flash/stm32l4x: add support of STM32WL5x dual core
[fw/openocd] / src / flash / nand / arm_io.c
index cc565dcbc023592214c2f61d7d686878e4012157..2b0c081bdf274e5d24123e82ca351441e761c49d 100644 (file)
  * GNU General Public License for more details.
  *
  * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the
- * Free Software Foundation, Inc.,
- * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
+ * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  */
 
 #ifdef HAVE_CONFIG_H
 #include "config.h"
 #endif
 
+#include "core.h"
 #include "arm_io.h"
-#include <target/armv4_5.h>
+#include <helper/binarybuffer.h>
+#include <target/arm.h>
+#include <target/armv7m.h>
 #include <target/algorithm.h>
 
 /**
  * @param area Pointer to a pointer to a working area to copy code to
  * @return Success or failure of the operation
  */
-int arm_code_to_working_area(struct target *target,
-               const uint32_t *code, unsigned code_size,
-               unsigned additional, struct working_area **area)
+static int arm_code_to_working_area(struct target *target,
+       const uint32_t *code, unsigned code_size,
+       unsigned additional, struct working_area **area)
 {
        uint8_t code_buf[code_size];
-       unsigned i;
        int retval;
        unsigned size = code_size + additional;
 
@@ -55,17 +55,16 @@ int arm_code_to_working_area(struct target *target,
         */
 
        /* make sure we have a working area */
-       if (NULL == *area) {
+       if (!*area) {
                retval = target_alloc_working_area(target, size, area);
                if (retval != ERROR_OK) {
-                       LOG_DEBUG("%s: no %d byte buffer", __FUNCTION__, (int) size);
+                       LOG_DEBUG("%s: no %d byte buffer", __func__, (int) size);
                        return ERROR_NAND_NO_BUFFER;
                }
        }
 
        /* buffer code in target endianness */
-       for (i = 0; i < code_size / 4; i++)
-               target_buffer_set_u32(target, code_buf + i * 4, code[i]);
+       target_buffer_set_u32_array(target, code_buf, code_size / 4, code);
 
        /* copy code to work area */
        retval = target_write_memory(target, (*area)->address,
@@ -76,14 +75,13 @@ int arm_code_to_working_area(struct target *target,
 
 /**
  * ARM-specific bulk write from buffer to address of 8-bit wide NAND.
- * For now this only supports ARMv4 and ARMv5 cores.
+ * For now this supports ARMv4,ARMv5 and ARMv7-M cores.
  *
  * Enhancements to target_run_algorithm() could enable:
  *   - ARMv6 and ARMv7 cores in ARM mode
  *
  * Different code fragments could handle:
- *   - Thumb2 cores like Cortex-M (needs different byteswapping)
- *   - 16-bit wide data (needs different setup too)
+ *   - 16-bit wide data (needs different setup)
  *
  * @param nand Pointer to the arm_nand_data struct that defines the I/O
  * @param data Pointer to the data to be copied to flash
@@ -92,20 +90,22 @@ int arm_code_to_working_area(struct target *target,
  */
 int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
 {
-       struct target           *target = nand->target;
-       struct arm_algorithm    algo;
-       struct arm              *armv4_5 = target->arch_info;
-       struct reg_param        reg_params[3];
-       uint32_t                target_buf;
-       uint32_t                exit = 0;
-       int                     retval;
+       struct target *target = nand->target;
+       struct arm_algorithm armv4_5_algo;
+       struct armv7m_algorithm armv7m_algo;
+       void *arm_algo;
+       struct arm *arm = target->arch_info;
+       struct reg_param reg_params[3];
+       uint32_t target_buf;
+       uint32_t exit_var = 0;
+       int retval;
 
        /* Inputs:
         *  r0  NAND data address (byte wide)
         *  r1  buffer address
         *  r2  buffer length
         */
-       static const uint32_t code[] = {
+       static const uint32_t code_armv4_5[] = {
                0xe4d13001,     /* s: ldrb  r3, [r1], #1 */
                0xe5c03000,     /*    strb  r3, [r0]     */
                0xe2522001,     /*    subs  r2, r2, #1   */
@@ -115,31 +115,55 @@ int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
                0xe1200070,     /* e: bkpt  #0           */
        };
 
+       /* Inputs:
+        *  r0  NAND data address (byte wide)
+        *  r1  buffer address
+        *  r2  buffer length
+        *
+        * see contrib/loaders/flash/armv7m_io.s for src
+        */
+       static const uint32_t code_armv7m[] = {
+               0x3b01f811,
+               0x3a017003,
+               0xaffaf47f,
+               0xbf00be00,
+       };
+
+       int target_code_size = 0;
+       const uint32_t *target_code_src = NULL;
+
+       /* set up algorithm */
+       if (is_armv7m(target_to_armv7m(target))) {  /* armv7m target */
+               armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
+               armv7m_algo.core_mode = ARM_MODE_THREAD;
+               arm_algo = &armv7m_algo;
+               target_code_size = sizeof(code_armv7m);
+               target_code_src = code_armv7m;
+       } else {
+               armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
+               armv4_5_algo.core_mode = ARM_MODE_SVC;
+               armv4_5_algo.core_state = ARM_STATE_ARM;
+               arm_algo = &armv4_5_algo;
+               target_code_size = sizeof(code_armv4_5);
+               target_code_src = code_armv4_5;
+       }
+
        if (nand->op != ARM_NAND_WRITE || !nand->copy_area) {
-               retval = arm_code_to_working_area(target, code, sizeof(code),
+               retval = arm_code_to_working_area(target, target_code_src, target_code_size,
                                nand->chunk_size, &nand->copy_area);
-               if (retval != ERROR_OK) {
+               if (retval != ERROR_OK)
                        return retval;
-               }
        }
 
        nand->op = ARM_NAND_WRITE;
 
