module adc_model (input clk, input rst, output [13:0] adc_a, output adc_ovf_a, input adc_on_a, input adc_oe_a, output [13:0] adc_b, output adc_ovf_b, input adc_on_b, input adc_oe_b ); math_real math ( ) ; reg [13:0] adc_a_int = 0; reg [13:0] adc_b_int = 0; assign adc_a = adc_oe_a ? adc_a_int : 14'bz; assign adc_ovf_a = adc_oe_a ? 1'b0 : 1'bz; assign adc_b = adc_oe_b ? adc_b_int : 14'bz; assign adc_ovf_b = adc_oe_b ? 1'b0 : 1'bz; real phase = 0; real sample_rate = 100000000; real freq = 330000/sample_rate; // 330 kHz real scale = math.pow(2,13)-2; always @(posedge clk) if(rst) begin adc_a_int <= 0; adc_b_int <= 0; end else begin if(adc_on_a) //adc_a_int <= $rtoi(math.round(math.sin(phase*math.MATH_2_PI)*scale)) ; adc_a_int <= adc_a_int + 3; if(adc_on_b) adc_b_int <= adc_b_int - 7; //adc_b_int <= $rtoi(math.round(math.cos(phase*math.MATH_2_PI)*scale)) ; if(phase > 1) phase <= phase + freq - 1; else phase <= phase + freq; end endmodule // adc_model