flash/stm32l4x: add support of STM32WB3x devices
[fw/openocd] / src / flash / nor / stm32l4x.c
index a373f1168690ee08981fe502bd3c238cc6130928..2cc378a901e7f66020eedda587da1ef3a0c20220 100644 (file)
@@ -28,6 +28,7 @@
 #include <target/algorithm.h>
 #include <target/armv7m.h>
 #include "bits.h"
+#include "stm32l4x.h"
 
 /* STM32L4xxx series for reference.
  *
  * RM0394 devices have a single bank only.
  *
  * RM0432 devices have single and dual bank operating modes.
- * The FLASH size is 1Mbyte or 2Mbyte.
+ *  - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
+ *  - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
  * Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
  *
  * Bank mode is controlled by two different bits in option bytes register.
- * In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
- * In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
+ *  - for STM32L4R/Sxx
+ *    In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
+ *    In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
+ *  - for STM32L4P5/Q5x
+ *    In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
+ *    In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
  *
  */
 
-/* Erase time can be as high as 25ms, 10x this and assume it's toast... */
+/* STM32WBxxx series for reference.
+ *
+ * RM0434 (STM32WB55)
+ * http://www.st.com/resource/en/reference_manual/dm00318631.pdf
+ *
+ * RM0471 (STM32WB50)
+ * http://www.st.com/resource/en/reference_manual/dm00622834.pdf
+ */
 
-#define FLASH_ERASE_TIMEOUT 250
+/* STM32WLxxx series for reference.
+ *
+ * RM0461 (STM32WLEx)
+ * http://www.st.com/resource/en/reference_manual/dm00530369.pdf
+ */
+
+/*
+ * STM32G0xxx series for reference.
+ *
+ * RM0444 (STM32G0x1)
+ * http://www.st.com/resource/en/reference_manual/dm00371828.pdf
+ *
+ * RM0454 (STM32G0x0)
+ * http://www.st.com/resource/en/reference_manual/dm00463896.pdf
+ */
+
+/*
+ * STM32G4xxx series for reference.
+ *
+ * RM0440 (STM32G43x/44x/47x/48x)
+ * http://www.st.com/resource/en/reference_manual/dm00355726.pdf
+ *
+ * Cat. 2 devices have single bank only, page size is 2kByte.
+ *
+ * Cat. 3 devices have single and dual bank operating modes,
+ * Page size is 2kByte (dual mode) or 4kByte (single mode).
+ *
+ * Bank mode is controlled by bit 22 (DBANK) in option bytes register.
+ * Both banks are treated as a single OpenOCD bank.
+ */
 
-/* Flash registers offsets */
-#define STM32_FLASH_ACR     0x00
-#define STM32_FLASH_KEYR    0x08
-#define STM32_FLASH_OPTKEYR 0x0c
-#define STM32_FLASH_SR      0x10
-#define STM32_FLASH_CR      0x14
-#define STM32_FLASH_OPTR    0x20
-#define STM32_FLASH_WRP1AR  0x2c
-#define STM32_FLASH_WRP1BR  0x30
-#define STM32_FLASH_WRP2AR  0x4c
-#define STM32_FLASH_WRP2BR  0x50
-
-/* FLASH_CR register bits */
-#define FLASH_PG        (1 << 0)
-#define FLASH_PER       (1 << 1)
-#define FLASH_MER1      (1 << 2)
-#define FLASH_PAGE_SHIFT      3
-#define FLASH_CR_BKER   (1 << 11)
-#define FLASH_MER2      (1 << 15)
-#define FLASH_STRT      (1 << 16)
-#define FLASH_OPTSTRT   (1 << 17)
-#define FLASH_EOPIE     (1 << 24)
-#define FLASH_ERRIE     (1 << 25)
-#define FLASH_OBLLAUNCH (1 << 27)
-#define FLASH_OPTLOCK   (1 << 30)
-#define FLASH_LOCK      (1 << 31)
-
-/* FLASH_SR register bits */
-#define FLASH_BSY      (1 << 16)
-/* Fast programming not used => related errors not used*/
-#define FLASH_PGSERR   (1 << 7) /* Programming sequence error */
-#define FLASH_SIZERR   (1 << 6) /* Size error */
-#define FLASH_PGAERR   (1 << 5) /* Programming alignment error */
-#define FLASH_WRPERR   (1 << 4) /* Write protection error */
-#define FLASH_PROGERR  (1 << 3) /* Programming error */
-#define FLASH_OPERR    (1 << 1) /* Operation error */
-#define FLASH_EOP      (1 << 0) /* End of operation */
-#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGSERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
-
-/* register unlock keys */
-#define KEY1           0x45670123
-#define KEY2           0xCDEF89AB
-
-/* option register unlock key */
-#define OPTKEY1        0x08192A3B
-#define OPTKEY2        0x4C5D6E7F
-
-#define RDP_LEVEL_0       0xAA
-#define RDP_LEVEL_1       0xBB
-#define RDP_LEVEL_2       0xCC
-
-
-/* other registers */
-#define DBGMCU_IDCODE  0xE0042000
+/* Erase time can be as high as 25ms, 10x this and assume it's toast... */
 
