X-Git-Url: https://git.gag.com/?a=blobdiff_plain;ds=inline;f=gr-radio-astronomy%2Fsrc%2Fpython%2Fusrp_ra_receiver.py;h=60d5594423a9a077c0b9ae15cd3a38cf2f02c3f4;hb=ea29b08aeb54227e6628f655ccfdb96fe4d8c378;hp=c68808e80eaa015dbef3c5e5a6830adf5dfb1961;hpb=09a1e803a9e6587c78d20cdf16891e5295874668;p=debian%2Fgnuradio diff --git a/gr-radio-astronomy/src/python/usrp_ra_receiver.py b/gr-radio-astronomy/src/python/usrp_ra_receiver.py index c68808e8..60d55944 100755 --- a/gr-radio-astronomy/src/python/usrp_ra_receiver.py +++ b/gr-radio-astronomy/src/python/usrp_ra_receiver.py @@ -1,6 +1,6 @@ #!/usr/bin/env python # -# Copyright 2004,2005 Free Software Foundation, Inc. +# Copyright 2004,2005,2007 Free Software Foundation, Inc. # # This file is part of GNU Radio # @@ -11,7 +11,7 @@ # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License @@ -22,570 +22,1363 @@ from gnuradio import gr, gru from gnuradio import usrp -import usrp_dbid +from usrpm import usrp_dbid from gnuradio import eng_notation from gnuradio.eng_option import eng_option -from gnuradio.wxgui import stdgui, ra_fftsink, ra_stripchartsink, waterfallsink, form, slider +from gnuradio.wxgui import stdgui2, ra_fftsink, ra_stripchartsink, ra_waterfallsink, form, slider from optparse import OptionParser import wx import sys -from Numeric import * -import FFT +import Numeric +import time +import numpy.fft import ephem -from gnuradio.local_calibrator import * - -class app_flow_graph(stdgui.gui_flow_graph): - def __init__(self, frame, panel, vbox, argv): - stdgui.gui_flow_graph.__init__(self) - - self.frame = frame - self.panel = panel - - parser = OptionParser(option_class=eng_option) - parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0), - help="select USRP Rx side A or B (default=A)") - parser.add_option("-d", "--decim", type="int", default=16, - help="set fgpa decimation rate to DECIM [default=%default]") - parser.add_option("-f", "--freq", type="eng_float", default=None, - help="set frequency to FREQ", metavar="FREQ") - parser.add_option("-a", "--avg", type="eng_float", default=1.0, - help="set spectral averaging alpha") - parser.add_option("-i", "--integ", type="eng_float", default=1.0, - help="set integration time") - parser.add_option("-g", "--gain", type="eng_float", default=None, - help="set gain in dB (default is midpoint)") - parser.add_option("-l", "--reflevel", type="eng_float", default=30.0, - help="Set Total power reference level") - parser.add_option("-y", "--division", type="eng_float", default=0.5, - help="Set Total power Y division size") - parser.add_option("-e", "--longitude", type="eng_float", default=-76.02, help="Set Observer Longitude") - parser.add_option("-c", "--latitude", type="eng_float", default=44.85, help="Set Observer Latitude") - parser.add_option("-o", "--observing", type="eng_float", default=0.0, - help="Set observing frequency") - parser.add_option("-x", "--ylabel", default="dB", help="Y axis label") - parser.add_option("-C", "--cfunc", default="default", help="Calibration function name") - parser.add_option("-z", "--divbase", type="eng_float", default=0.025, help="Y Division increment base") - parser.add_option("-v", "--stripsize", type="eng_float", default=2400, help="Size of stripchart, in 2Hz samples") - parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT") - - parser.add_option("-N", "--decln", type="eng_float", default=999.99, help="Observing declination") - parser.add_option("-I", "--interfilt", action="store_true", default=False) - parser.add_option("-X", "--prefix", default="./") - (options, args) = parser.parse_args() - if len(args) != 0: - parser.print_help() - sys.exit(1) - - self.show_debug_info = True - - # build the graph - - self.u = usrp.source_c(decim_rate=options.decim) - self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec)) - self.cardtype = self.u.daughterboard_id(0) - # Set initial declination - self.decln = options.decln - - # Turn off interference filter by default - self.use_interfilt = options.interfilt - - # determine the daughterboard subdevice we're using - self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec) - - input_rate = self.u.adc_freq() / self.u.decim_rate() - - tpstr="calib_"+options.cfunc+"_total_power" - sstr="calib_"+options.cfunc+"_fft" - self.tpcfunc=eval(tpstr) - self.scfunc=eval(sstr) - - # - # Set prefix for data files - # - self.prefix = options.prefix - calib_set_prefix(self.prefix) - - # Set up FFT display - self.scope = ra_fftsink.ra_fft_sink_c (self, panel, - fft_size=int(options.fft_size), sample_rate=input_rate, - fft_rate=8, title="Spectral", - cfunc=self.scfunc, xydfunc=self.xydfunc, interfunc=self.interference) - - # Set up ephemeris data - self.locality = ephem.Observer() - self.locality.long = str(options.longitude) - self.locality.lat = str(options.latitude) - - # Set up stripchart display - self.stripsize = int(options.stripsize) - self.chart = ra_stripchartsink.stripchart_sink_f (self, panel, - stripsize=self.stripsize, - title="Continuum", - xlabel="LMST Offset (Seconds)", - scaling=1.0, ylabel=options.ylabel, - divbase=options.divbase, cfunc=self.tpcfunc) - - # Set center frequency - self.centerfreq = options.freq - - # Set observing frequency (might be different from actual programmed - # RF frequency) - if options.observing == 0.0: - self.observing = options.freq - else: - self.observing = options.observing - - self.bw = input_rate - - # - # Produce a default interference map - # May not actually get used, unless --interfilt was specified - # - self.intmap = Numeric.zeros(256,Numeric.Complex64) - for i in range(0,len(self.intmap)): - self.intmap[i] = complex(1.0, 0.0) - - # We setup the first two integrators to produce a fixed integration - # Down to 1Hz, with output at 1 samples/sec - N = input_rate/5000 - - # Second stage runs on decimated output of first - M = (input_rate/N) - - # Create taps for first integrator - t = range(0,N-1) - tapsN = [] - for i in t: - tapsN.append(1.0/N) - - # Create taps for second integrator - t = range(0,M-1) - tapsM = [] - for i in t: - tapsM.append(1.0/M) - - # - # The 3rd integrator is variable, and user selectable at runtime - # This integrator doesn't decimate, but is used to set the - # final integration time based on the constant 1Hz input samples - # The strip chart is fed at a constant 1Hz rate as a result - # - - # - # Call constructors for receive chains - # - - # - # This is the interference-zapping filter - # - # The GUI is used to set/clear inteference zones in - # the filter. The non-interfering zones are set to - # 1.0. - # - if 0: - self.interfilt = gr.fft_filter_ccc(1,self.intmap) - tmp = FFT.inverse_fft(self.intmap) - self.interfilt.set_taps(tmp) - - # The three integrators--two FIR filters, and an IIR final filter - self.integrator1 = gr.fir_filter_fff (N, tapsN) - self.integrator2 = gr.fir_filter_fff (M, tapsM) - self.integrator3 = gr.single_pole_iir_filter_ff(1.0) - - # Split complex USRP stream into a pair of floats - self.splitter = gr.complex_to_float (1); - self.toshort = gr.float_to_short(); - - # I squarer (detector) - self.multI = gr.multiply_ff(); - - # Q squarer (detector) - self.multQ = gr.multiply_ff(); - - # Adding squared I and Q to produce instantaneous signal power - self.adder = gr.add_ff(); - - # - # Start connecting