openocd: fix SPDX tag format for files .c
[fw/openocd] / src / flash / nor / stm32f1x.c
index e9c2fb978cfa1f6fed460447de55c004b6ecb2c7..e882d7f79575c557b54bef44f5f5bd0790ce2c1a 100644 (file)
@@ -1,3 +1,5 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+
 /***************************************************************************
  *   Copyright (C) 2005 by Dominic Rath                                    *
  *   Dominic.Rath@gmx.de                                                   *
@@ -7,31 +9,18 @@
  *                                                                         *
  *   Copyright (C) 2011 by Andreas Fritiofson                              *
  *   andreas.fritiofson@gmail.com                                          *
- *
- *   This program is free software; you can redistribute it and/or modify  *
- *   it under the terms of the GNU General Public License as published by  *
- *   the Free Software Foundation; either version 2 of the License, or     *
- *   (at your option) any later version.                                   *
- *                                                                         *
- *   This program is distributed in the hope that it will be useful,       *
- *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
- *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
- *   GNU General Public License for more details.                          *
- *                                                                         *
- *   You should have received a copy of the GNU General Public License     *
- *   along with this program; if not, write to the                         *
- *   Free Software Foundation, Inc.,                                       *
- *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
  ***************************************************************************/
 
 #ifdef HAVE_CONFIG_H
 #include "config.h"
 #endif
 
+#include <string.h>
+
 #include "imp.h"
 #include <helper/binarybuffer.h>
 #include <target/algorithm.h>
-#include <target/armv7m.h>
+#include <target/cortex_m.h>
 
 /* stm32x register locations */
 
 
 /* FLASH_CR register bits */
 
-#define FLASH_PG               (1 << 0)
-#define FLASH_PER              (1 << 1)
-#define FLASH_MER              (1 << 2)
-#define FLASH_OPTPG            (1 << 4)
-#define FLASH_OPTER            (1 << 5)
-#define FLASH_STRT             (1 << 6)
-#define FLASH_LOCK             (1 << 7)
-#define FLASH_OPTWRE   (1 << 9)
+#define FLASH_PG                       (1 << 0)
+#define FLASH_PER                      (1 << 1)
+#define FLASH_MER                      (1 << 2)
+#define FLASH_OPTPG                    (1 << 4)
+#define FLASH_OPTER                    (1 << 5)
+#define FLASH_STRT                     (1 << 6)
+#define FLASH_LOCK                     (1 << 7)
+#define FLASH_OPTWRE           (1 << 9)
+#define FLASH_OBL_LAUNCH       (1 << 13)       /* except stm32f1x series */
 
 /* FLASH_SR register bits */
 
 #define KEY1                   0x45670123
 #define KEY2                   0xCDEF89AB
 
+/* timeout values */
+
+#define FLASH_WRITE_TIMEOUT 10
+#define FLASH_ERASE_TIMEOUT 100
+
 struct stm32x_options {
-       uint16_t RDP;
-       uint16_t user_options;
-       uint16_t protection[4];
+       uint8_t rdp;
+       uint8_t user;
+       uint16_t data;
+       uint32_t protection;
 };
 
 struct stm32x_flash_bank {
        struct stm32x_options option_bytes;
-       struct working_area *write_algorithm;
        int ppage_size;
-       int probed;
+       bool probed;
 
        bool has_dual_banks;
        /* used to access dual flash bank stm32xl */
+       bool can_load_options;
        uint32_t register_base;
+       uint8_t default_rdp;
+       int user_data_offset;
+       int option_offset;
+       uint32_t user_bank_size;
 };
 
 static int stm32x_mass_erase(struct flash_bank *bank);
-static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
+static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
+               uint32_t address, uint32_t hwords_count);
 
 /* flash bank stm32x <base> <size> 0 0 <target#>
  */
@@ -134,10 +135,14 @@ FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
        stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
 
        bank->driver_priv = stm32x_info;
-       stm32x_info->write_algorithm = NULL;
-       stm32x_info->probed = 0;
+       stm32x_info->probed = false;
        stm32x_info->has_dual_banks = false;
+       stm32x_info->can_load_options = false;
        stm32x_info->register_base = FLASH_REG_BASE_B0;
+       stm32x_info->user_bank_size = bank->size;
+
+       /* The flash write must be aligned to a halfword boundary */
+       bank->write_start_alignment = bank->write_end_alignment = 2;
 
        return ERROR_OK;
 }
@@ -170,19 +175,19 @@ static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
                        break;
                if (timeout-- <= 0) {
                        LOG_ERROR("timed out waiting for flash");
-                       return ERROR_FAIL;
+                       return ERROR_FLASH_BUSY;
                }
                alive_sleep(1);
        }
 
        if (status & FLASH_WRPRTERR) {
                LOG_ERROR("stm32x device protected");
-               retval = ERROR_FAIL;
+               retval = ERROR_FLASH_PROTECTED;
        }
 
        if (status & FLASH_PGERR) {
-               LOG_ERROR("stm32x device programming failed");
-               retval = ERROR_FAIL;
+               LOG_ERROR("stm32x device programming failed / flash not erased");
+               retval = ERROR_FLASH_OPERATION_FAILED;
        }
 
        /* Clear but report errors */
@@ -196,14 +201,14 @@ static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
        return retval;
 }
 
-int stm32x_check_operation_supported(struct flash_bank *bank)
+static int stm32x_check_operation_supported(struct flash_bank *bank)
 {
        struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
 
        /* if we have a dual flash bank device then
         * we need to perform option byte stuff on bank0 only */
        if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
-               LOG_ERROR("Option Byte Operation's must use bank0");
+               LOG_ERROR("Option byte operations must use bank 0");
                return ERROR_FLASH_OPERATION_FAILED;
        }
 
@@ -212,43 +217,33 @@ int stm32x_check_operation_supported(struct flash_bank *bank)
 
 static int stm32x_read_options(struct flash_bank *bank)
 {
-       uint32_t optiondata;
-       struct stm32x_flash_bank *stm32x_info = NULL;
+       struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
        struct target *target = bank->target;
+       uint32_t option_bytes;
+       int retval;
 
-       stm32x_info = bank->driver_priv;
-
-       /* read current option bytes */
-       int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
+       /* read user and read protection option bytes, user data option bytes */
+       retval = target_read_u32(target, STM32_FLASH_OBR_B0, &option_bytes);
        if (retval != ERROR_OK)
                return retval;
 
-       stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
-       stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
+       stm32x_info->option_bytes.rdp = (option_bytes & (1 << OPT_READOUT)) ? 0 : stm32x_info->default_rdp;
+       stm32x_info->option_bytes.user = (option_bytes >> stm32x_info->option_offset >> 2) & 0xff;
+       stm32x_info->option_bytes.data = (option_bytes >> stm32x_info->user_data_offset) & 0xffff;
 
-       if (optiondata & (1 << OPT_READOUT))
-               LOG_INFO("Device Security Bit Set");
-
-       /* each bit refers to a 4bank protection */
-       retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
+       /* read write protection option bytes */
+       retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &stm32x_info->option_bytes.protection);
        if (retval != ERROR_OK)
                return retval;
 
-       stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
-       stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
-       stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
-       stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
-
        return ERROR_OK;
 }
 
 static int stm32x_erase_options(struct flash_bank *bank)
 {
-       struct stm32x_flash_bank *stm32x_info = NULL;
+       struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
        struct target *target = bank->target;
 
-       stm32x_info = bank->driver_priv;
-
        /* read current options */
        stm32x_read_options(bank);
 
@@ -256,36 +251,39 @@ static int stm32x_erase_options(struct flash_bank *bank)
        int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
        if (retval != ERROR_OK)
                return retval;
-
        retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
 
        /* unlock option flash registers */
        retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
        retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
 
        /* erase option bytes */
        retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
        retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
 
-       retval = stm32x_wait_status_busy(bank, 10);
+       retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
 
-       /* clear readout protection and complementary option bytes
+       /* clear read protection option byte
         * this will also force a device unlock if set */
-       stm32x_info->option_bytes.RDP = 0x5AA5;
+       stm32x_info->option_bytes.rdp = stm32x_info->default_rdp;
 
        return ERROR_OK;
+
+flash_lock:
+       target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
+       return retval;
 }
 
 static int stm32x_write_options(struct flash_bank *bank)
@@ -301,156 +299,74 @@ static int stm32x_write_options(struct flash_bank *bank)
                return retval;
        retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
 
        /* unlock option flash registers */
        retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
        retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
 
