Added target_read/write_phys_memory() fn's. mdX/mwX commands updated to support phys...
[fw/openocd] / doc / openocd.texi
index bf80e123a421e69afcb84586c5972734208ff414..4f228325c122c33a35cf1f7ec0bb8dccf1e45a55 100644 (file)
@@ -66,7 +66,6 @@ Free Documentation License''.
 * Running::                          Running OpenOCD
 * OpenOCD Project Setup::            OpenOCD Project Setup
 * Config File Guidelines::           Config File Guidelines
-* Translating Configuration Files::  Translating Configuration Files
 * Daemon Configuration::             Daemon Configuration
 * Interface - Dongle Configuration:: Interface - Dongle Configuration
 * Reset Configuration::              Reset Configuration
@@ -1186,7 +1185,9 @@ handlers too, if just for developer convenience.
 Because this is so very board-specific, and chip-specific, no examples
 are included here.
 Instead, look at the board config files distributed with OpenOCD.
-If you have a boot loader, its source code may also be useful.
+If you have a boot loader, its source code will help; so will
+configuration files for other JTAG tools
+(@pxref{Translating Configuration Files}).
 @end quotation
 
 Some of this code could probably be shared between different boards.
@@ -1464,17 +1465,18 @@ Examples:
 @item pxa270 - again - CS0 flash - it goes in the board file.
 @end itemize
 
-@node Translating Configuration Files
-@chapter Translating Configuration Files
+@anchor{Translating Configuration Files}
+@section Translating Configuration Files
 @cindex translation
-If you have a configuration file for another hardware debugger(Abatron,
-BDI2000, BDI3000, Lauterbach, Segger, MacRaigor, etc.), translating
+If you have a configuration file for another hardware debugger
+or toolset (Abatron, BDI2000, BDI3000, CCS,
+Lauterbach, Segger, Macraigor, etc.), translating
 it into OpenOCD syntax is often quite straightforward. The most tricky
 part of creating a configuration script is oftentimes the reset init
 sequence where e.g. PLLs, DRAM and the like is set up.
 
 One trick that you can use when translating is to write small
-Tcl proc's to translate the syntax into OpenOCD syntax. This
+Tcl procedures to translate the syntax into OpenOCD syntax. This
 can avoid manual translation errors and make it easier to
 convert other scripts later on.
 
@@ -1482,23 +1484,22 @@ Example of transforming quirky arguments to a simple search and
 replace job:
 
 @example
-# rewrite commands of the form below to arm11 mcr...
-#
 #   Lauterbach syntax(?)
 #
-#      Data.Set c15:0x042f %long 0x40000015
+#       Data.Set c15:0x042f %long 0x40000015
 #
 #   OpenOCD syntax when using procedure below.
 #
-#   setc15 0x01 0x00050078
-#
-#
+#       setc15 0x01 0x00050078
+
 proc setc15 @{regs value@} @{
-       global TARGETNAME 
+    global TARGETNAME
 
-       echo [format "set p15 0x%04x, 0x%08x" $regs $value] 
+    echo [format "set p15 0x%04x, 0x%08x" $regs $value]
 
-       arm11 mcr $TARGETNAME 15 [expr ($regs>>12)&0x7] [expr ($regs>>0)&0xf] [expr ($regs>>4)&0xf] [expr ($regs>>8)&0x7] $value 
+    arm11 mcr $TARGETNAME 15 [expr ($regs>>12)&0x7] \
+        [expr ($regs>>0)&0xf] [expr ($regs>>4)&0xf] \
+        [expr ($regs>>8)&0x7] $value
 @}
 @end example
 
@@ -1572,6 +1573,11 @@ which uses only a lightweight JTAG reset before examining the
 scan chain.
 If that fails, it tries again, using a harder reset
 from the overridable procedure @command{init_reset}.
+
+Implementations must have verified the JTAG scan chain before
+they return.
+This is done by calling @command{jtag arp_init}
+(or @command{jtag arp_init-reset}).
 @end deffn
 
 @anchor{TCP/IP Ports}
@@ -1637,11 +1643,6 @@ GDB behaviour is not sufficient.  GDB normally uses hardware
 breakpoints if the memory map has been set up for flash regions.
 @end deffn
 
-@deffn {Config Command} gdb_detach (@option{resume}|@option{reset}|@option{halt}|@option{nothing})
-Configures what OpenOCD will do when GDB detaches from the daemon.
-Default behaviour is @option{resume}.
-@end deffn
-
 @anchor{gdb_flash_program}
 @deffn {Config Command} gdb_flash_program (@option{enable}|@option{disable})
 Set to @option{enable} to cause OpenOCD to program the flash memory when a
@@ -2225,6 +2226,12 @@ needing to cope with both architecture and board specific constraints.
 