+#define FLASH_ERASE_TIMEOUT 250
 
 struct stm32l4_rev {
        const uint16_t rev;
@@ -137,14 +127,19 @@ struct stm32l4_part_info {
 };
 
 struct stm32l4_flash_bank {
-       int probed;
+       bool probed;
        uint32_t idcode;
        int bank1_sectors;
        bool dual_bank_mode;
        int hole_sectors;
+       uint32_t user_bank_size;
+       uint32_t wrpxxr_mask;
        const struct stm32l4_part_info *part_info;
 };
 
+/* human readable list of families this drivers supports */
+static const char *device_families = "STM32L4/L4+/WB/WL/G4/G0";
+
 static const struct stm32l4_rev stm32_415_revs[] = {
        { 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
 };
@@ -153,26 +148,54 @@ static const struct stm32l4_rev stm32_435_revs[] = {
        { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
 };
 
+static const struct stm32l4_rev stm32_460_revs[] = {
+       { 0x1000, "A/Z" } /* A and Z, no typo in RM! */, { 0x2000, "B" },
+};
+
 static const struct stm32l4_rev stm32_461_revs[] = {
        { 0x1000, "A" }, { 0x2000, "B" },
 };
 
 static const struct stm32l4_rev stm32_462_revs[] = {
-               { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
+       { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
 };
 
 static const struct stm32l4_rev stm32_464_revs[] = {
-       { 0x1000, "A" },
+       { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
+};
+
+static const struct stm32l4_rev stm32_466_revs[] = {
+       { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2000, "B" },
+};
+
+static const struct stm32l4_rev stm32_468_revs[] = {
+       { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
+};
+
+static const struct stm32l4_rev stm32_469_revs[] = {
+       { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
 };
 
 static const struct stm32l4_rev stm32_470_revs[] = {
        { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
 };
 
+static const struct stm32l4_rev stm32_471_revs[] = {
+       { 0x1000, "1" },
+};
+
 static const struct stm32l4_rev stm32_495_revs[] = {
        { 0x2001, "2.1" },
 };
 
+static const struct stm32l4_rev stm32_496_revs[] = {
+       { 0x1000, "A" },
+};
+
+static const struct stm32l4_rev stm32_497_revs[] = {
+       { 0x1000, "1.0" },
+};
+
 static const struct stm32l4_part_info stm32l4_parts[] = {
        {
          .id                    = 0x415,
@@ -194,6 +217,16 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
          .flash_regs_base       = 0x40022000,
          .fsize_addr            = 0x1FFF75E0,
        },
+       {
+         .id                    = 0x460,
+         .revs                  = stm32_460_revs,
+         .num_revs              = ARRAY_SIZE(stm32_460_revs),
+         .device_str            = "STM32G07/G08xx",
+         .max_flash_size_kb     = 128,
+         .has_dual_bank         = false,
+         .flash_regs_base       = 0x40022000,
+         .fsize_addr            = 0x1FFF75E0,
+       },
        {
          .id                    = 0x461,
          .revs                  = stm32_461_revs,
@@ -224,6 +257,36 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
          .flash_regs_base       = 0x40022000,
          .fsize_addr            = 0x1FFF75E0,
        },
+       {
+         .id                    = 0x466,
+         .revs                  = stm32_466_revs,
+         .num_revs              = ARRAY_SIZE(stm32_466_revs),
+         .device_str            = "STM32G03/G04xx",
+         .max_flash_size_kb     = 64,
+         .has_dual_bank         = false,
+         .flash_regs_base       = 0x40022000,
+         .fsize_addr            = 0x1FFF75E0,
+       },
+       {
+         .id                    = 0x468,
+         .revs                  = stm32_468_revs,
+         .num_revs              = ARRAY_SIZE(stm32_468_revs),
+         .device_str            = "STM32G43/G44xx",
+         .max_flash_size_kb     = 128,
+         .has_dual_bank         = false,
+         .flash_regs_base       = 0x40022000,
+         .fsize_addr            = 0x1FFF75E0,
+       },
+       {
+         .id                    = 0x469,
+         .revs                  = stm32_469_revs,
+         .num_revs              = ARRAY_SIZE(stm32_469_revs),
+         .device_str            = "STM32G47/G48xx",
+         .max_flash_size_kb     = 512,
+         .has_dual_bank         = true,
+         .flash_regs_base       = 0x40022000,
+         .fsize_addr            = 0x1FFF75E0,
+       },
        {
          .id                    = 0x470,
          .revs                  = stm32_470_revs,
@@ -234,6 +297,16 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
          .flash_regs_base       = 0x40022000,
          .fsize_addr            = 0x1FFF75E0,
        },
+       {
+         .id                    = 0x471,
+         .revs                  = stm32_471_revs,
+         .num_revs              = ARRAY_SIZE(stm32_471_revs),
+         .device_str            = "STM32L4P5/L4Q5x",
+         .max_flash_size_kb     = 1024,
+         .has_dual_bank         = true,
+         .flash_regs_base       = 0x40022000,
+         .fsize_addr            = 0x1FFF75E0,
+       },
        {
          .id                    = 0x495,
          .revs                  = stm32_495_revs,
@@ -244,6 +317,26 @@ static const struct stm32l4_part_info stm32l4_parts[] = {
          .flash_regs_base       = 0x58004000,
          .fsize_addr            = 0x1FFF75E0,
        },
+       {
+         .id                    = 0x496,
+         .revs                  = stm32_496_revs,
+         .num_revs              = ARRAY_SIZE(stm32_496_revs),
+         .device_str            = "STM32WB3x",
+         .max_flash_size_kb     = 512,
+         .has_dual_bank         = false,
+         .flash_regs_base       = 0x58004000,
+         .fsize_addr            = 0x1FFF75E0,
+       },
+       {
+         .id                    = 0x497,
+         .revs                  = stm32_497_revs,
+         .num_revs              = ARRAY_SIZE(stm32_497_revs),
+         .device_str            = "STM32WLEx",
+         .max_flash_size_kb     = 256,
+         .has_dual_bank         = false,
+         .flash_regs_base       = 0x58004000,
+         .fsize_addr            = 0x1FFF75E0,
+       },
 };
 