configured modules in the receive chain - # - - # Connect interference-filtered USRP input to selected scope function - if self.use_interfilt == True: - self.connect(self.u, self.interfilt, self.scope) - # Connect interference-filtered USRP to a complex->float splitter - self.connect(self.interfilt, self.splitter) - - else: - self.connect(self.u, self.scope) - self.connect(self.u, self.splitter) - - # Connect splitter outputs to multipliers - # First do I^2 - self.connect((self.splitter, 0), (self.multI,0)) - self.connect((self.splitter, 0), (self.multI,1)) - - # Then do Q^2 - self.connect((self.splitter, 1), (self.multQ,0)) - self.connect((self.splitter, 1), (self.multQ,1)) - - # Then sum the squares - self.connect(self.multI, (self.adder,0)) - self.connect(self.multQ, (self.adder,1)) - - # Connect adder output to three-stages of FIR integrator - self.connect(self.adder, self.integrator1, - self.integrator2, self.integrator3, self.chart) - - - self._build_gui(vbox) - - # Make GUI agree with command-line - self.myform['integration'].set_value(int(options.integ)) - self.myform['average'].set_value(int(options.avg)) - - # Make integrator agree with command line - self.set_integration(int(options.integ)) - - # Make spectral averager agree with command line - if options.avg != 1.0: - self.scope.set_avg_alpha(float(1.0/options.avg)) - calib_set_avg_alpha(float(options.avg)) - self.scope.set_average(True) - - - # Set division size - self.chart.set_y_per_div(options.division) - - # Set reference(MAX) level - self.chart.set_ref_level(options.reflevel) - - # set initial values - - if options.gain is None: - # if no gain was specified, use the mid-point in dB - g = self.subdev.gain_range() - options.gain = float(g[0]+g[1])/2 - - if options.freq is None: - # if no freq was specified, use the mid-point - r = self.subdev.freq_range() - options.freq = float(r[0]+r[1])/2 - - # Set the initial gain control - self.set_gain(options.gain) - - if not(self.set_freq(options.freq)): - self._set_status_msg("Failed to set initial frequency") - - self.set_decln (self.decln) - calib_set_decln (self.decln) - - self.myform['decim'].set_value(self.u.decim_rate()) - self.myform['fs@usb'].set_value(self.u.adc_freq() / self.u.decim_rate()) - self.myform['dbname'].set_value(self.subdev.name()) - - # Make sure calibrator knows what our bandwidth is - calib_set_bw(self.u.adc_freq() / self.u.decim_rate()) - - # Set analog baseband filtering, if DBS_RX - if self.cardtype == usrp_dbid.DBS_RX: - lbw = (self.u.adc_freq() / self.u.decim_rate()) / 2 - if lbw < 1.0e6: - lbw = 1.0e6 - self.subdev.set_bw(lbw) - - # Tell calibrator our declination as well - calib_set_decln(self.decln) - - # Start the timer for the LMST display - self.lmst_timer.Start(1000) - - - def _set_status_msg(self, msg): - self.frame.GetStatusBar().SetStatusText(msg, 0) - - def _build_gui(self, vbox): - - def _form_set_freq(kv): - return self.set_freq(kv['freq']) - - def _form_set_decln(kv): - return self.set_decln(kv['decln']) - - # Position the FFT display - vbox.Add(self.scope.win, 15, wx.EXPAND) - - # Position the Total-power stripchart - vbox.Add(self.chart.win, 15, wx.EXPAND) - - # add control area at the bottom - self.myform = myform = form.form() - hbox = wx.BoxSizer(wx.HORIZONTAL) - hbox.Add((7,0), 0, wx.EXPAND) - vbox1 = wx.BoxSizer(wx.VERTICAL) - myform['freq'] = form.float_field( - parent=self.panel, sizer=vbox1, label="Center freq", weight=1, - callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg)) - - vbox1.Add((4,0), 0, 0) - - myform['lmst_high'] = form.static_text_field( - parent=self.panel, sizer=vbox1, label="Current LMST", weight=1) - vbox1.Add((4,0), 0, 0) - - myform['spec_data'] = form.static_text_field( - parent=self.panel, sizer=vbox1, label="Spectral Cursor", weight=1) - vbox1.Add((4,0), 0, 0) - - vbox2 = wx.BoxSizer(wx.VERTICAL) - g = self.subdev.gain_range() - myform['gain'] = form.slider_field(parent=self.panel, sizer=vbox2, label="RF Gain", - weight=1, - min=int(g[0]), max=int(g[1]), - callback=self.set_gain) - - vbox2.Add((4,0), 0, 0) - myform['average'] = form.slider_field(parent=self.panel, sizer=vbox2, - label="Spectral Averaging (FFT frames)", weight=1, min=1, max=2000, callback=self.set_averaging) - - vbox2.Add((4,0), 0, 0) - - myform['integration'] = form.slider_field(parent=self.panel, sizer=vbox2, - label="Continuum Integration Time (sec)", weight=1, min=1, max=180, callback=self.set_integration) - - vbox2.Add((4,0), 0, 0) - myform['decln'] = form.float_field( - parent=self.panel, sizer=vbox2, label="Current Declination", weight=1, - callback=myform.check_input_and_call(_form_set_decln)) - vbox2.Add((4,0), 0, 0) - - buttonbox = wx.BoxSizer(wx.HORIZONTAL) - if self.use_interfilt == True: - self.doit = form.button_with_callback(self.panel, - label="Clear Interference List", - callback=self.clear_interferers) - if self.use_interfilt == True: - buttonbox.Add(self.doit, 0, wx.CENTER) - vbox.Add(buttonbox, 0, wx.CENTER) - hbox.Add(vbox1, 0, 0) - hbox.Add(vbox2, wx.ALIGN_RIGHT, 0) - vbox.Add(hbox, 0, wx.EXPAND) - - self._build_subpanel(vbox) - - self.lmst_timer = wx.PyTimer(self.lmst_timeout) - self.lmst_timeout() - - - def _build_subpanel(self, vbox_arg): - # build a secondary information panel (sometimes hidden) - - # FIXME figure out how to have this be a subpanel that is always - # created, but has its visibility controlled by foo.Show(True/False) - - if not(self.show_debug_info): - return - - panel = self.panel - vbox = vbox_arg - myform = self.myform - - #panel = wx.Panel(self.panel, -1) - #vbox = wx.BoxSizer(wx.VERTICAL) - - hbox = wx.BoxSizer(wx.HORIZONTAL) - hbox.Add((5,0), 0) - myform['decim'] = form.static_float_field( - parent=panel, sizer=hbox, label="Decim") - - hbox.Add((5,0), 1) - myform['fs@usb'] = form.static_float_field( - parent=panel, sizer=hbox, label="Fs@USB") - - hbox.Add((5,0), 1) - myform['dbname'] = form.static_text_field( - parent=panel, sizer=hbox) - - hbox.Add((5,0), 1) - myform['baseband'] = form.static_float_field( - parent=panel, sizer=hbox, label="Analog BB") - - hbox.Add((5,0), 1) - myform['ddc'] = form.static_float_field( - parent=panel, sizer=hbox, label="DDC") - - hbox.Add((5,0), 0) - vbox.Add(hbox, 0, wx.EXPAND) - - - - def set_freq(self, target_freq): - """ - Set the center frequency we're interested in. - - @param target_freq: frequency in Hz - @rypte: bool - - Tuning is a two step process. First we ask the front-end to - tune as close to the desired frequency as it can. Then we use - the result of that operation and our target_frequency to - determine the value for the digital down converter. - """ - # - # Everything except BASIC_RX should support usrp.tune() - # - if not (self.cardtype == usrp_dbid.BASIC_RX): - r = usrp.tune(self.u, 0, self.subdev, target_freq) - else: - r = self.u.set_rx_freq(0, target_freq) - f = self.u.rx_freq(0) - if abs(f-target_freq) > 2.0e3: - r = 0 - if r: - self.myform['freq'].set_value(target_freq) # update displayed value - # - # Make sure calibrator knows our target freq - # - - # Remember centerfreq---used for doppler calcs - delta = self.centerfreq - target_freq - self.centerfreq = target_freq - self.observing -= delta - self.scope.set_baseband_freq (self.observing) - calib_set_freq(self.observing) - - # Clear interference