        /* copy data to work area */
-       target_buf = nand->copy_area->address + sizeof(code);
-       retval = target_bulk_write_memory(target, target_buf, size / 4, data);
-       if (retval == ERROR_OK && (size & 3) != 0)
-               retval = target_write_memory(target,
-                               target_buf + (size & ~3),
-                               1, size & 3, data + (size & ~3));
+       target_buf = nand->copy_area->address + target_code_size;
+       retval = target_write_buffer(target, target_buf, size, data);
        if (retval != ERROR_OK)
                return retval;
 
-       /* set up algorithm and parameters */
-       algo.common_magic = ARM_COMMON_MAGIC;
-       algo.core_mode = ARM_MODE_SVC;
-       algo.core_state = ARM_STATE_ARM;
-
+       /* set up parameters */
        init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
        init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
        init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
@@ -149,12 +173,12 @@ int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
        buf_set_u32(reg_params[2].value, 0, 32, size);
 
        /* armv4 must exit using a hardware breakpoint */
-       if (armv4_5->is_armv4)
-               exit = nand->copy_area->address + sizeof(code) - 4;
+       if (arm->arch == ARM_ARCH_V4)
+               exit_var = nand->copy_area->address + target_code_size - 4;
 
        /* use alg to write data from work area to NAND chip */
        retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
-                       nand->copy_area->address, exit, 1000, &algo);
+                       nand->copy_area->address, exit_var, 1000, arm_algo);
        if (retval != ERROR_OK)
                LOG_ERROR("error executing hosted NAND write");
 
@@ -177,11 +201,13 @@ int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
 int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
 {
        struct target *target = nand->target;
-       struct arm_algorithm algo;
-       struct arm *armv4_5 = target->arch_info;
+       struct arm_algorithm armv4_5_algo;
+       struct armv7m_algorithm armv7m_algo;
+       void *arm_algo;
+       struct arm *arm = target->arch_info;
        struct reg_param reg_params[3];
        uint32_t target_buf;
-       uint32_t exit = 0;
+       uint32_t exit_var = 0;
        int retval;
 
        /* Inputs:
@@ -189,7 +215,7 @@ int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
         *  r1  NAND data address (byte wide)
         *  r2  buffer length
         */
-       static const uint32_t code[] = {
+       static const uint32_t code_armv4_5[] = {
                0xe5d13000,     /* s: ldrb  r3, [r1]     */
                0xe4c03001,     /*    strb  r3, [r0], #1 */
                0xe2522001,     /*    subs  r2, r2, #1   */
@@ -199,23 +225,51 @@ int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
                0xe1200070,     /* e: bkpt  #0           */
        };
 
+       /* Inputs:
+        *  r0  buffer address
+        *  r1  NAND data address (byte wide)
+        *  r2  buffer length
+        *
+        * see contrib/loaders/flash/armv7m_io.s for src
+        */
+       static const uint32_t code_armv7m[] = {
+               0xf800780b,
+               0x3a013b01,
+               0xaffaf47f,
+               0xbf00be00,
+       };
+
+       int target_code_size = 0;
+       const uint32_t *target_code_src = NULL;
+
+       /* set up algorithm */
+       if (is_armv7m(target_to_armv7m(target))) {  /* armv7m target */
+               armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
+               armv7m_algo.core_mode = ARM_MODE_THREAD;
+               arm_algo = &armv7m_algo;
+               target_code_size = sizeof(code_armv7m);
+               target_code_src = code_armv7m;
+       } else {
+               armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
+               armv4_5_algo.core_mode = ARM_MODE_SVC;
+               armv4_5_algo.core_state = ARM_STATE_ARM;
+               arm_algo = &armv4_5_algo;
+               target_code_size = sizeof(code_armv4_5);
+               target_code_src = code_armv4_5;
+       }
+
        /* create the copy area if not yet available */
        if (nand->op != ARM_NAND_READ || !nand->copy_area) {
-               retval = arm_code_to_working_area(target, code, sizeof(code),
+               retval = arm_code_to_working_area(target, target_code_src, target_code_size,
                                nand->chunk_size, &nand->copy_area);
-               if (retval != ERROR_OK) {
+               if (retval != ERROR_OK)
                        return retval;
-               }
        }
 
        nand->op = ARM_NAND_READ;
-       target_buf = nand->copy_area->address + sizeof(code);
-
-       /* set up algorithm and parameters */
-       algo.common_magic = ARM_COMMON_MAGIC;
-       algo.core_mode = ARM_MODE_SVC;
-       algo.core_state = ARM_STATE_ARM;
+       target_buf = nand->copy_area->address + target_code_size;
 
+       /* set up parameters */
        init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
        init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
        init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
@@ -225,12 +279,12 @@ int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
        buf_set_u32(reg_params[2].value, 0, 32, size);
 
        /* armv4 must exit using a hardware breakpoint */
-       if (armv4_5->is_armv4)
-               exit = nand->copy_area->address + sizeof(code) - 4;
+       if (arm->arch == ARM_ARCH_V4)
+               exit_var = nand->copy_area->address + target_code_size - 4;
 
        /* use alg to write data from NAND chip to work area */
        retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
-                       nand->copy_area->address, exit, 1000, &algo);
+                       nand->copy_area->address, exit_var, 1000, arm_algo);
        if (retval != ERROR_OK)
                LOG_ERROR("error executing hosted NAND read");
 
@@ -243,4 +297,3 @@ int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
 
        return retval;
 }
-