

February 2011 Doc ID 15965 Rev 4 1/598

RM0038
Reference manual

STM32L151xx and STM32L152xx
advanced ARM-based 32-bit MCUs

Introduction
This reference manual targets application developers. It provides complete information on
how to use the STM32L151xx and STM32L152xx microcontroller memory and peripherals.
The STM32L151xx and STM32L152xx will be referred to as STM32L15xxx throughout the
document, unless otherwise specified.

The STM32L15xxx is a family of microcontrollers with different memory sizes, packages and
peripherals.

For ordering information, mechanical and electrical device characteristics please refer to the
STM32L151xx and STM32L152xx datasheet.

For information on programming, erasing and protection of the internal Flash memory
please refer to the STM32L15xxx Flash programming manual.

For information on the ARM Cortex™-M3 core, please refer to the Cortex™-M3 Technical
Reference Manual.

Related documents
Available from www.arm.com:

■ Cortex™-M3 Technical Reference Manual, available from:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337g/DDI0337G_cortex_m3_r2p0_trm.pdf

Available from www.st.com:

■ STM32L151xx STM32L152xx datasheet

■ STM32L15xxx Flash programming manual

www.st.com

http://www.st.com

Contents RM0038

2/598 Doc ID 15965 Rev 4

Contents

1 Documentation conventions . 29

1.1 List of abbreviations for registers . 29

1.2 Peripheral availability . 29

2 Memory and bus architecture . 30

2.1 System architecture . 30

2.2 Memory organization . 31

2.3 Memory map . 31

2.3.1 Embedded SRAM . 34

2.3.2 Bit banding . 35

2.3.3 Embedded Flash memory . 35

2.4 Boot configuration . 41

3 Power control (PWR) . 43

3.1 Power supplies . 43

3.1.1 Independent A/D and DAC converter supply and reference voltage . . . 44

3.1.2 Independent LCD supply . 45

3.1.3 RTC and RTC backup registers . 45

3.1.4 Voltage regulator . 46

3.1.5 Dynamic voltage scaling management . 46

3.1.6 Dynamic voltage scaling configuration . 48

3.1.7 Voltage regulator and clock management when VDD drops
below 2.0 V . 49

3.1.8 Voltage regulator and clock management when modifying the
VCORE range . 49

3.2 Power supply supervisor . 49

3.2.1 Power on reset (POR)/power down reset (PDR) 52

3.2.2 Brown out reset (BOR) . 52

3.2.3 Programmable voltage detector (PVD) . 54

3.2.4 Internal voltage reference (VREFINT) . 54

3.3 Low-power modes . 55

3.3.1 Behavior of clocks in low power modes . 56

3.3.2 Slowing down system clocks . 57

3.3.3 Peripheral clock gating . 57

RM0038 Contents

Doc ID 15965 Rev 4 3/598

3.3.4 Low power run mode (LP run) . 57

3.3.5 Sleep mode . 58

3.3.6 Low power sleep mode (LP sleep) . 59

3.3.7 Stop mode . 61

3.3.8 Standby mode . 63

3.3.9 Waking up the device from Stop and Standby modes using the RTC and
comparators 64

3.4 Power control registers . 65

3.4.1 PWR power control register (PWR_CR) . 66

3.4.2 PWR power control/status register (PWR_CSR) 68

3.4.3 PWR register map . 69

4 Reset and clock control (RCC) . 70

4.1 Reset . 70

4.1.1 System reset . 70

4.1.2 Power reset . 71

4.1.3 RTC and backup registers reset . 71

4.2 Clocks . 72

4.2.1 HSE clock . 74

4.2.2 HSI clock . 75

4.2.3 MSI clock . 75

4.2.4 PLL . 76

4.2.5 LSE clock . 77

4.2.6 LSI clock . 77

4.2.7 System clock (SYSCLK) selection . 78

4.2.8 System clock source frequency versus voltage range 78

4.2.9 Clock security system (CSS) . 78

4.2.10 RTC and LCD clock . 79

4.2.11 Watchdog clock . 79

4.2.12 Clock-out capability . 79

4.2.13 Internal/external clock measurement with TIM9/TIM10/TIM11 79

4.2.14 Clock-independent system clock sources for TIM9/TIM10/TIM11 81

4.3 RCC registers . 82

4.3.1 Clock control register (RCC_CR) . 82

4.3.2 Internal clock sources calibration register (RCC_ICSCR) 84

4.3.3 Clock configuration register (RCC_CFGR) . 85

4.3.4 Clock interrupt register (RCC_CIR) . 87

Contents RM0038

4/598 Doc ID 15965 Rev 4

4.3.5 AHB peripheral reset register (RCC_AHBRSTR) 90

4.3.6 APB2 peripheral reset register (RCC_APB2RSTR) 91

4.3.7 APB1 peripheral reset register (RCC_APB1RSTR) 92

4.3.8 AHB peripheral clock enable register (RCC_AHBENR) 94

4.3.9 APB2 peripheral clock enable register (RCC_APB2ENR) 95

4.3.10 APB1 peripheral clock enable register (RCC_APB1ENR) 97

4.3.11 AHB peripheral clock enable in low power mode register
(RCC_AHBLPENR) . 99

4.3.12 APB2 peripheral clock enable in low power mode register
(RCC_APB2LPENR) . 100

4.3.13 APB1 peripheral clock enable in low power mode register
(RCC_APB1LPENR) . 101

4.3.14 Control/status register (RCC_CSR) . 103

4.3.15 RCC register map . 106

5 General-purpose I/Os (GPIO) . 108

5.1 GPIO introduction . 108

5.2 GPIO main features . 108

5.3 GPIO functional description . 108

5.3.1 General-purpose I/O (GPIO) . 110

5.3.2 I/O pin multiplexer and mapping . 111

5.3.3 I/O port control registers . 113

5.3.4 I/O port data registers . 113

5.3.5 I/O data bitwise handling . 114

5.3.6 GPIO locking mechanism . 114

5.3.7 I/O alternate function input/output . 114

5.3.8 External interrupt/wakeup lines . 115

5.3.9 Input configuration . 115

5.3.10 Output configuration . 116

5.3.11 Alternate function configuration . 116

5.3.12 Analog configuration . 117

5.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15
port pins . 118

5.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins 118

5.3.15 Selection of RTC_AF1 alternate functions . 118

5.4 GPIO registers . 119

5.4.1 GPIO port mode register (GPIOx_MODER) (x = A..E and H) 119

5.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..E and H) . . 120

RM0038 Contents

Doc ID 15965 Rev 4 5/598

5.4.3 GPIO port output speed register (GPIOx_OSPEEDR)
(x = A..E and H) . 120

5.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x = A..E and H) . 120

5.4.5 GPIO port input data register (GPIOx_IDR) (x = A..E and H) 121

5.4.6 GPIO port output data register (GPIOx_ODR) (x = A..E and H) 121

5.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..E and H) 122

5.4.8 GPIO port configuration lock register (GPIOx_LCKR)
(x = A..E and H) . 122

5.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..E and H) 123

5.4.10 GPIO alternate function high register (GPIOx_AFRH)
(x = A..E and H) . 124

5.4.11 GPIO register map . 124

6 System configuration controller (SYSCFG) and
routing interface (RI) . 126

6.1 SYSCFG and RI introduction . 126

6.2 RI main features . 126

6.3 RI functional description . 128

6.3.1 Special I/O configuration . 128

6.3.2 Input capture routing . 130

6.3.3 Reference voltage routing . 131

6.4 RI registers . 132

6.4.1 RI input capture register (RI_ICR) . 132

6.4.2 RI analog switches control register (RI_ASCR1) 134

6.4.3 RI analog switch control register 2 (RI_ASCR2) 135

6.4.4 RI hysteresis control register (RI_HYSCR1) . 136

6.4.5 RI Hysteresis control register (RI_HYSCR2) . 136

6.4.6 RI Hysteresis control register (RI_HYSCR3) . 137

6.4.7 Analog switch mode register (RI_ASMR1) . 137

6.4.8 Channel mask register (RI_CMR1) . 138

6.4.9 Channel identification for capture register (RI_CICR1) 138

6.4.10 Analog switch mode register (RI_ASMR2) . 139

6.4.11 Channel mask register (RI_CMR2) . 139

6.4.12 Channel identification for capture register (RI_CICR2) 140

6.4.13 Analog switch mode register (RI_ASMR3) . 140

6.4.14 Channel mask register (RI_CMR3) . 141

6.4.15 Channel identification for capture register (RI_CICR3) 141

Contents RM0038

6/598 Doc ID 15965 Rev 4

6.4.16 RI register map . 142

6.5 SYSCFG registers . 144

6.5.1 SYSCFG memory remap register (SYSCFG_MEMRMP) 144

6.5.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC) . . 144

6.5.3 SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1) . 145

6.5.4 SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2) . 145

6.5.5 SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3) . 146

6.5.6 SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICR4) . 146

6.5.7 SYSCFG register map . 147

7 Interrupts and events . 148

7.1 Nested vectored interrupt controller (NVIC) . 148

7.1.1 SysTick calibration value register . 148

7.1.2 Interrupt and exception vectors . 148

7.2 External interrupt/event controller (EXTI) . 150

7.2.1 Main features . 150

7.2.2 Block diagram . 151

7.2.3 Wakeup event management . 151

7.2.4 Functional description . 151

7.2.5 External interrupt/event line mapping . 152

7.3 EXTI registers . 154

7.3.1 EXTI interrupt mask register (EXTI_IMR) . 154

7.3.2 EXTI event mask register (EXTI_EMR) . 154

7.3.3 EXTI rising edge trigger selection register (EXTI_RTSR) 155

7.3.4 Falling edge trigger selection register (EXTI_FTSR) 156

7.3.5 EXTI software interrupt event register (EXTI_SWIER) 156

7.3.6 EXTI pending register (EXTI_PR) . 157

7.3.7 EXTI register map . 157

8 DMA controller (DMA) . 158

8.1 DMA introduction . 158

8.2 DMA main features . 158

8.3 DMA functional description . 159

8.3.1 DMA transactions . 159

RM0038 Contents

Doc ID 15965 Rev 4 7/598

8.3.2 Arbiter . 160

8.3.3 DMA channels . 160

8.3.4 Programmable data width, data alignment and endians 161

8.3.5 Error management . 163

8.3.6 Interrupts . 163

8.3.7 DMA request mapping . 163

8.4 DMA registers . 166

8.4.1 DMA interrupt status register (DMA_ISR) . 166

8.4.2 DMA interrupt flag clear register (DMA_IFCR) 167

8.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1..7,
where x = channel number) . 168

8.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1..7),
where x = channel number) . 169

8.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1..7),
where x = channel number) . 170

8.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1..7),
where x = channel number) . 170

