Imported Upstream version 3.2.2
[debian/gnuradio] / gr-usrp / src / db_dbs_rx.py
diff --git a/gr-usrp/src/db_dbs_rx.py b/gr-usrp/src/db_dbs_rx.py
deleted file mode 100644 (file)
index 0772454..0000000
+++ /dev/null
@@ -1,345 +0,0 @@
-#
-# Copyright 2005 Free Software Foundation, Inc.
-# 
-# This file is part of GNU Radio
-# 
-# GNU Radio is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3, or (at your option)
-# any later version.
-# 
-# GNU Radio is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-# GNU General Public License for more details.
-# 
-# You should have received a copy of the GNU General Public License
-# along with GNU Radio; see the file COPYING.  If not, write to
-# the Free Software Foundation, Inc., 51 Franklin Street,
-# Boston, MA 02110-1301, USA.
-# 
-
-import math
-import usrp_dbid
-import db_base
-import db_instantiator
-
-def int_seq_to_str (seq):
-    """convert a sequence of integers into a string"""
-    return ''.join (map (chr, seq))
-
-def str_to_int_seq (str):
-    """convert a string to a list of integers"""
-    return map (ord, str)
-
-class db_dbs_rx (db_base.db_base):
-    def __init__ (self, usrp, which):
-        """
-        Control DBS receiver based USRP daughterboard.
-        
-        @param usrp: instance of usrp.source_c
-        @param which: which side: 0 or 1 corresponding to RX_A or RX_B respectively
-        @type which: int
-        """
-        # sets _u and _which
-        db_base.db_base.__init__(self, usrp, which)
-
-        self._u._write_oe(self._which,0x0001,0x0001)
-        self.i2c_addr = (0x67, 0x65)[self._which]
-        # set basic parameters
-        # set default values
-        self.n = 950
-        self.div2 = 0
-        self.osc = 5
-        self.cp = 3
-        self.r = 4
-        self.r_int = 1
-        self.fdac = 127
-        self.m = 2
-        self.dl = 0
-        self.ade = 0
-        self.adl = 0
-        self.gc2 = 31
-        self.diag = 0
-
-        # FIXME this should be in the core dboard class
-        self.refclk_divisor = 16
-        self._enable_refclk(True)
-
-        g = self.gain_range()
-        self.set_gain(float(g[0]+g[1]) / 2)
-        self.bypass_adc_buffers(True)
-        
-    def __del__(self):
-        if self._u:
-            self._enable_refclk(False)
-
-    def _write_reg (self, regno, v):
-        """regno is in [0,5], v is value to write to register"""
-        assert (0 <= regno and regno <= 5)
-        self._u.write_i2c (self.i2c_addr, int_seq_to_str ((regno, v)))
-        
-    def _write_regs (self, starting_regno, vals):
-        """starting_regno is in [0,5],
-        vals is a seq of integers to write to consecutive registers"""
-        self._u.write_i2c (self.i2c_addr,
-                          int_seq_to_str ((starting_regno,) + tuple (vals)))
-        
-    def _read_status (self):
-        """If successful, return list of two ints: [status_info, filter_DAC]"""
-        s = self._u.read_i2c (self.i2c_addr, 2)
-        if len (s) != 2:
-            return None
-        return str_to_int_seq (s)
-
-    def _send_reg(self,regno):
-        assert (0 <= regno and regno <= 5)
-        if regno == 0:
-            self._write_reg(0,(self.div2<<7) + (self.n>>8))
-        if regno == 1:
-            self._write_reg(1,self.n & 255)
-        if regno == 2:
-            self._write_reg(2,self.osc + (self.cp<<3) + (self.r_int<<5))
-        if regno == 3:
-            self._write_reg(3,self.fdac)
-        if regno == 4:
-            self._write_reg(4,self.m + (self.dl<<5) + (self.ade<<6) + (self.adl<<7))
-        if regno == 5:
-            self._write_reg(5,self.gc2 + (self.diag<<5))
-
-    # BW setting
-    def _set_m(self,m):
-        assert m>0 and m<32
-        self.m = m
-        self._send_reg(4)
-    
-    def _set_fdac(self,fdac):
-        assert fdac>=0 and fdac<128
-        self.fdac = fdac
-        self._send_reg(3)
-        
-    def set_bw (self, bw):
-        #assert (bw>=4e6 and bw<=33e6)
-        assert (bw>=1e6 and bw<=33e6)
-        if bw >= 4e6:
-            m_max = int(min(31,math.floor(self._refclk_freq()/1e6)))
-        elif bw >= 2e6:      # Outside of Specs!
-            m_max = int(min(31,math.floor(self._refclk_freq()/.5e6)))
-        else:      # Way outside of Specs!