        /* program option bytes */
        retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
        if (retval != ERROR_OK)
-               return retval;
-
-       /* write user option byte */
-       retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
-       if (retval != ERROR_OK)
-               return retval;
-
-       retval = stm32x_wait_status_busy(bank, 10);
-       if (retval != ERROR_OK)
-               return retval;
-
-       /* write protection byte 1 */
-       retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
-       if (retval != ERROR_OK)
-               return retval;
-
-       retval = stm32x_wait_status_busy(bank, 10);
-       if (retval != ERROR_OK)
-               return retval;
-
-       /* write protection byte 2 */
-       retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
-       if (retval != ERROR_OK)
-               return retval;
-
-       retval = stm32x_wait_status_busy(bank, 10);
-       if (retval != ERROR_OK)
-               return retval;
-
-       /* write protection byte 3 */
-       retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
-       if (retval != ERROR_OK)
-               return retval;
-
-       retval = stm32x_wait_status_busy(bank, 10);
-       if (retval != ERROR_OK)
-               return retval;
-
-       /* write protection byte 4 */
-       retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
-       if (retval != ERROR_OK)
-               return retval;
-
-       retval = stm32x_wait_status_busy(bank, 10);
-       if (retval != ERROR_OK)
-               return retval;
-
-       /* write readout protection bit */
-       retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
-       if (retval != ERROR_OK)
-               return retval;
-
-       retval = stm32x_wait_status_busy(bank, 10);
-       if (retval != ERROR_OK)
-               return retval;
-
-       retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
-       if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
+
+       uint8_t opt_bytes[16];
+
+       target_buffer_set_u16(target, opt_bytes, stm32x_info->option_bytes.rdp);
+       target_buffer_set_u16(target, opt_bytes + 2, stm32x_info->option_bytes.user);
+       target_buffer_set_u16(target, opt_bytes + 4, stm32x_info->option_bytes.data & 0xff);
+       target_buffer_set_u16(target, opt_bytes + 6, (stm32x_info->option_bytes.data >> 8) & 0xff);
+       target_buffer_set_u16(target, opt_bytes + 8, stm32x_info->option_bytes.protection & 0xff);
+       target_buffer_set_u16(target, opt_bytes + 10, (stm32x_info->option_bytes.protection >> 8) & 0xff);
+       target_buffer_set_u16(target, opt_bytes + 12, (stm32x_info->option_bytes.protection >> 16) & 0xff);
+       target_buffer_set_u16(target, opt_bytes + 14, (stm32x_info->option_bytes.protection >> 24) & 0xff);
+
+       /* Block write is preferred in favour of operation with ancient ST-Link
+        * firmwares without 16-bit memory access. See
+        * 480: flash: stm32f1x: write option bytes using the loader
+        * https://review.openocd.org/c/openocd/+/480
+        */
+       retval = stm32x_write_block(bank, opt_bytes, STM32_OB_RDP, sizeof(opt_bytes) / 2);
 
-       return ERROR_OK;
+flash_lock:
+       {
+               int retval2 = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
+               if (retval == ERROR_OK)
+                       retval = retval2;
+       }
+       return retval;
 }
 
 static int stm32x_protect_check(struct flash_bank *bank)
 {
        struct target *target = bank->target;
-       struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
-
        uint32_t protection;
-       int i, s;
-       int num_bits;
-       int set;
-
-       if (target->state != TARGET_HALTED) {
-               LOG_ERROR("Target not halted");
-               return ERROR_TARGET_NOT_HALTED;
-       }
 
        int retval = stm32x_check_operation_supported(bank);
-       if (ERROR_OK != retval)
+       if (retval != ERROR_OK)
                return retval;
 
-       /* medium density - each bit refers to a 4bank protection
-        * high density - each bit refers to a 2bank protection */
+       /* medium density - each bit refers to a 4 sector protection block
+        * high density - each bit refers to a 2 sector protection block
+        * bit 31 refers to all remaining sectors in a bank */
        retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
        if (retval != ERROR_OK)
                return retval;
 
-       /* medium density - each protection bit is for 4 * 1K pages
-        * high density - each protection bit is for 2 * 2K pages */
-       num_bits = (bank->num_sectors / stm32x_info->ppage_size);
-
-       if (stm32x_info->ppage_size == 2) {
-               /* high density flash/connectivity line protection */
-
-               set = 1;
-
-               if (protection & (1 << 31))
-                       set = 0;
-
-               /* bit 31 controls sector 62 - 255 protection for high density
-                * bit 31 controls sector 62 - 127 protection for connectivity line */
-               for (s = 62; s < bank->num_sectors; s++)
-                       bank->sectors[s].is_protected = set;
-
-               if (bank->num_sectors > 61)
-                       num_bits = 31;
-
-               for (i = 0; i < num_bits; i++) {
-                       set = 1;
-
-                       if (protection & (1 << i))
-                               set = 0;
-
-                       for (s = 0; s < stm32x_info->ppage_size; s++)
-                               bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
-               }
-       } else {
-               /* low/medium density flash protection */
-               for (i = 0; i < num_bits; i++) {
-                       set = 1;
-
-                       if (protection & (1 << i))
-                               set = 0;
-
-                       for (s = 0; s < stm32x_info->ppage_size; s++)
-                               bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
-               }
-       }
+       for (unsigned int i = 0; i < bank->num_prot_blocks; i++)
+               bank->prot_blocks[i].is_protected = (protection & (1 << i)) ? 0 : 1;
 
        return ERROR_OK;
 }
 
-static int stm32x_erase(struct flash_bank *bank, int first, int last)
+static int stm32x_erase(struct flash_bank *bank, unsigned int first,
+               unsigned int last)
 {
        struct target *target = bank->target;
-       int i;
 
        if (bank->target->state != TARGET_HALTED) {
                LOG_ERROR("Target not halted");
@@ -466,45 +382,40 @@ static int stm32x_erase(struct flash_bank *bank, int first, int last)
                return retval;
        retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
 
-       for (i = first; i <= last; i++) {
+       for (unsigned int i = first; i <= last; i++) {
                retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
                if (retval != ERROR_OK)
-                       return retval;
+                       goto flash_lock;
                retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
                                bank->base + bank->sectors[i].offset);
                if (retval != ERROR_OK)
-                       return retval;
+                       goto flash_lock;
                retval = target_write_u32(target,
                                stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
                if (retval != ERROR_OK)
-                       return retval;
+                       goto flash_lock;
 
-               retval = stm32x_wait_status_busy(bank, 100);
+               retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
                if (retval != ERROR_OK)
-                       return retval;
-
-               bank->sectors[i].is_erased = 1;
+                       goto flash_lock;
        }
 
-       retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
-       if (retval != ERROR_OK)
-               return retval;
-
-       return ERROR_OK;
+flash_lock:
+       {
+               int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
+               if (retval == ERROR_OK)
+                       retval = retval2;
+       }
+       return retval;
 }
 
-static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
+static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
+               unsigned int last)
 {
-       struct stm32x_flash_bank *stm32x_info = NULL;
        struct target *target = bank->target;
-       uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
-       int i, reg, bit;
-       int status;
-       uint32_t protection;
-
-       stm32x_info = bank->driver_priv;
+       struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
 
        if (target->state != TARGET_HALTED) {
                LOG_ERROR("Target not halted");
@@ -512,165 +423,76 @@ static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
        }
 
        int retval = stm32x_check_operation_supported(bank);
-       if (ERROR_OK != retval)
-               return retval;
-
-       if ((first % stm32x_info->ppage_size) != 0) {
-               LOG_WARNING("aligned start protect sector to a %d sector boundary",
-                               stm32x_info->ppage_size);
-               first = first - (first % stm32x_info->ppage_size);
-       }
-       if (((last + 1) % stm32x_info->ppage_size) != 0) {
-               LOG_WARNING("aligned end protect sector to a %d sector boundary",
-                               stm32x_info->ppage_size);
-               last++;
-               last = last - (last % stm32x_info->ppage_size);
-               last--;
-       }
-
-       /* medium density - each bit refers to a 4bank protection
-        * high density - each bit refers to a 2bank protection */
-       retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
        if (retval != ERROR_OK)
                return retval;
 
-       prot_reg[0] = (uint16_t)protection;
-       prot_reg[1] = (uint16_t)(protection >> 8);
-       prot_reg[2] = (uint16_t)(protection >> 16);
-       prot_reg[3] = (uint16_t)(protection >> 24);
-
-       if (stm32x_info->ppage_size == 2) {
-               /* high density flash */
-
-               /* bit 7 controls sector 62 - 255 protection */
-               if (last > 61) {
-                       if (set)
-                               prot_reg[3] &= ~(1 << 7);
-                       else
-                               prot_reg[3] |= (1 << 7);
-               }
-
-               if (first > 61)
-                       first = 62;
-               if (last > 61)
-                       last = 61;
-
-               for (i = first; i <= last; i++) {
-                       reg = (i / stm32x_info->ppage_size) / 8;
-                       bit = (i / stm32x_info->ppage_size) - (reg * 8);
-
-                       if (set)
-                               prot_reg[reg] &= ~(1 << bit);
-                       else
-                               prot_reg[reg] |= (1 << bit);
-               }
-       } else {
-               /* medium density flash */
-               for (i = first; i <= last; i++) {
-                       reg = (i / stm32x_info->ppage_size) / 8;
-                       bit = (i / stm32x_info->ppage_size) - (reg * 8);
-
-                       if (set)
-                               prot_reg[reg] &= ~(1 << bit);
-                       else
-                               prot_reg[reg] |= (1 << bit);
-               }
+       retval = stm32x_erase_options(bank);
+       if (retval != ERROR_OK) {
+               LOG_ERROR("stm32x failed to erase options");
+               return retval;
        }
 