 @section Commands for Handling Resets
 
+@deffn {Command} jtag_nsrst_assert_width milliseconds
+Minimum amount of time (in milliseconds) OpenOCD should wait
+after asserting nSRST (active-low system reset) before
+allowing it to be deasserted.
+@end deffn
+
 @deffn {Command} jtag_nsrst_delay milliseconds
 How long (in milliseconds) OpenOCD should wait after deasserting
 nSRST (active-low system reset) before starting new JTAG operations.
@@ -2232,6 +2239,12 @@ When a board has a reset button connected to SRST line it will
 probably have hardware debouncing, implying you should use this.
 @end deffn
 
+@deffn {Command} jtag_ntrst_assert_width milliseconds
+Minimum amount of time (in milliseconds) OpenOCD should wait
+after asserting nTRST (active-low JTAG TAP reset) before
+allowing it to be deasserted.
+@end deffn
+
 @deffn {Command} jtag_ntrst_delay milliseconds
 How long (in milliseconds) OpenOCD should wait after deasserting
 nTRST (active-low JTAG TAP reset) before starting new JTAG operations.
@@ -2322,6 +2335,7 @@ powerup and pressing a reset button.
 @end deffn
 
 @section Custom Reset Handling
+@cindex events
 
 OpenOCD has several ways to help support the various reset
 mechanisms provided by chip and board vendors.
@@ -3523,7 +3537,7 @@ The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
 @anchor{flash write_image}
-@deffn Command {flash write_image} [erase] filename [offset] [type]
+@deffn Command {flash write_image} [erase] [unlock] filename [offset] [type]
 Write the image @file{filename} to the current target's flash bank(s).
 A relocation @var{offset} may be specified, in which case it is added
 to the base address for each section in the image.
@@ -3532,8 +3546,9 @@ explicitly as @option{bin} (binary), @option{ihex} (Intel hex),
 @option{elf} (ELF file), @option{s19} (Motorola s19).
 @option{mem}, or @option{builder}.
 The relevant flash sectors will be erased prior to programming
-if the @option{erase} parameter is given.
-The flash bank to use is inferred from the @var{address} of
+if the @option{erase} parameter is given. If @option{unlock} is
+provided, then the flash banks are unlocked before erase and
+program. The flash bank to use is inferred from the @var{address} of
 each image segment.
 @end deffn
 
@@ -4923,23 +4938,27 @@ Please use their TARGET object siblings to avoid making assumptions
 about what TAP is the current target, or about MMU configuration.
 @end enumerate
 
-@deffn Command mdw addr [count]
-@deffnx Command mdh addr [count]
-@deffnx Command mdb addr [count]
+@deffn Command mdw [phys] addr [count]
+@deffnx Command mdh [phys] addr [count]
+@deffnx Command mdb [phys] addr [count]
 Display contents of address @var{addr}, as
 32-bit words (@command{mdw}), 16-bit halfwords (@command{mdh}),
 or 8-bit bytes (@command{mdb}).
 If @var{count} is specified, displays that many units.
+@var{phys} is an optional flag to indicate to use
+physical address and bypass MMU
 (If you want to manipulate the data instead of displaying it,
 see the @code{mem2array} primitives.)
 @end deffn
 
-@deffn Command mww addr word
-@deffnx Command mwh addr halfword
-@deffnx Command mwb addr byte
+@deffn Command mww [phys] addr word
+@deffnx Command mwh [phys] addr halfword
+@deffnx Command mwb [phys] addr byte
 Writes the specified @var{word} (32 bits),
 @var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
 at the specified address @var{addr}.
+@var{phys} is an optional flag to indicate to use
+physical address and bypass MMU
 @end deffn
 
 
@@ -5735,7 +5754,11 @@ one bit in the encoding, effecively a fifth parameter.)
 
