Sneaking in a few warning fixes to this branch.
[debian/gnuradio] / gnuradio-core / src / lib / filter / gr_pfb_channelizer_ccf.cc
index 1296c71f3a3c7654c4595ce532afd10a9260c211..db16a634b773af6774a160d630795c8eee6b5918 100644 (file)
@@ -36,7 +36,7 @@ gr_pfb_channelizer_ccf_sptr gr_make_pfb_channelizer_ccf (unsigned int numchans,
                                                         const std::vector<float> &taps,
                                                         float oversample_rate)
 {
-  return gr_pfb_channelizer_ccf_sptr (new gr_pfb_channelizer_ccf (numchans, taps,
+  return gnuradio::get_initial_sptr(new gr_pfb_channelizer_ccf (numchans, taps,
                                                                  oversample_rate));
 }
 
@@ -49,6 +49,18 @@ gr_pfb_channelizer_ccf::gr_pfb_channelizer_ccf (unsigned int numchans,
              gr_make_io_signature (1, 1, numchans*sizeof(gr_complex))),
     d_updated (false), d_numchans(numchans), d_oversample_rate(oversample_rate)
 {
+  // The over sampling rate must be rationally related to the number of channels
+  // in that it must be N/i for i in [1,N], which gives an outputsample rate 
+  // of [fs/N, fs] where fs is the input sample rate.
+  // This tests the specified input sample rate to see if it conforms to this
+  // requirement within a few significant figures.
+  double intp = 0;
+  double fltp = modf(numchans / oversample_rate, &intp);
+  if(fltp != 0.0)
+    throw std::invalid_argument("gr_pfb_channelizer: oversample rate must be N/i for i in [1, N]"); 
+
+  set_relative_rate(1.0/intp);
+
   d_filters = std::vector<gr_fir_ccf*>(d_numchans);
 
   // Create an FIR filter for each channel and zero out the taps
@@ -66,16 +78,16 @@ gr_pfb_channelizer_ccf::gr_pfb_channelizer_ccf (unsigned int numchans,
   // Although the filters change, we use this look up table
   // to set the index of the FFT input buffer, which equivalently
   // performs the FFT shift operation on every other turn.
-  int r = (int)rintf(d_numchans / d_oversample_rate);
+  d_rate_ratio = (int)rintf(d_numchans / d_oversample_rate);
   d_idxlut = new int[d_numchans];
-  for(int i = 0; i < d_numchans; i++) {
-    d_idxlut[i] = d_numchans - ((i + r) % d_numchans) - 1;
+  for(unsigned int i = 0; i < d_numchans; i++) {
+    d_idxlut[i] = d_numchans - ((i + d_rate_ratio) % d_numchans) - 1;
   }
 
   // Calculate the number of filtering rounds to do to evenly
   // align the input vectors with the output channels
   d_output_multiple = 1;
-  while((d_output_multiple * r) % d_numchans != 0)
+  while((d_output_multiple * d_rate_ratio) % d_numchans != 0)
     d_output_multiple++;
   set_output_multiple(d_output_multiple);
 }
@@ -121,7 +133,7 @@ gr_pfb_channelizer_ccf::set_taps (const std::vector<float> &taps)
   }
 
   // Set the history to ensure enough input items for each filter
-  set_history (d_taps_per_filter);
+  set_history (d_taps_per_filter+1);
 
   d_updated = true;
 }
@@ -154,16 +166,11 @@ gr_pfb_channelizer_ccf::general_work (int noutput_items,
     return 0;               // history requirements may have changed.
   }
 
-  float M = d_oversample_rate;
-  int N = d_numchans;
-  int r = (int)rintf(N / M);
-
-  int toconsume = (int)rintf(noutput_items/M);
-
   int n=1, i=-1, j=0, last;
+  int toconsume = (int)rintf(noutput_items/d_oversample_rate);
   while(n <= toconsume) {
     j = 0;
-    i = (i + r) % N;
+    i = (i + d_rate_ratio) % d_numchans;
     last = i;
     while(i >= 0) {
       in = (gr_complex*)input_items[j];
@@ -172,7 +179,7 @@ gr_pfb_channelizer_ccf::general_work (int noutput_items,
       i--;
     }
 
-    i = N-1;
+    i = d_numchans-1;
     while(i > last) {
       in = (gr_complex*)input_items[j];
       d_fft->get_inbuf()[d_idxlut[j]] = d_filters[i]->filter(&in[n-1]);
@@ -180,7 +187,7 @@ gr_pfb_channelizer_ccf::general_work (int noutput_items,
       i--;
     }
 
-    n += (i+r) >= N;
+    n += (i+d_rate_ratio) >= (int)d_numchans;
 
     // despin through FFT
     d_fft->execute();