-       status = stm32x_erase_options(bank);
-       if (status != ERROR_OK)
-               return status;
-
-       stm32x_info->option_bytes.protection[0] = prot_reg[0];
-       stm32x_info->option_bytes.protection[1] = prot_reg[1];
-       stm32x_info->option_bytes.protection[2] = prot_reg[2];
-       stm32x_info->option_bytes.protection[3] = prot_reg[3];
+       for (unsigned int i = first; i <= last; i++) {
+               if (set)
+                       stm32x_info->option_bytes.protection &= ~(1 << i);
+               else
+                       stm32x_info->option_bytes.protection |= (1 << i);
+       }
 
        return stm32x_write_options(bank);
 }
 
-static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
-               uint32_t offset, uint32_t count)
+static int stm32x_write_block_async(struct flash_bank *bank, const uint8_t *buffer,
+               uint32_t address, uint32_t hwords_count)
 {
        struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
        struct target *target = bank->target;
-       uint32_t buffer_size = 16384;
+       uint32_t buffer_size;
+       struct working_area *write_algorithm;
        struct working_area *source;
-       uint32_t address = bank->base + offset;
-       struct reg_param reg_params[5];
        struct armv7m_algorithm armv7m_info;
-       int retval = ERROR_OK;
-
-       /* see contrib/loaders/flash/stm32f1x.S for src */
+       int retval;
 
        static const uint8_t stm32x_flash_write_code[] = {
-               /* #define STM32_FLASH_CR_OFFSET 0x10 */
-               /* #define STM32_FLASH_SR_OFFSET 0x0C */
-               /* wait_fifo: */
-                       0x16, 0x68,   /* ldr   r6, [r2, #0] */
-                       0x00, 0x2e,   /* cmp   r6, #0 */
-                       0x1a, 0xd0,   /* beq   exit */
-                       0x55, 0x68,   /* ldr   r5, [r2, #4] */
-                       0xb5, 0x42,   /* cmp   r5, r6 */
-                       0xf9, 0xd0,   /* beq   wait_fifo */
-                       0x01, 0x26,   /* movs  r6, #1 */
-                       0x06, 0x61,   /* str   r6, [r0, #STM32_FLASH_CR_OFFSET] */
-                       0x2e, 0x88,   /* ldrh  r6, [r5, #0] */
-                       0x26, 0x80,   /* strh  r6, [r4, #0] */
-                       0x02, 0x35,   /* adds  r5, #2 */
-                       0x02, 0x34,   /* adds  r4, #2 */
-               /* busy: */
-                       0xc6, 0x68,   /* ldr   r6, [r0, #STM32_FLASH_SR_OFFSET] */
-                       0x01, 0x27,   /* movs  r7, #1 */
-                       0x3e, 0x42,   /* tst   r6, r7 */
-                       0xfb, 0xd1,   /* bne   busy */
-                       0x14, 0x27,   /* movs  r7, #0x14 */
-                       0x3e, 0x42,   /* tst   r6, r7 */
-                       0x08, 0xd1,   /* bne   error */
-                       0x9d, 0x42,   /* cmp   r5, r3 */
-                       0x01, 0xd3,   /* bcc   no_wrap */
-                       0x15, 0x46,   /* mov   r5, r2 */
-                       0x08, 0x35,   /* adds  r5, #8 */
-               /* no_wrap: */
-                       0x55, 0x60,   /* str   r5, [r2, #4] */
-                       0x01, 0x39,   /* subs  r1, r1, #1 */
-                       0x00, 0x29,   /* cmp   r1, #0 */
-                       0x02, 0xd0,   /* beq   exit */
-                       0xe3, 0xe7,   /* b     wait_fifo */
-               /* error: */
-                       0x00, 0x20,   /* movs  r0, #0 */
-                       0x50, 0x60,   /* str   r0, [r2, #4] */
-               /* exit: */
-                       0x30, 0x46,   /* mov   r0, r6 */
-                       0x00, 0xbe,   /* bkpt  #0 */
+#include "../../../contrib/loaders/flash/stm32/stm32f1x.inc"
        };
 
        /* flash write code */
        if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
-                       &stm32x_info->write_algorithm) != ERROR_OK) {
+                       &write_algorithm) != ERROR_OK) {
                LOG_WARNING("no working area available, can't do block memory writes");
                return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
-       };
+       }
 
-       retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
-                       sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code);
-       if (retval != ERROR_OK)
+       retval = target_write_buffer(target, write_algorithm->address,
+                       sizeof(stm32x_flash_write_code), stm32x_flash_write_code);
+       if (retval != ERROR_OK) {
+               target_free_working_area(target, write_algorithm);
                return retval;
+       }
 
        /* memory buffer */
-       while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
-               buffer_size /= 2;
-               buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
-               if (buffer_size <= 256) {
-                       /* if we already allocated the writing code, but failed to get a
-                        * buffer, free the algorithm */
-                       if (stm32x_info->write_algorithm)
-                               target_free_working_area(target, stm32x_info->write_algorithm);
-
-                       LOG_WARNING("no large enough working area available, can't do block memory writes");
-                       return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
-               }
-       };
+       buffer_size = target_get_working_area_avail(target);
+       buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256));
+       /* Normally we allocate all available working area.
+        * MIN shrinks buffer_size if the size of the written block is smaller.
+        * MAX prevents using async algo if the available working area is smaller
+        * than 256, the following allocation fails with
+        * ERROR_TARGET_RESOURCE_NOT_AVAILABLE and slow flashing takes place.
+        */
+
+       retval = target_alloc_working_area(target, buffer_size, &source);
+       /* Allocated size is always 32-bit word aligned */
+       if (retval != ERROR_OK) {
+               target_free_working_area(target, write_algorithm);
+               LOG_WARNING("no large enough working area available, can't do block memory writes");
+               /* target_alloc_working_area() may return ERROR_FAIL if area backup fails:
+                * convert any error to ERROR_TARGET_RESOURCE_NOT_AVAILABLE
+                */
+               return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+       }
+
+       struct reg_param reg_params[5];
 
        init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
        init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);    /* count (halfword-16bit) */
@@ -679,69 +501,211 @@ static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
        init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
 
        buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
-       buf_set_u32(reg_params[1].value, 0, 32, count);
+       buf_set_u32(reg_params[1].value, 0, 32, hwords_count);
        buf_set_u32(reg_params[2].value, 0, 32, source->address);
        buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
        buf_set_u32(reg_params[4].value, 0, 32, address);
 
        armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
-       armv7m_info.core_mode = ARMV7M_MODE_ANY;
+       armv7m_info.core_mode = ARM_MODE_THREAD;
 
-       retval = target_run_flash_async_algorithm(target, buffer, count, 2,
+       retval = target_run_flash_async_algorithm(target, buffer, hwords_count, 2,
                        0, NULL,
-                       5, reg_params,
+                       ARRAY_SIZE(reg_params), reg_params,
                        source->address, source->size,
-                       stm32x_info->write_algorithm->address, 0,
+                       write_algorithm->address, 0,
                        &armv7m_info);
 
        if (retval == ERROR_FLASH_OPERATION_FAILED) {
-               LOG_ERROR("flash write failed at address 0x%"PRIx32,
+               /* Actually we just need to check for programming errors
+                * stm32x_wait_status_busy also reports error and clears status bits.
+                *
+                * Target algo returns flash status in r0 only if properly finished.
+                * It is safer to re-read status register.
+                */
+               int retval2 = stm32x_wait_status_busy(bank, 5);
+               if (retval2 != ERROR_OK)
+                       retval = retval2;
+
+               LOG_ERROR("flash write failed just before address 0x%"PRIx32,
                                buf_get_u32(reg_params[4].value, 0, 32));
+       }
+
+       for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++)
+               destroy_reg_param(&reg_params[i]);
+
+       target_free_working_area(target, source);
+       target_free_working_area(target, write_algorithm);
+
+       return retval;
+}
+
+static int stm32x_write_block_riscv(struct flash_bank *bank, const uint8_t *buffer,
+               uint32_t address, uint32_t hwords_count)
+{
+       struct target *target = bank->target;
+       uint32_t buffer_size;
+       struct working_area *write_algorithm;
+       struct working_area *source;
+       static const uint8_t gd32vf103_flash_write_code[] = {
+#include "../../../contrib/loaders/flash/gd32vf103/gd32vf103.inc"
+       };
+
+       /* flash write code */
+       if (target_alloc_working_area(target, sizeof(gd32vf103_flash_write_code),
+                       &write_algorithm) != ERROR_OK) {
+               LOG_WARNING("no working area available, can't do block memory writes");
+               return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+       }
+
+       int retval = target_write_buffer(target, write_algorithm->address,
+                       sizeof(gd32vf103_flash_write_code), gd32vf103_flash_write_code);
+       if (retval != ERROR_OK) {
+               target_free_working_area(target, write_algorithm);
+               return retval;
+       }
+
+       /* memory buffer */
+       buffer_size = target_get_working_area_avail(target);
+       buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256));
 
-               if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) {
-                       LOG_ERROR("flash memory not erased before writing");
-                       /* Clear but report errors */
-                       target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR);
+       retval = target_alloc_working_area(target, buffer_size, &source);
+       /* Allocated size is always word aligned */
+       if (retval != ERROR_OK) {
+               target_free_working_area(target, write_algorithm);
+               LOG_WARNING("no large enough working area available, can't do block memory writes");
+               /* target_alloc_working_area() may return ERROR_FAIL if area backup fails:
+                * convert any error to ERROR_TARGET_RESOURCE_NOT_AVAILABLE
+                */
+               return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+       }
+
+       struct reg_param reg_params[4];
+
+       init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);    /* poiner to FLASH_SR */
+       init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);    /* count (halfword-16bit) */
+       init_reg_param(&reg_params[2], "a2", 32, PARAM_OUT);    /* buffer start */
+       init_reg_param(&reg_params[3], "a3", 32, PARAM_IN_OUT); /* target address */
+
+       while (hwords_count > 0) {
+               uint32_t thisrun_hwords = source->size / 2;
+
+               /* Limit to the amount of data we actually want to write */
+               if (thisrun_hwords > hwords_count)
+                       thisrun_hwords = hwords_count;
+
+               /* Write data to buffer */
+               retval = target_write_buffer(target, source->address,
+                                       thisrun_hwords * 2, buffer);
+               if (retval != ERROR_OK)
+                       break;
+
+               buf_set_u32(reg_params[0].value, 0, 32, stm32x_get_flash_reg(bank, STM32_FLASH_SR));
+               buf_set_u32(reg_params[1].value, 0, 32, thisrun_hwords);
+               buf_set_u32(reg_params[2].value, 0, 32, source->address);
+               buf_set_u32(reg_params[3].value, 0, 32, address);
+
+               retval = target_run_algorithm(target,
+                               0, NULL,
+                               ARRAY_SIZE(reg_params), reg_params,
+                               write_algorithm->address,
+                               write_algorithm->address + sizeof(gd32vf103_flash_write_code) - 4,
+                               10000, NULL);
+
+               if (retval != ERROR_OK) {
+                       LOG_ERROR("Failed to execute algorithm at 0x%" TARGET_PRIxADDR ": %d",
+                                       write_algorithm->address, retval);
+                       break;
                }
 