-            m_max = int(min(31,math.floor(self._refclk_freq()/.25e6)))
-        
-        m_min = int(math.ceil(self._refclk_freq()/2.5e6))
-        m_test = m_max
-        while m_test >= m_min:
-            fdac_test = int(round(((bw * m_test / self._refclk_freq())-4)/.145))
-            if fdac_test>127:
-                m_test = m_test - 1
-            else:
-                break
-        if (m_test>=m_min and fdac_test >=0):
-            self._set_m(m_test)
-            self._set_fdac(fdac_test)
-            return (self.m,self.fdac,self._refclk_freq()/self.m*(4+0.145*self.fdac))
-        else:
-            print "Failed to set bw"
-
-    # Gain setting
-    def _set_dl(self,dl):
-        assert dl == 0 or dl == 1
-        self.dl = dl
-        self._send_reg(4)
-        
-    def _set_gc2(self,gc2):
-        assert gc2<32 and gc2>=0
-        self.gc2 = gc2
-        self._send_reg(5)
-
-    def _set_gc1(self,gc1):
-        assert gc1>=0 and gc1<4096
-        self.gc1 = gc1
-        self._u.write_aux_dac(self._which,0,int(gc1))
-
-    def _set_pga(self, pga_gain):
-        assert pga_gain >=0 and pga_gain <=20
-        if(self._which == 0):
-            self._u.set_pga (0, pga_gain)
-            self._u.set_pga (1, pga_gain)
-        else:
-            self._u.set_pga (2, pga_gain)
-            self._u.set_pga (3, pga_gain)
-            
-    def gain_range(self):
-        return (0, 104, 1)
-    
-    def set_gain(self,gain):
-        if not (gain>=0 and gain<105):
-            raise ValueError, "gain out of range"
-        gc1 = 0
-        gc2 = 0
-        dl = 0
-        pga = 0
-        if gain <56:
-            gc1 = int((-gain*1.85/56.0 + 2.6)*4096.0/3.3)
-            gain = 0
-        else:
-            gc1 = 0
-            gain = gain - 56
-        if gain < 24:
-            gc2 = int(round(31.0 * (1-gain/24.0)))
-            gain = 0
-        else:
-            gc2 = 0
-            gain = gain - 24
-        if gain >= 4.58:
-            dl = 1
-            gain = gain - 4.58
-        pga = gain
-        self._set_gc1(gc1)
-        self._set_gc2(gc2)
-        self._set_dl(dl)
-        self._set_pga(pga)
-        
-    # Frequency setting
-    def _set_osc(self,osc):
-        assert osc>=0 and osc<8
-        self.osc = osc
-        self._send_reg(2)
-
-    def _set_cp(self,cp):
-        assert cp>=0 and cp<4
-        self.cp = cp
-        self._send_reg(2)
-
-    def _set_n(self,n):
-        assert n>256 and n<32768
-        self.n = n
-        self._send_reg(0)
-        self._send_reg(1)
-
-    def _set_div2(self,div2):
-        assert div2 == 0 or div2 == 1
-        self.div2 = div2
-        self._send_reg(0)
-
-    def _set_r(self,r):
-        assert r>=0 and r<128
-        self.r = r
-        self.r_int = int(round(math.log10(r)/math.log10(2)) - 1)
-        self._send_reg(2)
-        
-    # FIXME  How do we handle ADE and ADL properly?
-    def _set_ade(self,ade):
-        assert ade == 0 or ade == 1
-        self.ade = ade
-        self._send_reg(4)
-        
-    def freq_range(self):
-        return (500e6, 2.6e9, 1e6)
-
-    def _refclk_divisor(self):
-        """
-        Return value to stick in REFCLK_DIVISOR register
-        """
-        return 16
-    
-    def set_freq(self, freq):
-        """
-        Set the frequency.
-
-        @param freq:  target frequency in Hz
-        @type freq:   float
-
-        @returns (ok, actual_baseband_freq) where:
-           ok is True or False and indicates success or failure,
-           actual_baseband_freq is the RF frequency that corresponds to DC in the IF.
-        """
-        if not (freq>=500e6 and freq<=2.6e9):
-            return (False, 0)
-        
-        if(freq<1150e6):
-            self._set_div2(0)
-            vcofreq = 4 * freq
-        else:
-            self._set_div2(1)
-            vcofreq = 2 * freq
-        self._set_ade(1)
-        rmin=max(2,self._refclk_freq()/2e6)
-        rmax=min(128,self._refclk_freq()/150e3)
-        r = 2
-        n=0
-        best_r = 2
-        best_n =0
-        best_delta = 10e6
-        while r <= rmax:
-            n = round(freq/(self._refclk_freq()/r))
-            if r<rmin or n<256:
-                r = r * 2
-                continue
-            delta = abs(n*self._refclk_freq()/r - freq)
-            if delta < 75e3:
-                best_r = r
-                best_n = n
-                break
-            if delta < best_delta*0.9:
-                best_r = r
-                best_n = n
-                best_delta = delta
-            r = r * 2
-        self._set_r(int(best_r))
-
-        self._set_n(int(round(best_n)))
-        if vcofreq < 2433e6:
-            vco = 0
-        elif vcofreq < 2711e6:
-            vco=1
-        elif vcofreq < 3025e6:
-            vco=2
-        elif vcofreq < 3341e6:
-            vco=3
-        elif vcofreq < 3727e6:
-            vco=4
-        elif vcofreq < 4143e6:
-            vco=5
-        elif vcofreq < 4493e6:
-            vco=6
-        else:
-            vco=7
-
-        self._set_osc(vco)
-
-        # Set CP current
-        adc_val = 0
-        while adc_val == 0 or adc_val == 7:
-            (byte1,byte2) = self._read_status()
-            adc_val = byte1 >> 2
-            if(adc_val == 0):
-                if vco <= 0:
-                    return (False, 0)
-                else:
-                    vco = vco - 1
-            elif(adc_val == 7):
-                if(vco >= 7):
-                    return (False, 0)
-                else:
-                    vco = vco + 1
-            self._set_osc(vco)
-        if adc_val == 1 or adc_val == 2:
-            self._set_cp(1)
-        elif adc_val == 3 or adc_val == 4:
-            self._set_cp(2)
-        else:
-            self._set_cp(3)
-                    
-        return (True, self.n * self._refclk_freq() / self.r)
-
-    def is_quadrature(self):
-        """
-        Return True if this board requires both I & Q analog channels.
-
-        This bit of info is useful when setting up the USRP Rx mux register.
-        """
-        return True
-
-# hook this daughterboard class into the auto-instantiation framework
-db_instantiator.add(usrp_dbid.DBS_RX, lambda usrp, which : (db_dbs_rx(usrp, which),))