list - self.clear_interferers() - - self.myform['baseband'].set_value(r.baseband_freq) - self.myform['ddc'].set_value(r.dxc_freq) - - return True - - return False - - def set_decln(self, dec): - self.decln = dec - self.myform['decln'].set_value(dec) # update displayed value - calib_set_decln(dec) - - def set_gain(self, gain): - self.myform['gain'].set_value(gain) # update displayed value - self.subdev.set_gain(gain) - - # - # Make sure calibrator knows our gain setting - # - calib_set_gain(gain) - - def set_averaging(self, avval): - self.myform['average'].set_value(avval) - self.scope.set_avg_alpha(1.0/(avval)) - calib_set_avg_alpha(avval) - self.scope.set_average(True) - - def set_integration(self, integval): - self.integrator3.set_taps(1.0/integval) - self.myform['integration'].set_value(integval) - - # - # Make sure calibrator knows our integration time - # - calib_set_integ(integval) - - def lmst_timeout(self): - self.locality.date = ephem.now() - sidtime = self.locality.sidereal_time() - self.myform['lmst_high'].set_value(str(ephem.hours(sidtime))) - - def xydfunc(self,xyv): - magn = int(log10(self.observing)) - if (magn == 6 or magn == 7 or magn == 8): - magn = 6 - dfreq = xyv[0] * pow(10.0,magn) - ratio = self.observing / dfreq - vs = 1.0 - ratio - vs *= 299792.0 - if magn >= 9: - xhz = "Ghz" - elif magn >= 6: - xhz = "Mhz" - elif magn <= 5: - xhz = "Khz" - s = "%.6f%s\n%.3fdB" % (xyv[0], xhz, xyv[1]) - s2 = "\n%.3fkm/s" % vs - self.myform['spec_data'].set_value(s+s2) - - def interference(self,x): - if self.use_interfilt == False: - return - magn = int(log10(self.observing)) - dfreq = x * pow(10.0,magn) - delta = dfreq - self.observing - fincr = self.bw / len(self.intmap) - l = len(self.intmap) - if delta > 0: - offset = delta/fincr - else: - offset = (l) - int((abs(delta)/fincr)) - - offset = int(offset) - - if offset >= len(self.intmap) or offset < 0: - print "interference offset is invalid--", offset - return - - # - # Zero out the region around the selected interferer - # - self.intmap[offset-2] = complex (0.5, 0.0) - self.intmap[offset-1] = complex (0.25, 0.0) - self.intmap[offset] = complex (0.0, 0.0) - self.intmap[offset+1] = complex(0.25, 0.0) - self.intmap[offset+2] = complex(0.5, 0.0) - - # - # Set new taps - # - tmp = FFT.inverse_fft(self.intmap) - self.interfilt.set_taps(tmp) - - def clear_interf(self): - self.clear_interferers() - - def clear_interferers(self): - for i in range(0,len(self.intmap)): - self.intmap[i] = complex(1.0,0.0) - tmp = FFT.inverse_fft(self.intmap) - if self.use_interfilt == True: - self.interfilt.set_taps(tmp) - - - - def toggle_cal(self): - if (self.calstate == True): - self.calstate = False - self.u.write_io(0,0,(1<<15)) - self.calibrator.SetLabel("Calibration Source: Off") - else: - self.calstate = True - self.u.write_io(0,(1<<15),(1<<15)) - self.calibrator.SetLabel("Calibration Source: On") - - def toggle_annotation(self): - if (self.annotate_state == True): - self.annotate_state = False - self.annotation.SetLabel("Annotation: Off") - else: - self.annotate_state = True - self.annotation.SetLabel("Annotation: On") - calib_set_interesting(self.annotate_state) - +class app_flow_graph(stdgui2.std_top_block): + def __init__(self, frame, panel, vbox, argv): + stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv) + + self.frame = frame + self.panel = panel + + parser = OptionParser(option_class=eng_option) + parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=(0, 0), + help="select USRP Rx side A or B (default=A)") + parser.add_option("-d", "--decim", type="int", default=16, + help="set fgpa decimation rate to DECIM [default=%default]") + parser.add_option("-f", "--freq", type="eng_float", default=None, + help="set frequency to FREQ", metavar="FREQ") + parser.add_option("-a", "--avg", type="eng_float", default=1.0, + help="set spectral averaging alpha") + parser.add_option("-i", "--integ", type="eng_float", default=1.0, + help="set integration time") + parser.add_option("-g", "--gain", type="eng_float", default=None, + help="set gain in dB (default is midpoint)") + parser.add_option("-l", "--reflevel", type="eng_float", default=30.0, + help="Set Total power reference level") + parser.add_option("-y", "--division", type="eng_float", default=0.5, + help="Set Total power Y division size") + parser.add_option("-e", "--longitude", type="eng_float", default=-76.02,help="Set Observer Longitude") + parser.add_option("-c", "--latitude", type="eng_float", default=44.85,help="Set Observer Latitude") + parser.add_option("-o", "--observing", type="eng_float", default=0.0, + help="Set observing frequency") + parser.add_option("-x", "--ylabel", default="dB", help="Y axis label") + parser.add_option("-z", "--divbase", type="eng_float", default=0.025, help="Y Division increment base") + parser.add_option("-v", "--stripsize", type="eng_float", default=2400, help="Size of stripchart, in 2Hz samples") + parser.add_option("-F", "--fft_size", type="eng_float", default=1024, help="Size of FFT") + parser.add_option("-N", "--decln", type="eng_float", default=999.99, help="Observing declination") + parser.add_option("-X", "--prefix", default="./") + parser.add_option("-M", "--fft_rate", type="eng_float", default=8.0, help="FFT Rate") + parser.add_option("-A", "--calib_coeff", type="eng_float", default=1.0, help="Calibration coefficient") + parser.add_option("-B", "--calib_offset", type="eng_float", default=0.0, help="Calibration coefficient") + parser.add_option("-W", "--waterfall", action="store_true", default=False, help="Use Waterfall FFT display") + parser.add_option("-S", "--setimode", action="store_true", default=False, help="Enable SETI processing of spectral data") + parser.add_option("-K", "--setik", type="eng_float", default=1.5, help="K value for SETI analysis") + parser.add_option("-T", "--setibandwidth", type="eng_float", default=12500, help="Instantaneous SETI observing bandwidth--must be divisor of 250Khz") + parser.add_option("-Q", "--seti_range", type="eng_float", default=1.0e6, help="Total scan width, in Hz for SETI scans") + parser.add_option("-Z", "--dual_mode", action="store_true", + default=False, help="Dual-polarization mode") + parser.add_option("-I", "--interferometer", action="store_true", default=False, help="Interferometer mode") + parser.add_option("-D", "--switch_mode", action="store_true", default=False, help="Dicke Switching mode") + parser.add_option("-P", "--reference_divisor", type="eng_float", default=1.0, help="Reference Divisor") + parser.add_option("-U", "--ref_fifo", default=None) + parser.add_option("-k", "--notch_taps", type="int", default=64, help="Number of notch taps") + parser.add_option("-n", "--notches", action="store_true", + default=False, help="Notch frequencies after all other args") + parser.add_option("-Y", "--interface", default=None) + parser.add_option("-H", "--mac_addr", default=None) + + # Added this documentation + + (options, args) = parser.parse_args() + + self.setimode = options.setimode + self.dual_mode = options.dual_mode + self.interferometer = options.interferometer + self.normal_mode = False + self.switch_mode = options.switch_mode + self.switch_state = 0 + self.reference_divisor = options.reference_divisor + self.ref_fifo = options.ref_fifo + self.usrp2 = False + self.decim = options.decim + self.rx_subdev_spec = options.rx_subdev_spec + + if (options.interface != None and options.mac_addr != None): + self.mac_addr = options.mac_addr + self.interface = options.interface + self.usrp2 = True + + self.NOTCH_TAPS = options.notch_taps + self.notches = Numeric.zeros(self.NOTCH_TAPS,Numeric.Float64) + # Get notch locations + j = 0 + for i in args: + self.notches[j] = float(i) + j = j + 1 + + self.use_notches = options.notches + + if (self.ref_fifo != None): + self.ref_fifo_file = open (self.ref_fifo, "r") + + modecount = 0 + for modes in (self.dual_mode, self.interferometer): + if (modes == True): + modecount = modecount + 1 + + if (modecount > 1): + print "must select only 1 of --dual_mode, or --interferometer" + sys.exit(1) + + self.chartneeded = True + + if (self.setimode == True): + self.chartneeded = False + + if (self.setimode == True and self.interferometer == True): + print "can't pick both --setimode and --interferometer" + sys.exit(1) + + if (self.setimode == True and self.switch_mode == True): + print "can't pick both --setimode and --switch_mode" + sys.exit(1) + + if (self.interferometer == True and self.switch_mode == True): + print "can't pick both --interferometer and --switch_mode" + sys.exit(1) + + if (modecount == 0): + self.normal_mode = True + + self.show_debug_info = True + + # Pick up waterfall option + self.waterfall = options.waterfall + + # SETI mode stuff + self.setimode = options.setimode + self.seticounter = 0 + self.setik = options.setik + self.seti_fft_bandwidth = int(options.setibandwidth) + + # Calculate binwidth + binwidth = self.seti_fft_bandwidth / options.fft_size + + # Use binwidth, and knowledge of likely chirp rates to set reasonable + # values for SETI analysis code. We assume that SETI signals will + # chirp at somewhere between 0.10Hz/sec and 0.25Hz/sec. + # + # upper_limit is the "worst case"--that is, the case for which we have + # to wait the longest to actually see any drift, due to the quantizing + # on FFT bins. + upper_limit = binwidth / 0.10 + self.setitimer = int(upper_limit * 2.00) + self.scanning = True + + # Calculate the CHIRP values based on Hz/sec + self.CHIRP_LOWER = 0.10 * self.setitimer + self.CHIRP_UPPER = 0.25 * self.setitimer + + # Reset hit counters to 0 + self.hitcounter = 0 + self.s1hitcounter = 0 + self.s2hitcounter = 0 + self.avgdelta = 0 + # We scan through 2Mhz of bandwidth around the chosen center freq + self.seti_freq_range = options.seti_range + # Calculate lower edge + self.setifreq_lower = options.freq - (self.seti_freq_range/2) + self.setifreq_current = options.freq + # Calculate upper edge + self.setifreq_upper = options.freq + (self.seti_freq_range/2) + + # Maximum "hits" in a line + self.nhits = 20 + + # Number of lines for analysis + self.nhitlines = 4 + + # We change center frequencies based on nhitlines and setitimer + self.setifreq_timer = self.setitimer * (self.nhitlines * 5) + + # Create actual timer + self.seti_then = time.time() + + # The hits recording array + self.hits_array = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64) + self.hit_intensities = Numeric.zeros((self.nhits,self.nhitlines), Numeric.Float64) + # Calibration coefficient and offset + self.calib_coeff = options.calib_coeff + self.calib_offset = options.calib_offset + if self.calib_offset < -750: + self.calib_offset = -750 + if self.calib_offset > 750: + self.calib_offset = 750 + + if self.calib_coeff < 1: + self.calib_coeff = 1 + if self.calib_coeff > 100: + self.calib_coeff = 100 + + self.integ = options.integ + self.avg_alpha = options.avg + self.gain = options.gain + self.decln = options.decln + + # Set initial values for datalogging timed-output + self.continuum_then = time.time() + self.spectral_then = time.time() + + + # build the graph + + self.subdev = [(0, 0), (0,0)] + + # + # If SETI mode, we always run at maximum USRP decimation + # + if (self.setimode): + options.decim = 256 + + if (self.dual_mode == True and self.decim <= 4): + print "Cannot use decim <= 4 with dual_mode" + sys.exit(1) + + self.setup_usrp() + + # Set initial declination + self.decln = options.decln + + input_rate = self.u.adc_freq() / self.u.decim_rate() + self.bw = input_rate + # + # Set prefix for data files + # + self.prefix = options.prefix + + # + # The lower this number, the fewer sample frames are dropped + # in computing the FFT. A sampled approach is taken to + # computing the FFT of the incoming data, which reduces + # sensitivity. Increasing sensitivity inreases CPU loading. + # + self.fft_rate = options.fft_rate + + self.fft_size = int(options.fft_size) + + # This buffer is used to remember the most-recent FFT display + # values. Used later by self.write_spectral_data() to write + # spectral data to datalogging files, and by the SETI analysis + # function. + # + self.fft_outbuf = Numeric.zeros(self.fft_size, Numeric.Float64) + + # + # If SETI mode, only look at seti_fft_bandwidth + # at a time. + # + if (self.setimode): + self.fft_input_rate = self.seti_fft_bandwidth + + # + # Build a decimating bandpass filter + # + self.fft_input_taps = gr.firdes.complex_band_pass (1.0, + input_rate, + -(int(self.fft_input_rate/2)), int(self.fft_input_rate/2), 200, + gr.firdes.WIN_HAMMING, 0) + + # + # Compute required decimation factor + # + decimation = int(input_rate/self.fft_input_rate) + self.fft_bandpass = gr.fir_filter_ccc (decimation, + self.fft_input_taps) + else: + self.fft_input_rate = input_rate + + # Set up FFT display + if self.waterfall == False: + self.scope = ra_fftsink.ra_fft_sink_c (panel, + fft_size=int(self.fft_size), sample_rate=self.fft_input_rate, + fft_rate=int(self.fft_rate), title="Spectral", + ofunc=self.fft_outfunc, xydfunc=self.xydfunc) + else: + self.scope = ra_waterfallsink.waterfall_sink_c (panel, + fft_size=int(self.fft_size), sample_rate=self.fft_input_rate, + fft_rate=int(self.fft_rate), title="Spectral", ofunc=self.fft_outfunc, size=(1100, 600), xydfunc=self.xydfunc, ref_level=0, span=10) + + # Set up ephemeris data + self.locality = ephem.Observer() + self.locality.long = str(options.longitude) + self.locality.lat = str(options.latitude) + + # We make notes about Sunset/Sunrise in Continuum log files + self.sun = ephem.Sun() + self.sunstate = "??" + + # Set up stripchart display + tit = "Continuum" + if (self.dual_mode != False): + tit = "H+V Continuum" + if (self.interferometer != False): + tit = "East x West Correlation" + self.stripsize = int(options.stripsize) + if self.chartneeded == True: + self.chart = ra_stripchartsink.stripchart_sink_f (panel, + stripsize=self.stripsize, + title=tit, + xlabel="LMST Offset (Seconds)", + scaling=1.0, ylabel=options.ylabel, + divbase=options.divbase) + + # Set center frequency + self.centerfreq = options.freq + + # Set observing frequency (might be different from actual programmed + # RF frequency) + if options.observing == 0.0: + self.observing = options.freq + else: + self.observing = options.observing + + # Remember our input bandwidth + self.bw = input_rate + + # + # + # The strip chart is fed at a constant 1Hz rate + # + + # + # Call constructors for receive chains + # + + if (self.dual_mode == True): + self.setup_dual (self.setimode) + + if (self.interferometer == True): + self.setup_interferometer(self.setimode) + + if (self.normal_mode == True): + self.setup_normal(self.setimode) + + if (self.setimode == True): + self.setup_seti() + + self._build_gui(vbox) + + # Make GUI agree with command-line + self.integ = options.integ + if self.setimode == False: + self.myform['integration'].set_value(int(options.integ)) + self.myform['offset'].set_value(self.calib_offset) + self.myform['dcgain'].set_value(self.calib_coeff) + self.myform['average'].set_value(int(options.avg)) + + + if self.setimode == False: + # Make integrator agree with command line + self.set_integration(int(options.integ)) + + self.avg_alpha = options.avg + + # Make spectral averager agree with command line + if options.avg != 1.0: + self.scope.set_avg_alpha(float(1.0/options.avg)) + self.scope.set_average(True) + + if self.setimode == False: + # Set division size + self.chart.set_y_per_div(options.division) + # Set reference(MAX) level + self.chart.set_ref_level(options.reflevel) + + # set initial values + + if options.gain is None: + # if no gain was specified, use the mid-point in dB + g = self.subdev[0].gain_range() + options.gain = float(g[0]+g[1])/2 + + if options.freq is None: + # if no freq was specified, use the mid-point + r = self.subdev[0].freq_range() + options.freq = float(r[0]+r[1])/2 + + # Set the initial gain control + self.set_gain(options.gain) + + if not(self.set_freq(options.freq)): + self._set_status_msg("Failed to set initial frequency") + + # Set declination + self.set_decln (self.decln) + + + # RF hardware information + self.myform['decim'].set_value(self.u.decim_rate()) + self.myform['USB BW'].set_value(self.u.adc_freq() / self.u.decim_rate()) + if (self.dual_mode == True): + self.myform['dbname'].set_value(self.subdev[0].name()+'/'+self.subdev[1].name()) + else: + self.myform['dbname'].set_value(self.subdev[0].name()) + + # Set analog baseband filtering, if DBS_RX + if self.cardtype == usrp_dbid.DBS_RX: + lbw = (self.u.adc_freq() / self.u.decim_rate()) / 2 + if lbw < 1.0e6: + lbw = 1.0e6 + self.subdev[0].set_bw(lbw) + self.subdev[1].set_bw(lbw) + + # Start the timer for the LMST display and datalogging + self.lmst_timer.Start(1000) + if (self.switch_mode == True): + self.other_timer.Start(330) + + + def _set_status_msg(self, msg): + self.frame.GetStatusBar().SetStatusText(msg, 0) + + def _build_gui(self, vbox): + + def _form_set_freq(kv): + # Adjust current SETI frequency, and limits + self.setifreq_lower = kv['freq'] - (self.seti_freq_range/2) + self.setifreq_current = kv['freq'] + self.setifreq_upper = kv['freq'] + (self.seti_freq_range/2) + + # Reset SETI analysis timer + self.seti_then = time.time() + # Zero-out hits array when changing frequency + self.hits_array[:,:] = 0.0 + self.hit_intensities[:,:] = -60.0 + + return self.set_freq(kv['freq']) + + def _form_set_decln(kv): + return self.set_decln(kv['decln']) + + # Position the FFT display + vbox.Add(self.scope.win, 15, wx.EXPAND) + + if self.setimode == False: + # Position the Total-power stripchart + vbox.Add(self.chart.win, 15, wx.EXPAND) + + # add control area at the bottom + self.myform = myform = form.form() + hbox = wx.BoxSizer(wx.HORIZONTAL) + hbox.Add((7,0), 0, wx.EXPAND) + vbox1 = wx.BoxSizer(wx.VERTICAL) + myform['freq'] = form.float_field( + parent=self.panel, sizer=vbox1, label="Center freq", weight=1, + callback=myform.check_input_and_call(_form_set_freq, self._set_status_msg)) + + vbox1.Add((4,0), 0, 0) + + myform['lmst_high'] = form.static_text_field( + parent=self.panel, sizer=vbox1, label="Current LMST", weight=1) + vbox1.Add((4,0), 0, 0) + + if self.setimode == False: + myform['spec_data'] = form.static_text_field( + parent=self.panel, sizer=vbox1, label="Spectral Cursor", weight=1) + vbox1.Add((4,0), 0, 0) + + vbox2 = wx.BoxSizer(wx.VERTICAL) + if self.setimode == False: + vbox3 = wx.BoxSizer(wx.VERTICAL) + g = self.subdev[0].gain_range() + myform['gain'] = form.slider_field(parent=self.panel, sizer=vbox2, label="RF Gain", + weight=1, + min=int(g[0]), max=int(g[1]), + callback=self.set_gain) + + vbox2.Add((4,0), 0, 0) + if self.setimode == True: + max_savg = 100 + else: + max_savg = 3000 + myform['average'] = form.slider_field(parent=self.panel, sizer=vbox2, + label="Spectral Averaging (FFT frames)", weight=1, min=1, max=max_savg, callback=self.set_averaging) + + # Set up scan control button when in SETI mode + if (self.setimode == True): + # SETI scanning control + buttonbox = wx.BoxSizer(wx.HORIZONTAL) + self.scan_control = form.button_with_callback(self.panel, + label="Scan: On ", + callback=self.toggle_scanning) + + buttonbox.Add(self.scan_control, 0, wx.CENTER) + vbox2.Add(buttonbox, 0, wx.CENTER) + + vbox2.Add((4,0), 0, 0) + + if self.setimode == False: + myform['integration'] = form.slider_field(parent=self.panel, sizer=vbox2, + label="Continuum Integration Time (sec)", weight=1, min=1, max=180, callback=self.set_integration) + + vbox2.Add((4,0), 0, 0) + + myform['decln'] = form.float_field( + parent=self.panel, sizer=vbox2, label="Current Declination", weight=1, + callback=myform.check_input_and_call(_form_set_decln)) + vbox2.Add((4,0), 0, 0) + + if self.setimode == False: + myform['offset'] = form.slider_field(parent=self.panel, sizer=vbox3, + label="Post-Detector Offset", weight=1, min=-750, max=750, + callback=self.set_pd_offset) + vbox3.Add((2,0), 0, 0) + myform['dcgain'] = form.slider_field(parent=self.panel, sizer=vbox3, + label="Post-Detector Gain", weight=1, min=1, max=100, + callback=self.set_pd_gain) + vbox3.Add((2,0), 0, 0) + hbox.Add(vbox1, 0, 0) + hbox.Add(vbox2, wx.ALIGN_RIGHT, 0) + + if self.setimode == False: + hbox.Add(vbox3, wx.ALIGN_RIGHT, 0) + + vbox.Add(hbox, 0, wx.EXPAND) + + self._build_subpanel(vbox) + + self.lmst_timer = wx.PyTimer(self.lmst_timeout) + self.other_timer = wx.PyTimer(self.other_timeout) + + + def _build_subpanel(self, vbox_arg): + # build a secondary information panel (sometimes hidden) + + # FIXME figure out how to have this be a subpanel that is always + # created, but has its visibility controlled by foo.Show(True/False) + + if not(self.show_debug_info): + return + + panel = self.panel + vbox = vbox_arg + myform = self.myform + + #panel = wx.Panel(self.panel, -1) + #vbox = wx.BoxSizer(wx.VERTICAL) + + hbox = wx.BoxSizer(wx.HORIZONTAL) + hbox.Add((5,0), 0) + myform['decim'] = form.static_float_field( + parent=panel, sizer=hbox, label="Decim") + + hbox.Add((5,0), 1) + myform['USB BW'] = form.static_float_field( + parent=panel, sizer=hbox, label="USB BW") + + hbox.Add((5,0), 1) + myform['dbname'] = form.static_text_field( + parent=panel, sizer=hbox) + + hbox.Add((5,0), 1) + myform['baseband'] = form.static_float_field( + parent=panel, sizer=hbox, label="Analog BB") + + hbox.Add((5,0), 1) + myform['ddc'] = form.static_float_field( + parent=panel, sizer=hbox, label="DDC") + + hbox.Add((5,0), 0) + vbox.Add(hbox, 0, wx.EXPAND) + + + + def set_freq(self, target_freq): + """ + Set the center frequency we're interested in. + + @param target_freq: frequency in Hz + + """ + # + # + r = usrp.tune(self.u, self.subdev[0].which(), self.subdev[0], target_freq) + r = usrp.tune(self.u, self.subdev[1].which(), self.subdev[1], target_freq) + if r: + self.myform['freq'].set_value(target_freq) # update displayed value + # + # Make sure calibrator knows our target freq + # + + # Remember centerfreq---used for doppler calcs + delta = self.centerfreq - target_freq + self.centerfreq = target_freq + self.observing -= delta + self.scope.set_baseband_freq (self.observing) + self.myform['baseband'].set_value(r.baseband_freq) + self.myform['ddc'].set_value(r.dxc_freq) + + if (self.use_notches): + self.compute_notch_taps(self.notches) + if self.dual_mode == False and self.interferometer == False: + self.notch_filt.set_taps(self.notch_taps) + else: + self.notch_filt1.set_taps(self.notch_taps) + self.notch_filt2.set_taps(self.notch_taps) + + return True + + return False + + def set_decln(self, dec): + self.decln = dec + self.myform['decln'].set_value(dec) # update displayed value + + def set_gain(self, gain): + self.myform['gain'].set_value(gain) # update displayed value + self.subdev[0].set_gain(gain) + self.subdev[1].set_gain(gain) + self.gain = gain + + def set_averaging(self, avval): + self.myform['average'].set_value(avval) + self.scope.set_avg_alpha(1.0/(avval)) + self.scope.set_average(True) + self.avg_alpha = avval + + def set_integration(self, integval): + if self.setimode == False: + self.integrator.set_taps(1.0/((integval)*(self.bw/2))) + self.myform['integration'].set_value(integval) + self.integ = integval + + # + # Timeout function + # Used to update LMST display, as well as current + # continuum value + # + # We also write external data-logging files here + # + def lmst_timeout(self): + self.locality.date = ephem.now() + if self.setimode == False: + x = self.probe.level() + sidtime = self.locality.sidereal_time() + # LMST + s = str(ephem.hours(sidtime)) + " " + self.sunstate + # Continuum detector value + if self.setimode == False: + sx = "%7.4f" % x + s = s + "\nDet: " + str(sx) + else: + sx = "%2d" % self.hitcounter + s1 = "%2d" % self.s1hitcounter + s2 = "%2d" % self.s2hitcounter + sa = "%4.2f" % self.avgdelta + sy = "%3.1f-%3.1f" % (self.CHIRP_LOWER, self.CHIRP_UPPER) + s = s + "\nHits: " + str(sx) + "\nS1:" + str(s1) + " S2:" + str(s2) + s = s + "\nAv D: " + str(sa) + "\nCh lim: " + str(sy) + + self.myform['lmst_high'].set_value(s) + + # + # Write data out to recording files + # + if self.setimode == False: + self.write_continuum_data(x,sidtime) + self.write_spectral_data(self.fft_outbuf,sidtime) + + else: + self.seti_analysis(self.fft_outbuf,sidtime) + now = time.time() + if ((self.scanning == True) and ((now - self.seti_then) > self.setifreq_timer)): + self.seti_then = now + self.setifreq_current = self.setifreq_current + self.fft_input_rate + if (self.setifreq_current > self.setifreq_upper): + self.setifreq_current = self.setifreq_lower + self.set_freq(self.setifreq_current) + # Make sure we zero-out the hits array when changing + # frequency. + self.hits_array[:,:] = 0.0 + self.hit_intensities[:,:] = 0.0 + + def other_timeout(self): + if (self.switch_state == 0): + self.switch_state = 1 + + elif (self.switch_state == 1): + self.switch_state = 0 + + if (self.switch_state == 0): + self.mute.set_n(1) + self.cmute.set_n(int(1.0e9)) + + elif (self.switch_state == 1): + self.mute.set_n(int(1.0e9)) + self.cmute.set_n(1) + + if (self.ref_fifo != "@@@@"): + self.ref_fifo_file.write(str(self.switch_state)+"\n") + self.ref_fifo_file.flush() + + self.avg_reference_value = self.cprobe.level() + + # + # Set reference value + # + self.reference_level.set_k(-1.0 * (self.avg_reference_value/self.reference_divisor)) + + def fft_outfunc(self,data,l): + self.fft_outbuf=data + + def write_continuum_data(self,data,sidtime): + + # Create localtime structure for producing filename + foo = time.localtime() + pfx = self.prefix + filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, + foo.tm_mon, foo.tm_mday, foo.tm_hour) + + # Open the data file, appending + continuum_file = open (filenamestr+".tpdat","a") + + flt = "%6.3f" % data + inter = self.decln + integ = self.integ + fc = self.observing + fc = fc / 1000000 + bw = self.bw + bw = bw / 1000000 + ga = self.gain + + now = time.time() + + # + # If time to write full header info (saves storage this way) + # + if (now - self.continuum_then > 20): + self.sun.compute(self.locality) + enow = ephem.now() + sunset = self.locality.next_setting(self.sun) + sunrise = self.locality.next_rising(self.sun) + sun_insky = "Down" + self.sunstate = "Dn" + if ((sunrise < enow) and (enow < sunset)): + sun_insky = "Up" + self.sunstate = "Up" + self.continuum_then = now + + continuum_file.write(str(ephem.hours(sidtime))+" "+flt+" Dn="+str(inter)+",") + continuum_file.write("Ti="+str(integ)+",Fc="+str(fc)+",Bw="+str(bw)) + continuum_file.write(",Ga="+str(ga)+",Sun="+str(sun_insky)+"\n") + else: + continuum_file.write(str(ephem.hours(sidtime))+" "+flt+"\n") + + continuum_file.close() + return(data) + + def write_spectral_data(self,data,sidtime): + + now = time.time() + delta = 10 + + # If time to write out spectral data + # We don't write this out every time, in order to + # save disk space. Since the spectral data are + # typically heavily averaged, writing this data + # "once in a while" is OK. + # + if (now - self.spectral_then >= delta): + self.spectral_then = now + + # Get localtime structure to make filename from + foo = time.localtime() + + pfx = self.prefix + filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, + foo.tm_mon, foo.tm_mday, foo.tm_hour) + + # Open the file + spectral_file = open (filenamestr+".sdat","a") + + # Setup data fields to be written + r = data + inter = self.decln + fc = self.observing + fc = fc / 1000000 + bw = self.bw + bw = bw / 1000000 + av = self.avg_alpha + + # Write those fields + spectral_file.write("data:"+str(ephem.hours(sidtime))+" Dn="+str(inter)+",Fc="+str(fc)+",Bw="+str(bw)+",Av="+str(av)) + spectral_file.write (" [ ") + for r in data: + spectral_file.write(" "+str(r)) + + spectral_file.write(" ]\n") + spectral_file.close() + return(data) + + return(data) + + def seti_analysis(self,fftbuf,sidtime): + l = len(fftbuf) + x = 0 + hits = [] + hit_intensities = [] + if self.seticounter < self.setitimer: + self.seticounter = self.seticounter + 1 + return + else: + self.seticounter = 0 + + # Run through FFT output buffer, computing standard deviation (Sigma) + avg = 0 + # First compute average + for i in range(0,l): + avg = avg + fftbuf[i] + avg = avg / l + + sigma = 0.0 + # Then compute standard deviation (Sigma) + for i in range(0,l): + d = fftbuf[i] - avg + sigma = sigma + (d*d) + + sigma = Numeric.sqrt(sigma/l) + + # + # Snarfle through the FFT output buffer again, looking for + # outlying data points + + start_f = self.observing - (self.fft_input_rate/2) + current_f = start_f + l = len(fftbuf) + f_incr = self.fft_input_rate / l + hit = -1 + + # -nyquist to DC + for i in range(l/2,l): + # + # If current FFT buffer has an item that exceeds the specified + # sigma + # + if ((fftbuf[i] - avg) > (self.setik * sigma)): + hits.append(current_f) + hit_intensities.append(fftbuf[i]) + current_f = current_f + f_incr + + # DC to nyquist + for i in range(0,l/2): + # + # If current FFT buffer has an item that exceeds the specified + # sigma + # + if ((fftbuf[i] - avg) > (self.setik * sigma)): + hits.append(current_f) + hit_intensities.append(fftbuf[i]) + current_f = current_f + f_incr + + # No hits + if (len(hits) <= 0): + return + + + # + # OK, so we have some hits in the