-               if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) {
-                       LOG_ERROR("flash memory write protected");
-                       /* Clear but report errors */
-                       target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR);
+               /* Actually we just need to check for programming errors
+                * stm32x_wait_status_busy also reports error and clears status bits
+                */
+               retval = stm32x_wait_status_busy(bank, 5);
+               if (retval != ERROR_OK) {
+                       LOG_ERROR("flash write failed at address 0x%"PRIx32,
+                                       buf_get_u32(reg_params[3].value, 0, 32));
+                       break;
                }
+
+               /* Update counters */
+               buffer += thisrun_hwords * 2;
+               address += thisrun_hwords * 2;
+               hwords_count -= thisrun_hwords;
        }
 
+       for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++)
+               destroy_reg_param(&reg_params[i]);
+
        target_free_working_area(target, source);
-       target_free_working_area(target, stm32x_info->write_algorithm);
+       target_free_working_area(target, write_algorithm);
+
+       return retval;
+}
+
+/** Writes a block to flash either using target algorithm
+ *  or use fallback, host controlled halfword-by-halfword access.
+ *  Flash controller must be unlocked before this call.
+ */
+static int stm32x_write_block(struct flash_bank *bank,
+               const uint8_t *buffer, uint32_t address, uint32_t hwords_count)
+{
+       struct target *target = bank->target;
+
+       /* The flash write must be aligned to a halfword boundary.
+        * The flash infrastructure ensures it, do just a security check
+        */
+       assert(address % 2 == 0);
+
+       int retval;
+       struct arm *arm = target_to_arm(target);
+       if (is_arm(arm)) {
+               /* try using a block write - on ARM architecture or... */
+               retval = stm32x_write_block_async(bank, buffer, address, hwords_count);
+       } else {
+               /* ... RISC-V architecture */
+               retval = stm32x_write_block_riscv(bank, buffer, address, hwords_count);
+       }
 
-       destroy_reg_param(&reg_params[0]);
-       destroy_reg_param(&reg_params[1]);
-       destroy_reg_param(&reg_params[2]);
-       destroy_reg_param(&reg_params[3]);
-       destroy_reg_param(&reg_params[4]);
+       if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
+               /* if block write failed (no sufficient working area),
+                * we use normal (slow) single halfword accesses */
+               LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
 
+               while (hwords_count > 0) {
+                       retval = target_write_memory(target, address, 2, 1, buffer);
+                       if (retval != ERROR_OK)
+                               return retval;
+
+                       retval = stm32x_wait_status_busy(bank, 5);
+                       if (retval != ERROR_OK)
+                               return retval;
+
+                       hwords_count--;
+                       buffer += 2;
+                       address += 2;
+               }
+       }
        return retval;
 }
 
-static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
+static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
                uint32_t offset, uint32_t count)
 {
        struct target *target = bank->target;
-       uint32_t words_remaining = (count / 2);
-       uint32_t bytes_remaining = (count & 0x00000001);
-       uint32_t address = bank->base + offset;
-       uint32_t bytes_written = 0;
-       int retval;
 
        if (bank->target->state != TARGET_HALTED) {
                LOG_ERROR("Target not halted");
                return ERROR_TARGET_NOT_HALTED;
        }
 
-       if (offset & 0x1) {
-               LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
-               return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
-       }
+       /* The flash write must be aligned to a halfword boundary.
+        * The flash infrastructure ensures it, do just a security check
+        */
+       assert(offset % 2 == 0);
+       assert(count % 2 == 0);
+
+       int retval, retval2;
 
        /* unlock flash registers */
        retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
@@ -749,215 +713,280 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
                return retval;
        retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
        if (retval != ERROR_OK)
-               return retval;
+               goto reset_pg_and_lock;
 
-       /* multiple half words (2-byte) to be programmed? */
-       if (words_remaining > 0) {
-               /* try using a block write */
-               retval = stm32x_write_block(bank, buffer, offset, words_remaining);
-               if (retval != ERROR_OK) {
-                       if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
-                               /* if block write failed (no sufficient working area),
-                                * we use normal (slow) single dword accesses */
-                               LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
-                       }
-               } else {
-                       buffer += words_remaining * 2;
-                       address += words_remaining * 2;
-                       words_remaining = 0;
-               }
-       }
+       /* enable flash programming */
+       retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
+       if (retval != ERROR_OK)
+               goto reset_pg_and_lock;
 
-       if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
-               return retval;
+       /* write to flash */
+       retval = stm32x_write_block(bank, buffer, bank->base + offset, count / 2);
 
-       while (words_remaining > 0) {
-               uint16_t value;
-               memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
+reset_pg_and_lock:
+       retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
+       if (retval == ERROR_OK)
+               retval = retval2;
 
-               retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
-               if (retval != ERROR_OK)
-                       return retval;
-               retval = target_write_u16(target, address, value);
-               if (retval != ERROR_OK)
-                       return retval;
+       return retval;
+}
 
-               retval = stm32x_wait_status_busy(bank, 5);
-               if (retval != ERROR_OK)
-                       return retval;
+struct stm32x_property_addr {
+       uint32_t device_id;
+       uint32_t flash_size;
+};
 
-               bytes_written += 2;
-               words_remaining--;
-               address += 2;
+static int stm32x_get_property_addr(struct target *target, struct stm32x_property_addr *addr)
+{
+       if (!target_was_examined(target)) {
+               LOG_ERROR("Target not examined yet");
+               return ERROR_TARGET_NOT_EXAMINED;
        }
 
-       if (bytes_remaining) {
-               uint16_t value = 0xffff;
-               memcpy(&value, buffer + bytes_written, bytes_remaining);
-
-               retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
-               if (retval != ERROR_OK)
-                       return retval;
-               retval = target_write_u16(target, address, value);
-               if (retval != ERROR_OK)
-                       return retval;
-
-               retval = stm32x_wait_status_busy(bank, 5);
-               if (retval != ERROR_OK)
-                       return retval;
+       switch (cortex_m_get_partno_safe(target)) {
+       case CORTEX_M0_PARTNO: /* STM32F0x devices */
+               addr->device_id = 0x40015800;
+               addr->flash_size = 0x1FFFF7CC;
+               return ERROR_OK;
+       case CORTEX_M3_PARTNO: /* STM32F1x devices */
+               addr->device_id = 0xE0042000;
+               addr->flash_size = 0x1FFFF7E0;
+               return ERROR_OK;
+       case CORTEX_M4_PARTNO: /* STM32F3x devices */
+               addr->device_id = 0xE0042000;
+               addr->flash_size = 0x1FFFF7CC;
+               return ERROR_OK;
+       case CORTEX_M23_PARTNO: /* GD32E23x devices */
+               addr->device_id = 0x40015800;
+               addr->flash_size = 0x1FFFF7E0;
+               return ERROR_OK;
+       case CORTEX_M_PARTNO_INVALID:
+               /* Check for GD32VF103 with RISC-V CPU */
+               if (strcmp(target_type_name(target), "riscv") == 0
+                               && target_address_bits(target) == 32) {
+                       /* There is nothing like arm common_magic in riscv_info_t
+                        * check text name of target and if target is 32-bit
+                        */
+                       addr->device_id = 0xE0042000;
+                       addr->flash_size = 0x1FFFF7E0;
+                       return ERROR_OK;
+               }
+               /* fallthrough */
+       default:
+               LOG_ERROR("Cannot identify target as a stm32x");
+               return ERROR_FAIL;
        }
-
-       return target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
 }
 
 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
 {
-       /* This check the device CPUID core register to detect
-        * the M0 from the M3 devices. */
-
        struct target *target = bank->target;
-       uint32_t cpuid, device_id_register = 0;
+       struct stm32x_property_addr addr;
 
-       /* Get the CPUID from the ARM Core
-        * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
-       int retval = target_read_u32(target, 0xE000ED00, &cpuid);
+       int retval = stm32x_get_property_addr(target, &addr);
        if (retval != ERROR_OK)
                return retval;
 
-       if (((cpuid >> 4) & 0xFFF) == 0xC20) {
-               /* 0xC20 is M0 devices */
-               device_id_register = 0x40015800;
-       } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
-               /* 0xC23 is M3 devices */
-               device_id_register = 0xE0042000;
-       } else {
-               LOG_ERROR("Cannot identify target as a stm32x");
-               return ERROR_FAIL;
-       }
+       return target_read_u32(target, addr.device_id, device_id);
+}
 
-       /* read stm32 device id register */
-       retval = target_read_u32(target, device_id_register, device_id);
+static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
+{
+       struct target *target = bank->target;
+       struct stm32x_property_addr addr;
+
+       int retval = stm32x_get_property_addr(target, &addr);
        if (retval != ERROR_OK)
                return retval;
 
-       return retval;
+       return target_read_u16(target, addr.flash_size, flash_size_in_kb);
 }
 
 static int stm32x_probe(struct flash_bank *bank)
 {
-       struct target *target = bank->target;
        struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
-       int i;
        uint16_t flash_size_in_kb;
-       uint32_t device_id;
+       uint16_t max_flash_size_in_kb;
+       uint32_t dbgmcu_idcode;
        int page_size;
        uint32_t base_address = 0x08000000;
 
