Extended the range of the offset controls so that it now covers -750 to +750
[debian/gnuradio] / gr-radio-astronomy / src / python / usrp_ra_receiver.py
index 78c9b1e4736305d5d0f2a6a8dc1b1f22695599e9..7a57d7e75b29e1231613f6bf3eb43def0bb2440b 100755 (executable)
@@ -6,7 +6,7 @@
 # 
 # GNU Radio is free software; you can redistribute it and/or modify
 # it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 2, or (at your option)
+# the Free Software Foundation; either version 3, or (at your option)
 # any later version.
 # 
 # GNU Radio is distributed in the hope that it will be useful,
@@ -22,7 +22,7 @@
 
 from gnuradio import gr, gru
 from gnuradio import usrp
-import usrp_dbid
+from usrpm import usrp_dbid
 from gnuradio import eng_notation
 from gnuradio.eng_option import eng_option
 from gnuradio.wxgui import stdgui, ra_fftsink, ra_stripchartsink, ra_waterfallsink, form, slider
@@ -118,6 +118,7 @@ class app_flow_graph(stdgui.gui_flow_graph):
         #  on FFT bins.
         upper_limit = binwidth / 0.10
         self.setitimer = int(upper_limit * 2.00)
+        self.scanning = True
 
         # Calculate the CHIRP values based on Hz/sec
         self.CHIRP_LOWER = 0.10 * self.setitimer
@@ -147,6 +148,15 @@ class app_flow_graph(stdgui.gui_flow_graph):
         # Calibration coefficient and offset
         self.calib_coeff = options.calib_coeff
         self.calib_offset = options.calib_offset
+        if self.calib_offset < -750:
+            self.calib_offset = -750
+        if self.calib_offset > 750:
+            self.calib_offset = 750
+
+        if self.calib_coeff < 1:
+            self.calib_offset = 1
+        if self.calib_coeff > 100:
+            self.calib_offset = 100
 
         self.integ = options.integ
         self.avg_alpha = options.avg
@@ -167,12 +177,12 @@ class app_flow_graph(stdgui.gui_flow_graph):
 
         self.u = usrp.source_c(decim_rate=options.decim)
         self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec))
-        self.cardtype = self.u.daughterboard_id(0)
         # Set initial declination
         self.decln = options.decln
 
         # determine the daughterboard subdevice we're using
         self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec)
+        self.cardtype = self.subdev.dbid()
 
         input_rate = self.u.adc_freq() / self.u.decim_rate()
 
@@ -189,14 +199,14 @@ class app_flow_graph(stdgui.gui_flow_graph):
         #
         self.fft_rate = options.fft_rate
 
-        self.fft_size = options.fft_size
+        self.fft_size = int(options.fft_size)
 
         # This buffer is used to remember the most-recent FFT display
         #   values.  Used later by self.write_spectral_data() to write
         #   spectral data to datalogging files, and by the SETI analysis
         #   function.
         #
-        self.fft_outbuf = Numeric.zeros(options.fft_size, Numeric.Float64)
+        self.fft_outbuf = Numeric.zeros(self.fft_size, Numeric.Float64)
 
         #
         # If SETI mode, only look at seti_fft_bandwidth (currently 12.5Khz)
@@ -299,17 +309,20 @@ class app_flow_graph(stdgui.gui_flow_graph):
             self.integrator2 = gr.fir_filter_fff (M, tapsM)
             self.integrator3 = gr.single_pole_iir_filter_ff(1.0)
     
+            # The detector
+            self.detector = gr.complex_to_mag_squared()
+
             # Split complex USRP stream into a pair of floats
-            self.splitter = gr.complex_to_float (1);
-    
-            # I squarer (detector)
-            self.multI = gr.multiply_ff();
+            #self.splitter = gr.complex_to_float (1);
     
-            # Q squarer (detector)
-            self.multQ = gr.multiply_ff();
-    
-            # Adding squared I and Q to produce instantaneous signal power
-            self.adder = gr.add_ff();
+#            # I squarer (detector)
+#            self.multI = gr.multiply_ff();
+#    
+#            # Q squarer (detector)
+#            self.multQ = gr.multiply_ff();
+#    
+#            # Adding squared I and Q to produce instantaneous signal power
+#            self.adder = gr.add_ff();
     