 /* flash bank stm32l4x <base> <size> 0 0 <target#> */
@@ -259,7 +352,12 @@ FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
                return ERROR_FAIL; /* Checkme: What better error to use?*/
        bank->driver_priv = stm32l4_info;
 
-       stm32l4_info->probed = 0;
+       /* The flash write must be aligned to a double word (8-bytes) boundary.
+        * Ask the flash infrastructure to ensure required alignment */
+       bank->write_start_alignment = bank->write_end_alignment = 8;
+
+       stm32l4_info->probed = false;
+       stm32l4_info->user_bank_size = bank->size;
 
        return ERROR_OK;
 }
@@ -386,37 +484,43 @@ static int stm32l4_unlock_option_reg(struct flash_bank *bank)
        return ERROR_OK;
 }
 
-static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset, uint32_t value, uint32_t mask)
+static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
+       uint32_t value, uint32_t mask)
 {
        uint32_t optiondata;
+       int retval, retval2;
 
-       int retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
+       retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
        if (retval != ERROR_OK)
                return retval;
 
        retval = stm32l4_unlock_reg(bank);
        if (retval != ERROR_OK)
-               return retval;
+               goto err_lock;
 
        retval = stm32l4_unlock_option_reg(bank);
        if (retval != ERROR_OK)
-               return retval;
+               goto err_lock;
 
        optiondata = (optiondata & ~mask) | (value & mask);
 
        retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
        if (retval != ERROR_OK)
-               return retval;
+               goto err_lock;
 
        retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OPTSTRT);
        if (retval != ERROR_OK)
-               return retval;
+               goto err_lock;
 
        retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
+
+err_lock:
+       retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK | FLASH_OPTLOCK);
+
        if (retval != ERROR_OK)
                return retval;
 
-       return retval;
+       return retval2;
 }
 
 static int stm32l4_protect_check(struct flash_bank *bank)
@@ -426,17 +530,23 @@ static int stm32l4_protect_check(struct flash_bank *bank)
        uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br;
        stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1AR, &wrp1ar);
        stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1BR, &wrp1br);
-       stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2AR, &wrp2ar);
-       stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2BR, &wrp2br);
-
-       const uint8_t wrp1a_start = wrp1ar & 0xFF;
-       const uint8_t wrp1a_end = (wrp1ar >> 16) & 0xFF;
-       const uint8_t wrp1b_start = wrp1br & 0xFF;
-       const uint8_t wrp1b_end = (wrp1br >> 16) & 0xFF;
-       const uint8_t wrp2a_start = wrp2ar & 0xFF;
-       const uint8_t wrp2a_end = (wrp2ar >> 16) & 0xFF;
-       const uint8_t wrp2b_start = wrp2br & 0xFF;
-       const uint8_t wrp2b_end = (wrp2br >> 16) & 0xFF;
+       if (stm32l4_info->part_info->has_dual_bank) {
+               stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2AR, &wrp2ar);
+               stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2BR, &wrp2br);
+       } else {
+               /* prevent unintialized errors */
+               wrp2ar = 0;
+               wrp2br = 0;
+       }
+
+       const uint8_t wrp1a_start = wrp1ar & stm32l4_info->wrpxxr_mask;
+       const uint8_t wrp1a_end = (wrp1ar >> 16) & stm32l4_info->wrpxxr_mask;
+       const uint8_t wrp1b_start = wrp1br & stm32l4_info->wrpxxr_mask;
+       const uint8_t wrp1b_end = (wrp1br >> 16) & stm32l4_info->wrpxxr_mask;
+       const uint8_t wrp2a_start = wrp2ar & stm32l4_info->wrpxxr_mask;
+       const uint8_t wrp2a_end = (wrp2ar >> 16) & stm32l4_info->wrpxxr_mask;
+       const uint8_t wrp2b_start = wrp2br & stm32l4_info->wrpxxr_mask;
+       const uint8_t wrp2b_end = (wrp2br >> 16) & stm32l4_info->wrpxxr_mask;
 