8.4.7 DMA register map . 171

9 Analog-to-digital converter (ADC) . 173

9.1 ADC introduction . 173

9.2 ADC main features . 173

9.3 ADC functional description . 173

9.3.1 ADC power on-off control . 175

9.3.2 ADC clock . 176

9.3.3 Channel selection . 176

9.3.4 Single conversion mode . 177

9.3.5 Continuous conversion mode . 177

9.3.6 Timing diagram . 178

9.3.7 Analog watchdog . 178

9.3.8 Scan mode . 179

9.3.9 Injected channel management . 180

9.3.10 Discontinuous mode . 181

9.4 Data alignment . 181

9.5 Channel-wise programmable sampling time . 182

9.6 Conversion on external trigger . 183

9.7 Aborting a conversion . 185

Contents RM0038

8/598 Doc ID 15965 Rev 4

9.7.1 Injected channels . 185

9.7.2 Regular channels . 185

9.8 Conversion resolution . 185

9.9 Hardware freeze and delay insertion modes for slow conversions 185

9.9.1 Inserting a delay after each regular conversion 186

9.9.2 Inserting a delay after each sequence of auto-injected conversions . . 187

9.10 Power saving . 188

9.11 Data management and overrun detection . 190

9.11.1 Using the DMA . 190

9.11.2 Managing a sequence of conversions without using the DMA 190

9.11.3 Conversions without reading all the data . 191

9.11.4 Overrun detection . 191

9.12 Temperature sensor . 191

9.12.1 How to read the temperature . 192

9.13 Internal reference voltage (VREFINT) conversion 193

9.14 ADC interrupts . 193

9.15 ADC registers . 194

9.15.1 ADC status register (ADC_SR) . 194

9.15.2 ADC control register 1 (ADC_CR1) . 196

9.15.3 ADC control register 2 (ADC_CR2) . 198

9.15.4 ADC sample time register 1 (ADC_SMPR1) . 202

9.15.5 ADC sample time register 2 (ADC_SMPR2) . 202

9.15.6 ADC sample time register 3 (ADC_SMPR3) . 203

9.15.7 ADC injected channel data offset register x (ADC_JOFRx)(x=1..4) . . 204

9.15.8 ADC watchdog higher threshold register (ADC_HTR) 204

9.15.9 ADC watchdog lower threshold register (ADC_LTR) 204

9.15.10 ADC regular sequence register 1 (ADC_SQR1) 205

9.15.11 ADC regular sequence register 2 (ADC_SQR2) 205

9.15.12 ADC regular sequence register 3 (ADC_SQR3) 206

9.15.13 ADC regular sequence register 4 (ADC_SQR4) 207

9.15.14 ADC regular sequence register 5 (ADC_SQR5) 207

9.15.15 ADC injected sequence register (ADC_JSQR) 208

9.15.16 ADC injected data register x (ADC_JDRx) (x= 1..4) 208

9.15.17 ADC regular data register (ADC_DR) . 209

9.15.18 ADC common status register (ADC_CSR) . 209

9.15.19 ADC common control register (ADC_CCR) . 210

RM0038 Contents

Doc ID 15965 Rev 4 9/598

9.15.20 ADC register map . 211

10 Digital-to-analog converter (DAC) . 213

10.1 DAC introduction . 213

10.2 DAC main features . 213

10.3 DAC functional description . 215

10.3.1 DAC channel enable . 215

10.3.2 DAC output buffer enable . 215

10.3.3 DAC data format . 215

10.3.4 DAC conversion . 216

10.3.5 DAC output voltage . 217

10.3.6 DAC trigger selection . 217

10.3.7 DMA request . 217

10.3.8 Noise generation . 218

10.3.9 Triangle-wave generation . 219

10.4 Dual DAC channel conversion . 220

10.4.1 Independent trigger without wave generation 220

10.4.2 Independent trigger with single LFSR generation 221

10.4.3 Independent trigger with different LFSR generation 221

10.4.4 Independent trigger with single triangle generation 221

10.4.5 Independent trigger with different triangle generation 222

10.4.6 Simultaneous software start . 222

10.4.7 Simultaneous trigger without wave generation 222

10.4.8 Simultaneous trigger with single LFSR generation 223

10.4.9 Simultaneous trigger with different LFSR generation 223

10.4.10 Simultaneous trigger with single triangle generation 223

10.4.11 Simultaneous trigger with different triangle generation 224

10.5 DAC registers . 224

10.5.1 DAC control register (DAC_CR) . 224

10.5.2 DAC software trigger register (DAC_SWTRIGR) 227

10.5.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1) . 228

10.5.4 DAC channel1 12-bit left aligned data holding register
(DAC_DHR12L1) . 228

10.5.5 DAC channel1 8-bit right aligned data holding register
(DAC_DHR8R1) . 228

10.5.6 DAC channel2 12-bit right aligned data holding register
(DAC_DHR12R2) . 229

Contents RM0038

10/598 Doc ID 15965 Rev 4

10.5.7 DAC channel2 12-bit left aligned data holding register
(DAC_DHR12L2) . 229

10.5.8 DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2) . 229

10.5.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD) . 230

10.5.10 DUAL DAC 12-bit left aligned data holding register
(DAC_DHR12LD) . 230

10.5.11 DUAL DAC 8-bit right aligned data holding register
(DAC_DHR8RD) . 231

10.5.12 DAC channel1 data output register (DAC_DOR1) 231

10.5.13 DAC channel2 data output register (DAC_DOR2) 231

10.5.14 DAC status register (DAC_SR) . 232

10.5.15 DAC register map . 233

11 Comparators (COMP) . 234

11.1 Introduction . 234

11.2 Main features . 234

11.3 COMP clock . 236

11.4 Comparator 1 (COMP1) . 236

11.5 Comparator 2 (COMP2) . 237

11.6 Comparators in Window mode . 239

11.7 Low power modes . 239

11.8 Interrupts . 240

11.9 COMP registers . 240

11.9.1 COMP comparator control and status register (COMP_CSR) 240

11.9.2 COMP register map . 242

12 LCD controller (LCD) . 243

12.1 Introduction . 243

12.2 LCD main features . 243

12.3 Glossary . 244

12.4 LCD functional description . 245

12.4.1 General description . 245

12.4.2 Frequency generator . 246

12.4.3 Common driver . 247

12.4.4 Segment driver . 251

RM0038 Contents

Doc ID 15965 Rev 4 11/598

12.4.5 Voltage generator . 255

12.4.6 Double buffer memory . 257

12.4.7 COM and SEG multiplexing . 257

12.4.8 Flowchart . 261

12.5 LCD registers . 262

12.5.1 LCD control register (LCD_CR) . 262

12.5.2 LCD frame control register (LCD_FCR) . 263

12.5.3 LCD status register (LCD_SR) . 265

12.5.4 LCD clear register (LCD_CLR) . 266

12.5.5 LCD display memory (LCD_RAM) . 268

12.5.6 LCD register map . 268

13 General-purpose timers (TIM2 to TIM4) . 270

13.1 TIM2 to TIM4 introduction . 270

13.2 TIM2 to TIM4 main features . 270

13.3 TIM2 to TIM4 functional description . 271

13.3.1 Time-base unit . 271

13.3.2 Counter modes . 273

13.3.3 Clock selection . 282

13.3.4 Capture/compare channels . 285

13.3.5 Input capture mode . 287

13.3.6 PWM input mode . 288

13.3.7 Forced output mode . 289

13.3.8 Output compare mode . 289

13.3.9 PWM mode . 290

13.3.10 One-pulse mode . 293

13.3.11 Clearing the OCxREF signal on an external event 294

13.3.12 Encoder interface mode . 295

13.3.13 Timer input XOR function . 297

13.3.14 Timers and external trigger synchronization . 297

13.3.15 Timer synchronization . 300

13.3.16 Debug mode . 305

13.4 TIMx registers . 306

13.4.1 TIMx control register 1 (TIMx_CR1) . 306

13.4.2 TIMx control register 2 (TIMx_CR2) . 308

13.4.3 TIMx slave mode control register (TIMx_SMCR) 309

13.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER) 311

Contents RM0038

12/598 Doc ID 15965 Rev 4

13.4.5 TIMx status register (TIMx_SR) . 312

13.4.6 TIMx event generation register (TIMx_EGR) . 314

13.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1) 315

13.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2) 318

13.4.9 TIMx capture/compare enable register (TIMx_CCER) 319

13.4.10 TIMx counter (TIMx_CNT) . 321

13.4.11 TIMx prescaler (TIMx_PSC) . 321

13.4.12 TIMx auto-reload register (TIMx_ARR) . 321

13.4.13 TIMx capture/compare register 1 (TIMx_CCR1) 322

13.4.14 TIMx capture/compare register 2 (TIMx_CCR2) 322

13.4.15 TIMx capture/compare register 3 (TIMx_CCR3) 323

13.4.16 TIMx capture/compare register 4 (TIMx_CCR4) 323

13.4.17 TIMx DMA control register (TIMx_DCR) . 324

13.4.18 TIMx DMA address for full transfer (TIMx_DMAR) 324

13.4.19 TIMx register map . 326

14 General-purpose timers (TIM9/10/11) . 328

14.1 TIM9/10/11 introduction . 328

14.2 TIM9/10/11 main features . 328

14.2.1 TIM9 main features . 328

14.2.2 TIM10 and TIM11 main features . 329

14.3 TIM9/10/11 functional description . 331

14.3.1 Time-base unit . 331

14.3.2 Counter modes . 332

14.3.3 Clock selection . 335

14.3.4 Capture/compare channels . 338

14.3.5 Input capture mode . 339

14.3.6 PWM input mode (available for TIM9 only) . 340

14.3.7 Forced output mode . 341

14.3.8 Output compare mode . 341

14.3.9 PWM mode . 342

14.3.10 One-pulse mode (available for TIM9 only) . 344

14.3.11 Timers and external trigger synchronization (available for TIM9 only) . 345

14.3.12 Timer synchronization (available for TIM9 only) 347

14.3.13 Debug mode . 352

14.4 TIM9/10/11 registers . 353

14.4.1 TIMx control register 1 (TIMx_CR1) . 353

RM0038 Contents

Doc ID 15965 Rev 4 13/598

14.4.2 TIMx control register 2 (TIMx_CR2) (available for TIM9 only) 354

14.4.3 TIMx slave mode control register (TIMx_SMCR) 355

14.4.4 TIMx Interrupt enable register (TIMx_DIER) . 358

14.4.5 TIMx status register (TIMx_SR) . 358

14.4.6 TIMx event generation register (TIMx_EGR) . 360

14.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1) 361

14.4.8 TIMx capture/compare enable register (TIMx_CCER) 364

14.4.9 TIMx counter (TIMx_CNT) . 365

14.4.10 TIMx prescaler (TIMx_PSC) . 365

14.4.11 TIMx auto-reload register (TIMx_ARR) . 366

14.4.12 TIMx capture/compare register 1 (TIMx_CCR1) 366

14.4.13 TIMx capture/compare register 2 (TIMx_CCR2)
(available only for TIM9) . 367

14.4.14 TIM9 option register 1 (TIM9_OR) . 367

14.4.15 TIM10 option register 1 (TIM10_OR) . 368

14.4.16 TIM11 option register 1 (TIM11_OR) . 368

14.4.17 TIMx register map . 368

15 Basic timers (TIM6&TIM7) . 371

15.1 TIM6&TIM7 introduction . 371

15.2 TIM6&TIM7 main features . 371

15.3 TIM6&TIM7 functional description . 372

15.3.1 Time-base unit . 372

15.3.2 Counting mode . 373

15.3.3 Clock source . 376

15.3.4 Debug mode . 376

15.4 TIM6&TIM7 registers . 377

15.4.1 TIM6&TIM7 control register 1 (TIMx_CR1) . 377

15.4.2 TIM6&TIM7 control register 2 (TIMx_CR2) . 378

15.4.3 TIM6&TIM7 DMA/Interrupt enable register (TIMx_DIER) 378

15.4.4 TIM6&TIM7 status register (TIMx_SR) . 379

15.4.5 TIM6&TIM7 event generation register (TIMx_EGR) 379

15.4.6 TIM6&TIM7 counter (TIMx_CNT) . 379

15.4.7 TIM6&TIM7 prescaler (TIMx_PSC) . 380

15.4.8 TIM6&TIM7 auto-reload register (TIMx_ARR) 380

15.4.9 TIM6&TIM7 register map . 381

Contents RM0038

14/598 Doc ID 15965 Rev 4

16 Independent watchdog (IWDG) . 382

16.1 IWDG introduction . 382

16.2 IWDG main features . 382

16.3 IWDG functional description . 382

16.3.1 Hardware watchdog . 382

16.3.2 Register access protection . 383

16.3.3 Debug mode . 383

16.4 IWDG registers . 384

16.4.1 Key register (IWDG_KR) . 384

16.4.2 Prescaler register (IWDG_PR) . 384

16.4.3 Reload register (IWDG_RLR) . 385

16.4.4 Status register (IWDG_SR) . 385

16.4.5 IWDG register map . 386

17 Window watchdog (WWDG) . 387

17.1 WWDG introduction . 387

17.2 WWDG main features . 387

17.3 WWDG functional description . 387

17.4 How to program the watchdog timeout . 389

17.5 Debug mode . 389

17.6 WWDG registers . 390

17.6.1 Control register (WWDG_CR) . 390

17.6.2 Configuration register (WWDG_CFR) . 391

17.6.3 Status register (WWDG_SR) . 391

17.6.4 WWDG register map . 392

18 Universal serial bus full-speed device interface (USB) 393

18.1 USB introduction . 393

18.2 USB main features . 393

18.3 USB functional description . 393

18.3.1 Description of USB blocks . 395

18.4 Programming considerations . 396

18.4.1 Generic USB device programming . 396

18.4.2 System and power-on reset . 397

18.4.3 Double-buffered endpoints . 403

RM0038 Contents

Doc ID 15965 Rev 4 15/598

18.4.4 Isochronous transfers . 405

18.4.5 Suspend/Resume events . 406

18.5 USB registers . 408

18.5.1 Common registers . 409

18.5.2 Endpoint-specific registers . 416

18.5.3 Buffer descriptor table . 420

18.5.4 USB register map . 423

19 CRC calculation unit . 425

19.1 CRC introduction . 425

19.2 CRC main features . 425

19.3 CRC functional description . 425

19.4 CRC registers . 426

19.4.1 Data register (CRC_DR) . 426

19.4.2 Independent data register (CRC_IDR) . 426

19.4.3 Control register (CRC_CR) . 427

19.4.4 CRC register map . 427

20 Real-time clock (RTC) . 428

20.1 Introduction . 428

20.2 RTC main features . 429

20.3 RTC functional description . 430

20.3.1 Clock and prescalers . 430

20.3.2 Real-time clock and calendar . 431

20.3.3 Programmable alarms . 431

20.3.4 Periodic auto-wakeup . 432

20.3.5 RTC initialization and configuration . 432

20.3.6 Reading the calendar . 434

20.3.7 Resetting the RTC . 434

20.3.8 RTC reference clock detection . 435

20.3.9 RTC digital calibration . 435

20.3.10 Time-stamp function . 436

20.3.11 Tamper detection . 437

20.3.12 Calibration clock output . 438

20.3.13 Alarm output . 438

20.4 RTC and low power modes . 438

Contents RM0038

16/598 Doc ID 15965 Rev 4

20.5 RTC interrupts . 439

20.6 RTC registers . 440

20.6.1 RTC time register (RTC_TR) . 440

20.6.2 RTC date register (RTC_DR) . 441

20.6.3 RTC control register (RTC_CR) . 442

20.6.4 RTC initialization and status register (RTC_ISR) 444

20.6.5 RTC prescaler register (RTC_PRER) . 446

20.6.6 RTC wakeup timer register (RTC_WUTR) . 447

20.6.7 RTC calibration register (RTC_CALIBR) . 447

20.6.8 RTC alarm A register (RTC_ALRMAR) . 448

20.6.9 RTC alarm B register (RTC_ALRMBR) . 449

20.6.10 RTC write protection register (RTC_WPR) . 450

20.6.11 RTC time stamp time register (RTC_TSTR) . 451

20.6.12 RTC time stamp date register (RTC_TSDR) . 451

20.6.13 RTC tamper and alternate function configuration register
(RTC_TAFCR) . 452

20.6.14 RTC backup registers (RTC_BKPxR) . 453

20.6.15 Register map . 453

21 Inter-integrated circuit (I2C) interface . 455

21.1 I2C introduction . 455

21.2 I2C main features . 455

21.3 I2C functional description . 456

21.3.1 Mode selection . 456

21.3.2 I2C slave mode . 458

21.3.3 I2C master mode . 460

21.3.4 Error conditions . 466

21.3.5 SDA/SCL line control . 467

21.3.6 SMBus . 467

21.3.7 DMA requests . 469

21.3.8 Packet error checking . 471

21.4 I2C interrupts . 471

21.5 I2C debug mode . 473

21.6 I2C registers . 473

21.6.1 Control register 1 (I2C_CR1) . 473

21.6.2 Control register 2 (I2C_CR2) . 475

21.6.3 Own address register 1 (I2C_OAR1) . 476

RM0038 Contents

Doc ID 15965 Rev 4 17/598

21.6.4 Own address register 2 (I2C_OAR2) . 477

21.6.5 Data register (I2C_DR) . 477

21.6.6 Status register 1 (I2C_SR1) . 478

21.6.7 Status register 2 (I2C_SR2) . 481

21.6.8 Clock control register (I2C_CCR) . 482

21.6.9 TRISE register (I2C_TRISE) . 483

21.6.10 I2C register map . 484

22 Serial peripheral interface (SPI) . 485

22.1 SPI introduction . 485

22.2 SPI main features . 486

22.2.1 SPI features . 486

22.3 SPI functional description . 486

22.3.1 General description . 486

22.3.2 Configuring the SPI in slave mode . 490

22.3.3 Configuring the SPI in master mode . 492

22.3.4 Configuring the SPI for Simplex communication 493

22.3.5 Data transmission and reception procedures 493

22.3.6 CRC calculation . 500

22.3.7 Status flags . 502

22.3.8 Disabling the SPI . 503

22.3.9 SPI communication using DMA (direct memory addressing) 504

22.3.10 Error flags . 505

22.3.11 SPI interrupts . 506

22.4 SPI registers . 507

22.4.1 SPI control register 1 (SPI_CR1) . 507

22.4.2 SPI control register 2 (SPI_CR2) . 509

22.4.3 SPI status register (SPI_SR) . 510

22.4.4 SPI data register (SPI_DR) . 511

22.4.5 SPI CRC polynomial register (SPI_CRCPR) . 511

22.4.6 SPI RX CRC register (SPI_RXCRCR) . 512

22.4.7 SPI TX CRC register (SPI_TXCRCR) . 512

22.4.8 SPI register map . 512

23 Universal synchronous asynchronous receiver
transmitter (USART) . 514

23.1 USART introduction . 514

Contents RM0038

18/598 Doc ID 15965 Rev 4

23.2 USART main features . 514

23.3 USART functional description . 515

23.3.1 USART character description . 518

23.3.2 Transmitter . 519

23.3.3 Receiver . 522

23.3.4 Fractional baud rate generation . 526

23.3.5 USART receiver’s tolerance to clock deviation 533

23.3.6 Multiprocessor communication . 534

23.3.7 Parity control . 536

23.3.8 LIN (local interconnection network) mode . 537

23.3.9 USART synchronous mode . 539

23.3.10 Single-wire half-duplex communication . 541

23.3.11 Smartcard . 542

23.3.12 IrDA SIR ENDEC block . 544

23.3.13 Continuous communication using DMA . 546

23.3.14 Hardware flow control . 548

23.4 USART interrupts . 550

23.5 USART mode configuration . 551

23.6 USART registers . 551

23.6.1 Status register (USART_SR) . 551

23.6.2 Data register (USART_DR) . 553

23.6.3 Baud rate register (USART_BRR) . 553

23.6.4 Control register 1 (USART_CR1) . 554

23.6.5 Control register 2 (USART_CR2) . 557

23.6.6 Control register 3 (USART_CR3) . 558

23.6.7 Guard time and prescaler register (USART_GTPR) 560

23.6.8 USART register map . 561

24 Debug support (DBG) . 562

24.1 Overview . 562

24.2 Reference ARM documentation . 563

24.3 SWJ debug port (serial wire and JTAG) . 563

24.3.1 Mechanism to select the JTAG-DP or the SW-DP 564

24.4 Pinout and debug port pins . 564

24.4.1 SWJ debug port pins . 565

24.4.2 Flexible SWJ-DP pin assignment . 565

RM0038 Contents

Doc ID 15965 Rev 4 19/598

24.4.3 Internal pull-up and pull-down on JTAG pins . 566

24.4.4 Using serial wire and releasing the unused debug pins as GPIOs . . . 567

24.5 STM32L15xxx JTAG TAP connection . 567

24.6 ID codes and locking mechanism . 568

24.6.1 MCU device ID code . 568

24.6.2 Boundary scan TAP . 569

24.6.3 Cortex-M3 TAP . 569

24.6.4 Cortex-M3 JEDEC-106 ID code . 569

24.7 JTAG debug port . 569

24.8 SW debug port . 571

24.8.1 SW protocol introduction . 571

24.8.2 SW protocol sequence . 571

24.8.3 SW-DP state machine (reset, idle states, ID code) 572

24.8.4 DP and AP read/write accesses . 573

24.8.5 SW-DP registers . 573

24.8.6 SW-AP registers . 574

24.9 AHB-AP (AHB access port) - valid for both JTAG-DP
and SW-DP . 574

24.10 Core debug . 575

24.11 Capability of the debugger host to connect under system reset 576

24.12 FPB (Flash patch breakpoint) . 576

24.13 DWT (data watchpoint trigger) . 576

24.14 ITM (instrumentation trace macrocell) . 577

24.14.1 General description . 577

24.14.2 Time stamp packets, synchronization and overflow packets 577

24.15 ETM (Embedded trace macrocell) . 579

24.15.1 General description . 579

24.15.2 Signal protocol, packet types . 579

24.15.3 Main ETM registers . 579

24.15.4 Configuration example . 580

24.16 MCU debug component (DBGMCU) . 580

24.16.1 Debug support for low-power modes . 580

24.16.2 Debug support for timers, watchdog and I2C . 580

24.16.3 Debug MCU configuration register . 581

24.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ) 582

24.16.5 Debug MCU APB2 freeze register (DBGMCU_APB2_FZ) 584

Contents RM0038

20/598 Doc ID 15965 Rev 4

24.17 TPIU (trace port interface unit) . 585

24.17.1 Introduction . 585

24.17.2 TRACE pin assignment . 585

24.17.3 TPUI formatter . 587

24.17.4 TPUI frame synchronization packets . 588

24.17.5 Transmission of the synchronization frame packet 588

24.17.6 Synchronous mode . 588

24.17.7 Asynchronous mode . 589

24.17.8 TRACECLKIN connection inside the STM32L15xxx 589

24.17.9 TPIU registers . 590

24.17.10 Example of configuration . 591

24.18 DBG register map . 591

25 Device electronic signature . 592

25.1 Memory size register . 592

25.1.1 Flash size register . 592

25.2 Unique device ID registers (96 bits) . 592

26 Revision history . 594

RM0038 List of tables

Doc ID 15965 Rev 4 21/598

List of tables

Table 1. Register boundary addresses. 32
Table 2. Flash module organization . 36
Table 3. Number of wait states (WS) according to CPU clock (HCLK)

frequency . 37
Table 5. Flash interface register map and reset values . 41
Table 6. Boot modes. 41
Table 7. Memory mapping vs. boot mode/physical remap . 42
Table 8. Performance versus VCORE ranges . 47
Table 9. Summary of low-power modes . 55
Table 10. Sleep-now. 59
Table 11. Sleep-on-exit. 59
Table 12. Sleep-now. 61
Table 13. Sleep-on-exit. 61
Table 14. Stop mode . 62
Table 15. Standby mode. 63
Table 16. PWR - register map and reset values. 69
Table 17. RCC register map and reset values . 106
Table 18. Port bit configuration table . 110
Table 19. Flexible SWJ-DP pin assignment . 111
Table 20. RTC_AF1 pin . 118
Table 21. GPIO register map and reset values . 124
Table 22. I/O groups and selection. 128
Table 23. Input capture mapping . 130
Table 24. Timer selection . 131
Table 25. Input capture selection . 131
Table 26. RI register map and reset values . 142
Table 27. SYSCFG register map and reset values. 147
Table 28. Vector table . 148
Table 29. External interrupt/event controller register map and reset values. 157
Table 30. Programmable data width & endian behavior (when bits PINC = MINC = 1) 162
Table 31. DMA interrupt requests . 163
Table 32. Summary of DMA requests for each channel . 165
Table 33. DMA register map and reset values . 171
Table 34. ADC pins. 175
Table 35. Analog watchdog channel selection . 179
Table 36. Configuring the trigger edge detection . 183
Table 37. External trigger for regular channels. 183
Table 38. External trigger for injected channels . 184
Table 39. ADC interrupts . 194
Table 40. ADC global register map. 211
Table 41. ADC register map and reset values . 211
Table 42. ADC register map and reset values (common registers) . 212
Table 43. DAC pins. 214
Table 44. External triggers . 217
Table 45. DAC register map . 233
Table 46. Comparator behavior in the low power modes . 239
Table 47. COMP register map and reset values. 242
Table 48. Example of frame rate calculation . 246

List of tables RM0038

22/598 Doc ID 15965 Rev 4

Table 49. Blink frequency . 255
Table 50. Remapping capability . 258
Table 51. LCD register map and reset values . 268
Table 52. Counting direction versus encoder signals . 296
Table 53. TIMx internal trigger connection . 311
Table 54. Output control bit for standard OCx channels. 320
Table 55. TIM2 to TIM4 register map and reset values . 326
Table 56. TIMx internal trigger connection . 357
Table 57. Output control bit for standard OCx channels. 365
Table 58. TIM9 register map and reset values . 368
Table 59. TIM10/11 register map and reset values . 370
Table 60. TIM6&TIM7 register map and reset values. 381
Table 61. Min/max IWDG timeout period at 37 kHz (LSI) . 383
Table 62. IWDG register map and reset values . 386
Table 63. WWDG register map and reset values . 392
Table 64. Double-buffering buffer flag definition. 404
Table 65. Bulk double-buffering memory buffers usage . 404
Table 66. Isochronous memory buffers usage . 406
Table 67. Resume event detection . 407
Table 68. Reception status encoding . 419
Table 69. Endpoint type encoding . 419
Table 70. Endpoint kind meaning . 419
Table 71. Transmission status encoding . 420
Table 72. Definition of allocated buffer memory . 423
Table 73. USB register map and reset values . 423
Table 74. CRC calculation unit register map and reset values. 427
Table 75. Effect of low power modes on RTC . 438
Table 76. Interrupt control bits . 439
Table 77. RTC register map and reset values . 453
Table 78. SMBus vs. I2C . 467
Table 79. I2C Interrupt requests . 472
Table 80. I2C register map and reset values . 484
Table 81. SPI interrupt requests . 506
Table 82. SPI register map and reset values . 513
Table 83. Noise detection from sampled data . 525
Table 84. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz),

oversampling by 16. 528
Table 85. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK =12 MHz),

oversampling by 8. 529
Table 86. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz),

oversampling by 16. 529
Table 87. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz),

oversampling by 8. 530
Table 88. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),

oversampling by 16. 531
Table 89. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),

oversampling by 8. 531
Table 90. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),

oversampling by 16. 532
Table 91. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),

oversampling by 8. 533
Table 92. USART receiver’s tolerance when DIV fraction is 0 . 534

RM0038 List of tables

Doc ID 15965 Rev 4 23/598

Table 93. USART receiver’s tolerance when DIV_Fraction is different from 0 534
Table 94. Frame formats . 536
Table 95. USART interrupt requests. 550
Table 96. USART register map and reset values . 561
Table 97. SWJ debug port pins . 565
Table 98. Flexible SWJ-DP pin assignment . 565
Table 99. JTAG debug port data registers . 569
Table 100. 32-bit debug port registers addressed through the shifted value A[3:2] 570
Table 101. Packet request (8-bits) . 571
Table 102. ACK response (3 bits). 572
Table 103. DATA transfer (33 bits) . 572
Table 104. SW-DP registers . 573
Table 105. Cortex-M3 AHB-AP registers . 575
Table 106. Core debug registers . 575
Table 107. Main ITM registers . 578
Table 108. Main ETM registers. 579
Table 109. Asynchronous TRACE pin assignment. 585
Table 110. Synchronous TRACE pin assignment . 586
Table 111. Flexible TRACE pin assignment . 587
Table 112. Important TPIU registers. 590
Table 113. DBG register map and reset values . 591
Table 114. Document revision history . 594

List of figures RM0038

24/598 Doc ID 15965 Rev 4

List of figures

Figure 1. System architecture . 30
Figure 2. Power supply overview . 44
Figure 3. STM32L15xxx performance versus VDD and VCORE range. 48
Figure 4. Power supply supervisors . 51
Figure 5. Power on reset/power down reset waveform . 52
Figure 6. BOR thresholds . 53
Figure 7. PVD thresholds. 54
Figure 8. Simplified diagram of the reset circuit . 71
Figure 9. Clock tree . 73
Figure 10. HSE/ LSE clock sources. 74
Figure 11. System clock source frequency . 78
Figure 12. Using the TIM9/TIM10/TIM11 channel 1 input capture to measure

frequencies . 80
Figure 13. Basic structure of a standard I/O port bit . 109
Figure 14. Basic structure of a five-volt tolerant I/O port bit . 109
Figure 15. Selecting an alternate function . 113
Figure 16. Input floating/pull up/pull down configurations . 115
Figure 17. Output configuration . 116
Figure 18. Alternate function configuration . 117
Figure 19. High impedance-analog configuration . 117
Figure 20. Routing interface (RI) block diagram . 127
Figure 21. Internal reference voltage output . 131
Figure 22. External interrupt/event controller block diagram . 151
Figure 23. External interrupt/event GPIO mapping . 153
Figure 24. DMA block diagram in STM32L15xxx devices . 159
Figure 25. DMA request mapping . 164
Figure 26. ADC block diagram. 174
Figure 27. Timing diagram (normal mode, PDI=0). 178
Figure 28. Analog watchdog’s guarded area . 179
Figure 29. Injected conversion latency . 180
Figure 30. Right alignment of 12-bit data . 182
Figure 31. Left alignment of 12-bit data . 182
Figure 32. Left alignment of 6-bit data . 182
Figure 33. ADC freeze mode . 186
Figure 34. Continuous regular conversions with a delay . 187
Figure 35. Continuous conversions with a delay between each conversion 188
Figure 36. Automatic power-down control: example 1 . 189
Figure 37. Automatic power-down control: example 2 . 189
Figure 38. Automatic power-down control: example 3 . 190
Figure 39. Temperature sensor and VREFINT channel block diagram . 192
Figure 40. ADC flags and interrupts. 193
Figure 41. DAC channel block diagram . 214
Figure 42. Data registers in single DAC channel mode . 215
Figure 43. Data registers in dual DAC channel mode . 216
Figure 44. Timing diagram for conversion with trigger disabled TEN = 0 . 216
Figure 45. DAC LFSR register calculation algorithm . 218
Figure 46. DAC conversion (SW trigger enabled) with LFSR wave generation. 219
Figure 47. DAC triangle wave generation . 219