FFT buffer + # They'll have a rather substantial gauntlet to run before + # being declared a real "hit" + # + + # Update stats + self.s1hitcounter = self.s1hitcounter + len(hits) + + # Weed out buffers with an excessive number of + # signals above Sigma + if (len(hits) > self.nhits): + return + + + # Weed out FFT buffers with apparent multiple narrowband signals + # separated significantly in frequency. This means that a + # single signal spanning multiple bins is OK, but a buffer that + # has multiple, apparently-separate, signals isn't OK. + # + last = hits[0] + ns2 = 1 + for i in range(1,len(hits)): + if ((hits[i] - last) > (f_incr*3.0)): + return + last = hits[i] + ns2 = ns2 + 1 + + self.s2hitcounter = self.s2hitcounter + ns2 + + # + # Run through all available hit buffers, computing difference between + # frequencies found there, if they're all within the chirp limits + # declare a good hit + # + good_hit = False + f_ds = Numeric.zeros(self.nhitlines, Numeric.Float64) + avg_delta = 0 + k = 0 + for i in range(0,min(len(hits),len(self.hits_array[:,0]))): + f_ds[0] = abs(self.hits_array[i,0] - hits[i]) + for j in range(1,len(f_ds)): + f_ds[j] = abs(self.hits_array[i,j] - self.hits_array[i,0]) + avg_delta = avg_delta + f_ds[j] + k = k + 1 + + if (self.seti_isahit (f_ds)): + good_hit = True + self.hitcounter = self.hitcounter + 1 + break + + if (avg_delta/k < (self.seti_fft_bandwidth/2)): + self.avgdelta = avg_delta / k + + # Save 'n shuffle hits + # Old hit buffers percolate through the hit buffers + # (there are self.nhitlines of these buffers) + # and then drop off the end + # A consequence is that while the nhitlines buffers are filling, + # you can get some absurd values for self.avgdelta, because some + # of the buffers are full of zeros + for i in range(self.nhitlines,1): + self.hits_array[:,i] = self.hits_array[:,i-1] + self.hit_intensities[:,i] = self.hit_intensities[:,i-1] + + for i in range(0,len(hits)): + self.hits_array[i,0] = hits[i] + self.hit_intensities[i,0] = hit_intensities[i] + + # Finally, write the hits/intensities buffer + if (good_hit): + self.write_hits(sidtime) + + return + + def seti_isahit(self,fdiffs): + truecount = 0 + + for i in range(0,len(fdiffs)): + if (fdiffs[i] >= self.CHIRP_LOWER and fdiffs[i] <= self.CHIRP_UPPER): + truecount = truecount + 1 + + if truecount == len(fdiffs): + return (True) + else: + return (False) + + def write_hits(self,sidtime): + # Create localtime structure for producing filename + foo = time.localtime() + pfx = self.prefix + filenamestr = "%s/%04d%02d%02d%02d" % (pfx, foo.tm_year, + foo.tm_mon, foo.tm_mday, foo.tm_hour) + + # Open the data file, appending + hits_file = open (filenamestr+".seti","a") + + # Write sidtime first + hits_file.write(str(ephem.hours(sidtime))+" "+str(self.decln)+" ") + + # + # Then write the hits/hit intensities buffers with enough + # "syntax" to allow parsing by external (not yet written!) + # "stuff". + # + for i in range(0,self.nhitlines): + hits_file.write(" ") + for j in range(0,self.nhits): + hits_file.write(str(self.hits_array[j,i])+":") + hits_file.write(str(self.hit_intensities[j,i])+",") + hits_file.write("\n") + hits_file.close() + return + + def xydfunc(self,func,xyv): + if self.setimode == True: + return + magn = int(Numeric.log10(self.observing)) + if (magn == 6 or magn == 7 or magn == 8): + magn = 6 + dfreq = xyv[0] * pow(10.0,magn) + if func == 0: + ratio = self.observing / dfreq + vs = 1.0 - ratio + vs *= 299792.0 + if magn >= 9: + xhz = "Ghz" + elif magn >= 6: + xhz = "Mhz" + elif magn <= 5: + xhz = "Khz" + s = "%.6f%s\n%.3fdB" % (xyv[0], xhz, xyv[1]) + s2 = "\n%.3fkm/s" % vs + self.myform['spec_data'].set_value(s+s2) + else: + tmpnotches = Numeric.zeros(self.NOTCH_TAPS,Numeric.Float64) + delfreq = -1 + if self.use_notches == True: + for i in range(0,len(self.notches)): + if self.notches[i] != 0 and abs(self.notches[i] - dfreq) < ((self.bw/self.NOTCH_TAPS)/2.0): + delfreq = i + break + j = 0 + for i in range(0,len(self.notches)): + if (i != delfreq): + tmpnotches[j] = self.notches[i] + j = j + 1 + if (delfreq == -1): + for i in range(0,len(tmpnotches)): + if (int(tmpnotches[i]) == 0): + tmpnotches[i] = dfreq + break + self.notches = tmpnotches + self.compute_notch_taps(self.notches) + if self.dual_mode == False and self.interferometer == False: + self.notch_filt.set_taps(self.notch_taps) + else: + self.notch_filt1.set_taps(self.notch_taps) + self.notch_filt2.set_taps(self.notch_taps) + + def xydfunc_waterfall(self,pos): + lower = self.observing - (self.seti_fft_bandwidth / 2) + upper = self.observing + (self.seti_fft_bandwidth / 2) + binwidth = self.seti_fft_bandwidth / 1024 + s = "%.6fMHz" % ((lower + (pos.x*binwidth)) / 1.0e6) + self.myform['spec_data'].set_value(s) + + def toggle_cal(self): + if (self.calstate == True): + self.calstate = False + self.u.write_io(0,0,(1<<15)) + self.calibrator.SetLabel("Calibration Source: Off") + else: + self.calstate = True + self.u.write_io(0,(1<<15),(1<<15)) + self.calibrator.SetLabel("Calibration Source: On") + + def toggle_annotation(self): + if (self.annotate_state == True): + self.annotate_state = False + self.annotation.SetLabel("Annotation: Off") + else: + self.annotate_state = True + self.annotation.SetLabel("Annotation: On") + # + # Turn scanning on/off + # Called-back by "Recording" button + # + def toggle_scanning(self): + # Current scanning? Flip state + if (self.scanning == True): + self.scanning = False + self.scan_control.SetLabel("Scan: Off") + # Not scanning + else: + self.scanning = True + self.scan_control.SetLabel("Scan: On ") + + def set_pd_offset(self,offs): + self.myform['offset'].set_value(offs) + self.calib_offset=offs + x = self.calib_coeff / 100.0 + self.cal_offs.set_k(offs*(x*8000)) + + def set_pd_gain(self,gain): + self.myform['dcgain'].set_value(gain) + self.cal_mult.set_k(gain*0.01) + self.calib_coeff = gain + x = gain/100.0 + self.cal_offs.set_k(self.calib_offset*(x*8000)) + + def compute_notch_taps(self,notchlist): + tmptaps = Numeric.zeros(self.NOTCH_TAPS,Numeric.Complex64) + binwidth = self.bw / self.NOTCH_TAPS + + for i in range(0,self.NOTCH_TAPS): + tmptaps[i] = complex(1.0,0.0) + + for i in notchlist: + diff = i - self.observing + if int(i) == 0: + break + if ((i < (self.observing - self.bw/2)) or (i > (self.observing + self.bw/2))): + continue + if (diff > 0): + idx = diff / binwidth + idx = round(idx) + idx = int(idx) + if (idx < 0 or idx > (self.NOTCH_TAPS/2)): + break + tmptaps[idx] = complex(0.0, 0.0) + + if (diff < 0): + idx = -diff / binwidth + idx = round(idx) + idx = (self.NOTCH_TAPS/2) - idx + idx = int(idx+(self.NOTCH_TAPS/2)) + if (idx < 0 or idx >= (self.NOTCH_TAPS)): + break + tmptaps[idx] = complex(0.0, 0.0) + + self.notch_taps = numpy.fft.ifft(tmptaps) + + # + # Setup common pieces of radiometer mode + # + def setup_radiometer_common(self,n): + # The IIR integration filter for post-detection + self.integrator = gr.single_pole_iir_filter_ff(1.0) + self.integrator.set_taps (1.0/self.bw) + + if (self.use_notches == True): + self.compute_notch_taps(self.notches) + if (n == 2): + self.notch_filt1 = gr.fft_filter_ccc(1, self.notch_taps) + self.notch_filt2 = gr.fft_filter_ccc(1, self.notch_taps) + else: + self.notch_filt = gr.fft_filter_ccc(1, self.notch_taps) + + + # Signal