        for (int i = 0; i < bank->num_sectors; i++) {
                if (i < stm32l4_info->bank1_sectors) {
@@ -448,6 +558,7 @@ static int stm32l4_protect_check(struct flash_bank *bank)
                        else
                                bank->sectors[i].is_protected = 0;
                } else {
+                       assert(stm32l4_info->part_info->has_dual_bank == true);
                        uint8_t snb;
                        snb = i - stm32l4_info->bank1_sectors;
                        if (((snb >= wrp2a_start) &&
@@ -466,10 +577,9 @@ static int stm32l4_erase(struct flash_bank *bank, int first, int last)
 {
        struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
        int i;
-       int retval;
+       int retval, retval2;
 
-       assert(first < bank->num_sectors);
-       assert(last < bank->num_sectors);
+       assert((0 <= first) && (first <= last) && (last < bank->num_sectors));
 
        if (bank->target->state != TARGET_HALTED) {
                LOG_ERROR("Target not halted");
@@ -478,13 +588,13 @@ static int stm32l4_erase(struct flash_bank *bank, int first, int last)
 
        retval = stm32l4_unlock_reg(bank);
        if (retval != ERROR_OK)
-               return retval;
+               goto err_lock;
 
        /*
        Sector Erase
        To erase a sector, follow the procedure below:
        1. Check that no Flash memory operation is ongoing by
-       checking the BSY bit in the FLASH_SR register
+          checking the BSY bit in the FLASH_SR register
        2. Set the PER bit and select the page and bank
           you wish to erase in the FLASH_CR register
        3. Set the STRT bit in the FLASH_CR register
@@ -503,20 +613,22 @@ static int stm32l4_erase(struct flash_bank *bank, int first, int last)
                        erase_flags |= i << FLASH_PAGE_SHIFT;
                retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, erase_flags);
                if (retval != ERROR_OK)
-                       return retval;
+                       break;
 
                retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
                if (retval != ERROR_OK)
-                       return retval;
+                       break;
 
                bank->sectors[i].is_erased = 1;
        }
 
-       retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
+err_lock:
+       retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
+
        if (retval != ERROR_OK)
                return retval;
 
-       return ERROR_OK;
+       return retval2;
 }
 
 static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last)
@@ -554,17 +666,17 @@ static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last
        return ret;
 }
 
-/* Count is in halfwords */
+/* Count is in double-words */
 static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
-               uint32_t offset, uint32_t count)
+       uint32_t offset, uint32_t count)
 {
        struct target *target = bank->target;
        struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
-       uint32_t buffer_size = 16384;
+       uint32_t buffer_size;
        struct working_area *write_algorithm;
        struct working_area *source;
        uint32_t address = bank->base + offset;
-       struct reg_param reg_params[5];
+       struct reg_param reg_params[6];
        struct armv7m_algorithm armv7m_info;
        int retval = ERROR_OK;
 
@@ -586,18 +698,19 @@ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
                return retval;
        }
 
-       /* memory buffer */
-       while (target_alloc_working_area_try(target, buffer_size, &source) !=
-                  ERROR_OK) {
-               buffer_size /= 2;
-               if (buffer_size <= 256) {
-                       /* we already allocated the writing code, but failed to get a
-                        * buffer, free the algorithm */
-                       target_free_working_area(target, write_algorithm);
-
-                       LOG_WARNING("large enough working area not available, can't do block memory writes");
-                       return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
-               }
+       /* memory buffer, size *must* be multiple of dword plus one dword for rp and one for wp */
+       buffer_size = target_get_working_area_avail(target) & ~(2 * sizeof(uint32_t) - 1);
+       if (buffer_size < 256) {
+               LOG_WARNING("large enough working area not available, can't do block memory writes");
+               return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+       } else if (buffer_size > 16384) {
+               /* probably won't benefit from more than 16k ... */
+               buffer_size = 16384;
+       }
+
+       if (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
+               LOG_ERROR("allocating working area failed");
+               return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
        }
 
        armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
@@ -607,17 +720,19 @@ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
        init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* buffer end */
        init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);    /* target address */
        init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);    /* count (double word-64bit) */
-       init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);    /* flash base */
+       init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);    /* flash status register */
+       init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);    /* flash control register */
 
        buf_set_u32(reg_params[0].value, 0, 32, source->address);
        buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
        buf_set_u32(reg_params[2].value, 0, 32, address);
-       buf_set_u32(reg_params[3].value, 0, 32, count / 4);
-       buf_set_u32(reg_params[4].value, 0, 32, stm32l4_info->part_info->flash_regs_base);
+       buf_set_u32(reg_params[3].value, 0, 32, count);
+       buf_set_u32(reg_params[4].value, 0, 32, stm32l4_info->part_info->flash_regs_base + STM32_FLASH_SR);
+       buf_set_u32(reg_params[5].value, 0, 32, stm32l4_info->part_info->flash_regs_base + STM32_FLASH_CR);
 