RM0038 List of figures

Doc ID 15965 Rev 4 25/598

Figure 48. DAC conversion (SW trigger enabled) with triangle wave generation 220
Figure 49. Comparator block diagram . 235
Figure 50. COMP1 interconnections . 236
Figure 51. COMP2 interconnections . 237
Figure 52. Redirecting the COMP2 output . 238
Figure 53. Comparators in Window mode . 239
Figure 54. LCD controller block diagram . 245
Figure 55. 1/3 bias, 1/4 duty . 248
Figure 56. Static duty . 249
Figure 57. Static duty . 249
Figure 58. 1/2 duty, 1/2 bias . 250
Figure 59. 1/3 duty, 1/3 bias . 252
Figure 60. 1/4 duty, 1/3 bias . 253
Figure 61. 1/8 duty, 1/4 bias . 254
Figure 62. VLCD pin for 1/2 1/3 1/4 bias . 256
Figure 63. Deadtime . 256
Figure 64. SEG/COM mux feature example . 260
Figure 65. Flowchart example . 261
Figure 66. General-purpose timer block diagram . 271
Figure 67. Counter timing diagram with prescaler division change from 1 to 2 272
Figure 68. Counter timing diagram with prescaler division change from 1 to 4 273
Figure 69. Counter timing diagram, internal clock divided by 1 . 274
Figure 70. Counter timing diagram, internal clock divided by 2 . 274
Figure 71. Counter timing diagram, internal clock divided by 4 . 274
Figure 72. Counter timing diagram, internal clock divided by N. 275
Figure 73. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded). 275
Figure 74. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded). 276
Figure 75. Counter timing diagram, internal clock divided by 1 . 277
Figure 76. Counter timing diagram, internal clock divided by 2 . 277
Figure 77. Counter timing diagram, internal clock divided by 4 . 277
Figure 78. Counter timing diagram, internal clock divided by N. 278
Figure 79. Counter timing diagram, Update event when repetition counter is not used 278
Figure 80. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 279
Figure 81. Counter timing diagram, internal clock divided by 2 . 280
Figure 82. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 280
Figure 83. Counter timing diagram, internal clock divided by N. 280
Figure 84. Counter timing diagram, Update event with ARPE=1 (counter underflow). 281
Figure 85. Counter timing diagram, Update event with ARPE=1 (counter overflow) 281
Figure 86. Control circuit in normal mode, internal clock divided by 1 . 282
Figure 87. TI2 external clock connection example. 283
Figure 88. Control circuit in external clock mode 1 . 283
Figure 89. External trigger input block . 284
Figure 90. Control circuit in external clock mode 2 . 284
Figure 91. Capture/compare channel (example: channel 1 input stage) . 285
Figure 92. Capture/compare channel 1 main circuit . 285
Figure 93. Output stage of capture/compare channel (channel 1). 286
Figure 94. PWM input mode timing . 288
Figure 95. Output compare mode, toggle on OC1. 290
Figure 96. Edge-aligned PWM waveforms (ARR=8) . 291
Figure 97. Center-aligned PWM waveforms (ARR=8) . 292
Figure 98. Example of one-pulse mode. . 293
Figure 99. Clearing TIMx OCxREF . 295

List of figures RM0038

26/598 Doc ID 15965 Rev 4

Figure 100. Example of counter operation in encoder interface mode. 296
Figure 101. Example of encoder interface mode with IC1FP1 polarity inverted. 297
Figure 102. Control circuit in reset mode . 298
Figure 103. Control circuit in gated mode . 299
Figure 104. Control circuit in trigger mode. 299
Figure 105. Control circuit in external clock mode 2 + trigger mode . 300
Figure 106. Master/Slave timer example . 301
Figure 107. Gating TIM2 with OC1REF of TIM3 . 302
Figure 108. Gating TIM2 with Enable of TIM3 . 303
Figure 109. Triggering TIM2 with update of TIM3 . 303
Figure 110. Triggering TIM2 with Enable of TIM3 . 304
Figure 111. Triggering TIM3 and TIM2 with TIM3 TI1 input. 305
Figure 112. General-purpose timer block diagram . 329
Figure 113. General-purpose timer block diagram (TIM10) . 330
Figure 114. General-purpose timer block diagram (TIM11) . 330
Figure 115. Counter timing diagram with prescaler division change from 1 to 2 332
Figure 116. Counter timing diagram with prescaler division change from 1 to 4 332
Figure 117. Counter timing diagram, internal clock divided by 1 . 333
Figure 118. Counter timing diagram, internal clock divided by 2 . 333
Figure 119. Counter timing diagram, internal clock divided by 4 . 334
Figure 120. Counter timing diagram, internal clock divided by N. 334
Figure 121. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) 334
Figure 122. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) 335
Figure 123. Control circuit in normal mode, internal clock divided by 1 . 336
Figure 124. TI2 external clock connection example. 336
Figure 125. External trigger input block . 337
Figure 126. Control circuit in external clock mode 2 . 337
Figure 127. Capture/compare channel (example: channel 1 input stage) . 338
Figure 128. Capture/compare channel 1 main circuit . 338
Figure 129. Output stage of capture/compare channel (channel 1). 339
Figure 130. PWM input mode timing . 341
Figure 131. Output compare mode, toggle on OC1. 342
Figure 132. Edge-aligned PWM waveforms (ARR=8) . 343
Figure 133. Example of one-pulse mode. . 344
Figure 134. Control circuit in Reset mode . 346
Figure 135. Control circuit in Gated mode . 346
Figure 136. Control circuit in Trigger mode . 347
Figure 137. Master/Slave timer example . 348
Figure 138. Gating TIM2 with the OC1REF of TIM9 . 349
Figure 139. Gating TIM2 with the Enable of TIM9 . 350
Figure 140. Triggering TIM2 with the update of TIM9 . 350
Figure 141. Triggering TIM2 with the Enable of TIM9 . 351
Figure 142. Triggering TIM9 and TIM2 with TIM9’s TI1 input. 352
Figure 143. Basic timer block diagram. 371
Figure 144. Counter timing diagram with prescaler division change from 1 to 2 373
Figure 145. Counter timing diagram with prescaler division change from 1 to 4 373
Figure 146. Counter timing diagram, internal clock divided by 1 . 374
Figure 147. Counter timing diagram, internal clock divided by 2 . 374
Figure 148. Counter timing diagram, internal clock divided by 4 . 375
Figure 149. Counter timing diagram, internal clock divided by N. 375
Figure 150. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not

preloaded). 375

RM0038 List of figures

Doc ID 15965 Rev 4 27/598

Figure 151. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded). 376

Figure 152. Control circuit in normal mode, internal clock divided by 1 . 376
Figure 153. Independent watchdog block diagram . 383
Figure 154. Watchdog block diagram . 388
Figure 155. Window watchdog timing diagram . 389
Figure 156. USB peripheral block diagram . 394
Figure 157. Packet buffer areas with examples of buffer description table locations 399
Figure 158. CRC calculation unit block diagram . 425
Figure 159. RTC block diagram . 430
Figure 160. I2C bus protocol . 457
Figure 161. I2C block diagram. 457
Figure 162. Transfer sequence diagram for slave transmitter . 459
Figure 163. Transfer sequence diagram for slave receiver . 460
Figure 164. Transfer sequence diagram for master transmitter. 463
Figure 165. Transfer sequence diagram for master receiver . 465
Figure 166. I2C interrupt mapping diagram . 472
Figure 167. SPI block diagram. 487
Figure 168. Single master/ single slave application. 488
Figure 169. Hardware/software slave select management . 488
Figure 170. Data clock timing diagram . 490
Figure 171. TXE/RXNE/BSY behavior in Master / full-duplex mode (BIDIMODE=0 and RXONLY=0)

in the case of continuous transfers . 496
Figure 172. TXE/RXNE/BSY behavior in Slave / full-duplex mode (BIDIMODE=0, RXONLY=0) in the

case of continuous transfers. 496
Figure 173. TXE/BSY behavior in Master transmit-only mode (BIDIMODE=0 and RXONLY=0) in the

case of continuous transfers. 497
Figure 174. TXE/BSY in Slave transmit-only mode (BIDIMODE=0 and RXONLY=0) in the case of

continuous transfers . 498
Figure 175. RXNE behavior in receive-only mode (BIDIRMODE=0 and RXONLY=1) in the case of

continuous transfers . 499
Figure 176. TXE/BSY behavior when transmitting (BIDIRMODE=0 and RXONLY=0) in the case of

discontinuous transfers . 500
Figure 177. Transmission using DMA . 504
Figure 178. Reception using DMA . 505
Figure 179. USART block diagram . 517
Figure 180. Word length programming . 518
Figure 181. Configurable stop bits . 520
Figure 182. TC/TXE behavior when transmitting . 521
Figure 183. Start bit detection when oversampling by 16 or 8 . 522
Figure 184. Data sampling when oversampling by 16 . 525
Figure 185. Data sampling when oversampling by 8 . 525
Figure 186. Mute mode using Idle line detection . 535
Figure 187. Mute mode using address mark detection . 535
Figure 188. Break detection in LIN mode (11-bit break length - LBDL bit is set) 538
Figure 189. Break detection in LIN mode vs. Framing error detection. 539
Figure 190. USART example of synchronous transmission. 540
Figure 191. USART data clock timing diagram (M=0) . 540
Figure 192. USART data clock timing diagram (M=1) . 541
Figure 193. RX data setup/hold time . 541
Figure 194. ISO 7816-3 asynchronous protocol . 542
Figure 195. Parity error detection using the 1.5 stop bits . 543

List of figures RM0038

28/598 Doc ID 15965 Rev 4

Figure 196. IrDA SIR ENDEC- block diagram . 545
Figure 197. IrDA data modulation (3/16) -Normal mode . 545
Figure 198. Transmission using DMA . 547
Figure 199. Reception using DMA . 548
Figure 200. Hardware flow control between 2 USARTs . 548
Figure 201. RTS flow control . 549
Figure 202. CTS flow control . 549
Figure 203. USART interrupt mapping diagram . 550
Figure 204. Block diagram of STM32L15xxx-level and

Cortex-M3-level debug support . 562
Figure 205. SWJ debug port . 564
Figure 206. JTAG TAP connections . 568
Figure 207. TPIU block diagram . 585

RM0038 Documentation conventions

Doc ID 15965 Rev 4 29/598

1 Documentation conventions

1.1 List of abbreviations for registers
The following abbreviations are used in register descriptions:

1.2 Peripheral availability
For the peripherals available, and their number, across all STM32L15xxx sales types,
please refer to the STM32L15xxx datasheet.

read/write (rw) Software can read and write to these bits.

read-only (r) Software can only read these bits.

write-only (w) Software can only write to this bit. Reading the bit returns the reset
value.

read/clear (rc_w1) Software can read as well as clear this bit by writing 1. Writing ‘0 has no
effect on the bit value.

read/clear (rc_w0) Software can read as well as clear this bit by writing 0. Writing 1 has no
effect on the bit value.

read/clear by read
(rc_r)

Software can read this bit. Reading this bit automatically clears it to ‘0.
Writing ‘0 has no effect on the bit value.

read/set (rs) Software can read as well as set this bit. Writing ‘0 has no effect on the
bit value.

read-only write
trigger (rt_w)

Software can read this bit. Writing ‘0 or ‘1 triggers an event but has no
effect on the bit value.

toggle (t) Software can only toggle this bit by writing ‘1. Writing ‘0 has no effect.

Reserved (Res.) Reserved bit, must be kept at reset value.

Memory and bus architecture RM0038

30/598 Doc ID 15965 Rev 4

2 Memory and bus architecture

2.1 System architecture
The main system consists of a 32-bit multilayer AHB bus matrix that interconnects:

● Four masters:

– Cortex-M3 I-bus, D-bus and S-bus

– DMA

● Three slaves:

– Internal Flash memory

– Internal SRAM

– AHB to APBx (APB1 or APB2), which connect all the APB peripherals

These are interconnected using the multilayer AHB bus architecture shown in Figure 1:

Figure 1. System architecture

ICode bus

This bus connects the Instruction bus of the Cortex-M3 core to the BusMatrix. This bus is
used by the core to fetch instructions. The target of this bus is a memory containing code
(internal Flash memory or SRAM).

DCode bus

This bus connects the databus of the Cortex-M3 to the BusMatrix. This bus is used by the
core for literal load and debug access. The target of this bus is a memory containing code or
data (internal Flash memory or SRAM).

System bus

RM0038 Memory and bus architecture

Doc ID 15965 Rev 4 31/598

This bus connects the system bus of the Cortex-M3 core to a BusMatrix. This bus is used to
access data located in a peripheral or in SRAM. Instructions may also be fetched on this bus
(less efficient than ICode). The targets of this bus are the internal SRAM and the AHB/APB
bridges.

DMA bus

This bus connects the AHB master interface of the DMA to the bus matrix which manages
the access of the CPU DCode and DMA to the SRAM, Flash memory and peripherals.

Bus matrix

The bus matrix manages the access arbitration between the core system bus and the DMA
master bus. The arbitration uses a round robin algorithm. The bus matrix is composed of
four masters (ICode, DCode, System bus, DMA1 bus,) and three slaves (Flash interface,
SRAM, FSMC, AES and AHB2APB bridges).

AHB peripherals are connected on the system bus through the bus matrix to allow DMA
access.

AHB/APB bridges (APB)

The two AHB/APB bridges provide full synchronous connections between the AHB and the
2 APB buses. The two APB buses operates at full speed (up to 32 MHz).

Refer to Table 1 on page 32 for the address mapping of the AHB and APB peripherals.

After each device reset, all peripheral clocks are disabled (except for the SRAM and Flash
interface). Before using a peripheral, its clock should be enabled in the RCC_AHBENR,
RCC_APB1ENR or RCC_APB2ENR register.

Note: When a 16- or 8-bit access is performed on an APB register, the access is transformed into
a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector.

2.2 Memory organization
Flash program memory, EEPROM data memory, SRAM data memory, registers and I/O
ports are organized within the same linear 4 Gbyte address space.

The bytes are coded in memory in little endian format. The lowest numbered byte in a word
is considered the word’s least significant byte and the highest numbered byte, the most
significant.

For the detailed mapping of peripheral registers, please refer to the related sections.

The addressable memory space is divided into 8 main blocks, each of 512 Mbytes.

All the memory areas that are not allocated to on-chip memories and peripherals are
considered “Reserved”). Refer to the memory map figure in the STM32L15xxx datasheet.

2.3 Memory map
See the STM32L15xxx datasheet for a comprehensive diagram of the memory map. Table 1
gives the boundary addresses of the peripherals available in all STM32L15xxx devices.

Memory and bus architecture RM0038

32/598 Doc ID 15965 Rev 4

Table 1. Register boundary addresses

Boundary address Peripheral Bus Register map

0xA000 0000 - 0xA000 0FFF FSMC

AHB

Section 24.6.9: FSMC
register map on page 651

0x5006 0000 - 0x5006 03FF AES
Section 22.12.13: AES
register map on page 564

0x4002 6000 - 0x4002 63FF DMA
Section 8.4.7: DMA register
map on page 171

0x4002 3C00 - 0x4002 3FFF Flash memory interface
See Flash programming
manual

0x4002 3800 - 0x4002 3BFF RCC
Section 4.3.15: RCC register
map on page 106

0x4002 3000 - 0x4002 33FF CRC
Section 19.4.4: CRC register
map on page 427

0x4002 1400 - 0x4002 17FF GPIOH

Section 5.4.11: GPIO
register map on page 124

0x4002 1000 - 0x4002 13FF GPIOE

0x4002 0C00 - 0x4002 0FFF GPIOD

0x4002 0800 - 0x4002 0BFF GPIOC

0x4002 0400 - 0x4002 07FF GPIOB

0x4002 0000 - 0x4002 03FF GPIOA

0x4001 3800 - 0x4001 3BFF USART1

APB2

Section 23.6.8: USART
register map on page 561

0x4001 3000 - 0x4001 33FF SPI1
Section Table 82.: SPI
register map and reset
values on page 513

0x4001 2C00 - 0x4001 2FFF SDIO
Section 28.9.16: SDIO
register map on page 834

0x4001 2400 - 0x4001 27FF ADC
Section 9.15.20: ADC
register map on page 211

0x4001 1000 - 0x4001 13FF TIM11
Section 14.4.17: TIMx
register map on page 368

0x4001 0C00 - 0x4001 0FFF TIM10
Section 14.4.17: TIMx
register map on page 368

0x4001 0800 - 0x4001 0BFF TIM9
Section 14.4.17: TIMx
register map on page 368

0x4001 0400 - 0x4001 07FF EXTI
Section 7.3.7: EXTI register
map on page 157

0x4001 0000 - 0x4001 03FF SYSCFG
Section 6.5.7: SYSCFG
register map on page 147

RM0038 Memory and bus architecture

Doc ID 15965 Rev 4 33/598

0x4000 7C00 - 0x4000 7C03 COMP

APB1

Section 11.9.2: COMP
register map on page 242

0x4000 7C04 - 0x4000 7C5B RI
Section 6.5.7: SYSCFG
register map on page 147

0x4000 7400 - 0x4000 77FF DAC

APB1

Section 10.5.15: DAC
register map on page 233

0x4000 7000 - 0x4000 73FF PWR
Section 3.4.3: PWR register
map on page 69

0x4000 6000 - 0x4000 63FF
USB device FS SRAM
512 bytes

Section 18.5.4: USB register
map on page 423

0x4000 5C00 - 0x4000 5FFF USB device FS
Section 18.5.4: USB register
map on page 423

0x4000 5800 - 0x4000 5BFF I2C2
Section 21.6.10: I2C register
map on page 484

0x4000 5400 - 0x4000 57FF I2C1
Section 21.6.10: I2C register
map on page 484

0x4000 5000 - 0x4000 53FF USART5
Section 23.6.8: USART
register map on page 561

0x4000 4C00 - 0x4000 4FFF USART4
Section 23.6.8: USART
register map on page 561

Table 1. Register boundary addresses (continued)

Boundary address Peripheral Bus Register map

Memory and bus architecture RM0038

34/598 Doc ID 15965 Rev 4

2.3.1 Embedded SRAM

The STM32L15xxx features 16 Kbytes of SRAM. It can be accessed as bytes, half-words
(16 bits) or full words (32 bits). The SRAM start address is 0x2000 0000.

Read and write access at CPU speed with 0 wait states.

The CPU can access the SRAM through the system bus or through the I-Code/D-Code bus
when boot in SRAM is selected or when physical remap is selected (see Section 6.5.1:
SYSCFG memory remap register (SYSCFG_MEMRMP) register in the SYSCFG controller).
To get the best SRAM execution performance, physical remap must be selected (boot or
software selection).

0x4000 4800 - 0x4000 4BFF USART3

APB1

Section 23.6.8: USART
register map on page 561

0x4000 4400 - 0x4000 47FF USART2
Section 23.6.8: USART
register map on page 561

0x4000 3800 - 0x3C00 3FFF SPI3
Section Table 82.: SPI
register map and reset
values on page 513

0x4000 3800 - 0x4000 3BFF SPI2
Section Table 82.: SPI
register map and reset
values on page 513

0x4000 3000 - 0x4000 33FF IWDG
Section 16.4.5: IWDG
register map on page 386

0x4000 2C00 - 0x4000 2FFF WWDG
Section 17.6.4: WWDG
register map on page 392

0x4000 2800 - 0x4000 2BFF RTC
Section 20.6.15: Register
map on page 453

0x4000 2400 - 0x4000 27FF LCD
Section 12.5.6: LCD register
map on page 268

0x4000 1400 - 0x4000 17FF TIM7
Section 15.4.9: TIM6&TIM7
register map on page 381

0x4000 1000 - 0x4000 13FF TIM6
Section 15.4.9: TIM6&TIM7
register map on page 381

0x4000 0C00 - 0x4000 0FFF TIM5 (32-bits)
Section 13.4.19: TIMx
register map on page 326

0x4000 0800 - 0x4000 0BFF TIM4
Section 13.4.19: TIMx
register map on page 326

0x4000 0400 - 0x4000 07FF TIM3
Section 13.4.19: TIMx
register map on page 326

0x4000 0000 - 0x4000 03FF TIM2
Section 13.4.19: TIMx
register map on page 326

Table 1. Register boundary addresses (continued)

Boundary address Peripheral Bus Register map

RM0038 Memory and bus architecture

Doc ID 15965 Rev 4 35/598

2.3.2 Bit banding

The Cortex-M3 memory map includes two bit-band regions. These regions map each word
in an alias region of memory to a bit in a bit-band region of memory. Writing to a word in the
alias region has the same effect as a read-modify-write operation on the targeted bit in the
bit-band region.

In the STM32L15xxx both the peripheral registers and the SRAM are mapped in a bit-band
region. This allows single bit-band write and read operations to be performed. These
operations are only available for cortex-M3 accesses, not from other bus masters (e.g.
DMA).