-
-       stm32x_info->probed = 0;
+       stm32x_info->probed = false;
        stm32x_info->register_base = FLASH_REG_BASE_B0;
+       stm32x_info->user_data_offset = 10;
+       stm32x_info->option_offset = 0;
+
+       /* default factory read protection level 0 */
+       stm32x_info->default_rdp = 0xA5;
 
        /* read stm32 device id register */
-       int retval = stm32x_get_device_id(bank, &device_id);
+       int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
        if (retval != ERROR_OK)
                return retval;
 
-       LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
+       LOG_INFO("device id = 0x%08" PRIx32 "", dbgmcu_idcode);
 
-       /* get flash size from target. */
-       retval = target_read_u16(target, 0x1FFFF7E0, &flash_size_in_kb);
-       if (retval != ERROR_OK) {
-               LOG_WARNING("failed reading flash size, default to max target family");
-               /* failed reading flash size, default to max target family */
-               flash_size_in_kb = 0xffff;
-       }
+       uint16_t device_id = dbgmcu_idcode & 0xfff;
+       uint16_t rev_id = dbgmcu_idcode >> 16;
 
-       if ((device_id & 0xfff) == 0x410) {
-               /* medium density - we have 1k pages
-                * 4 pages for a protection area */
+       /* set page size, protection granularity and max flash size depending on family */
+       switch (device_id) {
+       case 0x440: /* stm32f05x */
                page_size = 1024;
                stm32x_info->ppage_size = 4;
-
-               /* check for early silicon */
-               if (flash_size_in_kb == 0xffff) {
-                       /* number of sectors incorrect on revA */
-                       LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
-                       flash_size_in_kb = 128;
-               }
-       } else if ((device_id & 0xfff) == 0x412) {
-               /* low density - we have 1k pages
-                * 4 pages for a protection area */
+               max_flash_size_in_kb = 64;
+               stm32x_info->user_data_offset = 16;
+               stm32x_info->option_offset = 6;
+               stm32x_info->default_rdp = 0xAA;
+               stm32x_info->can_load_options = true;
+               break;
+       case 0x444: /* stm32f03x */
+       case 0x445: /* stm32f04x */
                page_size = 1024;
                stm32x_info->ppage_size = 4;
-
-               /* check for early silicon */
-               if (flash_size_in_kb == 0xffff) {
-                       /* number of sectors incorrect on revA */
-                       LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash");
-                       flash_size_in_kb = 32;
+               max_flash_size_in_kb = 32;
+               stm32x_info->user_data_offset = 16;
+               stm32x_info->option_offset = 6;
+               stm32x_info->default_rdp = 0xAA;
+               stm32x_info->can_load_options = true;
+               break;
+       case 0x448: /* stm32f07x */
+               page_size = 2048;
+               stm32x_info->ppage_size = 4;
+               max_flash_size_in_kb = 128;
+               stm32x_info->user_data_offset = 16;
+               stm32x_info->option_offset = 6;
+               stm32x_info->default_rdp = 0xAA;
+               stm32x_info->can_load_options = true;
+               break;
+       case 0x442: /* stm32f09x */
+               page_size = 2048;
+               stm32x_info->ppage_size = 4;
+               max_flash_size_in_kb = 256;
+               stm32x_info->user_data_offset = 16;
+               stm32x_info->option_offset = 6;
+               stm32x_info->default_rdp = 0xAA;
+               stm32x_info->can_load_options = true;
+               break;
+       case 0x410: /* stm32f1x medium-density */
+               page_size = 1024;
+               stm32x_info->ppage_size = 4;
+               max_flash_size_in_kb = 128;
+               /* GigaDevice GD32F1x0 & GD32F3x0 & GD32E23x series devices
+                  share DEV_ID with STM32F101/2/3 medium-density line,
+                  however they use a REV_ID different from any STM32 device.
+                  The main difference is another offset of user option bits
+                  (like WDG_SW, nRST_STOP, nRST_STDBY) in option byte register
+                  (FLASH_OBR/FMC_OBSTAT 0x4002201C).
+                  This caused problems e.g. during flash block programming
+                  because of unexpected active hardware watchog. */
+               switch (rev_id) {
+               case 0x1303: /* gd32f1x0 */
+                       stm32x_info->user_data_offset = 16;
+                       stm32x_info->option_offset = 6;
+                       max_flash_size_in_kb = 64;
+                       stm32x_info->can_load_options = true;
+                       break;
+               case 0x1704: /* gd32f3x0 */
+                       stm32x_info->user_data_offset = 16;
+                       stm32x_info->option_offset = 6;
+                       stm32x_info->can_load_options = true;
+                       break;
+               case 0x1906: /* gd32vf103 */
+                       break;
+               case 0x1909: /* gd32e23x */
+                       stm32x_info->user_data_offset = 16;
+                       stm32x_info->option_offset = 6;
+                       max_flash_size_in_kb = 64;
+                       stm32x_info->can_load_options = true;
+                       break;
                }
-       } else if ((device_id & 0xfff) == 0x414) {
-               /* high density - we have 2k pages
-                * 2 pages for a protection area */
+               break;
+       case 0x412: /* stm32f1x low-density */
+               page_size = 1024;
+               stm32x_info->ppage_size = 4;
+               max_flash_size_in_kb = 32;
+               break;
+       case 0x414: /* stm32f1x high-density */
                page_size = 2048;
                stm32x_info->ppage_size = 2;
-
-               /* check for early silicon */
-               if (flash_size_in_kb == 0xffff) {
-                       /* number of sectors incorrect on revZ */
-                       LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash");
-                       flash_size_in_kb = 512;
-               }
-       } else if ((device_id & 0xfff) == 0x418) {
-               /* connectivity line density - we have 2k pages
-                * 2 pages for a protection area */
+               max_flash_size_in_kb = 512;
+               break;
+       case 0x418: /* stm32f1x connectivity */
                page_size = 2048;
                stm32x_info->ppage_size = 2;
-
-               /* check for early silicon */
-               if (flash_size_in_kb == 0xffff) {
-                       /* number of sectors incorrect on revZ */
-                       LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
-                       flash_size_in_kb = 256;
-               }
-       } else if ((device_id & 0xfff) == 0x420) {
-               /* value line density - we have 1k pages
-                * 4 pages for a protection area */
+               max_flash_size_in_kb = 256;
+               break;
+       case 0x430: /* stm32f1 XL-density (dual flash banks) */
+               page_size = 2048;
+               stm32x_info->ppage_size = 2;
+               max_flash_size_in_kb = 1024;
+               stm32x_info->has_dual_banks = true;
+               break;
+       case 0x420: /* stm32f100xx low- and medium-density value line */
                page_size = 1024;
                stm32x_info->ppage_size = 4;
-
-               /* check for early silicon */
-               if (flash_size_in_kb == 0xffff) {
-                       /* number of sectors may be incorrrect on early silicon */
-                       LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
-                       flash_size_in_kb = 128;
-               }
-       } else if ((device_id & 0xfff) == 0x428) {
-               /* value line High density - we have 2k pages
-                * 4 pages for a protection area */
+               max_flash_size_in_kb = 128;
+               break;
+       case 0x428: /* stm32f100xx high-density value line */
                page_size = 2048;
                stm32x_info->ppage_size = 4;
-
-               /* check for early silicon */
-               if (flash_size_in_kb == 0xffff) {
-                       /* number of sectors may be incorrrect on early silicon */
-                       LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
-                       flash_size_in_kb = 128;
-               }
-       } else if ((device_id & 0xfff) == 0x430) {
-               /* xl line density - we have 2k pages
-                * 2 pages for a protection area */
+               max_flash_size_in_kb = 512;
+               break;
+       case 0x422: /* stm32f302/3xb/c */
                page_size = 2048;
                stm32x_info->ppage_size = 2;
-               stm32x_info->has_dual_banks = true;
+               max_flash_size_in_kb = 256;
+               stm32x_info->user_data_offset = 16;
+               stm32x_info->option_offset = 6;
+               stm32x_info->default_rdp = 0xAA;
+               stm32x_info->can_load_options = true;
+               break;
+       case 0x446: /* stm32f303xD/E */
+               page_size = 2048;
+               stm32x_info->ppage_size = 2;
+               max_flash_size_in_kb = 512;
+               stm32x_info->user_data_offset = 16;
+               stm32x_info->option_offset = 6;
+               stm32x_info->default_rdp = 0xAA;
+               stm32x_info->can_load_options = true;
+               break;
+       case 0x432: /* stm32f37x */
+               page_size = 2048;
+               stm32x_info->ppage_size = 2;
+               max_flash_size_in_kb = 256;
+               stm32x_info->user_data_offset = 16;
+               stm32x_info->option_offset = 6;
+               stm32x_info->default_rdp = 0xAA;
+               stm32x_info->can_load_options = true;
+               break;
+       case 0x438: /* stm32f33x */
+       case 0x439: /* stm32f302x6/8 */
+               page_size = 2048;
+               stm32x_info->ppage_size = 2;
+               max_flash_size_in_kb = 64;
+               stm32x_info->user_data_offset = 16;
+               stm32x_info->option_offset = 6;
+               stm32x_info->default_rdp = 0xAA;
+               stm32x_info->can_load_options = true;
+               break;
+       default:
+               LOG_WARNING("Cannot identify target as a STM32 family.");
+               return ERROR_FAIL;
+       }
 
-               /* check for early silicon */
-               if (flash_size_in_kb == 0xffff) {
-                       /* number of sectors may be incorrrect on early silicon */
-                       LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash");
-                       flash_size_in_kb = 1024;
-               }
+       /* get flash size from target. */
+       retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
+
+       /* failed reading flash size or flash size invalid (early silicon),
+        * default to max target family */
+       if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
+               LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
+                       max_flash_size_in_kb);
+               flash_size_in_kb = max_flash_size_in_kb;
+       }
 