-       retval = target_run_flash_async_algorithm(target, buffer, count, 2,
+       retval = target_run_flash_async_algorithm(target, buffer, count, 8,
                        0, NULL,
-                       5, reg_params,
+                       ARRAY_SIZE(reg_params), reg_params,
                        source->address, source->size,
                        write_algorithm->address, 0,
                        &armv7m_info);
@@ -646,59 +761,92 @@ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
        destroy_reg_param(&reg_params[2]);
        destroy_reg_param(&reg_params[3]);
        destroy_reg_param(&reg_params[4]);
+       destroy_reg_param(&reg_params[5]);
 
        return retval;
 }
 
 static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
-               uint32_t offset, uint32_t count)
+       uint32_t offset, uint32_t count)
 {
-       int retval;
+       int retval = ERROR_OK, retval2;
 
        if (bank->target->state != TARGET_HALTED) {
                LOG_ERROR("Target not halted");
                return ERROR_TARGET_NOT_HALTED;
        }
 
-       if (offset & 0x7) {
-               LOG_WARNING("offset 0x%" PRIx32 " breaks required 8-byte alignment",
-                                       offset);
-               return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
+       /* The flash write must be aligned to a double word (8-bytes) boundary.
+        * The flash infrastructure ensures it, do just a security check */
+       assert(offset % 8 == 0);
+       assert(count % 8 == 0);
+
+       /* STM32G4xxx Cat. 3 devices may have gaps between banks, check whether
+        * data to be written does not go into a gap:
+        * suppose buffer is fully contained in bank from sector 0 to sector
+        * num->sectors - 1 and sectors are ordered according to offset
+        */
+       struct flash_sector *head = &bank->sectors[0];
+       struct flash_sector *tail = &bank->sectors[bank->num_sectors - 1];
+
+       while ((head < tail) && (offset >= (head + 1)->offset)) {
+               /* buffer does not intersect head nor gap behind head */
+               head++;
        }
 
-       if (count & 0x7) {
-               LOG_WARNING("Padding %d bytes to keep 8-byte write size",
-                                       count & 7);
-               count = (count + 7) & ~7;
-               /* This pads the write chunk with random bytes by overrunning the
-                * write buffer. Padding with the erased pattern 0xff is purely
-                * cosmetical, as 8-byte flash words are ECC secured and the first
-                * write will program the ECC bits. A second write would need
-                * to reprogramm these ECC bits.
-                * But this can only be done after erase!
-                */
+       while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) {
+               /* buffer does not intersect tail nor gap before tail */
+               --tail;
+       }
+
+       LOG_DEBUG("data: 0x%08" PRIx32 " - 0x%08" PRIx32 ", sectors: 0x%08" PRIx32 " - 0x%08" PRIx32,
+               offset, offset + count - 1, head->offset, tail->offset + tail->size - 1);
+
+       /* Now check that there is no gap from head to tail, this should work
+        * even for multiple or non-symmetric gaps
+        */
+       while (head < tail) {
+               if (head->offset + head->size != (head + 1)->offset) {
+                       LOG_ERROR("write into gap from " TARGET_ADDR_FMT " to " TARGET_ADDR_FMT,
+                               bank->base + head->offset + head->size,
+                               bank->base + (head + 1)->offset - 1);
+                       retval = ERROR_FLASH_DST_OUT_OF_BANK;
+               }
+               head++;
        }
 
-       retval = stm32l4_unlock_reg(bank);
        if (retval != ERROR_OK)
                return retval;
 
-       /* Only full double words (8-byte) can be programmed*/
-       retval = stm32l4_write_block(bank, buffer, offset, count / 2);
+       retval = stm32l4_unlock_reg(bank);
+       if (retval != ERROR_OK)
+               goto err_lock;
+
+       retval = stm32l4_write_block(bank, buffer, offset, count / 8);
+
+err_lock:
+       retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
+
        if (retval != ERROR_OK) {
-               LOG_WARNING("block write failed");
+               LOG_ERROR("block write failed");
                return retval;
        }
-
-       LOG_WARNING("block write succeeded");
-       return stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
+       return retval2;
 }
 
 static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
 {
-       int retval = target_read_u32(bank->target, DBGMCU_IDCODE, id);
-       if (retval != ERROR_OK)
-               return retval;
+       int retval;
+
+       /* try stm32l4/l4+/wb/g4 id register first, then stm32g0 id register */
+       retval = target_read_u32(bank->target, DBGMCU_IDCODE_L4_G4, id);
+       if ((retval != ERROR_OK) || ((*id & 0xfff) == 0) || ((*id & 0xfff) == 0xfff)) {
+               retval = target_read_u32(bank->target, DBGMCU_IDCODE_G0, id);
+               if ((retval != ERROR_OK) || ((*id & 0xfff) == 0) || ((*id & 0xfff) == 0xfff)) {
+                       LOG_ERROR("can't get device id");
+                       return (retval == ERROR_OK) ? ERROR_FAIL : retval;
+               }
+       }
 
        return retval;
 }
@@ -708,14 +856,13 @@ static int stm32l4_probe(struct flash_bank *bank)
        struct target *target = bank->target;
        struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
        const struct stm32l4_part_info *part_info;
-       int i;
-       uint16_t flash_size_in_kb = 0xffff;
+       uint16_t flash_size_kb = 0xffff;
        uint32_t device_id;
        uint32_t options;
 
