 5; + + if (tmp == 1) /* The flag to check is in CR register */ + { + statusreg = RCC->CR; + } + else /* The flag to check is in CSR register (tmp == 2) */ + { + statusreg = RCC->CSR; + } + + /* Get the flag position */ + tmp = RCC_FLAG & FLAG_MASK; + + if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET) + { + bitstatus = SET; + } + else + { + bitstatus = RESET; + } + /* Return the flag status */ + return bitstatus; +} + +/** + * @brief Clears the RCC reset flags. + * The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PORRST, + * RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST. + * @param None + * @retval None + */ +void RCC_ClearFlag(void) +{ + /* Set RMVF bit to clear the reset flags */ + RCC->CSR |= RCC_CSR_RMVF; +} + +/** + * @brief Checks whether the specified RCC interrupt has occurred or not. + * @param RCC_IT: specifies the RCC interrupt source to check. + * This parameter can be one of the following values: + * @arg RCC_IT_LSIRDY: LSI ready interrupt + * @arg RCC_IT_LSERDY: LSE ready interrupt + * @arg RCC_IT_HSIRDY: HSI ready interrupt + * @arg RCC_IT_HSERDY: HSE ready interrupt + * @arg RCC_IT_PLLRDY: PLL ready interrupt + * @arg RCC_IT_MSIRDY: MSI ready interrupt + * @arg RCC_IT_CSS: Clock Security System interrupt + * @retval The new state of RCC_IT (SET or RESET). + */ +ITStatus RCC_GetITStatus(uint8_t RCC_IT) +{ + ITStatus bitstatus = RESET; + /* Check the parameters */ + assert_param(IS_RCC_GET_IT(RCC_IT)); + + /* Check the status of the specified RCC interrupt */ + if ((RCC->CIR & RCC_IT) != (uint32_t)RESET) + { + bitstatus = SET; + } + else + { + bitstatus = RESET; + } + /* Return the RCC_IT status */ + return bitstatus; +} + +/** + * @brief Clears the RCC's interrupt pending bits. + * @param RCC_IT: specifies the interrupt pending bit to clear. + * This parameter can be any combination of the following values: + * @arg RCC_IT_LSIRDY: LSI ready interrupt + * @arg RCC_IT_LSERDY: LSE ready interrupt + * @arg RCC_IT_HSIRDY: HSI ready interrupt + * @arg RCC_IT_HSERDY: HSE ready interrupt + * @arg RCC_IT_PLLRDY: PLL ready interrupt + * @arg RCC_IT_MSIRDY: MSI ready interrupt + * @arg RCC_IT_CSS: Clock Security System interrupt + * @retval None + */ +void RCC_ClearITPendingBit(uint8_t RCC_IT) +{ + /* Check the parameters */ + assert_param(IS_RCC_CLEAR_IT(RCC_IT)); + + /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt + pending bits */ + *(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT; +} + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/** + * @} + */ + +/******************* (C) COPYRIGHT 2010 STMicroelectronics *****END OF FILE****/