+       if (stm32x_info->has_dual_banks) {
                /* split reported size into matching bank */
                if (bank->base != 0x08080000) {
                        /* bank 0 will be fixed 512k */
@@ -968,24 +997,16 @@ static int stm32x_probe(struct flash_bank *bank)
                        stm32x_info->register_base = FLASH_REG_BASE_B1;
                        base_address = 0x08080000;
                }
-       } else if ((device_id & 0xfff) == 0x440) {
-               /* stm32f0x - we have 1k pages
-                * 4 pages for a protection area */
-               page_size = 1024;
-               stm32x_info->ppage_size = 4;
+       }
 
-               /* check for early silicon */
-               if (flash_size_in_kb == 0xffff) {
-                       /* number of sectors incorrect on revZ */
-                       LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 64k flash");
-                       flash_size_in_kb = 64;
-               }
-       } else {
-               LOG_WARNING("Cannot identify target as a STM32 family.");
-               return ERROR_FAIL;
+       /* if the user sets the size manually then ignore the probed value
+        * this allows us to work around devices that have a invalid flash size register value */
+       if (stm32x_info->user_bank_size) {
+               LOG_INFO("ignoring flash probed value, using configured bank size");
+               flash_size_in_kb = stm32x_info->user_bank_size / 1024;
        }
 
-       LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
+       LOG_INFO("flash size = %d KiB", flash_size_in_kb);
 
        /* did we assign flash size? */
        assert(flash_size_in_kb != 0xffff);
@@ -996,24 +1017,34 @@ static int stm32x_probe(struct flash_bank *bank)
        /* check that calculation result makes sense */
        assert(num_pages > 0);
 
-       if (bank->sectors) {
-               free(bank->sectors);
-               bank->sectors = NULL;
-       }
+       free(bank->sectors);
+       bank->sectors = NULL;
+
+       free(bank->prot_blocks);
+       bank->prot_blocks = NULL;
 
        bank->base = base_address;
        bank->size = (num_pages * page_size);
+
        bank->num_sectors = num_pages;
-       bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
+       bank->sectors = alloc_block_array(0, page_size, num_pages);
+       if (!bank->sectors)
+               return ERROR_FAIL;
 
-       for (i = 0; i < num_pages; i++) {
-               bank->sectors[i].offset = i * page_size;
-               bank->sectors[i].size = page_size;
-               bank->sectors[i].is_erased = -1;
-               bank->sectors[i].is_protected = 1;
-       }
+       /* calculate number of write protection blocks */
+       int num_prot_blocks = num_pages / stm32x_info->ppage_size;
+       if (num_prot_blocks > 32)
+               num_prot_blocks = 32;
 
-       stm32x_info->probed = 1;
+       bank->num_prot_blocks = num_prot_blocks;
+       bank->prot_blocks = alloc_block_array(0, stm32x_info->ppage_size * page_size, num_prot_blocks);
+       if (!bank->prot_blocks)
+               return ERROR_FAIL;
+
+       if (num_prot_blocks == 32)
+               bank->prot_blocks[31].size = (num_pages - (31 * stm32x_info->ppage_size)) * page_size;
+
+       stm32x_info->probed = true;
 
        return ERROR_OK;
 }
@@ -1033,161 +1064,258 @@ COMMAND_HANDLER(stm32x_handle_part_id_command)
 }
 #endif
 
-static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
+static const char *get_stm32f0_revision(uint16_t rev_id)
 {
-       uint32_t device_id;
-       int printed;
+       const char *rev_str = NULL;
+
+       switch (rev_id) {
+       case 0x1000:
+               rev_str = "1.0";
+               break;
+       case 0x2000:
+               rev_str = "2.0";
+               break;
+       }
+       return rev_str;
+}
+
+static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
+{
+       uint32_t dbgmcu_idcode;
 
-               /* read stm32 device id register */
-       int retval = stm32x_get_device_id(bank, &device_id);
+       /* read stm32 device id register */
+       int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
        if (retval != ERROR_OK)
                return retval;
 
-       if ((device_id & 0xfff) == 0x410) {
-               printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
-               buf += printed;
-               buf_size -= printed;
+       uint16_t device_id = dbgmcu_idcode & 0xfff;
+       uint16_t rev_id = dbgmcu_idcode >> 16;
+       const char *device_str;
+       const char *rev_str = NULL;
+
+       switch (device_id) {
+       case 0x410:
+               device_str = "STM32F10x (Medium Density)";
 
-               switch (device_id >> 16) {
-                       case 0x0000:
-                               snprintf(buf, buf_size, "A");
-                               break;
+               switch (rev_id) {
+               case 0x0000:
+                       rev_str = "A";
+                       break;
 
-                       case 0x2000:
-                               snprintf(buf, buf_size, "B");
-                               break;
+               case 0x1303: /* gd32f1x0 */
+                       device_str = "GD32F1x0";
+                       break;
+
+               case 0x1704: /* gd32f3x0 */
+                       device_str = "GD32F3x0";
+                       break;
+
+               case 0x1906:
+                       device_str = "GD32VF103";
+                       break;
+
+               case 0x1909: /* gd32e23x */
+                       device_str = "GD32E23x";
+                       break;
+
+               case 0x2000:
+                       rev_str = "B";
+                       break;
+
+               case 0x2001:
+                       rev_str = "Z";
+                       break;
+
+               case 0x2003:
+                       rev_str = "Y";
+                       break;
+               }
+               break;
+
+       case 0x412:
+               device_str = "STM32F10x (Low Density)";
+
+               switch (rev_id) {
+               case 0x1000:
+                       rev_str = "A";
+                       break;
+               }
+               break;
+
+       case 0x414:
+               device_str = "STM32F10x (High Density)";
+
+               switch (rev_id) {
+               case 0x1000:
+                       rev_str = "A";
+                       break;
+
+               case 0x1001:
+                       rev_str = "Z";
+                       break;
+
+               case 0x1003:
+                       rev_str = "Y";
+                       break;
+               }
+               break;
+
+       case 0x418:
+               device_str = "STM32F10x (Connectivity)";
+
+               switch (rev_id) {
+               case 0x1000:
+                       rev_str = "A";
+                       break;
+
+               case 0x1001:
+                       rev_str = "Z";
+                       break;
+               }
+               break;
 
-                       case 0x2001:
-                               snprintf(buf, buf_size, "Z");
-                               break;
+       case 0x420:
+               device_str = "STM32F100 (Low/Medium Density)";
 
-                       case 0x2003:
-                               snprintf(buf, buf_size, "Y");
-                               break;
+               switch (rev_id) {
+               case 0x1000:
+                       rev_str = "A";
+                       break;
 
-                       default:
-                               snprintf(buf, buf_size, "unknown");
-                               break;
+               case 0x1001:
+                       rev_str = "Z";
+                       break;
                }
-       } else if ((device_id & 0xfff) == 0x412) {
-               printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
-               buf += printed;
-               buf_size -= printed;
-
-               switch (device_id >> 16) {
-                       case 0x1000:
-                               snprintf(buf, buf_size, "A");
-                               break;
-
-                       default:
-                               snprintf(buf, buf_size, "unknown");
-                               break;
+               break;
+
+       case 0x422:
+               device_str = "STM32F302xB/C";
+
+               switch (rev_id) {
+               case 0x1000:
+                       rev_str = "A";
+                       break;
+
+               case 0x1001:
+                       rev_str = "Z";
+                       break;
+
+               case 0x1003:
+                       rev_str = "Y";
+                       break;
+
+               case 0x2000:
+                       rev_str = "B";
+                       break;
                }
-       } else if ((device_id & 0xfff) == 0x414) {
-               printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
-               buf += printed;
-               buf_size -= printed;
-
-               switch (device_id >> 16) {
-                       case 0x1000:
-                               snprintf(buf, buf_size, "A");
-                               break;
-
-                       case 0x1001:
-                               snprintf(buf, buf_size, "Z");
-                               break;
-
-                       default:
-                               snprintf(buf, buf_size, "unknown");
-                               break;
+               break;
+
+       case 0x428:
+               device_str = "STM32F100 (High Density)";
+
+               switch (rev_id) {
+               case 0x1000:
+                       rev_str = "A";
+                       break;
+
+               case 0x1001:
+                       rev_str = "Z";
+                       break;
                }
-       } else if ((device_id & 0xfff) == 0x418) {
-               printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
-               buf += printed;
-               buf_size -= printed;
-
-               switch (device_id >> 16) {
-                       case 0x1000:
-                               snprintf(buf, buf_size, "A");
-                               break;
-
-                       case 0x1001:
-                               snprintf(buf, buf_size, "Z");
-                               break;
-
-                       default:
-                               snprintf(buf, buf_size, "unknown");
-                               break;
+               break;
+
+       case 0x430:
+               device_str = "STM32F10x (XL Density)";
+
+               switch (rev_id) {
+               case 0x1000:
+                       rev_str = "A";
+                       break;
                }
-       } else if ((device_id & 0xfff) == 0x420) {
-               printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
-               buf += printed;
-               buf_size -= printed;
-
-               switch (device_id >> 16) {
-                       case 0x1000:
-                               snprintf(buf, buf_size, "A");
-                               break;
-
-                       case 0x1001:
-                               snprintf(buf, buf_size, "Z");
-                               break;
-
-                       default:
-                               snprintf(buf, buf_size, "unknown");
-                               break;
+               break;
+
+       case 0x432:
+               device_str = "STM32F37x";
+
+               switch (rev_id) {
+               case 0x1000:
+                       rev_str = "A";
+                       break;
+
+               case 0x2000:
+                       rev_str = "B";
+                       break;
                }
-       } else if ((device_id & 0xfff) == 0x428) {
-               printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
-               buf += printed;
-               buf_size -= printed;
-
-               switch (device_id >> 16) {
-                       case 0x1000:
-                               snprintf(buf, buf_size, "A");
-                               break;
-
-                       case 0x1001:
-                               snprintf(buf, buf_size, "Z");
-                               break;
-
-                       default:
-                               snprintf(buf, buf_size, "unknown");
-                               break;
+               break;
+
+       case 0x438:
+               device_str = "STM32F33x";
+
+               switch (rev_id) {
+               case 0x1000:
+                       rev_str = "A";
+                       break;
                }
-       } else if ((device_id & 0xfff) == 0x430) {
-               printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
-               buf += printed;
-               buf_size -= printed;
-
-               switch (device_id >> 16) {
-                       case 0x1000:
-                               snprintf(buf, buf_size, "A");
-                               break;
-
-                       default:
-                               snprintf(buf, buf_size, "unknown");
-                               break;
+               break;
+
+       case 0x439:
+               device_str = "STM32F302x6/8";
+
+               switch (rev_id) {
+               case 0x1000:
+                       rev_str = "A";
+                       break;
+
+               case 0x1001:
+                       rev_str = "Z";
+                       break;
                }
-       } else if ((device_id & 0xfff) == 0x440) {
-               printed = snprintf(buf, buf_size, "stm32f0x - Rev: ");
-               buf += printed;
-               buf_size -= printed;
-
-               switch (device_id >> 16) {
-                       case 0x1000:
-                               snprintf(buf, buf_size, "A");
-                               break;
-
-                       default:
-                               snprintf(buf, buf_size, "unknown");
-                               break;
+               break;
+
+       case 0x444:
+               device_str = "STM32F03x";
+               rev_str = get_stm32f0_revision(rev_id);
+               break;
+
+       case 0x440:
+               device_str = "STM32F05x";
+               rev_str = get_stm32f0_revision(rev_id);
+               break;
+
+       case 0x445:
+               device_str = "STM32F04x";
+               rev_str = get_stm32f0_revision(rev_id);
+               break;
+
+       case 0x446:
+               device_str = "STM32F303xD/E";
+               switch (rev_id) {
+               case 0x1000:
+                       rev_str = "A";
+                       break;
                }
-       } else {
-               snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
+               break;
+
+       case 0x448:
+               device_str = "STM32F07x";
+               rev_str = get_stm32f0_revision(rev_id);
+               break;
+
+       case 0x442:
+               device_str = "STM32F09x";
+               rev_str = get_stm32f0_revision(rev_id);
+               break;
+
+       default:
+               command_print_sameline(cmd, "Cannot identify target as a STM32F0/1/3\n");
                return ERROR_FAIL;
        }
 