             # Signal probe
             self.probe = gr.probe_signal_f();
@@ -317,8 +330,8 @@ class app_flow_graph(stdgui.gui_flow_graph):
             #
             # Continuum calibration stuff
             #
-            self.cal_mult = gr.multiply_const_ff(self.calib_coeff);
-            self.cal_offs = gr.add_const_ff(self.calib_offset);
+            self.cal_mult = gr.multiply_const_ff(self.calib_coeff/100.0);
+            self.cal_offs = gr.add_const_ff(self.calib_offset*4000);
 
         #
         # Start connecting configured modules in the receive chain
@@ -331,37 +344,35 @@ class app_flow_graph(stdgui.gui_flow_graph):
             self.connect(self.u, self.fft_bandpass, self.scope)
 
         if self.setimode == False:
-            #
-            # The head of the continuum chain
-            #
-            self.connect(self.u, self.splitter)
-    
-            # Connect splitter outputs to multipliers
-            # First do I^2
-            self.connect((self.splitter, 0), (self.multI,0))
-            self.connect((self.splitter, 0), (self.multI,1))
-    
-            # Then do Q^2
-            self.connect((self.splitter, 1), (self.multQ,0))
-            self.connect((self.splitter, 1), (self.multQ,1))
-    
-            # Then sum the squares
-            self.connect(self.multI, (self.adder,0))
-            self.connect(self.multQ, (self.adder,1))
-    
-            # Connect adder output to two-stages of FIR integrator
-            #   followed by a single stage IIR integrator, and
-            #   the calibrator
-            self.connect(self.adder, self.integrator1, 
-               self.integrator2, self.integrator3, self.cal_mult, 
-               self.cal_offs, self.chart)
+#            #
+#            # The head of the continuum chain
+#            #
+#            self.connect(self.u, self.splitter)
+#    
+#            # Connect splitter outputs to multipliers
+#            # First do I^2
+#            self.connect((self.splitter, 0), (self.multI,0))
+#            self.connect((self.splitter, 0), (self.multI,1))
+#    
+#            # Then do Q^2
+#            self.connect((self.splitter, 1), (self.multQ,0))
+#            self.connect((self.splitter, 1), (self.multQ,1))
+#    
+#            # Then sum the squares
+#            self.connect(self.multI, (self.adder,0))
+#            self.connect(self.multQ, (self.adder,1))
+#    
+#            # Connect adder output to two-stages of FIR integrator
+#            #   followed by a single stage IIR integrator, and
+#            #   the calibrator
+#            self.connect(self.adder, self.integrator1, 
+#               self.integrator2, self.integrator3, self.cal_mult, 
+#               self.cal_offs, self.chart)
+
+            self.connect(self.u, self.detector, 
+                self.integrator1, self.integrator2,
+                self.integrator3, self.cal_mult, self.cal_offs, self.chart)
     
-            # Connect calibrator to probe
-            # SPECIAL NOTE:  I'm setting the ground work here
-            #   for completely changing the way local_calibrator
-            #   works, including removing some horrible kludges for
-            #   recording data.
-            # But for now, self.probe() will be used to display the
             #  current instantaneous integrated detector value
             self.connect(self.cal_offs, self.probe)
 
@@ -371,8 +382,11 @@ class app_flow_graph(stdgui.gui_flow_graph):
         self.integ = options.integ
         if self.setimode == False:
             self.myform['integration'].set_value(int(options.integ))
+            self.myform['offset'].set_value(self.calib_offset)
+            self.myform['dcgain'].set_value(self.calib_coeff)
         self.myform['average'].set_value(int(options.avg))
 
+
         if self.setimode == False:
             # Make integrator agree with command line
             self.set_integration(int(options.integ))
@@ -418,7 +432,7 @@ class app_flow_graph(stdgui.gui_flow_graph):
         self.myform['dbname'].set_value(self.subdev.name())
 
