
Using STM32 discovery kits with open source tools

STLINK development team

1

Contents

1 Overview 3

2 Installing a GNU toolchain 4

3 Installing STLINK 5

4 Using the GDB server 6

5 Building and flashing a program 8

6 Notes 9

7 References 10

2

1 Overview

This guide details the use of STMicroelectronics STM32 discovery kits in
an open source environment.

3

2 Installing a GNU toolchain

Any toolchain supporting the cortex m3 should do. You can find the nec-
essary to install such a toolchain here:

https : // github . com/ esden /summon−arm−t o o l c h a i n

Details for the installation are provided in the topmost README file.
This documentation assumes the toolchains is installed in a $TOOLCHAIN PATH.

4

3 Installing STLINK

STLINK is open source software to program and debug ST’s STM32 Dis-
covery kits. Those kits have an onboard chip that translates USB com-
mands sent by the host PC into JTAG/SWD commands. This chip is called
STLINK, (yes, isn’t that confusing? suggest a better name!) and comes in
2 versions (STLINK v1 and v2). From a software point of view, those ver-
sions differ only in the transport layer used to communicate (v1 uses SCSI
passthru commands, while v2 uses raw USB). From a user point of view,
they are identical.

Before continuing, the following dependencies must be met:

• libusb-1.0

• pkg-config

• autotools

STLINK should run on any system meeting the above constraints.

The STLINK software source code is retrieved using:

$> g i t c l one https : // github . com/ texane / s t l i n k s t l i n k . g i t

Everything can be built from the top directory:

$> cd s t l i n k . g i t
$> . / autogen . sh
$> . / c o n f i g u r e
$> make

It includes:

• a communication library (stlink.git/libstlink.a),

• a GDB server (stlink.git/st-util),

• a flash manipulation tool (stlink.git/st-flash).

5

4 Using the GDB server

This assumes you have got the libopencm3 project downloaded in [ocm3].
The libopencm3 project has some good, reliable examples for each of the
Discovery boards.

Even if you don’t plan on using libopencm3, the examples they provide
will help you verify that:

• Your installed toolchain is capable of compiling for cortex M3/M4
targets

• stlink is functional

• Your arm-none-eabi-gdb is functional

• Your board is functional

A GDB server must be started to interact with the STM32. Depending
on the discovery kit you are using, you must run one of the 2 commands:

STM32VL d i s cove ry k i t (onboard ST−l i n k)
$> . / st−u t i l −−s t l i n k v 1

STM32L or STM32F4 d i s cove ry k i t (onboard ST−l i n k /V2)
$> . / st−u t i l

Ful l he lp f o r other opt ions (l i s t e n port , v e r s i on)
$> . / st−u t i l −−help

Then, GDB can be used to interact with the kit:

$> $TOOLCHAIN PATH/ bin /arm−none−eabi−gdb e x a m p l e f i l e . e l f

From GDB, connect to the server using:

(gdb) t a r g e t extended l o c a l h o s t :4242

GDB has memory maps for as many chips as it knows about, and will
load your project into either flash or SRAM based on how the project was
linked. Linking projects to boot from SRAM is beyond the scope of this
document.

Because of these built in memory maps, after specifying the .elf at the
command line, now we can simply ”load” the target:

6

(gdb) load

st-util will load all sections into their appropriate addresses, and ”cor-
rectly” set the PC register. So, to run your freshly loaded program, simply
”continue”

(gdb) cont inue

Your program should now be running, and, if you used one of the blinking
examples from libopencm3, the LEDs on the board should be blinking for
you.

7

5 Building and flashing a program

If you want to simply flash binary files to arbitrary sections of memory,
or read arbitary addresses of memory out to a binary file, use the st-flash
tool, as shown below:

s t l i n k v 1 command to read 4096 from f l a s h in to out . bin
$> . / st−f l a s h read v1 out . bin 0x8000000 4096

s t l i n k v 2 command
$> . / st−f l a s h read out . bin 0x8000000 4096

s t l i n k v 1 command to wr i t e the f i l e in . bin in to f l a s h
$> . / st−f l a s h wr i t e v1 in . bin 0x8000000

s t l i n k v 2 command
$> . / st−f l a s h wr i t e in . bin 0x8000000

Of course, you can use this instead of the gdb server, if you prefer. Just
remember to use the ”.bin” image, rather than the .elf file.

wri t e b l i nk . bin in to FLASH
$> [sudo] . / st−f l a s h wr i t e f a n c y b l i n k . bin 0x08000000

Upon reset, the board LEDs should be blinking.

8

6 Notes

6.1 Disassembling THUMB code in GDB

By default, the disassemble command in GDB operates in ARM mode.
The programs running on CORTEX-M3 are compiled in THUMB mode. To
correctly disassemble them under GDB, uses an odd address. For instance,
if you want to disassemble the code at 0x20000000, use:

(gdb) d i sa s s emble 0x20000001

9

7 References

• http://www.st.com/internet/mcu/product/248823.jsp
documentation related to the STM32L mcu

• http://www.st.com/internet/evalboard/product/250990.jsp
documentation related to the STM32L discovery kit

• http://www.libopencm3.org
libopencm3, a project providing a firmware library, with solid examples
for Cortex M3, M4 and M0 processors from any vendor.

10