A mapping formula shows how to reference each word in the alias region to a corresponding
bit in the bit-band region. The mapping formula is:

bit_word_addr = bit_band_base + (byte_offset x 32) + (bit_number × 4)

where:

bit_word_addr is the address of the word in the alias memory region that maps to the
targeted bit

bit_band_base is the start address of the alias region

byte_offset is the number of the byte in the bit-band region, that contains the targeted
bit

bit_number is the bit position (0-7) of the targeted bit

Example:

The following example shows how to map bit 2 of the byte located at SRAM address
0x2000 0300 in the alias region:

0x2200 6008 = 0x2200 0000 + (0x300 × 32) + (2 × 4)

Writing to address 0x2200 6008 has the same effect as a read-modify-write operation on bit
2 of the byte at SRAM address 0x2000 0300.

Reading address 0x22006008 returns the value (0x01 or 0x00) of bit 2 of the byte at SRAM
address 0x20000300 (0x01: bit set; 0x00: bit reset).

For more information on bit-banding, please refer to the Cortex-M3 Technical Reference
Manual.

2.3.3 Embedded Flash memory

● Up to 132 Kbytes of Flash memory

● Memory organization (dual banks):

– 128 Kbytes of Flash program memory and 412 Kbytes of data EEPROM

– 4 Kbytes of system memory and 32 bytes of option bytes

Memory and bus architecture RM0038

36/598 Doc ID 15965 Rev 4

Flash memory interface (FLITF) features:

● Flash memory read operations: read access is performed by 64 or 32 bits

● Flash memory program/erase operations

● Read/write protection

● Write access is performed by 32 bits

● Option byte loader reset

● Low power mode:

– Flash memory in Power down mode when the STM32L15xxx is in the Standby
mode or the Stop mode

– Flash memory can be placed in Power down or Idle mode when the STM32L15xxx
is in the Sleep mode

– Flash memory can be placed in Power down or Idle mode when the STM32L15xxx
is in the Run mode

Flash module organization

The memory is organized as a main program memory block, a data memory block of 512
double words, and an information block. Table 2 shows the Flash memory organization.

The program memory block is divided into 32 sectors of 4 Kbytes each, and each sector is
further split up into 16 pages of 256 bytes each. The sector is the write protection
granularity. In total, the program memory block contains 512 pages.

Table 2. Flash module organization

Block Flash memory addresses Size Name Description

Program
memory

0x0800 0000 - 0x0800 00FF 256 bytes Page 0

Sector 0

0x0800 0100 - 0x0800 01FF 256 bytes Page 1

0x0800 0200 - 0x0800 02FF 256 bytes Page 2

0x0800 0300 - 0x0800 03FF 256 bytes Page 3

0x0800 0400 - 0x0800 07FF 1 Kbytes Page 4 to 7

0x0800 0800 - 0x0800 0BFF 1 Kbytes Page 8 to 11

0x0800 0C00 - 0x0800 0FFF 1 Kbytes Page 12 to 15

0x0800 1000 - 0x0800 1FFF 4 Kbytes Page 16 to 31 Sector 1

0x0800 2000 - 0x0800 2FFF 4 Kbytes Page 32 to47 Sector 2

0x0800 3000 - 0x0800 3FFF 4 Kbytes Page 48 to 63 Sector 3

.

.

.

.

.

.

.

.

.

.

.

.

0x0801 E000 - 0x0801 EFFF 4 Kbytes Page 478 to495 Sector 30

0x0801 F000 - 0x0801 FFFF 4 Kbytes Page 496 to511 Sector 31

Data memory 0x0808 0000 - 0x0808 0FFF 4096 bytes DATA Data memory

RM0038 Memory and bus architecture

Doc ID 15965 Rev 4 37/598

Reading the Flash memory

Relation between CPU clock frequency and Flash memory read time

The Flash memory is read by 64 bits or 32 bits.

64-bit access is configured by setting the ACC64 bit in the Flash access control register
(FLASH_ACR). This access mode accelerates the execution of program operations.
Prefetch is useful when the Flash memory cannot be accessed for a CPU cycle. In this case,
the number of wait states (LATENCY) must be correctly programmed in the Flash access
control register (FLASH_ACR) according to the frequency of the Cortex-M3 clock and the
supply voltage of the device. Table 3 shows the correspondence between wait states and
core clock frequency.

It is also possible to access the Flash memory by 32 bits. This is done by clearing the
ACC64 bit in FLASH_ACR. In this case, prefetch has to be disabled. 32-bit access reduces
the consumption, so it is used when the CPU frequency is low. In this case, the number of
wait states must be 0.

After reset, the used clock is the MSI (2 MHz) with 0 WS configured in the FLASH_ACR
register. 32-bit access is enabled and prefetch is disabled.

ST strongly recommends to use the following software sequences to tune the number of
wait states needed to access the Flash memory with the CPU frequency.

Information
Block

0x1FF0 0000 - 0x1FF0 00FF 256 bytes Page 0

System memory

0x1FF0 0100 - 0x1FF0 01FF 256 bytes Page 1

0x1FF0 0200 - 0x1FF0 02FF 256 bytes Page 2

0x1FF0 0300 - 0x1FF0 03FF 256 bytes Page 3

.

.

.

.

.

.

.

.

.

0x1FF0 0F00 - 0x1FF0 0FFF 256 bytes Page 15

0x1FF8 0000 - 0x1FF8 001F 32 bytes OPTB Option bytes block

Table 2. Flash module organization (continued)

Block Flash memory addresses Size Name Description

Table 3. Number of wait states (WS) according to CPU clock (HCLK)
frequency

HCLK frequency (MHz)

Wait states
(LATENCY)

Voltage range
1.65 V to 3.6 V

Voltage range
2.0 V to 3.6 V

VCORE = 1.2 V VCORE = 1.5 V VCORE = 1.8 V

0 < fHCLK≤ 2 MHz 0 < fHCLK≤ 8 MHz 0 < fHCLK ≤ 16 MHz 0 WS (1 HCLK cycle)

2 < fHCLK ≤ 4 MHzHCLK 8 < fHCLK≤ 16 MHz 16 < fHCLK ≤ 32 MHz 1 WS (2 HCLK cycles)

Memory and bus architecture RM0038

38/598 Doc ID 15965 Rev 4

Increasing the CPU frequency (in the same voltage range)

● Program the 64-bit access by setting the ACC64 bit in Flash access control register
(FLASH_ACR)

● Check that 64-bit access is taken into account by reading FLASH_ACR

● Program 1 WS to the LATENCY bit in FLASH_ACR

● Check that the new number of WS is taken into account by reading FLASH_ACR

● Modify the CPU clock source by writing to the SW bits in the Clock configuration
register (RCC_CFGR)

● If needed, modify the CPU clock prescaler by writing to the HPRE bits in RCC_CFGR

● Check that the new CPU clock source or/and the new CPU clock prescaler value is/are
taken into account by reading the clock source status (SWS bits) or/and the AHB
prescaler value (HPRE bits), respectively, in the RCC_CFGR register

Decreasing the CPU frequency (in the same voltage range)

● Modify the CPU clock source by writing to the SW bits in the Clock configuration
register (RCC_CFGR)

● If needed, modify the CPU clock prescaler by writing to the HPRE bits in RCC_CFGR

● Check that the new CPU clock source or/and the new CPU clock prescaler value is/are
taken into account by reading the clock source status (SWS bits) or/and the AHB
prescaler value (HPRE bits), respectively, in the RCC_CFGR register

● Program the new number of WS to the LATENCY bit in Flash access control register
(FLASH_ACR)

● Check that the new number of WS is taken into account by reading FLASH_ACR

● Program the 32-bit access by clearing ACC64 in FLASH_ACR

● Check that 32-bit access is taken into account by reading FLASH_ACR

RM0038 Memory and bus architecture

Doc ID 15965 Rev 4 39/598

Instruction prefetch when Flash access is 64 bits

Each Flash memory read operation provides 64 bits from either two 32-bit instructions or
four 16-bit instructions. So, in case of a sequential code, at least 2 CPU cycles are needed
to read the previous instruction line. Prefetch on the ICode bus can be used to read the next
sequential instruction line from the Flash memory while the current instruction line is being
requested by the CPU. Prefetch is enabled by setting the PRFTEN bit in the FLASH_ACR
register. This feature is useful if at least one wait state is needed to access the Flash
memory.

Table 4 shows the supported ACC64, LATENCY and PRFTEN configurations.

Note: The Flash access control register (FLASH_ACR) is used to control the Flash state in
run/sleep modes, the prefetch status and access time depending on the CPU frequency.
The table above provides the bit map for this register.

For complete information on Flash memory operations, please refer to the STM32L15xxx
Flash programming manual (PM0062). For details on register configurations, refer to the
following section (Flash access control register (FLASH_ACR) on page 40).

Table 4. Allowed configuration in FLASH_ACR

LATENCY
ACC64 = 0 ACC64 = 1

PRFTEN = 0 PRFTEN = 1 PRFTEN = 0 PRFTEN = 1

0 OK - OK OK

1 - - OK OK

Memory and bus architecture RM0038

40/598 Doc ID 15965 Rev 4

Flash access control register (FLASH_ACR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

R
U

N
_P

D

S
LE

E
P

_P
D

A
C

C
64

P
R

F
T

E
N

LA
T

E
N

C
Y

rw rw rw rw rw

Bits 31:5 Reserved, must be kept cleared.

Bit 4 RUN_PD: Flash mode during Run
This bit can be written only when it is unlocked by writing to FLASH_PDKEYR.
This bit determines whether the Flash memory is in Power down mode or Idle mode when
the STM32L15xxx is in Run mode.
The Flash memory can be placed in Power down mode only when the code is executed from
RAM).
0: Flash in Idle mode
1: Flash in Power down mode

Bit 3 SLEEP_PD: Flash mode during Sleep

This bit is used to have the Flash memory in Power down mode or Idle mode when the
STM32L15xxx is in Sleep mode.
0: Flash in Idle mode
1: Flash in Power down mode

Bit 2 ACC64: 64-bit access
This bit is used to read data from the Flash memory 64 bits or 32 bits at a time. 32-bit access
is used to decreases the Flash memory consumption. On the contrary, 64-bit access is used
to improve the performance. In this case it is useful to enable prefetch.
0: 32-bit access
1: 64-bit access

Note: 32-bit access is a low power mode. It is used only at low frequencies, that is with 0 wait
state of latency and prefetch off.

Note: This bit cannot be written at the same time as the LATENCY and PRFTEN bits.

Bit 1 PRFTEN: Prefetch enable

0: prefetch disabled
1: prefetch enabled

Note: Prefetch can be enabled only when ACC64 is set.
This bit can be set or cleared only if ACC64 is set.

Bit 0 LATENCY: Latency
This bit represents the ratio of the CPU clock period to the Flash access time.
0: zero wait state
1: one wait state

Note: Latency can be set only when ACC64 is set.
This bit can be set or cleared only if ACC64 is set.

RM0038 Memory and bus architecture

Doc ID 15965 Rev 4 41/598

Flash interface register map

The following table summarizes the Flash memory registers.

2.4 Boot configuration
Due to its fixed memory map, the code area starts from address 0x0000 0000 (accessed
through the ICode/DCode buses) while the data area (SRAM) starts from address
0x2000 0000 (accessed through the system bus). The Cortex-M3 CPU always fetches the
reset vector from the ICode bus, which implies to have the boot space available only in the
code area (typically, Flash memory). STM32L15xxx microcontrollers implement a special
mechanism to be able to boot from other memory than the Flash (like internal SRAM).

In the STM32L15xxx, 3 different boot modes can be selected through the BOOT[1:0] pins as
shown in Table 6.

The values on the BOOT pins are latched on the 4th rising edge of SYSCLK after a reset. It
is up to the user to set the BOOT1 and BOOT0 pins after reset to select the required boot
mode.

BOOT0 is a dedicated pin while BOOT1 is shared with a GPIO pin. Once BOOT1 has been
sampled, the corresponding GPIO pin is free and can be used by the application.

The BOOT pins are also resampled when exiting the Standby mode. Consequently they
must be kept in the required Boot mode configuration in Standby mode. After this startup
delay has elapsed, the CPU fetches the top-of-stack value from address 0x0000 0000, then
starts code execution from the boot memory starting from 0x0000 0004.

Note: When booting from SRAM, in the application initialization code, you have to relocate the
vector table in SRAM using the NVIC exception table and offset register.

Physical remap

When the boot pins are configured as desired, the application software can modify the
memory accessible in the code area (code can thus be executed through the ICode/DCode

Table 5. Flash interface register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
FLASH_ACR

Reserved

R
U

N
_P

D

S
LE

E
P

_P
D

A
cc

64

P
R

F
T

E
N

LA
T

E
N

C
Y

0

Reset value:
0x0000 0000 0 0 0 0 0

Table 6. Boot modes

Boot mode selection pins
Boot mode Aliasing

BOOT1 BOOT0

x 0 Main Flash memory Main Flash memory is selected as the boot space

0 1 System memory System memory is selected as the boot space

1 1 Embedded SRAM Embedded SRAM is selected as the boot space

Memory and bus architecture RM0038

42/598 Doc ID 15965 Rev 4

in place of the System bus). This modification is performed by programming the SYSCFG
memory remap register (SYSCFG_MEMRMP) in the SYSCFG controller.

The following memory can then be remapped:

● Main Flash memory

● System memory

● Embedded SRAM

Note: Even when aliased in the boot memory space, the related memory is still accessible at its
original memory space.

Embedded boot loader

The embedded boot loader is used to reprogram the Flash memory through one of the
following interfaces: USART1 or USART2. This program is located in the system memory
and is programmed by ST during production.

Table 7. Memory mapping vs. boot mode/physical remap

Addresses
Boot/Remap in main

Flash memory
Boot/Remap in

embedded SRAM
Boot/Remap in

System memory

0x2000 0000 - 0x2000 3FFF SRAM SRAM SRAM

0x1FF0 0000 - 0x1FF0 0FFF System memory System memory System memory

0x0802 0000 - 0x0FFF FFFF Reserved Reserved Reserved

0x0800 0000 - 0x0801 FFFF Flash memory Flash memory Flash memory

0x0002 0000 - 0x07FF FFFF Reserved Reserved Reserved

0x0000 0000 - 0x0001 FFFF
Flash (128 KB)

Aliased
SRAM Aliased

System memory
(4 KB) Aliased

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 43/598

3 Power control (PWR)

3.1 Power supplies
The device requires a 1.8-to-3.6 V VDD operating voltage supply (down to 1.65 V at power
down) when the BOR is available. The device requires a 1.65-to-3.6 V VDD operating voltage
supply when the BOR is not available.

An embedded linear voltage regulator is used to supply the internal digital power, ranging
from 1.2 to 1.8 V.

● VDD = 1.8 V (at power on) or 1.65 V (at power down) to 3.6 V when the BOR is
available. VDD = 1.65 V to 3.6 V, when BOR is not available

VDD is the external power supply for I/Os and internal regulator. It is provided externally
through VDD pins

● VCORE = 1.2 to 1.8 V

VCORE is the power supply for digital peripherals, SRAM and Flash memory. It is
generated by a internal voltage regulator. Three VCORE ranges can be selected by
software depending on VDD (refer Figure 3).

● VSSA, VDDA = 1.8 V (at power on) or 1.65 V (at power down) to 3.6 V, when BOR is
available and VSSA, VDDA = 1.65 to 3.6 V, when BOR is not available.

VDDA is the external analog power supply for ADC, DAC, reset blocks, RC oscillators
and PLL. The minimum voltage to be applied to VDDA is 1.8 V when the ADC is used.

● VREF-, VREF+

VREF+ is the input reference voltage.

VREF- and VREF+ are only available as external pins on LQFP100 package, UFBGA100
and TFBGA64, otherwise they are bonded to VSSA.

● VLCD = 2.5 to 3.6 V

The LCD controller can be powered either externally through VLCD pin, or internally
from an internal voltage generated by the embedded step-up converter.

Power control (PWR) RM0038

44/598 Doc ID 15965 Rev 4

Figure 2. Power supply overview

1. VDDA and VSSA must be connected to VDD and VSS, respectively.

2. When available (depending on packages), VREF- must be tied to VSSA.

3. Depending on the operating power supply range used, some peripherals may be used with limited
functionalities or performance. For more details, please refer to section "General operating conditions" in
STM32L15xxx datasheets.

3.1.1 Independent A/D and DAC converter supply and reference voltage

To improve conversion accuracy, the ADC and the DAC have an independent power supply
that can be filtered separately, and shielded from noise on the PCB.

● The ADC voltage supply input is available on a separate VDDA pin

● An isolated supply ground connection is provided on the VSSA pin

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 45/598

 On BGA 64-pin and all 100-pin packages

To ensure a better accuracy on low-voltage inputs and outputs, the user can connect to
VREF+ a separate external reference voltage lower than VDD. VREF+ is the highest voltage,
represented by the full scale value, for an analog input (ADC) or output (DAC) signal.

● For ADC

– 2.4 V ≤ VREF+ = VDDA for full speed (ADCCLK = 16 MHz, 1Msps)

– 1.8 V ≤ VREF+ = VDDA for medium speed (ADCCLK = 8 MHz, 500 Ksps)

– 2.4 V ≤ VREF+ ≠ VDDA for medium speed (ADCCLK = 8 MHz, 500 Ksps)

– 1.8 V ≤ VREF+ < VDDA for low speed (ADCCLK = 4 MHz, 250 Ksps)

– When Product voltage range 3 is selected (VCore = 1.2 V) the ADC is low speed
(ADCCLK = 4 MHz, 250 Ksps)

● For DAC

– 1.8 V≤ VREF+ < VDDA

● When VDDA is higher than 2.4 V, the voltage on VREF+ may range from 2.4 V to VDDA.

● When VDDA is below 2.4 V, VREF+ must be equal to VDDA.

On packages with 64 pins or less (except BGA package)

VREF+ and VREF- pins are not available. They are internally connected to the ADC voltage
supply (VDDA) and ground (VSSA).

3.1.2 Independent LCD supply

The VLCD pin is provided to control the contrast of the glass LCD. This pin can be used in
two ways:

● It can receive from an external circuitry the desired maximum voltage that is provided
on segment and common lines to the glass LCD by the microcontroller.

● It can also be used to connect an external capacitor that is used by the microcontroller
for its voltage step-up converter. This step-up converter is controlled by software to
provide the desired voltage to segment and common lines of the glass LCD.

The voltage provided to segment and common lines defines the contrast of the glass LCD
pixels. This contrast can be reduced when you configure the dead time between frames.

● When an external power supply is provided to the VLCD pin, it should range from 2.5 V
to 3.6 V. It does not depend on VDD.

● When the LCD is based on the internal step-up converter, the VLCD pin should be
connected to a capacitor (see the product datasheets for futher information).

3.1.3 RTC and RTC backup registers

The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a time-
of-day clock/calendar, two programmable alarm interrupts, and a periodic programmable
wakeup flag with interrupt capability. The RTC contains 20 backup data registers (80 bytes)
which are reset when a tamper detection event occurs. For more details refer to Real-time
clock (RTC) section.

Power control (PWR) RM0038

46/598 Doc ID 15965 Rev 4

RTC registers access

After reset, the RTC Registers (RTC registers and RTC backup registers) are protected
against possible stray write accesses. To enable access to the RTC Registers, proceed as
follows:

1. Enable the power interface clock by setting the PWREN bits in the RCC_APB1ENR
register.

2. Set the DBP bit in the PWR_CR register (see Section 3.4.1).

3. Select the RTC clock source through RTCSEL[1:0] bits in RCC_CSR register.

4. Enable the RTC clock by programming the RTCEN bit in the RCC_CSR register.

3.1.4 Voltage regulator

An embedded linear voltage regulator supplies all the digital circuitries except for the
Standby circuitry. The regulator output voltage (VCORE) can be programmed by software to
three different ranges within 1.2 - 1.8 V (typical) (see Section 3.1.5).

The voltage regulator is always enabled after Reset. It works in three different modes: main
(MR), low power (LPR) and power down, depending on the application modes.

● In Run mode, the regulator is main (MR) mode and supplies full power to the VCORE
domain (core, memories and digital peripherals).

● In Low power run mode, the regulator is in low power (LPR) mode and supplies low
power to the VCORE domain, preserving the contents of the registers and internal
SRAM.

● In Sleep mode, the regulator is main (MR) mode and supplies full power to the VCORE
domain, preserving the contents of the registers and internal SRAM.

● In low power sleep mode, the regulator is in low power (LPR) mode and supplies low
power to the VCORE domain, preserving the contents of the registers and internal
SRAM.

● In Stop mode the regulator supplies low power to the VCORE domain, preserving the
content of registers and internal SRAM.

● In Standby mode, the regulator is powered off. The content of the registers and SRAM
are lost except for the Standby circuitry.

3.1.5 Dynamic voltage scaling management

The dynamic voltage scaling is a power management technique which consists in increasing
or decreasing the voltage used for the digital peripherals (VCORE), according to the
circumstances.

Dynamic voltage scaling to increase VCORE is known as overvolting. It allows to improve the
device performance. Refer to Figure 3 for a description of the STM32L15xxx operating
conditions versus performance.

Dynamic voltage scaling to decrease VCORE is known as undervolting. It is performed to
save power, particularly in laptops and other mobile devices where the energy comes from a
battery and is thus limited.

Range 1

Range 1 is the “high performance” range.

