
Using STM32 discovery kits with open source tools

STLINK development team

1

Contents

1 Overview 3

2 Installing a GNU toolchain 4

3 Installing STLINK 5

4 Building and running a program 6

2

1 Overview

This guide details the use of STMicroelectronics STM32 discovery kits in
an opensource environment.

3

2 Installing a GNU toolchain

Any toolchain supporting the cortex m3 should do. You can find the nec-
essary to install such a toolchain here:

https : // github . com/ esden /summon−arm−t o o l c h a i n

Details for the installation are provided in the topmost README file.
This documentation assumes the toolchains is installed in a $TOOLCHAIN PATH.

4

3 Installing STLINK

STLINK is an opensource software to program and debug the discovery
kits. Those kits have an onboard chip that translates USB commands sent
by the host PC into JTAG commands. This chip is called STLINK, which
is confusing since the software has the same name. It comes into 2 versions
(STLINK v1 and v2). From a software point of view, those version differ
only in the transport layer used to communicate (v1 uses SCSI passthru
commands, while v2 uses raw USB).

The STLINK software source code is retrieved using:

g i t c l one https : // github . com/ texane / s t l i n k s t l i n k . g i t

The GDB server is called st-util and is built using:

$> cd s t l i n k . g i t ; make ;

5

4 Building and running a program

A simple LED blinking example is provided in the example directory. It is
built using:

cd s t l i n k . g i t /example ;
PATH=$TOOLCHAIN PATH/ bin :$PATH make ;

A GDB server must be start to interact with the STM32. Depending on
the discovery kit you are using, you must run one of the 2 commands:

STM32VL d i s cove ry k i t
$> sudo . / st−u t i l /dev/ sg2

STM32L d i s cove ry k i t
$> sudo . / st−u t i l

Then, GDB can be used to interact with the kit:

$> $TOOLCHAIN PATH/ bin /arm−none−eabi−gdb

From GDB, connect to the server using:

$> t a r g e t extended−remote l o c a l h o s t :4242

To load the program, use:

$> load program . e l f

Then, you can run the program using:

$> run

6