-       stm32l4_info->probed = 0;
+       stm32l4_info->probed = false;
 
-       /* read stm32 device id register */
+       /* read stm32 device id registers */
        int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
        if (retval != ERROR_OK)
                return retval;
@@ -728,7 +875,7 @@ static int stm32l4_probe(struct flash_bank *bank)
        }
 
        if (!stm32l4_info->part_info) {
-               LOG_WARNING("Cannot identify target as an STM32 L4 or WB family device.");
+               LOG_WARNING("Cannot identify target as an %s family device.", device_families);
                return ERROR_FAIL;
        }
 
@@ -742,21 +889,28 @@ static int stm32l4_probe(struct flash_bank *bank)
        LOG_INFO("device idcode = 0x%08" PRIx32 " (%s)", stm32l4_info->idcode, device_info);
 
        /* get flash size from target. */
-       retval = target_read_u16(target, part_info->fsize_addr, &flash_size_in_kb);
+       retval = target_read_u16(target, part_info->fsize_addr, &flash_size_kb);
 
        /* failed reading flash size or flash size invalid (early silicon),
         * default to max target family */
-       if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0
-                       || flash_size_in_kb > part_info->max_flash_size_kb) {
+       if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0
+                       || flash_size_kb > part_info->max_flash_size_kb) {
                LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
                        part_info->max_flash_size_kb);
-               flash_size_in_kb = part_info->max_flash_size_kb;
+               flash_size_kb = part_info->max_flash_size_kb;
        }
 
-       LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
+       /* if the user sets the size manually then ignore the probed value
+        * this allows us to work around devices that have a invalid flash size register value */
+       if (stm32l4_info->user_bank_size) {
+               LOG_WARNING("overriding size register by configured bank size - MAY CAUSE TROUBLE");
+               flash_size_kb = stm32l4_info->user_bank_size / 1024;
+       }
+
+       LOG_INFO("flash size = %dkbytes", flash_size_kb);
 
        /* did we assign a flash size? */
-       assert((flash_size_in_kb != 0xffff) && flash_size_in_kb);
+       assert((flash_size_kb != 0xffff) && flash_size_kb);
 
        /* read flash option register */
        retval = stm32l4_read_flash_reg(bank, STM32_FLASH_OPTR, &options);
@@ -767,13 +921,13 @@ static int stm32l4_probe(struct flash_bank *bank)
        stm32l4_info->hole_sectors = 0;
 
        int num_pages = 0;
-       int page_size = 0;
+       int page_size_kb = 0;
 
        stm32l4_info->dual_bank_mode = false;
 
        switch (device_id) {
-       case 0x415:
-       case 0x461:
+       case 0x415: /* STM32L47/L48xx */
+       case 0x461: /* STM32L49/L4Axx */
                /* if flash size is max (1M) the device is always dual bank
                 * 0x415: has variants with 512K
                 * 0x461: has variants with 512 and 256
@@ -782,46 +936,73 @@ static int stm32l4_probe(struct flash_bank *bank)
                 *   else -> dual bank without gap
                 * note: the page size is invariant
                 */
-               page_size = 2048;
-               num_pages = flash_size_in_kb / 2;
+               page_size_kb = 2;
+               num_pages = flash_size_kb / page_size_kb;
                stm32l4_info->bank1_sectors = num_pages;
 