 @deffn Command {arm11 memwrite burst} [value]
 Displays the value of the memwrite burst-enable flag,
-which is enabled by default.
+which is enabled by default. Burst writes are only used
+for memory writes larger than 1 word. Single word writes
+are likely to be from reset init scripts and those writes
+are often to non-memory locations which could easily have
+many wait states, which could easily break burst writes.
 If @var{value} is defined, first assigns that.
 @end deffn
 
@@ -5754,13 +5777,6 @@ one bit in the encoding, effecively a fifth parameter.)
 Displays the result.
 @end deffn
 
-@deffn Command {arm11 no_increment}  [value]
-Displays the value of the flag controlling whether
-some read or write operations increment the pointer
-(the default behavior) or not (acting like a FIFO).
-If @var{value} is defined, first assigns that.
-@end deffn
-
 @deffn Command {arm11 step_irq_enable}  [value]
 Displays the value of the flag controlling whether
 IRQs are enabled during single stepping;
@@ -6081,6 +6097,17 @@ TAP @code{post-reset} events are delivered to all TAPs
 with handlers for that event.
 @end deffn
 
+@deffn Command {pathmove} start_state [next_state ...]
+Start by moving to @var{start_state}, which
+must be one of the @emph{stable} states.
+Unless it is the only state given, this will often be the
+current state, so that no TCK transitions are needed.
+Then, in a series of single state transitions
+(conforming to the JTAG state machine) shift to
+each @var{next_state} in sequence, one per TCK cycle.
+The final state must also be stable.
+@end deffn
+
 @deffn Command {runtest} @var{num_cycles}
 Move to the @sc{run/idle} state, and execute at least
 @var{num_cycles} of the JTAG clock (TCK).
@@ -6108,23 +6135,30 @@ Default is enabled.
 @cindex TAP state names
 
 The @var{tap_state} names used by OpenOCD in the @command{drscan},
-and @command{irscan} commands are:
+@command{irscan}, and @command{pathmove} commands are the same
+as those used in SVF boundary scan documents, except that
+SVF uses @sc{idle} instead of @sc{run/idle}.
 
 @itemize @bullet
-@item @b{RESET} ... acts as if TRST were pulsed
-@item @b{RUN/IDLE} ... don't assume this always means IDLE
+@item @b{RESET} ... @emph{stable} (with TMS high);
+acts as if TRST were pulsed
+@item @b{RUN/IDLE} ... @emph{stable}; don't assume this always means IDLE
 @item @b{DRSELECT}
 @item @b{DRCAPTURE}
-@item @b{DRSHIFT} ... TDI/TDO shifting through the data register
+@item @b{DRSHIFT} ... @emph{stable}; TDI/TDO shifting
+through the data register
 @item @b{DREXIT1}
-@item @b{DRPAUSE} ... data register ready for update or more shifting
+@item @b{DRPAUSE} ... @emph{stable}; data register ready
+for update or more shifting
 @item @b{DREXIT2}
 @item @b{DRUPDATE}
 @item @b{IRSELECT}
 @item @b{IRCAPTURE}
-@item @b{IRSHIFT} ... TDI/TDO shifting through the instruction register
+@item @b{IRSHIFT} ... @emph{stable}; TDI/TDO shifting
+through the instruction register
 @item @b{IREXIT1}
-@item @b{IRPAUSE} ... instruction register ready for update or more shifting
+@item @b{IRPAUSE} ... @emph{stable}; instruction register ready
+for update or more shifting
 @item @b{IREXIT2}
 @item @b{IRUPDATE}
 @end itemize
@@ -6194,6 +6228,27 @@ Unless the @option{quiet} option is specified,
 messages are logged for comments and some retries.
 @end deffn
 
+The OpenOCD sources also include two utility scripts
+for working with XSVF; they are not currently installed
+after building the software.
+You may find them useful:
+
+@itemize
+@item @emph{svf2xsvf} ... converts SVF files into the extended XSVF
+syntax understood by the @command{xsvf} command; see notes below.
+@item @emph{xsvfdump} ... converts XSVF files into a text output format;
+understands the OpenOCD extensions.
+@end itemize
+
+The input format accepts a handful of non-standard extensions.
+These include three opcodes corresponding to SVF extensions
+from Lattice Semiconductor (LCOUNT, LDELAY, LDSR), and
+two opcodes supporting a more accurate translation of SVF
+(XTRST, XWAITSTATE).
+If @emph{xsvfdump} shows a file is using those opcodes, it
+probably will not be usable with other XSVF tools.
+
+
 @node TFTP
 @chapter TFTP
 @cindex TFTP