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 47/598

The voltage regulator outputs a 1.8 V voltage (typical) as long as the VDD input voltage is
above 2.0 V. Flash program and erase operations can be performed in this range.

Range 2 and 3

The regulator can also be programmed to output a regulated 1.5 V (typical, range 2) or a
1.2 V (typical, range 3) without any limitations on VDD (1.65 to 3.6 V).

● At 1.5 V, the Flash memory is still functional but with medium read access time. This is
the “medium performance” range. Program and erase operations on the Flash memory
are still possible.

● At 1.2 V, the Flash memory is still functional but with slow read access time. This is the
“low performance” range. Program and erase operations on the Flash memory are not
possible under these conditions.

Refer to Table 8 for details on the performance for each range.

Table 8. Performance versus VCORE ranges

CPU
performance

Power
performance

VCORE
range

Typical
Value (V)

Max frequency
(MHz) VDD range

1 WS 0 WS

High Low 1 1.8 32 16 2.0 - 3.6

Medium Medium 2 1.5 16 8
1.65 - 3.6

Low High 3 1.2 4 2

Power control (PWR) RM0038

48/598 Doc ID 15965 Rev 4

Figure 3. STM32L15xxx performance versus VDD and VCORE range

3.1.6 Dynamic voltage scaling configuration

The following sequence is required to program the voltage regulator ranges:

1. Check VDD to identify which ranges are allowed (see Figure 3: STM32L15xxx
performance versus VDD and VCORE range).

2. Poll VOSF bit of in PWR_CSR. Wait until it is reset to 0.

3. Configure the voltage scaling range by setting the VOS[12:11] bits in the PWR_CR
register.

4. Poll VOSF bit of in PWR_CSR register. Wait until it is reset to 0.

Note: During voltage scaling configuration, the system clock is stopped until the regulator is
stabilized (VOSF=0). This must be taken into account during application developement, in
case a critical reaction time to interrupt is needed, and depending on peripheral used (timer,
communication,...).

1

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 49/598

3.1.7 Voltage regulator and clock management when VDD drops
below 2.0 V

When VCORE range 1 is selected and VDD drops below 2.0 V, the application must
reconfigure the system.

A three-step sequence is required to reconfigure the system:

1. Detect that VDD drops below 2.0 V:

Use the PVD to monitor the VDD voltage and to generate an interrupt when the voltage
goes under the selected level. To detect the 2.0 V voltage limit, the application can
select by software PVD threshold 2 (2.26 V typical). For more details on the PVD, refer
to Section 3.2.3.

2. Adapt the clock frequency to the voltage range that will be selected at next step:

Below 2.0 V, the system clock frequency is limited to 16 MHz for range 2 and 4 MHz for
range 3.

3. Select the required voltage range:

Note that when VDD is below 2.0 V, only range 2 or range 3 can be selected.

Note: When VCORE range 2 or range 3 is selected and VDD drops below 2.0 V, no system
reconfiguration is required.

3.1.8 Voltage regulator and clock management when modifying the
VCORE range

When VDD is above 2.0 V, any of the 3 voltage ranges can be selected:

● When the voltage range is above the targeted voltage range (e.g. from range 1 to 2):

a) Adapt the clock frequency to the lower voltage range that will be selected at next
step.

b) Select the required voltage range.

● When the voltage range is below the targeted voltage range (e.g. from range 3 to 1):

a) Select the required voltage range.

b) Tune the clock frequency if needed.

When VDD is below 2.0 V, only range 2 and 3 can be selected:

● From range 2 to range 3

a) Adapt the clock frequency to voltage range 3.

b) Select voltage range 3.

● From range 3 to range 2

a) Select the voltage range 2.

b) Tune the clock frequency if needed.

3.2 Power supply supervisor
The device has an integrated zeropower power on reset (POR)/power down reset (PDR),
coupled with a brown out reset (BOR) circuitry. For devices operating between 1.8 and 3.6
V, the BOR is always active at power-on and ensures proper operation starting from 1.8 V.
After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to
confirm or modify default thresholds, or to disable BOR permanently (in which case, the VDD

Power control (PWR) RM0038

50/598 Doc ID 15965 Rev 4

min value at power down is 1.65 V). For devices operating between 1.65 V and 3.6 V, the
BOR is permanently disabled. Consequently, the start-up time at power-on can be
decreased down to 1ms typically.

Five BOR thresholds can be configured by option bytes, starting from 1.65 to 3 V. To reduce
the power consumption in Stop mode, the internal voltage reference, VREFINT, can be
automatically switch off. The device remains in reset mode when VDD is below a specified
threshold, VPOR, VPDR or VBOR, without the need for any external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. 7 different PVD levels can
be selected by software between 1.85 and 3.05 V, with a 200 mV step. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher
than the VPVD threshold. The interrupt service routine then generates a warning message
and/or put the MCU into a safe state. The PVD is enabled by software.

The different power supply supervisor (POR, PDR, BOR, PVD) are illustrated in Figure 4.

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 51/598

Figure 4. Power supply supervisors

1. The PVD is available on all STM32L devices and it is enabled or disabled by software.

2. The BOR is available only on devices operating from 1.8 to 3.6 V, and unless disabled by option byte it will
mask the POR/PDR threshold.

3. When the BOR is disabled by option byte, the reset is asserted when VDD goes below PDR level

4. For devices operating from 1.65 to 3.6 V, there is no BOR and the reset is released when VDD goes above
POR level and asserted when VDD goes below PDR level

VDD/VDDA

PVD output

100 mV
hysteresis

V
PVD

V
BOR hysteresis

100 mV

IT enabled

BOR reset
(NRST)

POR/PDR reset
(NRST)

PVD
BOR always active

POR/PDR (BOR not available) ai17211b

PORV / PDRV

BOR/PDR reset
 (NRST)

BOR disabled by option byte

(Note 1)

(Note 2)

(Note 3)

(Note 4)

Power control (PWR) RM0038

52/598 Doc ID 15965 Rev 4

3.2.1 Power on reset (POR)/power down reset (PDR)

The device has an integrated POR/PDR circuitry that allows operation down to 1.5 V.

During power on, the device remains in Reset mode when VDD/VDDA is below a specified
threshold, VPOR, without the need for an external reset circuit. The POR feature is always
enabled and the POR threshold is 1.5 V.

During power down, the PDR keeps the device under reset when the supply voltage (VDD)
drops below the VPDR threshold. The PDR feature is always enabled and the PDR threshold
is 1.5 V.

The POR and PDR are used only when the BOR is disabled (see Section 3.2.2: Brown out
reset (BOR))). To insure the minimum operating voltage (1.65 V), the BOR should be
configured to BOR Level 0. When the BOR is disabled, a “grey zone” exist between the
minimum operating voltage (1.65 V) and the VPOR/VPDR threshold. This means that VDD
can be lower than 1.65 V without device reset until the VPDR threshold is reached.

For more details concerning the power on/power down reset threshold, refer to the electrical
characteristics of the datasheet.

Figure 5. Power on reset/power down reset waveform

3.2.2 Brown out reset (BOR)

During power on, the Brown out reset (BOR) keeps the device under reset until the supply
voltage reaches the specified VBOR threshold.

For devices operating from 1.65 to 3.6 V, the BOR option is not available and the power
supply is monitored by the POR/PDR. As the POR/PDR thresholds are at 1.5 V, a "grey

VDD/VDDA

Reset

POR

PDR

Temporization
tRSTTEMPO

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 53/598

zone" exists between the VPOR/VPDR thresholds and the minimum product operating voltage
1.65 V.

For devices operating from 1.8 to 3.6 V, the BOR is always active at power on and it's
threshold is 1.8 V.

Then when the system reset is released, the BOR level can be reconfigured or disabled by
option byte loading.

If the BOR level is kept at the lowest level, 1.8 V at power on and 1.65 V at power down, the
system reset is fully managed by the BOR and the product operating voltages are within
safe ranges.

And when the BOR option is disabled by option byte, the power down reset is controlled by
the PDR and a "grey zone" exists between the 1.65 V and VPDR.

VBOR is configured through device option bytes. By default, the Level 4 threshold is
activated. 5 programmable VBOR thresholds can be selected.

● BOR Level 0 (VBOR0): reset threshold level for 1.69 to 1.80 V voltage range

● BOR Level 1 (VBOR1): reset threshold level for 1.94 to 2.1 V voltage range

● BOR Level 2 (VBOR2): reset threshold level for 2.3 to 2.49 V voltage range

● BOR Level 3 (VBOR3): reset threshold level for 2.54 to 2.74 V voltage range

● BOR Level 4 (VBOR4): reset threshold level for 2.77 to 3.0 V voltage range

When the supply voltage (VDD) drops below the selected VBOR threshold, a device reset is
generated. When the VDD is above the VBOR upper limit the device reset is released and the
system can start.

BOR can be disabled by programming the device option bytes. To disable the BOR function,
VDD must have been higher than VBOR0 to start the device option byte programming
sequence. The power on and power down is then monitored by the POR and PDR (see
Section 3.2.1: Power on reset (POR)/power down reset (PDR))

The BOR threshold hysteresis is ~100 mV (between the rising and the falling edge of the
supply voltage).

Figure 6. BOR thresholds

VDD/VDDA

Reset

100 mV
hysteresisBOR threshold

Power control (PWR) RM0038

54/598 Doc ID 15965 Rev 4

3.2.3 Programmable voltage detector (PVD)

You can use the PVD to monitor the VDD/VDDA power supply by comparing it to a threshold
selected by the PLS[2:0] bits in the PWR_CR (see Section 3.4.1).

The PVD can use an external input analog voltage (PVD_IN) which is compared internally to
VREFINT. The PVD_IN (PB7) has to be configured in Analog mode when PLS[2:0] = 111.
The PVD is enabled by setting the PVDE bit.

A PVDO flag is available, in the PWR_CSR (see Section 3.4.2), to indicate if VDD/VDDA is
higher or lower than the PVD threshold. This event is internally connected to the EXTI line16
and can generate an interrupt if enabled through the EXTI registers. The PVD output
interrupt can be generated when VDD/VDDA drops below the PVD threshold and/or when
VDD/VDDA rises above the PVD threshold depending on EXTI line16 rising/falling edge
configuration. As an example the service routine could perform emergency shutdown tasks.

Figure 7. PVD thresholds

3.2.4 Internal voltage reference (VREFINT)

The functions managed through the internal voltage reference (VREFINT) are BOR, PVD,
ADC, LCD and comparators. The internal voltage reference (VREFINT) is always enabled.

The internal voltage reference consumption is not negligible, in particular in Stop and
Standby mode. To reduce power consumption, the ULP bit (Ultra low power) in the
PWR_CR register can be set to disable the internal voltage reference. However, in this case,
when exiting from the Stop/Standby mode, the functions managed through the internal
voltage reference are not reliable during the internal voltage reference startup time (up to
3 ms).

To reduce the wakeup time, the device can exit from Stop/Standby mode without waiting for
the internal voltage reference startup time. This is performed by setting the FWU bit (Fast
wakeup) in the PWR_CR register before entering Stop/Standby mode.

If the ULP bit is set, the functions that were enabled before entering the Stop/Standby mode
will be disabled during these modes, and enabled again only after the end of the internal
voltage reference startup time whatever FWU value. The VREFINTRDYF flag in the
PWR_CSR register indicates that the internal voltage reference is ready.

VDD/VDDA

PVD output

100 mV
hysteresisPVD threshold

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 55/598

3.3 Low-power modes
By default, the microcontroller is in Run mode after a system or a power on reset. In Run
mode the CPU is clocked by HCLK and the program code is executed. Several low-power
modes are available to save power when the CPU does not need to be kept running, for
example when waiting for an external event. It is up to the user to select the mode that gives
the best compromise between low-power consumption, performance, short startup time and
available wakeup sources.

The devices feature five low-power modes:

● Low power run mode: regulator in low power mode, limited clock frequency, limited
number of peripherals running

● Sleep mode: Cortex-M3 core stopped, peripherals kept running

● Low power sleep mode: Cortex-M3 core stopped, limited clock frequency, limited
number of peripherals running, regulator in low power mode, RAM in power down,
Flash stopped.

● Stop mode (all clocks are stopped, regulator running, regulator in low power mode

● Standby mode: VCORE domain powered off

In addition, the power consumption in Run mode can be reduce by one of the following
means:

● Slowing down the system clocks

● Gating the clocks to the APBx and AHBx peripherals when they are unused.

Table 9. Summary of low-power modes

Mode name Entry Wakeup
Effect on VCORE
domain clocks

Effect on
VDD

domain
clocks

Voltage regulator

Low power
run

LPSDSR and
LPRUN bits +
Clock setting

The regulator is forced in
Main regulator (1.8 V)

None None In low power mode

Sleep
(Sleep now or
Sleep-on-exit)

WFI Any interrupt CPU CLK OFF
no effect on other
clocks or analog

clock sources

None ON
WFE Wakeup event

Power control (PWR) RM0038

56/598 Doc ID 15965 Rev 4

3.3.1 Behavior of clocks in low power modes

APB peripheral and DMA clocks can be disabled by software.

Sleep and Low power sleep modes

The CPU clock is stopped in Sleep and Low power sleep mode. The memory interface
clocks (FLITF and RAM interfaces) and all peripherals clocks can be stopped by software
during Sleep. The memory interface (FLITF) clock is stopped and the RAM is in power-down
when in Low power sleep mode. The AHB to APB bridge clocks are disabled by hardware
during Sleep/Low power sleep mode when all the clocks of the peripherals connected to
them are disabled.

Stop and Standby modes

The system clock and all high speed clocks are stopped in Stop and Standby modes:

● PLL is disabled

● Internal RC 16 MHz (HSI) oscillator is disabled

● External 1-24 MHz (HSE) oscillator is disabled

● Internal 65 kHz - 4 MHz (MSI) oscillator is disabled

When exiting this mode by interrupt (Stop mode) or by reset (Standby mode), the internal
MSI oscillator is selected as system clock. When the device exits Stop mode, the previous
MSI configuration (range and trimming value) is kept. When exiting Standby mode, the
range and trimming value are reset to the default 2 MHz values.

If a Flash program operation or an access to APB domain is ongoing, the Stop/Standby
mode entry is delayed until the Flash memory or the APB access has completed.

Low power
sleep (Sleep
now or Sleep-
on-exit)

 LPSDSR bits +
WFI

Any interrupt
CPU CLK OFF

no effect on other
clocks or analog
clock sources,

Flash CLK OFF

None In low power mode
LPSDSR bits +

WFE
Wakeup event

Stop

PDDS, LPSDSR
bits +

SLEEPDEEP bit +
WFI or WFE

Any EXTI line (configured
in the EXTI registers,

internal and external lines)

All VCORE
domain clocks

OFF

HSI and
HSE and

MSI
oscillators

OFF

ON, in low power
mode (depending

on PWR_CR)

Standby
PDDS bit +

SLEEPDEEP bit +
WFI or WFE

WKUP pin rising edge,
RTC alarm (Alarm A or
Alarm B), RTC Wakeup

event, RTC tamper event,
RTC timestamp event,
external reset in NRST

pin, IWDG reset

OFF

Table 9. Summary of low-power modes

Mode name Entry Wakeup
Effect on VCORE
domain clocks

Effect on
VDD

domain
clocks

Voltage regulator

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 57/598

3.3.2 Slowing down system clocks

In Run mode the speed of the system clocks (SYSCLK, HCLK, PCLK1, PCLK2) can be
reduced by programming the prescaler registers. These prescalers can also be used to slow
down peripherals before entering Sleep mode.

For more details refer to Section 4.3.3: Clock configuration register (RCC_CFGR).

3.3.3 Peripheral clock gating

In Run mode, the HCLK and PCLKx for individual peripherals and memories can be stopped
at any time to reduce power consumption.

To further reduce power consumption in Sleep mode the peripheral clocks can be disabled
prior to executing the WFI or WFE instructions.

Peripheral clock gating is controlled by the AHB peripheral clock enable register
(RCC_AHBENR), APB2 peripheral clock enable register (RCC_APB2ENR), APB1
peripheral clock enable register (RCC_APB1ENR) (see Section 4.3.8: AHB peripheral clock
enable register (RCC_AHBENR), Section 4.3.10: APB1 peripheral clock enable register
(RCC_APB1ENR) and Section 4.3.9: APB2 peripheral clock enable register
(RCC_APB2ENR)).

Disabling the peripherals clocks in Sleep mode can be performed automatically by resetting
the corresponding bit in RCC_AHBLPENR and RCC_APBxLPENR registers (x can 1 or 2).

3.3.4 Low power run mode (LP run)

To further reduce the consumption when the system is in Run mode, the regulator can be
configured in low power mode. In this mode, the system frequency should not exceed 128
KHz.

Please refer to the product datasheet for more details on voltage regulator and peripherals
operating conditions.

Note: To be able to read the RTC calendar register when the the APB1 clock frequency is less
than seven times the RTC clock frequency (7*RTCLCK), the software must read the
calendar time and date registers twice.

If the second read of the RTC_TR gives the same result as the first read, this ensures that
the data is correct. Otherwise a third read access must be done.

Low power run mode can only be entered when VCORE is in range 2. In addition, the
dynamic voltage scaling must not be used when Low power run mode is selected. Only Stop
and Sleep modes with regulator configured in Low power mode is allowed when Low power
run mode is selected.

Note: In Low power run mode, all I/O pins keep the same state as in Run mode.

Entering Low power run mode

To enter Low power run mode proceed as follows:

● Each digital IP clock must be enabled or disabled by using the RCC_APBxENR and
RCC_AHBENR registers.

● The frequency of the system clock must be decreased below 128 KHz.

● The regulator is forced in low power mode by software (LPRUN and LPSDSR bits set)

Power control (PWR) RM0038

58/598 Doc ID 15965 Rev 4

Exiting Low power run mode

To exit Low power run mode proceed as follows:

● The regulator is forced in Main regulator mode by software.

● The Flash memory is switched on, if needed.

● The frequency of the clock system can be increased.

3.3.5 Sleep mode

Entering Sleep mode

The Sleep mode is entered by executing the WFI (Wait For Interrupt) or WFE (Wait for
Event) instructions. Two options are available to select the Sleep mode entry mechanism,
depending on the SLEEPONEXIT bit in the Cortex-M3 System Control register:

● Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon
as WFI or WFE instruction is executed.

● Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as
it exits the lowest priority ISR.

Note: In Sleep mode, all I/O pins keep the same state as in Run mode.

Refer to Table 10: Sleep-now and Table 11: Sleep-on-exit for details on how to enter Sleep
mode.

Exiting Sleep mode

If the WFI instruction is used to enter Sleep mode, any peripheral interrupt acknowledged by
the nested vectored interrupt controller (NVIC) can wake up the device from Sleep mode.

If the WFE instruction is used to enter Sleep mode, the MCU exits Sleep mode as soon as
an event occurs. The wakeup event can be generated either by:

● Enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex-M3 System Control register. When the MCU
resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ
channel pending bit (in the NVIC interrupt clear pending register) have to be cleared.

● Or configuring an external or internal EXTI line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
IRQ channel pending bit as the pending bit corresponding to the event line is not set.

This mode offers the lowest wakeup time as no time is wasted in interrupt entry/exit.

Refer to Table 10: Sleep-now and Table 11: Sleep-on-exit for more details on how to exit
Sleep mode.

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 59/598

3.3.6 Low power sleep mode (LP sleep)

Entering Low power sleep mode

The Low power sleep mode is entered by configuring the voltage regulator in low power
mode, and by executing the WFI (wait for interrupt) or WFE (wait for event) instructions. In
this mode, the Flash memory is not available but the RAM memory remains available.

In this mode, the system frequency should not exceed 128 KHz.

Please refer to product datasheet for more details on voltage regulator and peripherals
operating conditions.

Low power sleep mode can only be entered when VCORE is in range 2.

Note: To be able to read the RTC calendar register when the the APB1 clock frequency is less
than seven times the RTC clock frequency (7*RTCLCK), the software must read the
calendar time and date registers twice.

If the second read of the RTC_TR gives the same result as the first read, this ensures that
the data is correct. Otherwise a third read access must be done.

Table 10. Sleep-now

Sleep-now mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:
– SLEEPDEEP = 0 and

– SLEEPONEXIT = 0

Refer to the Cortex™-M3 System Control register.

Mode exit

If WFI was used for entry:

Interrupt: Refer to Table 28: Vector table
If WFE was used for entry

Wakeup event: Refer to Section 7.2.3: Wakeup event management

Wakeup latency None

Table 11. Sleep-on-exit

Sleep-on-exit Description

Mode entry

WFI (wait for interrupt) while:

– SLEEPDEEP = 0 and
– SLEEPONEXIT = 1

Refer to the Cortex™-M3 System Control register.

Mode exit Interrupt: refer to Table 28: Vector table.

Wakeup latency None

Power control (PWR) RM0038

60/598 Doc ID 15965 Rev 4

Two options are available to select the Sleep low power mode entry mechanism, depending
on the SLEEPONEXIT bit in the Cortex-M3 System Control register:

● Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon
as WFI or WFE instruction is executed.

● Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as
it exits the lowest priority ISR.

