
SDCC Compiler User Guide

1 INTRODUCTION

9 Support 58
9.1 Reporting Bugs . 58

10 Acknowledgments 58

Index 59

1 Introduction

1.1 About SDCC

SDCC is a Freeware, retargettable, optimizing ANSI-C compiler by Sandeep
Dutta designed for 8 bit Microprocessors. The current version targets Intel
MCS51 based Microprocessors(8051,8052, etc), Zilog Z80 based MCUs, and the

1 INTRODUCTION 1.5 System Requirements

2 INSTALLATION 2.5 Additional Information for Windows Users

2 INSTALLATION 2.6 SDCC on Other Platforms

change directory, run commands and so on. The change directory command is
�cd� , the move command is �mv� . To print the current working directory, type
�pwd� . To make a directory, use �mkdir� .

There are some basic di�erences between Unix and Windows �le systems
you should understand. When you type in directory paths, Unix and the Cyg-
win bash prompt uses forward slashes '/' between directories while Windows
traditionally uses '\' backward slashes. So when you work at the Cygwin bash
prompt, you will need to use the forward '/' slashes. Unix does not have a
concept of drive letters, such as �c:�, instead all �les systems attach and appear
as directories.

2.5.2 Running SDCC as Native Compiled Executables

If you use the pre-compiled binaries, the install directories for the libraries and

2 INSTALLATION 2.8 Components of SDCC

The command �./con�gure �pre�x=/usr/local� will con�gure the compiler to
be installed in directory /usr/local.

2.8 Components of SDCC

SDCC is not just a compiler, but a collection of tools by various developers.
These include linkers, assemblers, simulators and other components. Here is
a summary of some of the components. Note that the included simulator and
assembler have separate documentation which you can �nd in the source pack-

3 USING SDCC 3.2 Command Line Options

Note here that mylib

3 USING SDCC 3.2 Command Line Options

3 USING SDCC 3.2 Command Line Options

�stack-after-data This option will cause the stack to be located in the internal
ram after the data segment.

�data-loc

3 USING SDCC 3.2 Command Line Options

3.2.6 Optimization Options

�nogcse Will not do global subexpression elimination, this option may be
used when the compiler creates undesirably large stack/data spaces

3 USING SDCC 3.3 MCS51/DS390 Storage Class Language Extensions

�dumploop Will create a dump of iCode's, after loop optimizations, into a �le

3 USING SDCC 3.4 Pointers

3.3.5 sfr / sbit

Like the bit keyword, sfr / sbit signi�es both a data-type and(oth)-1eioFge class, they

3 USING SDCC 3.5 Parameters & Local Variables

All unquali�ed pointers are treated as 3-byte (4-byte for the ds390) generic
pointers. These type of pointers can also to be explicitly declared.

3 USING SDCC 3.6 Overlaying

3 USING SDCC 3.7 Interrupt Service Routines

3.7 Interrupt Service Routines

SDCC allows interrupt service routines to be coded in C, with some extended
keywords.

void timer_isr (void) interrupt 2 using 1
{
..
}

The number following the interrupt keyword is the interrupt number this rou-
tine will service. The compiler will insert a call to this routine in the interrupt
vector table for the interrupt number speci�ed. The using

3 USING SDCC 3.10 Functions using private banks

3 USING SDCC 3.11 Absolute Addressing

ISR using a particular bank occurs while processing a low-priority ISR using

3 USING SDCC 3.13 Inline Assembler Code

3 USING SDCC 3.14 int(16 bit) and long (32 bit) Support

The same goes the other way, ie. labels de�nes in inline assembly CANNOT

3 USING SDCC 0.16 MCS51 Memory Models

_fs2uint.c - convert �oating point to unsigned int
_fs2int.c - convert �oating point to signed int
_fs2ulong.c - convert �oating point to unsigned long
_fs2long.c - convert �oating point to signed long
_uchar2fs.c - convert unsigned char to �oating point
_char2fs.c - convert char to �oating point number
_uint2fs.c - convert unsigned int to �oating point
_int2fs.c - convert int to �oating point numbers

4 SDCC TECHNICAL DATA 4.1 Optimizations

4 SDCC TECHNICAL DATA 4.1 Optimizations

4.1.3 Copy-Propagation

int f() {
int i, j;
i = 10;
j = i;
return j;
}

will be changed to

int f() {
int i,j;
i = 10;
j = 10;
return 10;
}

Note: the dead stores created by this copy propagation will be eliminated by
dead-code elimination.

