
�������

������	�
�����
����
�����

���������������������������

 !""#$%&'"()*'+,&-),.!
/011023/21456789010:;<=4782>1?23565

http://freetts.sourceforge.net

FreeTTS is an open source speech synthesis
system developed entirely in the JavaTM

programming language. FreeTTS is based upon
Flite, a synthesis engine written in the C
programming language developed at Carnegie
Mellon University.

The JavaTM platform has a stigma of being a poor
performer and has often been shunned as an
environment for developing speech engines. To
better understand this stigma, we developed a
speech synthesis engine entirely in the Java
programming language. We discovered that the
Java platform is an excellent platform for a
synthesis engine and can significantly out perform a
similar native C implementation.

What is FreeTTS? FreeTTS is based upon
Flite, a small runtime speech synthesis engine
developed at Carnegie Mellon University
(cmuflite.org). Flite is derived from the Festival
Speech Synthesis System from the University of
Edinburgh and the FestVox project from Carnegie
Mellon University (festvox.org).

FreeTTS includes:

@A core synthesis engine
@Support for five general domain voices: an 8

kHz diphone voice, a 16 kHz diphone voice,
and three MBROLA 16kHz diphone voices@Supports a high-quality 16 kHz limited
domain voice@Partial support for JSAPI 1.0
@Extensive API documentation
@Several demonstration programs

The core synthesis engine of FreeTTS is quite
flexible and easily allows new voices to be
added to the system.

How does FreeTTS Work? There are a
number of steps in the synthesis process. Many
of these steps need to be customized depending
on the locale and the type of synthesis
employed. Speech researchers also need the
ability to plug in new algorithms easily.
FreeTTS provides a general framework for the
synthesis process that allows the various steps
in the process to be customized. Figure 1 shows
the overall architecture of FreeTTS.

Figure 1 – FreeTTS Architecture

Voice Data

Lexicon

 CARTS

UnitData

 Tokenizer

 Utterance Processors

Processing
Thread

Wave Synthesizer
Audio Output

Output
 Thread

Speakable

Javax.soundFile Socket

Audio

Utterance QueueFreeTTS
Engine

JSAPI

Text JSML Text

 Applications

To support a new FreeTTS voice, a developer
provides a set of UtteranceProcessors and
associated data that define the processing for the
voice. An UtteranceProcessor takes as input an
utterance, performs some processing on the
utterance, and typically adds some annotation or
data to the utterance as a result of this processing.
With this framework, the synthesis process becomes
the following:
1. Break the input text into a series of utterances
2. For each utterance, apply each of the

UtteranceProcessors
3. Output the generated audio data

A typical FreeTTS voice will define
UtteranceProcessors that perform the following
functions:

@Text Normalization – Converts the input text
into a stream of words. For example, the text
“Dr. Smith lives on 33 Garden Dr.” would be
converted to “doctor smith lives on thirty three
garden drive.” The text normalization process
deals with a wide variety of cases including
numbers, dates, times, titles, and place names.@Linguistic Analysis – Attaches semantic
information to the utterance. This can include
phrasing and part-of-speech information.@Lexical Analysis – Determines the
pronunciation for each word of the utterance.
Typically, a FreeTTS voice will use a lexicon to
determine the pronunciation for a word. If a
word is not in the lexicon, a set of sophisticated
letter-to-sound rules are applied to generate a
pronunciation.@Prosody Generation – Attaches to the utterance
information about pauses, pitch, duration, tone,
stress, and amplitude. These processors will
typically use classification and regression trees
(CARTS) to generate this prosody information.@Speech Synthesis – Generates audio data for the
utterance. Typically a synthesis processor
concatenates speech units based on diphones or
other units of speech. Synthesis can be
particularly CPU intensive since it involves a
great number of floating point operations.
Synthesis runs in a separate thread to reduce
latency and to increase the possibility of
parallelism on multi-CPU systems.

How does FreeTTS Perform? Since one
goal of the FreeTTS project was to investigate the
performance characteristics of a speech synthesis
engine on the Java platform, we instrumented
FreeTTS to collect performance metrics. We also
collected comparable performance data for Flite,
the native C engine. The initial implementation of
FreeTTS processed utterances slightly more slowly
than Flite. We used profiling tools to identify
performance bottlenecks and optimized FreeTTS

based on these results. The optimized FreeTTS
ran significantly faster than Flite as seen in the
following table:

Task Flite FreeTTS
Process 8 hours of
speech

1-CPU 296Mhz
sparcv9 with 128MB
memory

00:17:09 00:05:41

Process 8 hours of
speech

2-CPU 360Mhz
sparcv9 with 512MB
memory

00:14:02 00:03:10

Time to first sample
5 word sentence

1-CPU 296 MHz
sparcv9 with 128 MB

107 ms 19 ms

Table 1: Engine Performance Comparison

A number of features of the Java platform
contributed to the high performance of
FreeTTS:
@Java HotSpotTM technology - provides

automatic optimization of the critical inner
loops.
@Collections – provides high performance

data structures such as lists and hash tables.
@Threading – allows for better utilization of

CPUs on multi-CPU systems.

Other features including garbage collection and
dynamic loading of code allow for a cleaner and
more flexible system that can be extended
easily.
������������	
��
���������������
����

��������������������������

��
������
����	����������
�����������
�
��
�����
��������	���	�����
��!!"�������������
�	�
�
��
�����������#��	���

�
�$

!��

��	�������������%�
��������������&

�
��
�����������'
(�����

������

�	(�����������)�(�����������������(�
�)������*�����*������$

��!!"���(���
�������������
����	
��
����	����$
!��

�+�����������������
��
��	
��*�(����"�	
�� �
�����

��!!"$��	
��
��
��$��
�

,-./01234563/789�*�	����:�������:
;���<���:���=����>��%���
�
������ ����'
������
����
������

��!!"$

Copyright © 2002 Sun Microsystems, Inc, 901 San Antonio Road, Palo Alto, CA 94303 USA. All rights reserved.

SMLI TR-2002-0140