To enter Low power sleep mode, proceed as follows:

● The Flash memory can be switched off by using the control bits (SLEEP_PD in the
FLASH_ACR register. For more details refer to PM0062). This reduces power
consumption but increases the wake-up time.

● Each digital IP clock must be enabled or disabled by using the RCC_APBxENR and
RCC_AHBENR registers.

● The frequency of the system clock must be decreased.

● The regulator is forced in low power mode by software (LPSDSR bits set).

● A WFI/WFE instruction must be executed to enter in Sleep mode.

Note: In Low power sleep mode, all I/O pins keep the same state as in Run mode.

Refer to Table 12: Sleep-now and Table 13: Sleep-on-exit for details on how to enter Low
power sleep mode.

Exiting Low power sleep mode

If the WFI instruction was used to enter Low power sleep mode, any peripheral interrupt
acknowledged by the nested vectored interrupt controller (NVIC) can wake up the device
from Low power sleep mode.

If the WFE instruction was used to enter Low power sleep mode, the MCU exits Sleep mode
as soon as an event occurs. The wakeup event can be generated:

● By enabling an interrupt in the peripheral control register but not in the NVIC, and by
enabling the SEVONPEND bit in the Cortex-M3 System Control register. When the
MCU resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC
IRQ channel pending bit in the NVIC interrupt clear pending register must be cleared.

● Or by configuring an external or internal EXTI line in event mode. When the CPU
resumes from WFE, it is not necessary to clear the peripheral interrupt pending bit or
the NVIC IRQ channel pending bit as the pending bit corresponding to the event line is
not set.

When exiting Low power sleep mode by issuing an interrupt or a wakeup event, the
regulator is configured in Main regulator mode, the Flash memory is switched on (if
necessary), and the system clock can be increased.

When the voltage regulator operates in low power mode, an additional startup delay is
incurred when waking up from Low power sleep mode.

Refer to Table 12: Sleep-now and Table 13: Sleep-on-exit for more details on how to exit
Sleep low power mode.

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 61/598

3.3.7 Stop mode

The Stop mode is based on the Cortex-M3 deepsleep mode combined with peripheral clock
gating. The voltage regulator can be configured either in normal or low-power mode. In Stop
mode, all clocks in the VCORE domain are stopped, the PLL, the MSI, the HSI and the HSE
RC oscillators are disabled. Internal SRAM and register contents are preserved.

To get the lowest consumption in Stop mode, the internal Flash memory also enters low
power mode. When the Flash memory is in power down mode, an additional startup delay is
incurred when waking up from Stop mode.

To minimize the consumption In Stop mode, VREFINT, the BOR, PVD, and temperature
sensor can be switched off before entering the Stop mode. They can be switched on again
by software after exiting the Stop mode using the ULP bit in the PWR_CR register.

Note: In Stop mode, all I/O pins keep the same state as in Run mode.

Entering the Stop mode

Refer to Table 14 for details on how to enter the Stop mode.

To further reduce power consumption in Stop mode, the internal voltage regulator can be
put in low power mode. This is configured by the LPSDSR bit in the PWR_CR register (see
Section 3.4.1).

Table 12. Sleep-now

Sleep-now mode Description

Mode entry

Voltage regulator in low power mode and the Flash memory switched off
WFI (Wait for Interrupt) or WFE (wait for event) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 0
Refer to the Cortex™-M3 System Control register.

Mode exit

Voltage regulator in Main regulator mode and the Flash memory switched on
If WFI was used for entry:

Interrupt: Refer to Table 28: Vector table

If WFE was used for entry
Wakeup event: Refer to Section 7.2.3: Wakeup event management

Wakeup latency Regulator wakeup time from low power mode

Table 13. Sleep-on-exit

Sleep-on-exit Description

Mode entry

Voltage regulator in low power mode and the Flash memory switched off

WFI (wait for interrupt) while:

– SLEEPDEEP = 0 and
– SLEEPONEXIT = 1

Refer to the Cortex™-M3 System Control register.

Mode exit Interrupt: refer to Table 20: Vector table.

Wakeup latency regulator wakeup time from low power mode

Power control (PWR) RM0038

62/598 Doc ID 15965 Rev 4

If Flash memory programming or an access to the APB domain is ongoing, the Stop mode
entry is delayed until the memory or APB access has completed.

In Stop mode, the following features can be selected by programming individual control bits:

● Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a Reset. Refer to
Section 16.3 in Section 16: Independent watchdog (IWDG).

● Real-time clock (RTC): this is configured by the RTCEN bit in the RCC_CSR register
(see Section 4.3.14).

● Internal RC oscillator (LSI RC): this is configured by the LSION bit in the RCC_CSR
register.

● External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
RCC_CSR register.

The ADC, DAC or LCD can also consume power in Stop mode, unless they are disabled
before entering it. To disable them, the ADON bit in the ADC_CR2 register and the ENx bit
in the DAC_CR register must both be written to 0.

Exiting the Stop mode

Refer to Table 14 for more details on how to exit Stop mode.

When exiting Stop mode by issuing an interrupt or a wakeup event, the MSI RC oscillator is
selected as system clock.

When the voltage regulator operates in low power mode, an additional startup delay is
incurred when waking up from Stop mode. By keeping the internal regulator ON during Stop
mode, the consumption is higher although the startup time is reduced.

Table 14. Stop mode

Stop mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– Set SLEEPDEEP bit in Cortex™-M3 System Control register

– Clear PDDS bit in Power Control register (PWR_CR)
– Select the voltage regulator mode by configuring LPSDSR bit in

PWR_CR
Note: To enter the Stop mode, all EXTI Line pending bits (in EXTI pending
register (EXTI_PR)), the RTC Alarm (Alarm A and Alarm B), RTC wakeup,
RTC tamper, and RTC time-stamp flags, must be reset. Otherwise, the
Stop mode entry procedure is ignored and program execution continues.

Mode exit

If WFI was used for entry:
Any EXTI Line configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC). Refer to Table 20: Vector
table on page 147.

If WFE was used for entry:
Any EXTI Line configured in event mode. Refer to Section 8.2.3: Wakeup
event management on page 152

Wakeup latency
MSI RC wakeup time + regulator wakeup time from Low-power mode +
FLASH wakeup time

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 63/598

3.3.8 Standby mode

The Standby mode allows to achieve the lowest power consumption. It is based on the
Cortex-M3 deepsleep mode, with the voltage regulator disabled. The VCORE domain is
consequently powered off. The PLL, the MSI, the HSI oscillator and the HSE oscillator are
also switched off. SRAM and register contents are lost except for the RTC registers, RTC
backup registers and Standby circuitry (see Figure 2).

Entering the Standby mode

Refer to Table 15 for more details on how to enter Standby mode.

In Standby mode, the following features can be selected by programming individual control
bits:

● Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a reset. Refer to
Section 16.3 in Section 16: Independent watchdog (IWDG).

● Real-time clock (RTC): this is configured by the RTCEN bit in the RCC_CSR register
(see Section 4.3.14).

● Internal RC oscillator (LSI RC): this is configured by the LSION bit in the RCC_CSR
register.

● External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
RCC_CSR register.

Exiting the Standby mode

The microcontroller exits Standby mode when an external Reset (NRST pin), an IWDG
Reset, a rising edge on WKUP pins (WUKP1, WKUP2 or WKUP3), an RTC alarm, a tamper
event, or a time-stamp event is detected. All registers are reset after wakeup from Standby
except for PWR power control/status register (PWR_CSR).

After waking up from Standby mode, program execution restarts in the same way as after a
Reset (boot pins sampling, vector reset is fetched, etc.). The SBF status flag in the
PWR_CSR register (see Section 3.4.2) indicates that the MCU was in Standby mode.

Refer to Table 15 for more details on how to exit Standby mode.

Table 15. Standby mode

Standby mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:
– Set SLEEPDEEP in Cortex™-M3 System Control register

– Set PDDS bit in Power Control register (PWR_CR)

– Clear WUF bit in Power Control/Status register (PWR_CSR)
– Clear the RTC flag corresponding to the chosen wakeup source (RTC

Alarm A, RTC Alarm B, RTC wakeup, Tamper or Time-stamp flags)

Mode exit
WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
tamper event, time-stamp event, external reset in NRST pin, IWDG reset.

Wakeup latency Reset phase

Power control (PWR) RM0038

64/598 Doc ID 15965 Rev 4

I/O states in Standby mode

In Standby mode, all I/O pins are high impedance except for:

● Reset pad (still available)

● RTC_AF1 pin (PC13) if configured for Wakeup pin 2 (WKUP2), tamper, time-stamp,
RTC Alarm out, or RTC clock calibration out.

● WKUP pin 1 (PA0) and WKUP pin 3 (PE6), if enabled.

Debug mode

By default, the debug connection is lost if the application puts the MCU in Stop or Standby
mode while the debug features are used. This is due to the fact that the Cortex™-M3 core is
no longer clocked.

However, by setting some configuration bits in the DBGMCU_CR register, the software can
be debugged even when using the low-power modes extensively. For more details, refer to
Section 24.16.1: Debug support for low-power modes.

3.3.9 Waking up the device from Stop and Standby modes using the RTC and
comparators

The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC Wakeup
event, a tamper event, a time-stamp event, or a comparator event, without depending on an
external interrupt (Auto-wakeup mode).

These RTC alternate functions can wake up the system from Stop and Standby low power
modes while the comparator events can only wake up the system from Stop mode.

The system can also wake up from low power modes without depending on an external
interrupt (Auto-wakeup mode) by using the RTC alarm or the RTC wakeup events.

The RTC provides a programmable time base for waking up from Stop or Standby mode at
regular intervals. For this purpose, two of the three alternative RTC clock sources can be
selected by programming the RTCSEL[1:0] bits in the RCC_CSR register (see
Section 4.3.14):

● Low-power 32.768 kHz external crystal oscillator (LSE OSC).
This clock source provides a precise time base with very low-power consumption (less
than 1 µA added consumption in typical conditions)

● Low-power internal RC oscillator (LSI RC)

This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This
internal RC Oscillator is designed to use minimum power consumption.

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 65/598

RTC auto-wakeup (AWU) from the Stop mode

● To wake up from the Stop mode with an RTC alarm event, it is necessary to:

a) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC Alarm interrupt in the RTC_CR register

c) Configure the RTC to generate the RTC alarm

● To wake up from the Stop mode with an RTC Tamper or time stamp event, it is
necessary to:

a) Configure the EXTI Line 19 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC TimeStamp Interrupt in the RTC_CR register or the RTC Tamper
Interrupt in the RTC_TCR register

c) Configure the RTC to detect the tamper or time stamp event

● To wake up from the Stop mode with an RTC Wakeup event, it is necessary to:

a) Configure the EXTI Line 20 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC Wakeup Interrupt in the RTC_CR register

c) Configure the RTC to generate the RTC Wakeup event

RTC auto-wakeup (AWU) from the Standby mode

● To wake up from the Standby mode with an RTC alarm event, it is necessary to:

a) Enable the RTC Alarm interrupt in the RTC_CR register

b) Configure the RTC to generate the RTC alarm

● To wake up from the Stop mode with an RTC Tamper or time stamp event, it is
necessary to:

a) Enable the RTC TimeStamp Interrupt in the RTC_CR register or the RTC Tamper
Interrupt in the RTC_TCR register

b) Configure the RTC to detect the tamper or time stamp event

● To wake up from the Stop mode with an RTC Wakeup event, it is necessary to:

a) Enable the RTC Wakeup Interrupt in the RTC_CR register

b) Configure the RTC to generate the RTC Wakeup event

Comparator auto-wakeup (AWU) from the Stop mode

● To wake up from the Stop mode with a comparator 1 or comparator 2 wakeup event, it
is necessary to:

a) Configure the EXTI Line 21 for comparator 1 or EXTI Line 22 for comparator 2
(Interrupt or Event mode) to be sensitive to the selected edges (falling, rising or
falling and rising)

b) Configure the comparator to generate the event

3.4 Power control registers
The peripheral registers have to be accessed by half-words (16-bit) or words (32-bit).

Power control (PWR) RM0038

66/598 Doc ID 15965 Rev 4

3.4.1 PWR power control register (PWR_CR)

Address offset: 0x00

Reset value: 0x0000 1000 (reset by wakeup from Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
LPRUN

Res.
VOS[1:0] FWU ULP DBP PLS[2:0] PVDE CSBF CWUF PDDS LPSDSR

rw rw rw rw rw rw rw rw rw rw rc_w1 rc_w1 rw rw

Bits 31:15 Reserved, always read as 0.

Bit 14 LPRUN: Low power run mode

When LPRUN bit is set together with the LPSDSR bit, the regulator is switched from main
mode to low power mode. Otherwise, it remains in main mode. The regulator goes back to
operate in main mode when LPRUN is reset.
It is forbidden to reset LPSDSR when the MCU is in Low power run mode mode. LPSDSR is
used as a prepositionning for the entry into low power mode, indicating to the system which
configuration of the regulator will be selected when entering Low power mode. The LPSDSR
bit must be set before the LPRUN bit is set. LPSDSR can be reset only when LPRUN bit=0.

0: Voltage regulator in main mode in Low power run mode
1: Voltage regulator in low power mode in Low power run mode

Bits 13 Reserved, always read as 0.

Bits 12:11 VOS[1:0]: Voltage scaling range selection

These bits are used to select the internal regulator voltage range.
Before resetting the power interface by resetting the PWRRST bit in the RCC_APB1RSTR
register, these bits have to be set to "10" and the frequency of the system has to be configured
accordingly.

00: forbidden (range1 will be automatically selected)
01: 1.8 V (range 1)
10: 1.5 V (range 2)
11: 1.2 V (range 3)

Bit 10 FWU: Fast wakeup
This bit works in conjunction with ULP bit.

If ULP = 0, FWU is ignored

If ULP = 1 and FWU = 1: VREFINT startup time is ignored when exiting from low power mode.
The VREFINTRDYF flag in the PWR_CSR register indicates when the VREFINT is ready again.

If ULP=1 and FWU = 0: Exiting from low power mode occurs only when the VREFINT is ready
(after its startup time). This bit is not reset by resetting the PWRRST bit in the
RCC_APB1RSTR register.

0: Low power modes exit occurs only when VREFTINT is ready
1: VREFTINT start up time is ignored when exiting low power modes

Bit 9 ULP: Ultralow power mode

When set, the VREFINT is switched off in low power mode. This bit is not reset by resetting the
PWRRST bit in the RCC_APB1RSTR register.

0: VREFTINT is on in low power mode
1: VREFTINT is off in low power mode

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 67/598

Bit 8 DBP: Disable backup write protection
In reset state, the RTC, RTC backup registers and RCC CSR register are protected against
parasitic write access. This bit must be set to enable write access to these registers.

0: Access to RTC, RTC Backup and RCC CSR registers disabled
1: Access to RTC, RTC Backup and RCC CSR registers enabled

Note: If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, this bit must remain set to
1.

Bits 7:5 PLS[2:0]: PVD level selection
These bits are written by software to select the voltage threshold detected by the power
voltage detector:

000: 1.9 V
001: 2.1 V
010: 2.3 V
011: 2.5 V
100: 2.7 V
101: 2.9 V
110: 3.1 V
111: External input analog voltage (Compare internally to VREFINT)

PVD_IN input (PB7) has to be configured as analog input when PLS[2:0] = 111.

Note: Refer to the electrical characteristics of the datasheet for more details.

Bit 4 PVDE: Power voltage detector enable

This bit is set and cleared by software.

0: PVD disabled
1: PVD enabled

Bit 3 CSBF: Clear standby flag

This bit is always read as 0.
0: No effect
1: Clear the SBF Standby flag (write).

Bit 2 CWUF: Clear wakeup flag
This bit is always read as 0.

0: No effect
1: Clear the WUF Wakeup flag after 2 system clock cycles

Bit 1 PDDS: Power down deepsleep

This bit is set and cleared by software.

0: Enter Stop mode when the CPU enters deepsleep. The regulator is in low-power mode.
1: Enter Standby mode when the CPU enters deepsleep.

Bit 0 LPSDSR: Low-power deepsleep/sleep/low power run

– DeepSleep/Sleep modes
When this bit is set, the regulator switches in low power mode when the CPU enters sleep or
deepsleep mode. The regulator goes back to main mode when the CPU exits from these
modes.

– Low power run mode
When this bit is set, the regulator switches in low power mode when the bit LPRUN is set.
The regulator goes back to main mode when the bit LPRUN is reset.

This bit is set and cleared by software.

0: Voltage regulator on during deepsleep/Sleep/Low power run mode
1: Voltage regulator in low power mode during deepsleep/Sleep/Low power run mode

Power control (PWR) RM0038

68/598 Doc ID 15965 Rev 4

3.4.2 PWR power control/status register (PWR_CSR)

Address offset: 0x04

Reset value: 0x0000 0008 (not reset by wakeup from Standby mode)

Additional APB cycles are needed to read this register versus a standard APB read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

EWUP
3

EWUP
2

EWUP
1 Reserved

REG
LPF VOSF VREFIN

TRDYF PVDO SBF WUF

rw rw rw r r r r r r

Bits 31:11 Reserved, always read as 0.

Bit 10 EWUP3: Enable WKUP pin 3
This bit is set and cleared by software.

0: WKUP pin 3 is used for general purpose I/Os. An event on the WKUP pin 3 does not
wakeup the device from Standby mode.
1: WKUP pin 3 is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP pin 3 wakes-up the system from Standby mode).

Note: This bit is reset by a system reset.

Bit 9 EWUP2: Enable WKUP pin 2

This bit is set and cleared by software.
0: WKUP pin 2 is used for general purpose I/Os. An event on the WKUP pin 2 does not
wakeup the device from Standby mode.
1: WKUP pin 2 is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP pin 2 wakes-up the system from Standby mode).

Note: This bit is reset by a system reset.

Bit 8 EWUP1: Enable WKUP pin 1

This bit is set and cleared by software.
0: WKUP pin 1 is used for general purpose I/Os. An event on the WKUP pin 1 does not
wakeup the device from Standby mode.
1: WKUP pin 1 is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP pin 1 wakes-up the system from Standby mode).

Note: This bit is reset by a system reset.

Bits 7:6 Reserved, always read as 0.

Bit 5 REGLPF : Regulator LP flag

This bit is set by hardware when the MCU is in Low power run mode.

When the MCU exits from Low power run mode, this bit stays at 1 until the regulator is ready in
main mode. A polling on this bit is recommended to wait for the regulator main mode. This bit is
reset by hardware when the regulator is ready.

0: Regulator is ready in main mode
1: Regulator voltage is in low power mode

RM0038 Power control (PWR)

Doc ID 15965 Rev 4 69/598

3.4.3 PWR register map

The following table summarizes the PWR registers.

Refer to Table 1: Register boundary addresses for the register boundary addresses.

Bit 4 VOSF: Voltage Scaling select flag
A delay is required for the internal regulator to be ready after the voltage range is changed.
The VOSF bit indicates that the regulator has reached the voltage level defined with bits VOS
of PWR_CR register.

This bit is reset when VOS[1:0] in PWR_CR register change.
It is set once the regulator is ready.

0: Regulator is ready in the selected voltage range
1: Regulator voltage output is changing to the required VOS level.

Bit 3 VREFINTRDYF: Internal voltage reference (VREFINT) ready flag

This bit indicates the state of the internal voltage reference, VREFINT.
0: VREFINT is OFF
1: VREFINT is ready

Bit 2 PVDO: PVD output
This bit is set and cleared by hardware. It is valid only if PVD is enabled by the PVDE bit.

0: VDD/VDDA is higher than the PVD threshold selected with the PLS[2:0] bits.
1: VDD/VDDA is lower than the PVD threshold selected with the PLS[2:0] bits.

Note: The PVD is stopped by Standby mode. For this reason, this bit is equal to 0 after
Standby or reset until the PVDE bit is set.

Bit 1 SBF: Standby flag
This bit is set by hardware and cleared only by a POR/PDR (power on reset/power down reset)
or by setting the CSBF bit in the PWR power control register (PWR_CR)

0: Device has not been in Standby mode
1: Device has been in Standby mode

Bit 0 WUF: Wakeup flag
This bit is set by hardware and cleared only by a POR/PDR (power on reset/power down reset)
or by setting the CWUF bit in the PWR power control register (PWR_CR)

0: No wakeup event occurred
1: A wakeup event was received from the WKUP pin or from the RTC alarm (Alarm A or
Alarm B), RTC Tamper event, RTC TimeStamp event or RTC Wakeup).

Note: An additional wakeup event is detected if the WKUP pins are enabled (by setting the
EWUPx (x=1, 2, 3) bits) when the WKUP pin levels are already high.

Table 16. PWR - register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
PWR_CR

Reserved

LP
R

U
N

R
es

er
ve

d VOS
[1:0] F

W
U

U
LP

D
B

P PLS[2:0]

P
V

D
E

C
S

B
F

C
W

U
F

P
D

D
S

LP
S

D
S

R

Reset value 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0x004
PWR_CSR

Reserved

E
W

U
P

3

E
W

U
P

2

E
W

U
P

1

R
es

er
ve

d

R
E

G
LP

F

V
O

S
F

V
R

E
F

IN
T

R
D

Y
F

P
V

D
O

S
B

F

W
U

F

Reset value 0 0 0 0 0 1 0 0 0

Reset and clock control (RCC) RM0038

70/598 Doc ID 15965 Rev 4

4 Reset and clock control (RCC)

4.1 Reset
There are three types of reset, defined as system reset, power reset and RTC domain reset.

4.1.1 System reset

A system reset sets all registers to their reset values except for the RTC, RTC backup
registers and control/status register, RCC_CSR.