probe + self.probe = gr.probe_signal_f() + + # + # Continuum calibration stuff + # + x = self.calib_coeff/100.0 + self.cal_mult = gr.multiply_const_ff(self.calib_coeff/100.0) + self.cal_offs = gr.add_const_ff(self.calib_offset*(x*8000)) + + # + # Mega decimator after IIR filter + # + if (self.switch_mode == False): + self.keepn = gr.keep_one_in_n(gr.sizeof_float, self.bw) + else: + self.keepn = gr.keep_one_in_n(gr.sizeof_float, int(self.bw/2)) + + # + # For the Dicke-switching scheme + # + #self.switch = gr.multiply_const_ff(1.0) + + # + if (self.switch_mode == True): + self.vector = gr.vector_sink_f() + self.swkeep = gr.keep_one_in_n(gr.sizeof_float, int(self.bw/3)) + self.mute = gr.keep_one_in_n(gr.sizeof_float, 1) + self.cmute = gr.keep_one_in_n(gr.sizeof_float, int(1.0e9)) + self.cintegrator = gr.single_pole_iir_filter_ff(1.0/(self.bw/2)) + self.cprobe = gr.probe_signal_f() + else: + self.mute = gr.multiply_const_ff(1.0) + + + self.avg_reference_value = 0.0 + self.reference_level = gr.add_const_ff(0.0) + + # + # Setup ordinary single-channel radiometer mode + # + def setup_normal(self, setimode): + + self.setup_radiometer_common(1) + + self.head = self.u + if (self.use_notches == True): + self.shead = self.notch_filt + else: + self.shead = self.u + + if setimode == False: + + self.detector = gr.complex_to_mag_squared() + self.connect(self.shead, self.scope) + + if (self.use_notches == False): + self.connect(self.head, self.detector, self.mute, self.reference_level, + self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart) + else: + self.connect(self.head, self.notch_filt, self.detector, self.mute, self.reference_level, + self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart) + + self.connect(self.cal_offs, self.probe) + + # + # Add a side-chain detector chain, with a different integrator, for sampling + # The reference channel data + # This is used to derive the offset value for self.reference_level, used above + # + if (self.switch_mode == True): + self.connect(self.detector, self.cmute, self.cintegrator, self.swkeep, self.cprobe) + + return + + # + # Setup dual-channel (two antenna, usual orthogonal polarity probes in the same waveguide) + # + def setup_dual(self, setimode): + + self.setup_radiometer_common(2) + + self.di = gr.deinterleave(gr.sizeof_gr_complex) + self.addchans = gr.add_cc () + self.detector = gr.add_ff () + self.h_power = gr.complex_to_mag_squared() + self.v_power = gr.complex_to_mag_squared() + self.connect (self.u, self.di) + + if (self.use_notches == True): + self.connect((self.di, 0), self.notch_filt1, (self.addchans, 0)) + self.connect((self.di, 1), self.notch_filt2, (self.addchans, 1)) + else: + # + # For spectral, adding the two channels works, assuming no gross + # phase or amplitude error + self.connect ((self.di, 0), (self.addchans, 0)) + self.connect ((self.di, 1), (self.addchans, 1)) + + # + # Connect heads of spectral and total-power chains + # + if (self.use_notches == False): + self.head = self.di + else: + self.head = (self.notch_filt1, self.notch_filt2) + + self.shead = self.addchans + + if (setimode == False): + # + # For dual-polarization mode, we compute the sum of the + # powers on each channel, after they've been detected + # + self.detector = gr.add_ff() + + # + # In dual-polarization mode, we compute things a little differently + # In effect, we have two radiometer chains, terminating in an adder + # + if self.use_notches == True: + self.connect(self.notch_filt1, self.h_power) + self.connect(self.notch_filt2, self.v_power) + else: + self.connect((self.head, 0), self.h_power) + self.connect((self.head, 1), self.v_power) + self.connect(self.h_power, (self.detector, 0)) + self.connect(self.v_power, (self.detector, 1)) + self.connect(self.detector, self.mute, self.reference_level, + self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart) + self.connect(self.cal_offs, self.probe) + self.connect(self.shead, self.scope) + + # + # Add a side-chain detector chain, with a different integrator, for sampling + # The reference channel data + # This is used to derive the offset value for self.reference_level, used above + # + if (self.switch_mode == True): + self.connect(self.detector, self.cmute, self.cintegrator, self.swkeep, self.cprobe) + return + + # + # Setup correlating interferometer mode + # + def setup_interferometer(self, setimode): + self.setup_radiometer_common(2) + + self.di = gr.deinterleave(gr.sizeof_gr_complex) + self.connect (self.u, self.di) + self.corr = gr.multiply_cc() + self.c2f = gr.complex_to_float() + + self.shead = (self.di, 0) + + # Channel 0 to multiply port 0 + # Channel 1 to multiply port 1 + if (self.use_notches == False): + self.connect((self.di, 0), (self.corr, 0)) + self.connect((self.di, 1), (self.corr, 1)) + else: + self.connect((self.di, 0), self.notch_filt1, (self.corr, 0)) + self.connect((self.di, 1), self.notch_filt2, (self.corr, 0)) + + # + # Multiplier (correlator) to complex-to-float, followed by integrator, etc + # + self.connect(self.corr, self.c2f, self.integrator, self.keepn, self.cal_mult, self.cal_offs, self.chart) + + # + # FFT scope gets only 1 channel + # FIX THIS, by cross-correlating the *outputs* of two different FFTs, then display + # Funky! + # + self.connect(self.shead, self.scope) + + # + # Output of correlator/integrator chain to probe + # + self.connect(self.cal_offs, self.probe) + + return + + # + # Setup SETI mode + # + def setup_seti(self): + self.connect (self.shead, self.fft_bandpass, self.scope) + return + + def setup_usrp(self): + + if (self.usrp2 == False): + if (self.dual_mode == False and self.interferometer == False): + if (self.decim > 4): + self.u = usrp.source_c(decim_rate=self.decim,fusb_block_size=8192) + else: + self.u = usrp.source_c(decim_rate=self.decim,fusb_block_size=8192, fpga_filename="std_4rx_0tx.rbf") + self.u.set_mux(usrp.determine_rx_mux_value(self.u, self.rx_subdev_spec)) + # determine the daughterboard subdevice we're using + self.subdev[0] = usrp.selected_subdev(self.u, self.rx_subdev_spec) + self.subdev[1] = self.subdev[0] + self.cardtype = self.subdev[0].dbid() + else: + self.u=usrp.source_c(decim_rate=self.decim, nchan=2,fusb_block_size=8192) + self.subdev[0] = usrp.selected_subdev(self.u, (0, 0)) + self.subdev[1] = usrp.selected_subdev(self.u, (1, 0)) + self.cardtype = self.subdev[0].dbid() + self.u.set_mux(0x32103210) + c1 = self.subdev[0].name() + c2 = self.subdev[1].name() + if (c1 != c2): + print "Must have identical cardtypes for --dual_mode or --interferometer" + sys.exit(1) + # + # Set 8-bit mode + # + + width = 8 + shift = 8 + format = self.u.make_format(width, shift) + r = self.u.set_format(format) + else: + if (self.dual_mode == True or self.interferometer == True): + print "Cannot use dual_mode or interferometer with single USRP2" + sys.exit(1) + self.u = usrp2.source_32fc(self.interface, self.mac_addr) + self.u.set_decim (self.decim) + self.cardtype = self.u.daughterboard_id() def main (): - app = stdgui.stdapp(app_flow_graph, "RADIO ASTRONOMY SPECTRAL/CONTINUUM RECEIVER: $Revision: 6077 $", nstatus=1) - app.MainLoop() + app = stdgui2.stdapp(app_flow_graph, "RADIO ASTRONOMY SPECTRAL/CONTINUUM RECEIVER: $Revision: 10631 $", nstatus=1) + app.MainLoop() if __name__ == '__main__': - main () + main ()