+       if (rev_str)
+               command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
+       else
+               command_print_sameline(cmd, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
+
        return ERROR_OK;
 }
 
@@ -1201,7 +1329,7 @@ COMMAND_HANDLER(stm32x_handle_lock_command)
 
        struct flash_bank *bank;
        int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
-       if (ERROR_OK != retval)
+       if (retval != ERROR_OK)
                return retval;
 
        stm32x_info = bank->driver_priv;
@@ -1214,23 +1342,23 @@ COMMAND_HANDLER(stm32x_handle_lock_command)
        }
 
        retval = stm32x_check_operation_supported(bank);
-       if (ERROR_OK != retval)
+       if (retval != ERROR_OK)
                return retval;
 
        if (stm32x_erase_options(bank) != ERROR_OK) {
-               command_print(CMD_CTX, "stm32x failed to erase options");
+               command_print(CMD, "stm32x failed to erase options");
                return ERROR_OK;
        }
 
        /* set readout protection */
-       stm32x_info->option_bytes.RDP = 0;
+       stm32x_info->option_bytes.rdp = 0;
 
        if (stm32x_write_options(bank) != ERROR_OK) {
-               command_print(CMD_CTX, "stm32x failed to lock device");
+               command_print(CMD, "stm32x failed to lock device");
                return ERROR_OK;
        }
 
-       command_print(CMD_CTX, "stm32x locked");
+       command_print(CMD, "stm32x locked");
 
        return ERROR_OK;
 }
@@ -1244,7 +1372,7 @@ COMMAND_HANDLER(stm32x_handle_unlock_command)
 
        struct flash_bank *bank;
        int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
-       if (ERROR_OK != retval)
+       if (retval != ERROR_OK)
                return retval;
 
        target = bank->target;
@@ -1255,20 +1383,20 @@ COMMAND_HANDLER(stm32x_handle_unlock_command)
        }
 
        retval = stm32x_check_operation_supported(bank);
-       if (ERROR_OK != retval)
+       if (retval != ERROR_OK)
                return retval;
 
        if (stm32x_erase_options(bank) != ERROR_OK) {
-               command_print(CMD_CTX, "stm32x failed to unlock device");
+               command_print(CMD, "stm32x failed to erase options");
                return ERROR_OK;
        }
 
        if (stm32x_write_options(bank) != ERROR_OK) {
-               command_print(CMD_CTX, "stm32x failed to lock device");
+               command_print(CMD, "stm32x failed to unlock device");
                return ERROR_OK;
        }
 
-       command_print(CMD_CTX, "stm32x unlocked.\n"
+       command_print(CMD, "stm32x unlocked.\n"
                        "INFO: a reset or power cycle is required "
                        "for the new settings to take effect.");
 
@@ -1277,7 +1405,7 @@ COMMAND_HANDLER(stm32x_handle_unlock_command)
 
 COMMAND_HANDLER(stm32x_handle_options_read_command)
 {
-       uint32_t optionbyte;
+       uint32_t optionbyte, protection;
        struct target *target = NULL;
        struct stm32x_flash_bank *stm32x_info = NULL;
 
@@ -1286,7 +1414,7 @@ COMMAND_HANDLER(stm32x_handle_options_read_command)
 
        struct flash_bank *bank;
        int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
-       if (ERROR_OK != retval)
+       if (retval != ERROR_OK)
                return retval;
 
        stm32x_info = bank->driver_priv;
@@ -1299,43 +1427,44 @@ COMMAND_HANDLER(stm32x_handle_options_read_command)
        }
 
        retval = stm32x_check_operation_supported(bank);
-       if (ERROR_OK != retval)
+       if (retval != ERROR_OK)
                return retval;
 
        retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
        if (retval != ERROR_OK)
                return retval;
-       command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
 
-       if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1))
-               command_print(CMD_CTX, "Option Byte Complement Error");
+       uint16_t user_data = optionbyte >> stm32x_info->user_data_offset;
 
-       if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1))
-               command_print(CMD_CTX, "Readout Protection On");
-       else
-               command_print(CMD_CTX, "Readout Protection Off");
+       retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
+       if (retval != ERROR_OK)
+               return retval;
 
-       if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1))
-               command_print(CMD_CTX, "Software Watchdog");
-       else
-               command_print(CMD_CTX, "Hardware Watchdog");
+       if (optionbyte & (1 << OPT_ERROR))
+               command_print(CMD, "option byte complement error");
 
-       if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1))
-               command_print(CMD_CTX, "Stop: No reset generated");
-       else
-               command_print(CMD_CTX, "Stop: Reset generated");
+       command_print(CMD, "option byte register = 0x%" PRIx32 "", optionbyte);
+       command_print(CMD, "write protection register = 0x%" PRIx32 "", protection);
 
-       if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1))
-               command_print(CMD_CTX, "Standby: No reset generated");
-       else
-               command_print(CMD_CTX, "Standby: Reset generated");
+       command_print(CMD, "read protection: %s",
+                               (optionbyte & (1 << OPT_READOUT)) ? "on" : "off");
 
-       if (stm32x_info->has_dual_banks) {
-               if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1))
-                       command_print(CMD_CTX, "Boot: Bank 0");
-               else
-                       command_print(CMD_CTX, "Boot: Bank 1");
-       }
+       /* user option bytes are offset depending on variant */
+       optionbyte >>= stm32x_info->option_offset;
+
+       command_print(CMD, "watchdog: %sware",
+                               (optionbyte & (1 << OPT_RDWDGSW)) ? "soft" : "hard");
+
+       command_print(CMD, "stop mode: %sreset generated upon entry",
+                               (optionbyte & (1 << OPT_RDRSTSTOP)) ? "no " : "");
+
+       command_print(CMD, "standby mode: %sreset generated upon entry",
+                               (optionbyte & (1 << OPT_RDRSTSTDBY)) ? "no " : "");
+
+       if (stm32x_info->has_dual_banks)
+               command_print(CMD, "boot: bank %d", (optionbyte & (1 << OPT_BFB2)) ? 0 : 1);
+
+       command_print(CMD, "user data = 0x%02" PRIx16 "", user_data);
 
        return ERROR_OK;
 }
@@ -1344,14 +1473,15 @@ COMMAND_HANDLER(stm32x_handle_options_write_command)
 {
        struct target *target = NULL;
        struct stm32x_flash_bank *stm32x_info = NULL;
-       uint16_t optionbyte = 0xF8;
+       uint8_t optionbyte;
+       uint16_t useropt;
 
-       if (CMD_ARGC < 4)
+       if (CMD_ARGC < 2)
                return ERROR_COMMAND_SYNTAX_ERROR;
 
        struct flash_bank *bank;
        int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
-       if (ERROR_OK != retval)
+       if (retval != ERROR_OK)
                return retval;
 
        stm32x_info = bank->driver_priv;
@@ -1364,54 +1494,118 @@ COMMAND_HANDLER(stm32x_handle_options_write_command)
        }
 
        retval = stm32x_check_operation_supported(bank);
-       if (ERROR_OK != retval)
+       if (retval != ERROR_OK)
                return retval;
 
