Imported Upstream version 3.2.2
[debian/gnuradio] / gnuradio-examples / python / digital-bert / receive_path.py
diff --git a/gnuradio-examples/python/digital-bert/receive_path.py b/gnuradio-examples/python/digital-bert/receive_path.py
new file mode 100644 (file)
index 0000000..e273923
--- /dev/null
@@ -0,0 +1,118 @@
+#
+# Copyright 2008 Free Software Foundation, Inc.
+#
+# This file is part of GNU Radio
+#
+# GNU Radio is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3, or (at your option)
+# any later version.
+#
+# GNU Radio is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GNU Radio; see the file COPYING.  If not, write to
+# the Free Software Foundation, Inc., 51 Franklin Street,
+# Boston, MA 02110-1301, USA.
+#
+
+from gnuradio import gr, eng_notation
+import math
+
+n2s = eng_notation.num_to_str
+
+class receive_path(gr.hier_block2):
+    def __init__(self,
+                 if_rate,        # Incoming sample rate
+                 symbol_rate,    # Original symbol rate
+                 excess_bw,      # RRC excess bandwidth, typically 0.35-0.5
+                 costas_alpha,   # Costas loop 1st order gain, typically 0.01-0.2
+                 costas_beta,    # Costas loop 2nd order gain, typically alpha^2/4.0
+                 costas_max,     # Costas loop max frequency offset in radians/sample
+                 mm_gain_mu,     # M&M loop 1st order gain, typically 0.001-0.2
+                 mm_gain_omega,  # M&M loop 2nd order gain, typically alpha^2/4.0
+                 mm_omega_limit, # M&M loop max timing error
+                 ):
+        
+        gr.hier_block2.__init__(self, "receive_path",
+                                gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
+                                gr.io_signature(0, 0, 0))                    # Output signature
+
+        self._if_rate = if_rate
+        self._sps = int(self._if_rate/symbol_rate)
+        print "IF sample rate:", n2s(self._if_rate)
+        print "Symbol rate:", n2s(symbol_rate)
+        print "Samples/symbol:", self._sps
+        print "RRC bandwidth:", excess_bw
+        
+        # Create AGC to scale input to unity
+        self._agc = gr.agc_cc(1e-5, 1.0, 1.0, 1.0)
+
+       # Create RRC with specified excess bandwidth
+       taps = gr.firdes.root_raised_cosine(1.0,          # Gain
+                                           self._sps,    # Sampling rate
+                                           1.0,          # Symbol rate
+                                           excess_bw,    # Roll-off factor
+                                           11*self._sps) # Number of taps
+
+       self._rrc = gr.fir_filter_ccf(1, taps)
+        
+        # Create a Costas loop frequency/phase recovery block
+
+        print "Costas alpha:", costas_alpha
+        print "Costas beta:", costas_beta
+        print "Costas max:", costas_max
+        
+        self._costas = gr.costas_loop_cc(costas_alpha,  # PLL first order gain
+                                         costas_beta,   # PLL second order gain
+                                         costas_max,    # Max frequency offset rad/sample
+                                         -costas_max,   # Min frequency offset rad/sample
+                                         2)             # BPSK
+
+        # Create a M&M bit synchronization retiming block
+        mm_mu = 0.5
+        mm_omega = self._sps
+
+        print "MM gain mu:", mm_gain_mu
+        print "MM gain omega:", mm_gain_omega
+        print "MM omega limit:", mm_omega_limit
+        
+        self._mm = gr.clock_recovery_mm_cc(mm_omega,       # Initial samples/symbol
+                                           mm_gain_omega,  # Second order gain
+                                           mm_mu,          # Initial symbol phase
+                                           mm_gain_mu,     # First order gain
+                                           mm_omega_limit) # Maximum timing offset
+
+        # Add an SNR probe on the demodulated constellation
+        self._snr_probe = gr.probe_mpsk_snr_c(10.0/symbol_rate)
+        self.connect(self._mm, self._snr_probe)
+        
+        # Slice the resulting constellation into bits.
+        # Get inphase channel and make decision about 0
+        self._c2r = gr.complex_to_real()
+        self._slicer = gr.binary_slicer_fb() 
+        
+        # Descramble BERT sequence.  A channel error will create 3 incorrect bits
+        self._descrambler = gr.descrambler_bb(0x8A, 0x7F, 7) # CCSDS 7-bit descrambler
+
+        # Measure BER by the density of 0s in the stream
+        self._ber = gr.probe_density_b(1.0/symbol_rate)
+
+        self.connect(self, self._agc, self._rrc, self._costas, self._mm, 
+                     self._c2r, self._slicer, self._descrambler, self._ber)
+
+    def frequency_offset(self):
+        return self._costas.freq()*self._if_rate/(2*math.pi)
+
+    def timing_offset(self):
+        return self._mm.omega()/self._sps-1.0
+
+    def snr(self):
+        return self._snr_probe.snr()
+
+    def ber(self):
+        return (1.0-self._ber.density())/3.0
+