X-Git-Url: https://git.gag.com/?a=blobdiff_plain;ds=sidebyside;f=doc%2Ftelemetrum.xsl;h=793347f9dc1e0dc0c8704b9fa17f751cbab7906a;hb=8c95f33686f69da717013ec2c25dbcd99c03aa45;hp=b0c5e94f3699f37efe61dcaa428b2de30656cc4f;hpb=baaaac499cfbc1286ae55374cfdc796d32983b92;p=fw%2Faltos diff --git a/doc/telemetrum.xsl b/doc/telemetrum.xsl index b0c5e94f..793347f9 100644 --- a/doc/telemetrum.xsl +++ b/doc/telemetrum.xsl @@ -37,32 +37,321 @@ Introduction and Overview - Placeholder. + Welcome to the Altus Metrum community! Our circuits and software reflect + our passion for both hobby rocketry and Free Software. We hope their + capabilities and performance will delight you in every way, but by + releasing all of our hardware and software designs under open licenses, + we also hope to empower you to take as active a role in our collective + future as you wish! + + + The focal point of our community is TeleMetrum, a dual deploy altimeter + with fully integrated GPS and radio telemetry as standard features, and + a "companion interface" that will support optional capabilities in the + future. + + + Complementing TeleMetrum is TeleDongle, a USB to RF interface for + communicating with TeleMetrum. Combined with your choice of antenna and + notebook computer, TeleDongle and our associated user interface software + form a complete ground station capable of logging and displaying in-flight + telemetry, aiding rocket recovery, then processing and archiving flight + data for analysis and review. Specifications - - Placeholder. - + + + + Recording altimeter for model rocketry. + + + + + Supports dual deployment (can fire 2 ejection charges). + + + + + 70cm ham-band transceiver for telemetry downlink. + + + + + Barometric pressure sensor good to 45k feet MSL. + + + + + 1-axis high-g accelerometer for motor characterization, capable of + +/- 50g using default part. + + + + + On-board, integrated GPS receiver with 5hz update rate capability. + + + + + On-board 1 megabyte non-volatile memory for flight data storage. + + + + + USB interface for battery charging, configuration, and data recovery. + + + + + Fully integrated support for LiPo rechargeable batteries. + + + + + Uses LiPo to fire e-matches, support for optional separate pyro + battery if needed. + + + + + 2.75 x 1 inch board designed to fit inside 29mm airframe coupler tube. + + + Handling Precautions - Placeholder. + TeleMetrum is a sophisticated electronic device. When handled gently and + properly installed in an airframe, it will deliver extraordinary results. + However, like all electronic devices, there are some precautions you + must take. + + + The Lithium Polymer rechargeable batteries used with TeleMetrum have an + extraordinary power density. This is great because we can fly with + much less battery mass than if we used alkaline batteries or previous + generation rechargeable batteries... but if they are punctured + or their leads are allowed to short, they can and will release their + energy very rapidly! + Thus we recommend that you take some care when handling our batteries + and consider giving them some extra protection in your airframe. We + often wrap them in suitable scraps of closed-cell packing foam before + strapping them down, for example. + + + The TeleMetrum barometric sensor is sensitive to sunlight. In normal + mounting situations, it and all of the other surface mount components + are "down" towards whatever the underlying mounting surface is, so + this is not normally a problem. Please consider this, though, when + designing an installation, for example, in a 29mm airframe's see-through + plastic payload bay. + + + The TeleMetrum barometric sensor sampling port must be able to "breathe", + both by not being covered by foam or tape or other materials that might + directly block the hole on the top of the sensor, but also by having a + suitable static vent to outside air. + + + As with all other rocketry electronics, TeleMetrum must be protected + from exposure to corrosive motor exhaust and ejection charge gasses. Hardware Overview - Placeholder. + TeleMetrum is a 1 inch by 2.75 inch circuit board. It was designed to + fit inside coupler for 29mm airframe tubing, but using it in a tube that + small in diameter may require some creativity in mounting and wiring + to succeed! The default 1/4 + wave UHF wire antenna attached to the center of the nose-cone end of + the board is about 7 inches long, and wiring for a power switch and + the e-matches for apogee and main ejection charges depart from the + fin can end of the board. Given all this, an ideal "simple" avionics + bay for TeleMetrum should have at least 10 inches of interior length. + + + A typical TeleMetrum installation using the on-board GPS antenna and + default wire