-       /* REVISIT: ignores some options which we will display...
-        * and doesn't insist on the specified syntax.
-        */
+       retval = stm32x_read_options(bank);
+       if (retval != ERROR_OK)
+               return retval;
 
-       /* OPT_RDWDGSW */
-       if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
-               optionbyte |= (1 << 0);
-       else    /* REVISIT must be "HWWDG" then ... */
-               optionbyte &= ~(1 << 0);
-
-       /* OPT_RDRSTSTOP */
-       if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
-               optionbyte |= (1 << 1);
-       else    /* REVISIT must be "RSTSTNDBY" then ... */
-               optionbyte &= ~(1 << 1);
-
-       /* OPT_RDRSTSTDBY */
-       if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
-               optionbyte |= (1 << 2);
-       else    /* REVISIT must be "RSTSTOP" then ... */
-               optionbyte &= ~(1 << 2);
-
-       if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) {
-               /* OPT_BFB2 */
-               if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
-                       optionbyte |= (1 << 3);
-               else
-                       optionbyte &= ~(1 << 3);
+       /* start with current options */
+       optionbyte = stm32x_info->option_bytes.user;
+       useropt = stm32x_info->option_bytes.data;
+
+       /* skip over flash bank */
+       CMD_ARGC--;
+       CMD_ARGV++;
+
+       while (CMD_ARGC) {
+               if (strcmp("SWWDG", CMD_ARGV[0]) == 0)
+                       optionbyte |= (1 << 0);
+               else if (strcmp("HWWDG", CMD_ARGV[0]) == 0)
+                       optionbyte &= ~(1 << 0);
+               else if (strcmp("NORSTSTOP", CMD_ARGV[0]) == 0)
+                       optionbyte |= (1 << 1);
+               else if (strcmp("RSTSTOP", CMD_ARGV[0]) == 0)
+                       optionbyte &= ~(1 << 1);
+               else if (strcmp("NORSTSTNDBY", CMD_ARGV[0]) == 0)
+                       optionbyte |= (1 << 2);
+               else if (strcmp("RSTSTNDBY", CMD_ARGV[0]) == 0)
+                       optionbyte &= ~(1 << 2);
+               else if (strcmp("USEROPT", CMD_ARGV[0]) == 0) {
+                       if (CMD_ARGC < 2)
+                               return ERROR_COMMAND_SYNTAX_ERROR;
+                       COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], useropt);
+                       CMD_ARGC--;
+                       CMD_ARGV++;
+               } else if (stm32x_info->has_dual_banks) {
+                       if (strcmp("BOOT0", CMD_ARGV[0]) == 0)
+                               optionbyte |= (1 << 3);
+                       else if (strcmp("BOOT1", CMD_ARGV[0]) == 0)
+                               optionbyte &= ~(1 << 3);
+                       else
+                               return ERROR_COMMAND_SYNTAX_ERROR;
+               } else
+                       return ERROR_COMMAND_SYNTAX_ERROR;
+               CMD_ARGC--;
+               CMD_ARGV++;
        }
 
        if (stm32x_erase_options(bank) != ERROR_OK) {
-               command_print(CMD_CTX, "stm32x failed to erase options");
+               command_print(CMD, "stm32x failed to erase options");
                return ERROR_OK;
        }
 
-       stm32x_info->option_bytes.user_options = optionbyte;
+       stm32x_info->option_bytes.user = optionbyte;
+       stm32x_info->option_bytes.data = useropt;
 
        if (stm32x_write_options(bank) != ERROR_OK) {
-               command_print(CMD_CTX, "stm32x failed to write options");
+               command_print(CMD, "stm32x failed to write options");
                return ERROR_OK;
        }
 
-       command_print(CMD_CTX, "stm32x write options complete.\n"
-                               "INFO: a reset or power cycle is required "
-                               "for the new settings to take effect.");
+       command_print(CMD, "stm32x write options complete.\n"
+                               "INFO: %spower cycle is required "
+                               "for the new settings to take effect.",
+                               stm32x_info->can_load_options
+                                       ? "'stm32f1x options_load' command or " : "");
+
+       return ERROR_OK;
+}
+
+COMMAND_HANDLER(stm32x_handle_options_load_command)
+{
+       if (CMD_ARGC < 1)
+               return ERROR_COMMAND_SYNTAX_ERROR;
+
+       struct flash_bank *bank;
+       int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
+       if (retval != ERROR_OK)
+               return retval;
+
+       struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
+
+       if (!stm32x_info->can_load_options) {
+               LOG_ERROR("Command not applicable to stm32f1x devices - power cycle is "
+                       "required instead.");
+               return ERROR_FAIL;
+       }
+
+       struct target *target = bank->target;
+
+       if (target->state != TARGET_HALTED) {
+               LOG_ERROR("Target not halted");
+               return ERROR_TARGET_NOT_HALTED;
+       }
+
+       retval = stm32x_check_operation_supported(bank);
+       if (retval != ERROR_OK)
+               return retval;
+
+       /* unlock option flash registers */
+       retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
+       if (retval != ERROR_OK)
+               return retval;
+       retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
+       if (retval != ERROR_OK) {
+               (void)target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
+               return retval;
+       }
+
+       /* force re-load of option bytes - generates software reset */
+       retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBL_LAUNCH);
+       if (retval != ERROR_OK)
+               return retval;
 
        return ERROR_OK;
 }
@@ -1431,54 +1625,48 @@ static int stm32x_mass_erase(struct flash_bank *bank)
                return retval;
        retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
 
        /* mass erase flash memory */
        retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
        retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
                        FLASH_MER | FLASH_STRT);
        if (retval != ERROR_OK)
-               return retval;
+               goto flash_lock;
 
-       retval = stm32x_wait_status_busy(bank, 100);
-       if (retval != ERROR_OK)
-               return retval;
+       retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
 
-       retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
-       if (retval != ERROR_OK)
-               return retval;
-
-       return ERROR_OK;
+flash_lock:
+       {
+               int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
+               if (retval == ERROR_OK)
+                       retval = retval2;
+       }
+       return retval;
 }
 
 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
 {
-       int i;
-
        if (CMD_ARGC < 1)
                return ERROR_COMMAND_SYNTAX_ERROR;
 
        struct flash_bank *bank;
        int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
-       if (ERROR_OK != retval)
+       if (retval != ERROR_OK)
                return retval;
 
        retval = stm32x_mass_erase(bank);
-       if (retval == ERROR_OK) {
-               /* set all sectors as erased */
-               for (i = 0; i < bank->num_sectors; i++)
-                       bank->sectors[i].is_erased = 1;
-
-               command_print(CMD_CTX, "stm32x mass erase complete");
-       } else
-               command_print(CMD_CTX, "stm32x mass erase failed");
+       if (retval == ERROR_OK)
+               command_print(CMD, "stm32x mass erase complete");
+       else
+               command_print(CMD, "stm32x mass erase failed");
 
        return retval;
 }
 
-static const struct command_registration stm32x_exec_command_handlers[] = {
+static const struct command_registration stm32f1x_exec_command_handlers[] = {
        {
                .name = "lock",
                .handler = stm32x_handle_lock_command,
@@ -1505,7 +1693,7 @@ static const struct command_registration stm32x_exec_command_handlers[] = {
                .handler = stm32x_handle_options_read_command,
                .mode = COMMAND_EXEC,
                .usage = "bank_id",
-               .help = "Read and display device option byte.",
+               .help = "Read and display device option bytes.",
        },
        {
                .name = "options_write",
@@ -1513,26 +1701,33 @@ static const struct command_registration stm32x_exec_command_handlers[] = {
                .mode = COMMAND_EXEC,
                .usage = "bank_id ('SWWDG'|'HWWDG') "
                        "('RSTSTNDBY'|'NORSTSTNDBY') "
-                       "('RSTSTOP'|'NORSTSTOP')",
-               .help = "Replace bits in device option byte.",
+                       "('RSTSTOP'|'NORSTSTOP') ('USEROPT' user_data)",
+               .help = "Replace bits in device option bytes.",
+       },
+       {
+               .name = "options_load",
+               .handler = stm32x_handle_options_load_command,
+               .mode = COMMAND_EXEC,
+               .usage = "bank_id",
+               .help = "Force re-load of device option bytes.",
        },
        COMMAND_REGISTRATION_DONE
 };
 
-static const struct command_registration stm32x_command_handlers[] = {
+static const struct command_registration stm32f1x_command_handlers[] = {
        {
                .name = "stm32f1x",
                .mode = COMMAND_ANY,
                .help = "stm32f1x flash command group",
                .usage = "",
-               .chain = stm32x_exec_command_handlers,
+               .chain = stm32f1x_exec_command_handlers,
        },
        COMMAND_REGISTRATION_DONE
 };
 
-struct flash_driver stm32f1x_flash = {
+const struct flash_driver stm32f1x_flash = {
        .name = "stm32f1x",
-       .commands = stm32x_command_handlers,
+       .commands = stm32f1x_command_handlers,
        .flash_bank_command = stm32x_flash_bank_command,
        .erase = stm32x_erase,
        .protect = stm32x_protect,
@@ -1540,7 +1735,8 @@ struct flash_driver stm32f1x_flash = {
        .read = default_flash_read,
        .probe = stm32x_probe,
        .auto_probe = stm32x_auto_probe,
-       .erase_check = default_flash_mem_blank_check,
+       .erase_check = default_flash_blank_check,
        .protect_check = stm32x_protect_check,
        .info = get_stm32x_info,
+       .free_driver_priv = default_flash_free_driver_priv,
 };