A system reset is generated when one of the following events occurs:

1. A low level on the NRST pin (external reset)

2. Window watchdog end-of-count condition (WWDG reset)

3. Independent watchdog end-of-count condition (IWDG reset)

4. A software reset (SW reset) (see Software reset)

5. Low-power management reset (see Low-power management reset)

6. Option byte loader reset (see Option byte loader reset)

7. Exit from Standby mode

The reset source can be identified by checking the reset flags in the control/status register,
RCC_CSR (see Section 4.3.14).

Software reset

The SYSRESETREQ bit in Cortex™-M3 Application Interrupt and Reset Control Register
must be set to force a software reset on the device. Refer to the Cortex™-M3 technical
reference manual for more details.

Low-power management reset

There are two ways to generate a low-power management reset:

1. Reset generated when entering Standby mode:

This type of reset is enabled by resetting nRST_STDBY bit in user option bytes. In this
case, whenever a Standby mode entry sequence is successfully executed, the device
is reset instead of entering Standby mode.

2. Reset when entering Stop mode:

This type of reset is enabled by resetting nRST_STOP bit in user option bytes. In this
case, whenever a Stop mode entry sequence is successfully executed, the device is
reset instead of entering Stop mode.

Option byte loader reset

The Option byte loader reset is generated when the OBL_LAUNCH bit (bit 18) is set in the
FLASH_PECR register. This bit is used to launch by software the option byte loading.

For further information on the user option bytes, refer to the STM32L15xxx Flash
programming manual (PM0062).

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 71/598

4.1.2 Power reset

A power reset is generated when one of the following events occurs:

1. Power-on/power-down reset (POR/PDR reset)

2. BOR reset

A power reset sets all registers to their reset values including for the RTC domain (see
Figure 8)

These sources act on the NRST pin and it is always kept low during the delay phase. The
RESET service routine vector is fixed at address 0x0000_0004 in the memory map. For
more details, refer to Table 28: Vector table.

The system reset signal provided to the device is output on the NRST pin. The pulse
generator guarantees a minimum reset pulse duration of 20 µs for each reset source
(external or internal reset). In case of an external reset, the reset pulse is generated while
the NRST pin is asserted low.

Figure 8. Simplified diagram of the reset circuit

4.1.3 RTC and backup registers reset

The RTC peripheral, RTC clock source selection (in RCC_CSR) and the backup registers
are reset only when one of the following events occurs:

1. A software reset, triggered by setting the RTCRST bit in the RCC_CSR register (see
Section 4.3.14)

2. Power reset (BOR/POR/PDR)

Reset and clock control (RCC) RM0038

72/598 Doc ID 15965 Rev 4

4.2 Clocks
Four different clock sources can be used to drive the system clock (SYSCLK):

● HSI ((high-speed internal) oscillator clock

● HSE (high-speed external) oscillator clock

● PLL clock

● MSI (multispeed internal) oscillator clock

The MSI is used as system clock source after startup from Reset, wake-up from Stop
or Standby low power modes.

The devices have the following two secondary clock sources:

● 37 kHz low speed internal RC (LSI RC) which drives the independent watchdog and
optionally the RTC used for Auto-wakeup from Stop/Standby mode.

● 32.768 kHz low speed external crystal (LSE crystal) which optionally drives the real-
time clock (RTCCLK)

Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.

Several prescalers allow the configuration of the AHB frequency, the high speed APB
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB,
APB1 and the APB2 domains is 32 MHz. It may depend on the device voltage range, for
more details please refer to the Dynamic voltage scaling management section in the PWR
chapter.

All the peripheral clocks are derived from the system clock (SYSCLK) except:

● The USB 48 MHz clock which is derived from the PLL VCO clock.

● The ADC clock which is always the HSI clock. A divider by 1, 2 or 4 allows to adapt the
clock frequency to the device operating conditions. For more details please refer to the
Operating Power Supply Range section in the PWR chapter.

● The RTC/LCD clock which is derived from the LSE, LSI or 1 MHz HSE_RTC (HSE
divided by a programmable prescaler).

● IWDG clock which is always the LSI clock.

The system clock (SYSCLK) frequency must be higher or equal to the RTC/LCD clock
frequency.

The RCC feeds the Cortex System Timer (SysTick) external clock with the AHB clock
(HCLK) divided by 8. The SysTick can work either with this clock or with the Cortex clock
(HCLK), configurable in the SysTick Control and Status Register.

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 73/598

Figure 9. Clock tree

1. For full details about the internal and external clock source characteristics, please refer to the “Electrical
characteristics” section in your device datasheet.

Reset and clock control (RCC) RM0038

74/598 Doc ID 15965 Rev 4

The timer clock frequencies are automatically fixed by hardware. There are two cases:

1. If the APB prescaler is 1, the timer clock frequencies are set to the same frequency as
that of the APB domain to which the timers are connected.

2. Otherwise, they are set to twice (×2) the frequency of the APB domain to which the
timers are connected.

FCLK acts as Cortex™-M3 free running clock. For more details refer to the ARM Cortex™-
M3 Technical Reference Manual.

4.2.1 HSE clock

The high speed external clock signal (HSE) can be generated from two possible clock
sources:

● HSE external crystal/ceramic resonator

● HSE user external clock

The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and startup stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.

External source (HSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to
32 MHz. This mode is selected by setting the HSEBYP and HSEON bits in the Clock control
register, RCC_CR (see Section 4.3.1). The external clock signal (square, sinus or triangle)

Figure 10. HSE/ LSE clock sources

Clock source Hardware configuration

External clock

Crystal/Ceramic
resonators

OSC_OUT

External
source

(Hi-Z)

OSC_IN OSC_OUT

Load
capacitors

CL2CL1

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 75/598

with ~50% duty cycle has to drive the OSC_IN pin while the OSC_OUT pin should be left hi-
Z (see Figure 10).

External crystal/ceramic resonator (HSE crystal)

The 1 to 24 MHz external oscillator has the advantage of producing a very accurate rate on
the main clock.

The associated hardware configuration is shown in Figure 10. Refer to the electrical
characteristics section of the datasheet for more details.

The HSERDY flag of the RCC_CR register (see Section 4.3.1) indicates wether the HSE
oscillator is stable or not. At startup, the HSE clock is not released until this bit is set by
hardware. An interrupt can be generated if enabled in the RCC_CR register.

The HSE Crystal can be switched on and off using the HSEON bit in the RCC_CR register.

4.2.2 HSI clock

The HSI clock signal is generated from an internal 16 MHz RC oscillator. It can be used
directly as a system clock or as PLL input.

The HSI RC oscillator has the advantage of providing a clock source at low cost (no external
components). It also has a faster startup time than the HSE crystal oscillator however, even
with calibration the frequency is less accurate than an external crystal oscillator or ceramic
resonator.

Calibration

RC oscillator frequencies can vary from one chip to another due to manufacturing process
variations, this is why each device is factory calibrated by ST for 1% accuracy at an ambient
temperature, TA, of 25 °C.

After reset, the factory calibration value is loaded in the HSICAL[7:0] bits in the Internal
Clock Sources Calibration Register (RCC_ICSCR) (see Section 4.3.2).

If the application is subject to voltage or temperature variations, this may affect the RC
oscillator speed. You can trim the HSI frequency in the application by using the
HSITRIM[4:0] bits in the RCC_ICSCR register. For more details on how to measure the HSI
frequency variation please refer to Section 4.2.13: Internal/external clock measurement with
TIM9/TIM10/TIM11.

The HSIRDY flag in the RCC_CR indicates wether the HSI oscillator is stable or not. At
startup, the HSI RC output clock is not released until this bit is set by hardware.

The HSI RC oscillator can be switched on and off using the HSION bit in the RCC_CR
register.

The HSI signal can also be used as a backup clock source (auxiliary clock) if the HSE
crystal oscillator fails. Refer to Section 4.2.9: Clock security system (CSS) on page 78.

4.2.3 MSI clock

The MSI clock signal is generated from an internal RC oscillator. Its frequency range can be
adjusted by software by using the MSIRANGE[2:0] bits in the RCC_ICSCR register (see
Section 4.3.2: Internal clock sources calibration register (RCC_ICSCR)). Seven frequency
ranges are available: 65.536 kHz, 131.072 kHz, 262.144 kHz, 524.288 kHz, 1.048 MHz,
2.097 MHz (default value) and 4.194 MHz.

Reset and clock control (RCC) RM0038

76/598 Doc ID 15965 Rev 4

The MSI clock is used as system clock after restart from Reset, wake-up from Stop, and
Standby low power mode. After restart from Reset or wake-up from Standby, the MSI
frequency is set to its default value. The MSI frequency does not change after waking up
from Stop.

The MSI RC oscillator has the advantage of providing a low-cost (no external components)
low-power clock source. It is used as wake-up clock in low power modes to reduce power
consumption and wake-up time.

The MSIRDY flag in the RCC_CR register indicates wether the MSI RC is stable or not. At
startup, the MSI RC output clock is not released until this bit is set by hardware.

The MSI RC can be switched on and off by using the MSION bit in the RCC_CR register
(see Section 4.3.1).

It can also be used as a backup clock source (auxiliary clock) if the HSE crystal oscillator
fails. Refer to Section 4.2.9: Clock security system (CSS) on page 78.

Calibration

The MSI RC oscillator frequency can vary from one chip to another due to manufacturing
process variations, this is why each device is factory calibrated by ST for 1% accuracy at an
ambient temperature, TA, of 25 °C.

After reset, the factory calibration value is loaded in the MSICAL[7:0] bits in the
RCC_ICSCR register. If the application is subject to voltage or temperature variations, this
may affect the RC oscillator speed. You can trim the MSI frequency in the application by
using the MSITRIM[7:0] bits in the RCC_ICSCR register. For more details on how to
measure the MSI frequency variation please refer to Section 4.2.13: Internal/external clock
measurement with TIM9/TIM10/TIM11.

4.2.4 PLL

The internal PLL can be clocked by the HSI RC or HSE crystal. It is used to drive the system
clock and to generate the 48 MHz clock for the USB peripheral (refer to Figure 9 and
Section 4.3.1: Clock control register (RCC_CR).

The PLL input clock frequency must be between 2 and 24 MHz.

The desired frequency is obtained by using the multiplication factor and output division
embedded in the PLL:

● If the USB interface is used in the application, the PLL VCO clock (defined by the PLL
multiplication factor) must be programmed to output a 96 MHz frequency. This is
required to provide a 48 MHz clock to the USB (USBCLK = PLLVCO/2).

● The system clock is derived from the PLL VCO divided by the output division factor.

Note: 1 The application software must set correctly the PLL multiplication factor to avoid exceeding
96 MHz as PLLVCO when the product is in range 1,
48 MHz as PLLVCO when the product is in range 2,
24 MHz when the product is in range 3 .
It must also set correctly the output division to avoid exceeding 32 MHz as SYSCLK.

2 The minimum input clock frequency for PLL is 2 MHz (when using HSE as PLL source).

The PLL configuration (selection of the source clock, multiplication factor and output division
factor) must be performed before enabling the PLL. Once the PLL is enabled, these
parameters cannot be changed.

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 77/598

To modify the PLL configuration, proceed as follows:

1. Disable the PLL by setting PLLON to 0.

2. Wait until PLLRDY is cleared. PLLRDY. The PLL is now fully stopped.

3. Change the desired parameter.

4. Enable the PLL again by setting PLLON to 1.

An interrupt can be generated when the PLL is ready if enabled in the RCC_CIR register
(see Section 4.3.4).

4.2.5 LSE clock

The LSE crystal is a 32.768 kHz low speed external crystal or ceramic resonator. It has the
advantage of providing a low-power but highly accurate clock source to the real-time clock
peripheral (RTC) for clock/calendar or other timing functions.

The LSE crystal is switched on and off using the LSEON bit in the RCC_CSR register (see
Section 4.3.14).

The LSERDY flag in the RCC_CSR register indicates wether the LSE crystal is stable or not.
At startup, the LSE crystal output clock signal is not released until this bit is set by hardware.
An interrupt can be generated if enabled in the RCC_CIR register (see Section 4.3.4).

External source (LSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to
1 MHz. This mode is selected by setting the LSEBYP and LSEON bits in the RCC_CR (see
Section 4.3.1). The external clock signal (square, sinus or triangle) with ~50% duty cycle
has to drive the OSC32_IN pin while the OSC32_OUT pin should be left Hi-Z (see
Figure 10).

4.2.6 LSI clock

The LSI RC acts as an low-power clock source that can be kept running in Stop and
Standby mode for the independent watchdog (IWDG). The clock frequency is around
37 kHz.

The LSI RC oscillator can be switched on and off using the LSION bit in the RCC_CSR
register (see Section 4.3.14).

The LSIRDY flag in RCC_CSR indicates wether the low-speed internal oscillator is stable or
not. At startup, the clock is not released until this bit is set by hardware. An interrupt can be
generated if enabled in the RCC_CIR (see Section 4.3.4).

LSI measurement

The frequency dispersion of the LSI oscillator can be measured to have accurate RTC time
base and/or IWDG timeout (when LSI is used as clock source for these peripherals) with an
acceptable accuracy. For more details, refer to the electrical characteristics section of the
datasheets. For more details on how to measure the LSI frequency, please refer to
Section 4.2.13: Internal/external clock measurement with TIM9/TIM10/TIM11.

Reset and clock control (RCC) RM0038

78/598 Doc ID 15965 Rev 4

4.2.7 System clock (SYSCLK) selection

Four different clock sources can be used to drive the system clock (SYSCLK):

● The HSI oscillator

● The HSE oscillator

● The PLL

● The MSI oscillator clock (default after reset)

When a clock source is used directly or through the PLL as system clock, it is not possible to
stop it.

A switch from one clock source to another occurs only if the target clock source is ready
(clock stable after startup delay or PLL locked). If a clock source which is not yet ready is
selected, the switch will occur when the clock source will be ready. Status bits in the
RCC_CR register indicate which clock(s) is (are) ready and which clock is currently used as
system clock.

4.2.8 System clock source frequency versus voltage range

The following table gives the different clock source frequencies depending on the product
voltage range.

Figure 11. System clock source frequency

4.2.9 Clock security system (CSS)

The Clock security system can be activated by software. In this case, the clock detector is
enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped.

If a failure is detected on the HSE oscillator clock, this oscillator is automatically disabled
and an interrupt is generated to inform the software about the failure (Clock Security System
Interrupt, CSSI), allowing the MCU to perform rescue operations. The CSSI is linked to the
Cortex™-M3 NMI (Non-Maskable Interrupt) exception vector.

Note: Once the CSS is enabled and if the HSE clock fails, the CSS interrupt occurs and an NMI is
automatically generated. The NMI will be executed indefinitely unless the CSS interrupt
pending bit is cleared. As a consequence, in the NMI ISR must clear the CSS interrupt by
setting the CSSC bit in the RCC_CIR register.

If the HSE oscillator is used directly or indirectly as the system clock (indirectly means: it is
used as PLL input clock, and the PLL clock is used as system clock), a detected failure
causes a switch of the system clock to the MSI oscillator and the disabling of the external
HSE oscillator. If the HSE oscillator clock is the clock entry of the PLL used as system clock
when the failure occurs, the PLL is disabled too.

Product voltage
range

Clock frequency

MSI HSI HSE PLL

Range 1 (1.8 V) 4 MHz 16 MHz
HSE 32 MHz (external clock)

or 24 MHz (crystal)
32 MHz

(PLLVCO max = 96 MHz)

Range 2 (1.5 V) 4 MHz 16 MHz 16 MHz
16 MHz

(PLLVCO max = 48 MHz)

Range 3 (1.2 V) 4 MHz NA 4 MHz
4 MHz

(PLLVCO max = 24 MHz)

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 79/598

4.2.10 RTC and LCD clock

The RTC and LCD have the same clock source which can be either the LSE, the LSI, or the
HSE 1 MHz clock (HSE divided by a programmable prescaler). It is selected by
programming the RTCSEL[1:0] bits in the RCC_CSR register (see Section 4.3.14) and the
RTCPRE[1:0] bits in the RCC_CR register (see Section 4.3.1).

Once the RTC and LCD clock source have been selected, the only possible way of
modifying the selection is to set the RTCRST bit in the RCC_CSR register, or by a POR.

If the LSE or LSI is used as RTC clock source, the RTC continues to work in Stop and
Standby low power modes, and can be used as wakeup source. However, when the HSE is
the RTC clock source, the RTC cannot be used in the Stop and Standby low power modes.
The LCD can however be used in the Stop low power mode if the LSE or LSI is used as the
RTC clock source.

Note: To be able to read the RTC calendar register when the APB1 clock frequency is less than
seven times the RTC clock frequency (7*RTCLCK), the software must read the calendar
time and date registers twice.

If the second read of the RTC_TR gives the same result as the first read, this ensures that
the data is correct. Otherwise a third read access must be done.

4.2.11 Watchdog clock

If the Independent watchdog (IDG) is started by either hardware option or software access,
the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator temporization,
the clock is provided to the IWDG.

4.2.12 Clock-out capability

The microcontroller clock output (MCO) capability allows the clock to be output onto the
external MCO pin (PA8) using a configurable prescaler (1, 2, 4, 8, or 16). The configuration
registers of the corresponding GPIO port must be programmed in alternate function mode.
One of 7 clock signals can be selected as the MCO clock:

● SYSCLK

● HSI

● MSI

● HSE

● PLL

● LSI

● LSE

The selection is controlled by the MCOSEL[2:0] bits of the RCC_CFGR register (see
Section 4.3.3).

4.2.13 Internal/external clock measurement with TIM9/TIM10/TIM11

It is possible to indirectly measure the frequency of all on-board clock source generators by
means of the TIM9/TIM10/TIM11 channel 1 input capture, as represented on Figure 12.

Reset and clock control (RCC) RM0038

80/598 Doc ID 15965 Rev 4

Figure 12. Using the TIM9/TIM10/TIM11 channel 1 input capture to measure
frequencies

Each timer has an input multiplexer that selects which of the I/O or the internal clock is to
trigger the input capture. This selection is performed through the TI1_RMP [1:0] bits in the
TIMx_OR register.

For TIM9 and TIM10, the primary purpose of connecting the LSE to the channel 1 input
capture is to be able to precisely measure the HSI and MSI system clocks (for this, either the
HSI or MSI should be used as the system clock source). The number of HSI (MSI,
respectively) clock counts between consecutive edges of the LSE signal provides a
measure of the internal clock period. Taking advantage of the high precision of LSE crystals
(typically a few tens of ppm’s), it is possible to determine the internal clock frequency with
the same resolution, and trim the source to compensate for manufacturing-process- and/or
temperature- and voltage-related frequency deviations.

The MSI and HSI oscillators both have dedicated user-accessible calibration bits for this
purpose.

The basic concept consists in providing a relative measurement (e.g. the HSI/LSE ratio): the
precision is therefore closely related to the ratio between the two clock sources. The higher
the ratio, the better the measurement.

MSI
HSE_RTC (1 MHz)

TI1_RMP[1:0]

TIM11

GPIO

ETR

TI(1)

GPIO

ETR

TI(1)

LSI
LSE

RTC_OUT

GPIO

GPIO

TI1_RMP[1:0]

TIM10

TIM9

TI(1)

ETR

TI(2)

TI1_RMP[1:0]

ai17186

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 81/598

It is however not possible to have a good enough resolution when the MSI clock is low
(typically below 1 MHz). In this case, it is advised to:

● accumulate the results of several captures in a row

● use the timer’s input capture prescaler (up to 1 capture every 8 periods)

● use the RTC_OUT signal at 512 Hz (when the RTC is clocked by the LSE) as the input
for the channel1 input capture. This improves the measurement precision

TIM10 can also be used to measure the LSI: this is useful for applications with no crystal.
The ultralow power LSI oscillator has a wide manufacturing process deviation: by measuring
it as a function of the HSI clock source, it is possible to determine its frequency with the
precision of the HSI.

Finally, TIM11 has two other sources. TIM11 can use the MSI just like TIM10 uses the LSI
for crystal-less applications. The HSE_RTC frequency (HSE divided by a programmable
prescaler) being relatively high (1MHz), the relative frequency measurement is not very
precise, so its main purpose is to have a rough indication of the external crystal frequency.
This is useful for instance to meet the requirements of the IEC 60730/IEC 61335 standards,
which requires to be able to determine harmonic or subharmonic frequencies (–50/+100%
deviations).

4.2.14 Clock-independent system clock sources for TIM9/TIM10/TIM11

In a number of applications using the 32.768 kHz clock as a time base for the RTC, it is
interesting to have time bases that work completely independently of the system clock. This
allows the scheduling of tasks without having to take into account the processor state (the
processor may be stopped or executing at low, medium or full speed).