UHF antenna involves attaching only a suitable + Lithium Polymer battery, a single pole switch for power on/off, and + two pairs of wires connecting e-matches for the apogee and main ejection + charges. + + + By default, we use the unregulated output of the LiPo battery directly + to fire ejection charges. This works marvelously with standard e-matches + from companies like [insert company and product names for e-matches we've + tried and like] and with Quest Q2G2 igniters. However, if you + want or need to use a separate pyro battery, you can do so by adding + a second 2mm connector to position B2 on the board and cutting the + thick pcb trace connecting the LiPo battery to the pyro circuit between + the two silk screen marks on the surface mount side of the board shown + here [insert photo] + + + We offer two choices of pyro and power switch connector, or you can + choose neither and solder wires directly to the board. All three choices + are reasonable depending on the constraints of your airframe. Our + favorite option when there is sufficient room above the board is to use + the Tyco pin header with polarization and locking. If you choose this + option, you crimp individual wires for the power switch and e-matches + into a mating connector, and installing and removing the TeleMetrum + board from an airframe is as easy as plugging or unplugging two + connectors. If the airframe will not support this much height or if + you want to be able to directly attach e-match leads to the board, we + offer a screw terminal block. This is very similar to what most other + altimeter vendors provide by default and so may be the most familiar + option. You'll need a very small straight blade screwdriver to connect + and disconnect the board in this case, such as you might find in a + jeweler's screwdriver set. Finally, you can forego both options and + solder wires directly to the board, which may be the best choice for + minimum diameter and/or minimum mass designs. + + + For most airframes, the integrated GPS antenna and wire UHF antenna are + a great combination. However, if you are installing in a carbon-fiber + electronics bay which is opaque to RF signals, you may need to use + off-board external antennas instead. In this case, you can order + TeleMetrum with an SMA connector for the UHF antenna connection, and + you can unplug the integrated GPS antenna and select an appropriate + off-board GPS antenna with cable terminating in a U.FL connector. Operation - - Placeholder. - +
+ Firmware Modes + + The AltOS firmware build for TeleMetrum has two fundamental modes, + "idle" and "flight". Which of these modes the firmware operates in + is determined by the orientation of the rocket (well, actually the + board, of course...) at the time power is switched on. If the rocket + is "nose up", then TeleMetrum assumes it's on a rail or rod being + prepared for launch, so the firmware chooses flight mode. However, + if the rocket is more or less horizontal, the firmware instead enters + idle mode. + + + In flight mode, TeleMetrum turns on the GPS system, engages the flight + state machine, goes into transmit-only mode on the RF link sending + telemetry, and waits for launch to be detected. Flight mode is + indicated by an audible "di-dah-dah-dit" on the beeper, followed by + beeps indicating the state of the pyrotechnic igniter continuity. + One beep indicates [FIXME] apogee continuity, two beeps indicate + main continuity, three beeps indicate both apogee and main continuity, + and one longer "brap" sound indicates no continuity. For a dual + deploy flight, make sure you're getting three beeps before launching! + For apogee-only or motor eject flights, do what makes sense. + + + In idle mode, the normal flight state machine is disengaged, and thus + no ejection charges will fire. TeleMetrum also listens on the RF + link when in idle mode for packet mode requests sent from TeleDongle. + Commands can thus be issues to a TeleMetrum in idle mode over either + USB or the RF link equivalently. + Idle mode is useful for configuring TeleMetrum, for extracting data + from the on-board storage chip after flight, and for ground testing + pyro charges. + + + One "neat trick" of particular value when TeleMetrum is used with very + large airframes, is that you can power the board up while the rocket + is horizontal, such that it comes up in idle mode. Then you can + raise the airframe to launch position, use a TeleDongle to open + a packet connection, and issue a 'reset' command which will cause + TeleMetrum to reboot, realize it's now nose-up, and thus choose + flight mode. This is much safer than standing on the top step of a + rickety step-ladder or hanging off the side of a launch tower with + a screw-driver trying to turn on your avionics before installing + igniters! + +