                /* check DUAL_BANK bit[21] if the flash is less than 1M */
-               if (flash_size_in_kb == 1024 || (options & BIT(21))) {
+               if (flash_size_kb == 1024 || (options & BIT(21))) {
                        stm32l4_info->dual_bank_mode = true;
                        stm32l4_info->bank1_sectors = num_pages / 2;
                }
                break;
-       case 0x435:
-       case 0x462:
-       case 0x464:
+       case 0x435: /* STM32L43/L44xx */
+       case 0x460: /* STM32G07/G08xx */
+       case 0x462: /* STM32L45/L46xx */
+       case 0x464: /* STM32L41/L42xx */
+       case 0x466: /* STM32G03/G04xx */
+       case 0x468: /* STM32G43/G44xx */
+       case 0x497: /* STM32WLEx */
                /* single bank flash */
-               page_size = 2048;
-               num_pages = flash_size_in_kb / 2;
+               page_size_kb = 2;
+               num_pages = flash_size_kb / page_size_kb;
+               stm32l4_info->bank1_sectors = num_pages;
+               break;
+       case 0x469: /* STM32G47/G48xx */
+               /* STM32G47/8 can be single/dual bank:
+                *   if DUAL_BANK = 0 -> single bank
+                *   else -> dual bank WITH gap
+                */
+               page_size_kb = 4;
+               num_pages = flash_size_kb / page_size_kb;
                stm32l4_info->bank1_sectors = num_pages;
+               if (options & BIT(22)) {
+                       stm32l4_info->dual_bank_mode = true;
+                       page_size_kb = 2;
+                       num_pages = flash_size_kb / page_size_kb;
+                       stm32l4_info->bank1_sectors = num_pages / 2;
+
+                       /* for devices with trimmed flash, there is a gap between both banks */
+                       stm32l4_info->hole_sectors =
+                               (part_info->max_flash_size_kb - flash_size_kb) / (2 * page_size_kb);
+               }
                break;
-       case 0x470:
+       case 0x470: /* STM32L4R/L4Sxx */
+       case 0x471: /* STM32L4P5/L4Q5x */
                /* STM32L4R/S can be single/dual bank:
                 *   if size = 2M check DBANK bit(22)
                 *   if size = 1M check DB1M bit(21)
-                * in single bank configuration the page size is 8K
-                * else (dual bank) the page size is 4K without gap between banks
+                * STM32L4P/Q can be single/dual bank
+                *   if size = 1M check DBANK bit(22)
+                *   if size = 512K check DB512K bit(21)
                 */
-               page_size = 8192;
-               num_pages = flash_size_in_kb / 8;
+               page_size_kb = 8;
+               num_pages = flash_size_kb / page_size_kb;
                stm32l4_info->bank1_sectors = num_pages;
-               if ((flash_size_in_kb == 2048 && (options & BIT(22))) ||
-                       (flash_size_in_kb == 1024 && (options & BIT(21)))) {
+               const bool use_dbank_bit = flash_size_kb == part_info->max_flash_size_kb;
+               if ((use_dbank_bit && (options & BIT(22))) ||
+                       (!use_dbank_bit && (options & BIT(21)))) {
                        stm32l4_info->dual_bank_mode = true;
-                       page_size = 4096;
-                       num_pages = flash_size_in_kb / 4;
+                       page_size_kb = 4;
+                       num_pages = flash_size_kb / page_size_kb;
                        stm32l4_info->bank1_sectors = num_pages / 2;
                }
                break;
-       case 0x495:
+       case 0x495: /* STM32WB5x */
+       case 0x496: /* STM32WB3x */
                /* single bank flash */
-               page_size = 4096;
-               num_pages = flash_size_in_kb / 4;
+               page_size_kb = 4;
+               num_pages = flash_size_kb / page_size_kb;
                stm32l4_info->bank1_sectors = num_pages;
                break;
        default:
@@ -831,21 +1012,41 @@ static int stm32l4_probe(struct flash_bank *bank)
 
        LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
 
-       const int gap_size = stm32l4_info->hole_sectors * page_size;
+       const int gap_size_kb = stm32l4_info->hole_sectors * page_size_kb;
 
-       if (stm32l4_info->dual_bank_mode & gap_size) {
-               LOG_INFO("gap detected starting from %0x08" PRIx32 " to %0x08" PRIx32,
-                               0x8000000 + stm32l4_info->bank1_sectors * page_size,
-                               0x8000000 + stm32l4_info->bank1_sectors * page_size + gap_size);
+       if (gap_size_kb != 0) {
+               LOG_INFO("gap detected from 0x%08" PRIx32 " to 0x%08" PRIx32,
+                       STM32_FLASH_BANK_BASE + stm32l4_info->bank1_sectors
+                               * page_size_kb * 1024,
+                       STM32_FLASH_BANK_BASE + (stm32l4_info->bank1_sectors
+                               * page_size_kb + gap_size_kb) * 1024 - 1);
        }
 
+       /* number of significant bits in WRPxxR differs per device,
+        * always right adjusted, on some devices non-implemented
+        * bits read as '0', on others as '1' ...
+        * notably G4 Cat. 2 implement only 6 bits, contradicting the RM
+        */
+
+       /* use *max_flash_size* instead of actual size as the trimmed versions
+        * certainly use the same number of bits
+        * max_flash_size is always power of two, so max_pages too
+        */
+       uint32_t max_pages = stm32l4_info->part_info->max_flash_size_kb / page_size_kb;
+       assert((max_pages & (max_pages - 1)) == 0);
+
+       /* in dual bank mode number of pages is doubled, but extra bit is bank selection */
+       stm32l4_info->wrpxxr_mask = ((max_pages >> (stm32l4_info->dual_bank_mode ? 1 : 0)) - 1);
+       assert((stm32l4_info->wrpxxr_mask & 0xFFFF0000) == 0);
+       LOG_DEBUG("WRPxxR mask 0x%04" PRIx16, stm32l4_info->wrpxxr_mask);
+
        if (bank->sectors) {
                free(bank->sectors);
                bank->sectors = NULL;
        }
 