4.1.4 Loop Optimizations

Two types of loop optimizations are done by SDCC loop invariant lifting and
strength reduction of loop induction variables. In addition to the strength reduc-
tion the optimizer marks the induction variables and the register allocator tries
to keep the induction variables in registers for the duration of the loop. Because
of this preference of the register allocator, loop induction optimization causes
an f0rcausescauseo3ners fo-3ee

4 SDCC TECHNICAL DATA 4.1 Optimizations

As mentioned previously some loop invariants are not as apparent, all static

4 SDCC TECHNICAL DATA 4.1 Optimizations

4 SDCC TECHNICAL DATA 4.1 Optimizations

mov a,_i
swap a
anl a,#0x0f
mov _i,a

4 SDCC TECHNICAL DATA 4.1 Optimizations

}

The above rule will change the following assembly sequence:

mov r1,a
mov a,r1

to

mov r1,a

Note: All occurrences of a

4 SDCC TECHNICAL DATA 4.1 Optimizations

4 SDCC TECHNICAL DATA 4.2 Pragmas

hash table containing the variable bindings is passed as a parameter). If you

4 SDCC TECHNICAL DATA4.3 <pending: this is messy and incomplete> Library Routines

atoi, atol.

� string.h - contains the following functions.

4 SDCC TECHNICAL DATA 4.5 External Stack

add a,#0xfd
mov r0,a
add a,#0xfc
mov r1,a
mov a,@r0
add a,r2
mov dpl,a
mov dph,#0x00
mov sp,_bp
pop _bp
ret

5 TIPS

5 TIPS 5.1 Notes on MCS51 memory layout

}

It would substantially reduce the code generated (future versions of the
compiler will be smart enough to detect such optimization oppurtunities).

5.1 Notes on MCS51 memory layout

The 8051 family of micro controller have a minimum of 128 bytes of internal
memory which is structured as follows

- Bytes 00-1F - 32 bytes to hold up to 4 banks of the registers R7 to R7
- Bytes 20-2F - 16 bytes to hold 128 bit variables and
- Bytes 30-7F - 60 bytes for general purpose use.

6 RETARGETTING FOR OTHER MCUS.

Conclusion.

If you �nd that the stack is over writing your bit variables or "near data"
then the approach which best utilised the internal memory is to position the
"near data" after the last bank of used registers or, if you use bit variables, after
the last bit variable by using the �data-loc, e.g. if two register banks are being
used and no bit variables, �data-loc 16, and use the �stack-after-data option.

If bit variables are being used, another method would be to try and squeeze
the data area in the unused register banks if it will �t, and start the stack after
the last bit variable.

6 Retargetting for other MCUs.

The issues for retargetting the compiler are far too numerous to be covered by
this document. What follows is a brief description of each of the seven phases
of the compiler and its MCU dependency.

�

7 SDCDB - SOURCE LEVEL DEBUGGER

7 SDCDB - SOURCE LEVEL DEBUGGER 7.3 Starting the Debugger

controlled by the debugger. When a command is issued for the debugger, it

7 SDCDB - SOURCE LEVEL DEBUGGER 7.6 Interfacing with XEmacs.

7.5.9 run

Start debugged program.

7.5.10 ptype variable

Print type information of the variable.

7.5.11 print variable

print value of variable.

7.5.12 �le �lename

7 SDCDB - SOURCE LEVEL DEBUGGER 7.6 Interfacing with XEmacs.

also be loaded dynamically while XEmacs is running, set the environment vari-
able 'EMACSLOADPATH' to the installation bin directory (<installdir>/bin),
then enter the following command ESC-x load-�le sdcdbsrc. To start the inter-
face enter the following command:

ESC-x sdcdbsrc

You will prompted to enter the �le name to be debugged.

The command line options that are passed to the simulator directly are bound
to default values in the �le sdcdbsrc.el. The variables are listed below, these
values maybe changed as required.

�

9 SUPPORT

for data at
;; buffer point
;; g sdcdbsrc-goto-sdcdb Goto the SDCDB output
buffer
;; t sdcdbsrc-mode Toggles Sdcdbsrc mode
(turns it off)
;;
;; C-c C-f sdcdb-finish-from-src SDCDB finish command

;;
;; C-x SPC sdcdb-break Set break for line
with point
;; ESC t sdcdbsrc-mode Toggle Sdcdbsrc mode

;; ESC m sdcdbsrc-srcmode Toggle list mode
;;

8 Other Processors

8.1 The Z80 and gbz80 port

SDCC can target both the Zilog Z80 and the Nintendo Gameboy's Z80-like
gbz80. The port is incomplete - long support is incomplete (mul, div and mod
are unimplimented), and both �oat and bit�eld support is missing. Apart from
that the code generated is correct.

10 ACKNOWLEDGMENTS 9.1 Reporting Bugs

9.1 Reporting Bugs