+
+ GPS + + TeleMetrum includes a complete GPS receiver. See a later section for + a brief explanation of how GPS works that will help you understand + the information in the telemetry stream. The bottom line is that + the TeleMetrum GPS receiver needs to lock onto at least four + satellites to obtain a solid 3 dimensional position fix and know + what time it is! + + + TeleMetrum provides backup power to the GPS chip any time a LiPo + battery is connected. This allows the receiver to "warm start" on + the launch rail much faster than if every power-on were a "cold start" + for the GPS receiver. In typical operations, powering up TeleMetrum + on the flight line in idle mode while performing final airframe + preparation will be sufficient to allow the GPS receiver to cold + start and acquire lock. Then the board can be powered down during + RSO review and installation on a launch rod or rail. When the board + is turned back on, the GPS system should lock very quickly, typically + long before igniter installation and return to the flight line are + complete. + +
+
+ Ground Testing + + An important aspect of preparing a rocket using electronic deployment + for flight is ground testing the recovery system. Thanks + to the bi-directional RF link central to the Altus Metrum system, + this can be accomplished in a TeleMetrum-equipped rocket without as + much work as you may be accustomed to with other systems. It can + even be fun! + + + Just prep the rocket for flight, then power up TeleMetrum while the + airframe is horizontal. This will cause the firmware to go into + "idle" mode, in which the normal flight state machine is disabled and + charges will not fire without manual command. Then, establish an + RF packet connection from a TeleDongle-equipped computer using the + P command from a safe distance. You can now command TeleMetrum to + fire the apogee or main charges to complete your testing. + +
+
+ Radio Link + + The chip our boards are based on incorporates an RF transceiver, but + it's not a full duplex system... each end can only be transmitting or + receiving at any given moment. So we have to decide how to manage the + link... + + + By design, TeleMetrum firmware listens for an RF connection when + it's in "idle mode" (turned on while the rocket is horizontal), which + allows us to use the RF link to configure the rocket, do things like + ejection tests, and extract data after a flight without having to + crack open the airframe. However, when the board is in "flight + mode" (turned on when the rocket is vertical) the TeleMetrum only + transmits and doesn't listen at all. That's because we want to put + ultimate priority on event detection and getting telemetry out of + the rocket and out over + the RF link in case the rocket crashes and we aren't able to extract + data later... + + + We don't use a 'normal packet radio' mode because they're just too + inefficient. GFSK is just FSK with the baseband pulses passed through a + Gaussian filter before they go into the modulator to limit the + transmitted bandwidth. When combined with the hardware forward error + correction support in the cc1111 chip, this allows us to have a very + robust 38.4 kilobit data link with only 10 milliwatts of transmit power, + a whip antenna in the rocket, and a hand-held Yagi on the ground. We've + had a test flight above 12k AGL with good reception, and my calculations + say we should be good to 40k AGL or more with just a 5-element yagi on + the ground. I expect to push 30k with a 54mm minimum airframe I'm + working on now, so we'll hopefully have further practical confirmation + of our link margin in a few months. + + + Placeholder. + +
Using Altus Metrum Products @@ -124,7 +413,7 @@ if the rocket is hiding in sage brush or a tree, or if the last GPS position doesn't get you close enough because the rocket dropped into a canyon, or the wind is blowing it across a dry lake bed, or something like that... Keith - and Bdale both currently own and use the Yaesu VX-6R at launches. + and Bdale both currently own and use the Yaesu VX-7R at launches. So, to recap, on the ground the hardware you'll need includes: @@ -149,11 +438,11 @@ The best hand-held commercial directional antennas we've found for radio direction finding rockets are from - - Arrow Antennas. - -The 440-3 and 440-5 are both good choices for finding a -TeleMetrum-equipped rocket when used with a suitable 70cm HT. + + Arrow Antennas. + + The 440-3 and 440-5 are both good choices for finding a + TeleMetrum-equipped rocket when used with a suitable 70cm HT.
@@ -199,6 +488,14 @@ TeleMetrum-equipped rocket when used with a suitable 70cm HT.
+
+ + How GPS Works + + + Placeholder. + +