-       bank->size = flash_size_in_kb * 1024 + gap_size;
-       bank->base = 0x08000000;
+       bank->size = (flash_size_kb + gap_size_kb) * 1024;
+       bank->base = STM32_FLASH_BANK_BASE;
        bank->num_sectors = num_pages;
        bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
        if (bank->sectors == NULL) {
@@ -853,18 +1054,18 @@ static int stm32l4_probe(struct flash_bank *bank)
                return ERROR_FAIL;
        }
 
-       for (i = 0; i < bank->num_sectors; i++) {
-               bank->sectors[i].offset = i * page_size;
+       for (int i = 0; i < bank->num_sectors; i++) {
+               bank->sectors[i].offset = i * page_size_kb * 1024;
                /* in dual bank configuration, if there is a gap between banks
                 * we fix up the sector offset to consider this gap */
                if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
-                       bank->sectors[i].offset += gap_size;
-               bank->sectors[i].size = page_size;
+                       bank->sectors[i].offset += gap_size_kb * 1024;
+               bank->sectors[i].size = page_size_kb * 1024;
                bank->sectors[i].is_erased = -1;
                bank->sectors[i].is_protected = 1;
        }
 
-       stm32l4_info->probed = 1;
+       stm32l4_info->probed = true;
        return ERROR_OK;
 }
 
@@ -890,18 +1091,20 @@ static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
                                rev_str = part_info->revs[i].str;
 
                                if (rev_str != NULL) {
-                                       snprintf(buf, buf_size, "%s - Rev: %s",
-                                                       part_info->device_str, rev_str);
+                                       snprintf(buf, buf_size, "%s - Rev: %s%s",
+                                               part_info->device_str, rev_str, stm32l4_info->probed ?
+                                                       (stm32l4_info->dual_bank_mode ? " dual-bank" : " single-bank") : "");
                                        return ERROR_OK;
                                }
                        }
                }
 
-               snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)",
-                               part_info->device_str, rev_id);
+               snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)%s",
+                       part_info->device_str, rev_id, stm32l4_info->probed ?
+                               (stm32l4_info->dual_bank_mode ? " dual-bank" : " single-bank") : "");
                return ERROR_OK;
        } else {
-               snprintf(buf, buf_size, "Cannot identify target as an STM32 L4 or WB device");
+               snprintf(buf, buf_size, "Cannot identify target as an %s device", device_families);
                return ERROR_FAIL;
        }
 
@@ -910,7 +1113,7 @@ static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
 
 static int stm32l4_mass_erase(struct flash_bank *bank)
 {
-       int retval;
+       int retval, retval2;
        struct target *target = bank->target;
        struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
 
@@ -926,35 +1129,34 @@ static int stm32l4_mass_erase(struct flash_bank *bank)
 
        retval = stm32l4_unlock_reg(bank);
        if (retval != ERROR_OK)
-               return retval;
+               goto err_lock;
 
        /* mass erase flash memory */
        retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
        if (retval != ERROR_OK)
-               return retval;
+               goto err_lock;
 
        retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action);
        if (retval != ERROR_OK)
-               return retval;
+               goto err_lock;
+
        retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action | FLASH_STRT);
        if (retval != ERROR_OK)
-               return retval;
+               goto err_lock;
 
        retval = stm32l4_wait_status_busy(bank,  FLASH_ERASE_TIMEOUT);
-       if (retval != ERROR_OK)
-               return retval;
 
-       retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
+err_lock:
+       retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK);
+
        if (retval != ERROR_OK)
                return retval;
 
-       return ERROR_OK;
+       return retval2;
 }
 
 COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
 {
-       int i;
-
        if (CMD_ARGC < 1) {
                command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
                return ERROR_COMMAND_SYNTAX_ERROR;
@@ -968,7 +1170,7 @@ COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
        retval = stm32l4_mass_erase(bank);
        if (retval == ERROR_OK) {
                /* set all sectors as erased */
-               for (i = 0; i < bank->num_sectors; i++)
+               for (int i = 0; i < bank->num_sectors; i++)
                        bank->sectors[i].is_erased = 1;
 
                command_print(CMD, "stm32l4x mass erase complete");
@@ -1053,10 +1255,19 @@ COMMAND_HANDLER(stm32l4_handle_option_load_command)
        if (ERROR_OK != retval)
                return retval;
 
-       /* Write the OBLLAUNCH bit in CR -> Cause device "POR" and option bytes reload */
-       retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OBLLAUNCH);
+       /* Set OBL_LAUNCH bit in CR -> system reset and option bytes reload,
+        * but the RMs explicitly do *NOT* list this as power-on reset cause, and:
+        * "Note: If the read protection is set while the debugger is still
+        * connected through JTAG/SWD, apply a POR (power-on reset) instead of a system reset."
+        */
+       retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OBL_LAUNCH);
+
+       command_print(CMD, "stm32l4x option load completed. Power-on reset might be required");
+
+       /* Need to re-probe after change */
+       struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
+       stm32l4_info->probed = false;
 
-       command_print(CMD, "stm32l4x option load (POR) completed.");
        return retval;
 }