         # Set analog baseband filtering, if DBS_RX
-        if self.cardtype == usrp_dbid.DBS_RX:
+        if self.cardtype in (usrp_dbid.DBS_RX, usrp_dbid.DBS_RX_REV_2_1):
             lbw = (self.u.adc_freq() / self.u.decim_rate()) / 2
             if lbw < 1.0e6:
                 lbw = 1.0e6
@@ -477,6 +491,8 @@ class app_flow_graph(stdgui.gui_flow_graph):
         vbox1.Add((4,0), 0, 0)
 
         vbox2 = wx.BoxSizer(wx.VERTICAL)
+        if self.setimode == False:
+            vbox3 = wx.BoxSizer(wx.VERTICAL)
         g = self.subdev.gain_range()
         myform['gain'] = form.slider_field(parent=self.panel, sizer=vbox2, label="RF Gain",
                                            weight=1,
@@ -485,7 +501,18 @@ class app_flow_graph(stdgui.gui_flow_graph):
 
         vbox2.Add((4,0), 0, 0)
         myform['average'] = form.slider_field(parent=self.panel, sizer=vbox2, 
-                    label="Spectral Averaging (FFT frames)", weight=1, min=1, max=2000, callback=self.set_averaging)
+                    label="Spectral Averaging (FFT frames)", weight=1, min=1, max=3000, callback=self.set_averaging)
+
+        # Set up scan control button when in SETI mode
+        if (self.setimode == True):
+               # SETI scanning control
+               buttonbox = wx.BoxSizer(wx.HORIZONTAL)
+               self.scan_control = form.button_with_callback(self.panel,
+                     label="Scan: On ",
+                     callback=self.toggle_scanning)
+       
+               buttonbox.Add(self.scan_control, 0, wx.CENTER)
+               vbox2.Add(buttonbox, 0, wx.CENTER)
 
         vbox2.Add((4,0), 0, 0)
 
@@ -500,10 +527,21 @@ class app_flow_graph(stdgui.gui_flow_graph):
             callback=myform.check_input_and_call(_form_set_decln))
         vbox2.Add((4,0), 0, 0)
 
-        buttonbox = wx.BoxSizer(wx.HORIZONTAL)
-        vbox.Add(buttonbox, 0, wx.CENTER)
+        if self.setimode == False:
+            myform['offset'] = form.slider_field(parent=self.panel, sizer=vbox3,
+                label="Post-Detector Offset", weight=1, min=-750, max=750, 
+                callback=self.set_pd_offset)
+            vbox3.Add((2,0), 0, 0)
+            myform['dcgain'] = form.slider_field(parent=self.panel, sizer=vbox3,
+                label="Post-Detector Gain", weight=1, min=1, max=100, 
+                callback=self.set_pd_gain)
+            vbox3.Add((2,0), 0, 0)
         hbox.Add(vbox1, 0, 0)
-       hbox.Add(vbox2, wx.ALIGN_RIGHT, 0)
+        hbox.Add(vbox2, wx.ALIGN_RIGHT, 0)
+
+        if self.setimode == False:
+            hbox.Add(vbox3, wx.ALIGN_RIGHT, 0)
+
         vbox.Add(hbox, 0, wx.EXPAND)
 
         self._build_subpanel(vbox)
@@ -650,7 +688,7 @@ class app_flow_graph(stdgui.gui_flow_graph):
          else:
              self.seti_analysis(self.fft_outbuf,sidtime)
              now = time.time()
-             if ((now - self.seti_then) > self.setifreq_timer):
+             if ((self.scanning == True) and ((now - self.seti_then) > self.setifreq_timer)):
                  self.seti_then = now
                  self.setifreq_current = self.setifreq_current + self.fft_input_rate
                  if (self.setifreq_current > self.setifreq_upper):
@@ -945,7 +983,29 @@ class app_flow_graph(stdgui.gui_flow_graph):
         else:
           self.annotate_state = True
           self.annotation.SetLabel("Annotation: On")
-        
+    #
+    # Turn scanning on/off
+    # Called-back by "Recording" button
+    #
+    def toggle_scanning(self):
+        # Current scanning?  Flip state
+        if (self.scanning == True):
+          self.scanning = False
+          self.scan_control.SetLabel("Scan: Off")
+        # Not scanning
+        else:
+          self.scanning = True
+          self.scan_control.SetLabel("Scan: On ")
+
+    def set_pd_offset(self,offs):
+         self.myform['offset'].set_value(offs)
+         self.calib_offset=offs
+         self.cal_offs.set_k(offs*4000)
+
+    def set_pd_gain(self,gain):
+         self.myform['dcgain'].set_value(gain)
+         self.cal_mult.set_k(gain*0.01)
+         self.calib_coeff = gain
 
 def main ():
     app = stdgui.stdapp(app_flow_graph, "RADIO ASTRONOMY SPECTRAL/CONTINUUM RECEIVER: $Revision$", nstatus=1)