For this purpose, the LSE clock is internally redirected to the 3 timers’ ETR inputs, which are
used as additional clock sources, as shown in Figure 12 on page 80. This gives up to three
independent time bases (using the auto-reload feature) with 1 or 2 compare additional
channels for fractional events. For instance, the TIM9’s auto-reload interrupt can be
programmed for a 1 second tick interrupt with an additional interrupt occurring 250 ms after
the main tick.

Note: In this configuration, make sure that you have at least a ratio of 2 between the external clock
(LSE) and the APB clock. If the application uses an APB clock frequency lower than twice
the LSE clock frequency (typically LSE = 32.768 kHz, so twice LSE = 65.536 kHz), it is
mandatory to use the external trigger prescaler feature of the timer: it can divide the ETR
clock by up to 8.

Reset and clock control (RCC) RM0038

82/598 Doc ID 15965 Rev 4

4.3 RCC registers
Refer to Section 1.1 for a list of abbreviations used in register descriptions.

4.3.1 Clock control register (RCC_CR)

Address offset: 0x00

Reset value: 0x0000 0300

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res.
RTCPRE[1:0] CSS

ON Reserved

PLL
RDY PLLON

Reserved

HSE
BYP

HSE
RDY

HSE
ON

rw rw rw r rw rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

MSI
RDY MSION

Reserved

HSI
RDY HSION

r rw r rw

Bit 31 Reserved, always read as 0

Bits 30:29 RTCPRE[1:0] RTC/LCD prescaler
These bits are set and reset by software to obtain a 1 MHz clock from HSE. This prescaler
cannot be modified if HSE is enabled (HSEON = 1).
00: HSE is divided by 2 for RTC/LCD clock
01: HSE is divided by 4 for RTC/LCD clock
10: HSE is divided by 8 for RTC/LCD clock
11: HSE is divided by 16 for RTC/LCD clock

Bit 28 CSSON: Clock security system enable

This bit is set and cleared by software to enable the clock security system (CSS). When
CSSON is set, the clock detector is enabled by hardware when the HSE oscillator is ready,
and disabled by hardware if an oscillator failure is detected.
0: Clock security system OFF (clock detector OFF)
1: Clock security system ON (clock detector ON if HSE oscillator is stable, OFF otherwise)

Bit 27:26 Reserved, always read as 0

Bit 25 PLLRDY: PLL clock ready flag

This bit is set by hardware to indicate that the PLL is locked.
0: PLL unlocked
1: PLL locked

Bit 24 PLLON: PLL enable

This bit is set and cleared by software to enable PLL.
Cleared by hardware when entering Stop or Standby mode. This bit can not be reset if the
PLL clock is used as system clock or is selected to become the system clock.
0: PLL OFF
1: PLL ON

Bits 23:19 Reserved, always read as 0

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 83/598

Bit 18 HSEBYP: HSE clock bypass
This bit is set and cleared by software to bypass the oscillator with an external clock. The
external clock must be enabled with the HSEON bit, to be used by the device.
The HSEBYP bit can be written only if the HSE oscillator is disabled.
0: HSE oscillator not bypassed
1: HSE oscillator bypassed with an external clock

Bit 17 HSERDY: HSE clock ready flag
This bit is set by hardware to indicate that the HSE oscillator is stable. After the HSION bit is
cleared, HSERDY goes low after 6 HSE oscillator clock cycles.
0: HSE oscillator not ready
1: HSE oscillator ready

Bit 16 HSEON: HSE clock enable

This bit is set and cleared by software.
Cleared by hardware to stop the HSE oscillator when entering Stop or Standby mode. This
bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock.
0: HSE oscillator OFF
1: HSE oscillator ON

Bits 15:10 Reserved, always read as 0

Bit 9 MSIRDY: MSI clock ready flag
This bit is set by hardware to indicate that the MSI oscillator is stable.
0: MSI oscillator not ready
1: MSI oscillator ready

Note: Once the MSION bit is cleared, MSIRDY goes low after 6 MSI clock cycles.

Bit 8 MSION: MSI clock enable
This bit is set and cleared by software.
Set by hardware to force the MSI oscillator ON when exiting from Stop or Standby mode, or
in case of a failure of the HSE oscillator used directly or indirectly as system clock. This bit
cannot be cleared if the MSI is used as system clock.
0: MSI oscillator OFF
1: MSI oscillator ON

Bits 7:2 Reserved, always read as 0

Bit 1 HSIRDY: Internal high-speed clock ready flag

This bit is set by hardware to indicate that the HSI oscillator is stable. After the HSION bit is
cleared, HSIRDY goes low after 6 HSI clock cycles.
0: HSI oscillator not ready
1: HSI oscillator ready

Bit 0 HSION: Internal high-speed clock enable
This bit is set and cleared by software.
This bit cannot be cleared if the HSI is used directly or indirectly as the system clock.
0: HSI oscillator OFF
1: HSI oscillator ON

Reset and clock control (RCC) RM0038

84/598 Doc ID 15965 Rev 4

4.3.2 Internal clock sources calibration register (RCC_ICSCR)

Address offset: 0x04

Reset value: 0x00XX B0XX where X is undefined.

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSITRIM[7:0] MSICAL[7:0]

rw rw rw rw rw rw rw rw r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSIRANGE[2:0] HSITRIM[4:0] HSICAL[7:0]

rw rw rw rw rw rw rw rw r r r r r r r r

Bits 31:24 MSITRIM[7:0]: MSI clock trimming
These bits are set by software to adjust MSI calibration.
These bits provide an additional user-programmable trimming value that is added to the
MSICAL[7:0] bits. They can be programmed to compensate for the variations in voltage and
temperature that influence the frequency of the internal MSI RC.

Bits 23:16 MSICAL[7:0]: MSI clock calibration
These bits are automatically initialized at startup.

Bits 15:13 MSIRANGE[2:0]: MSI clock ranges
These bits are set by software to choose the frequency range of MSI.7 frequency ranges are
available:
000: range 0 around 65.536 kHz
001: range 1 around 131.072 kHz
010: range 2 around 262.144 kHz
011: range 3 around 524.288 kHz
100: range 4 around 1.048 MHz
101: range 5 around 2.097 MHz (reset value)
110: range 6 around 4.194 MHz
111: not allowed

Bits 12:8 HSITRIM[4:0]: High speed internal clock trimming

These bits provide an additional user-programmable trimming value that is added to the
HSICAL[7:0] bits. They can be programmed to compensated for the variations in voltage and
temperature that influence the frequency of the internal HSI RC.

Bits 7:0 HSICAL[7:0] Internal high speed clock calibration

These bits are initialized automatically at startup.

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 85/598

4.3.3 Clock configuration register (RCC_CFGR)

Address offset: 0x08

Reset value: 0x0000 0000

Access: 0 ≤ wait state ≤ 2, word, half-word and byte access

1 or 2 wait states inserted only if the access occurs during clock source switch.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res.
MCOPRE[2:0]

Res.
MCOSEL[2:0] PLLDIV[1:0] PLLMUL[3:0]

Res.

PLL
SRC

rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PPRE2[2:0] PPRE1[2:0] HPRE[3:0] SWS[1:0] SW[1:0]

rw rw rw rw rw rw rw rw rw rw r r rw rw

Bits 31 Reserved, always read as 0.

Bits 30:28 MCOPRE[2:0]: Microcontroller clock output prescaler

These bits are set and cleared by software.
It is highly recommended to change this prescaler before MCO output is enabled.
000: MCO is divided by 1
001: MCO is divided by 2
010: MCO is divided by 4
011: MCO is divided by 8
100: MCO is divided by 16
Others: not allowed

Bits 27 Reserved, always read as 0.

Bits 26:24 MCOSEL[2:0]: Microcontroller clock output selection

These bits are set and cleared by software.
000: MCO output disabled, no clock on MCO
001: SYSCLK clock selected
010: HSI oscillator clock selected
011: MSI oscillator clock selected
100: HSE oscillator clock selected
101: PLL clock selected
110: LSI oscillator clock selected
111:LSE oscillator clock selected

Note: This clock output may have some truncated cycles at startup or during MCO clock
source switching.

Bits 23:22 PLLDIV[1:0]: PLL output division

These bits are set and cleared by software to control PLL output clock division from PLL
VCO clock. These bits can be written only when the PLL is disabled.
00: not allowed
01: PLL clock output = PLLVCO / 2
10: PLL clock output = PLLVCO / 3
11: PLL clock output = PLLVCO / 4

Reset and clock control (RCC) RM0038

86/598 Doc ID 15965 Rev 4

Bits 21:18 PLLMUL[3:0]: PLL multiplication factor
These bits are written by software to define the PLL multiplication factor to generate the PLL
VCO clock. These bits can be written only when the PLL is disabled.
0000: PLLVCO = PLL clock entry x 3
0001: PLLVCO = PLL clock entry x 4
0010: PLLVCO = PLL clock entry x 6
0011: PLLVCO = PLL clock entry x 8
0100: PLLVCO = PLL clock entry x 12
0101: PLLVCO = PLL clock entry x 16
0110: PLLVCO = PLL clock entry x 24
0111: PLLVCO = PLL clock entry x 32
1000: PLLVCO = PLL clock entry x 48
others: not allowed

Caution: The PLL VCO clock frequency must not exceed 96 MHz when the product is in
Range 1, 48 MHz when the product is in Range 2 and 24 MHz when the product is
in Range 3.

Bit 17 Reserved, always read as 0

Bit 16 PLLSRC: PLL entry clock source

This bit is set and cleared by software to select PLL clock source. This bit can be written
only when PLL is disabled.
0: HSI oscillator clock selected as PLL input clock
1: HSE oscillator clock selected as PLL input clock

Note: The PLL minimum input clock frequency is 2 MHz.

Bits 15:14 Reserved, always read as 0

Bits 13:11 PPRE2[2:0]: APB high-speed prescaler (APB2)
These bits are set and cleared by software to control the division factor of the APB high-
speed clock (PCLK2).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

Bits 10:8 PPRE1[2:0]: APB low-speed prescaler (APB1)

These bits are set and cleared by software to control the division factor of the APB low-
speed clock (PCLK1).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 87/598

4.3.4 Clock interrupt register (RCC_CIR)

Address offset: 0x0C

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bits 7:4 HPRE[3:0]: AHB prescaler
These bits are set and cleared by software to control the division factor of the AHB clock.

Caution: Depending on the device voltage range, the software has to set correctly these bits
to ensure that the system frequency does not exceed the maximum allowed
frequency (for more details please refer to the Dynamic voltage scaling
management section in the PWR chapter.) After a write operation to these bits and
before decreasing the voltage range, this register must be read to be sure that the
new value has been taken into account.

0xxx: SYSCLK not divided
1000: SYSCLK divided by 2
1001: SYSCLK divided by 4
1010: SYSCLK divided by 8
1011: SYSCLK divided by 16
1100: SYSCLK divided by 64
1101: SYSCLK divided by 128
1110: SYSCLK divided by 256
1111: SYSCLK divided by 512

Bits 3:2 SWS[1:0]: System clock switch status

These bits are set and cleared by hardware to indicate which clock source is used as
system clock.
00: MSI oscillator used as system clock
01: HSI oscillator used as system clock
10: HSE oscillator used as system clock
11: PLL used as system clock

Bits 1:0 SW[1:0]: System clock switch

These bits are set and cleared by software to select SYSCLK source.
Set by hardware to force MSI selection when leaving Stop and Standby mode or in case of
failure of the HSE oscillator used directly or indirectly as system clock (if the Clock Security
System is enabled).
00: MSI oscillator used as system clock
01: HSI oscillator used as system clock
10: HSE oscillator used as system clock
11: PLL used as system clock

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
CSSC

Res.

MSI
RDYC

PLL
RDYC

HSE
RDYC

HSI
RDYC

LSE
RDYC

LSI
RDYC

w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

MSI
RDYIE

PLL
RDYIE

HSE
RDYIE

HSI
RDYIE

LSE
RDYIE

LSI
RDYIE CSSF

Res.

MSI
RDYF

PLL
RDYF

HSE
RDYF

HSI
RDYF

LSE
RDYF

LSI
RDYF

rw rw rw rw rw rw r r r r r r r

Reset and clock control (RCC) RM0038

88/598 Doc ID 15965 Rev 4

Bits 31:24 Reserved, always read as 0.

Bit 23 CSSC: Clock security system interrupt clear

This bit is set by software to clear the CSSF flag.
0: No effect
1: Clear CSSF flag

Bit 22 Reserved, always read as 0.

Bit 21 MSIRDYC: MSI ready interrupt clear
This bit is set by software to clear the MSIRDYF flag.
0: No effect
1: MSIRDYF cleared

Bit 20 PLLRDYC: PLL ready interrupt clear
This bit is set by software to clear the PLLRDYF flag.
0: No effect
1: PLLRDYF cleared

Bit 19 HSERDYC: HSE ready interrupt clear

This bit is set by software to clear the HSERDYF flag.
0: No effect
1: HSERDYF cleared

Bit 18 HSIRDYC: HSI ready interrupt clear

This bit is set software to clear the HSIRDYF flag.
0: No effect
1: HSIRDYF cleared

Bit 17 LSERDYC: LSE ready interrupt clear

This bit is set by software to clear the LSERDYF flag.
0: No effect
1: LSERDYF cleared

Bit 16 LSIRDYC: LSI ready interrupt clear

This bit is set by software to clear the LSIRDYF flag.
0: No effect
1: LSIRDYF cleared

Bits 15:14 Reserved, always read as 0.

Bit 12 MSIRDYIE: MSI ready interrupt enable

This bit is set and cleared by software to enable/disable interrupt caused by the MSI
oscillator stabilization.
0: MSI ready interrupt disabled
1: MSI ready interrupt enabled

Bit 12 PLLRDYIE: PLL ready interrupt enable
This bit is set and cleared by software to enable/disable interrupt caused by PLL lock.
0: PLL lock interrupt disabled
1: PLL lock interrupt enabled

Bit 11 HSERDYIE: HSE ready interrupt enable
This bit is set and cleared by software to enable/disable interrupt caused by the HSE
oscillator stabilization.
0: HSE ready interrupt disabled
1: HSE ready interrupt enabled

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 89/598

Bit 10 HSIRDYIE: HSI ready interrupt enable
This bit is set and cleared by software to enable/disable interrupt caused by the HSI
oscillator stabilization.
0: HSI ready interrupt disabled
1: HSI ready interrupt enabled

Bit 9 LSERDYIE: LSE ready interrupt enable

This bit is set and cleared by software to enable/disable interrupt caused by the LSE
oscillator stabilization.
0: LSE ready interrupt disabled
1: LSE ready interrupt enabled

Bit 8 LSIRDYIE: LSI ready interrupt enable

This bit is set and cleared by software to enable/disable interrupt caused by LSI oscillator
stabilization.
0: LSI ready interrupt disabled
1: LSI ready interrupt enabled

Bit 7 CSSF: Clock security system interrupt flag

This bit is set by hardware when a failure is detected in the HSE oscillator.
It is cleared by software by setting the CSSC bit.
0: No clock security interrupt caused by HSE clock failure
1: Clock security interrupt caused by HSE clock failure

Bit 6 Reserved, always read as 0.

Bit 5 MSIRDYF: MSI ready interrupt flag

This bit is set by hardware when the MSI becomes stable and MSIRDYDIE is set.
It is cleared by software setting the MSIRDYC bit.
0: No clock ready interrupt caused by the MSI
1: Clock ready interrupt caused by the MSI

Bit 4 PLLRDYF: PLL ready interrupt flag

This bit is set by hardware when the PLL locks and PLLRDYDIE is set.
It is cleared by software setting the PLLRDYC bit.
0: No clock ready interrupt caused by PLL lock
1: Clock ready interrupt caused by PLL lock

Bit3 HSERDYF: HSE ready interrupt flag

This bit is set by hardware when HSE becomes stable and HSERDYDIE is set.
It is cleared by software setting the HSERDYC bit.
0: No clock ready interrupt caused by the HSE
1: Clock ready interrupt caused by the HSE

Bit 2 HSIRDYF: HSI ready interrupt flag

This bit is set by hardware when the HSI becomes stable and HSIRDYDIE is set.
It is cleared by software setting the HSIRDYC bit.
0: No clock ready interrupt caused by the HSI
1: Clock ready interrupt caused by the HSI

Bit 1 LSERDYF: LSE ready interrupt flag

This bit is set by hardware when the LSE becomes stable and LSERDYDIE is set.
It is cleared by software setting the LSERDYC bit.
0: No clock ready interrupt caused by the LSE
1: Clock ready interrupt caused by the LSE

Reset and clock control (RCC) RM0038

90/598 Doc ID 15965 Rev 4

4.3.5 AHB peripheral reset register (RCC_AHBRSTR)

Address offset: 0x10

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

Bit 0 LSIRDYF: LSI ready interrupt flag
This bit is set by hardware when the LSI becomes stable and LSIRDYDIE is set.
It is cleared by software setting the LSIRDYC bit.
0: No clock ready interrupt caused by the LSI
1: Clock ready interrupt caused by the LSI

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

DMA1R
ST Reserved

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLITF
RST Reserved

CRC
RST Reserved

GPIOH
RST

GPIOE
RST

GPIOD
RST

GPIOC
RST

GPIOB
RST

GPIOA
RST

rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, always read as 0.

Bit 24 DMA1RST: DMA1 reset

This bit is set and cleared by software.
0: No effect
1: Reset DMA1

Bits 23:16 Reserved, always read as 0.

Bit 15 FLITFRST: FLITF reset

This bit is set and cleared by software. The FLITF reset can be enabled only when the Flash
memory is in power down mode.

0: No effect
1: Reset FLITF

Bits 14:13 Reserved, always read as 0.

Bit 12 CRCRST: CRC reset

This bit is set and cleared by software.
0: No effect
1: Reset CRC

Bits 11:6 Reserved, always read as 0.

Bit 5 GPIOHRST: IO port H reset
This bit is set and cleared by software.
0: No effect
1: Reset

Bit 4 GPIOERST: IO port E reset

This bit is set and cleared by software.
0: No effect
1: Reset IO port E

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 91/598

4.3.6 APB2 peripheral reset register (RCC_APB2RSTR)

Address offset: 0x14

Reset value: 0x00000 0000

Access: no wait state, word, half-word and byte access

Bit 3 GPIODRST: IO port D reset
This bit is set and cleared by software.
0: No effect
1: Reset IO port D

Bit 2 GPIOCRST: IO port C reset

This bit is set and cleared by software.
0: No effect
1: Reset IO port C

Bit 1 GPIOBRST: IO port B reset

This bit is set and cleared by software.
0: No effect
1: Reset IO port B

Bit 0 GPIOARST: IO port A reset
This bit is set and cleared by software.
0: No effect
1: Reset IO port A

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res;

USART1
RST Res;

SPI1
RST Res;

ADC1
RST Reserved

TIM11
RST

TIM10
RST

TIM9
RST Res;

SYSCF
GRST

rw rw rw rw rw rw rw

Bits 31:15 Reserved, always read as 0.

Bit 14 USART1RST: USART1 reset

This bit is set and cleared by software.
0: No effect
1: Reset USART1

Bit 13 Reserved, always read as 0.

Bit 12 SPI1RST: SPI 1 reset

This bit is set and cleared by software.
0: No effect
1: Reset SPI 1

Bits 11:10 Reserved, always read as 0.

Bit 9 ADC1RST: ADC1 interface reset
This bit is set and cleared by software.
0: No effect
1: Reset ADC1 interface

Bits 8:5 Reserved, always read as 0.

Reset and clock control (RCC) RM0038

92/598 Doc ID 15965 Rev 4

4.3.7 APB1 peripheral reset register (RCC_APB1RSTR)

Address offset: 0x18

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bit 4 TIM11RST: TIM11 timer reset
Set and cleared by software.
0: No effect
1: Reset TIM11 timer

Bit 3 TIM10RST: TIM10 timer reset

This bit is set and cleared by software.
0: No effect
1: Reset TIM10 timer

Bit 2 TIM9RST: TIM9 timer reset

This bit is set and cleared by software.
0: No effect
1: Reset TIM9 timer

Bit 1 Reserved, always read as 0.

Bit 0 SYSCFGRST: System configuration controller reset

This bit is set and cleared by software.
0: No effect
1: Reset System configuration controller

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COMP
RST Res.

DAC
RST

PWR
RST Reserved

USB
RST

I2C2
RST

I2C1
RST Reserved

USART
3

RST

USART
2

RST Res.

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

SPI2
RST Reserved

WWDG
RST Res.

LCD
RST Reserved

TIM7
RST

TIM6
RST Res.

TIM4
RST

TIM3
RST

TIM2
RST

rw rw rw rw rw rw rw rw

Bit 31 COMPRST: COMP interface reset

This bit is set and cleared by software.
0: No effect
1: Reset COMP interface

Bits 30 Reserved, always read as 0.

Bit 29 DACRST: DAC interface reset
This bit is set and cleared by software.
0: No effect
1: Reset DAC interface

Bit 28 PWRRST: Power interface reset

This bit is set and cleared by software.
0: No effect
1: Reset power interface

Bits 27:24 Reserved, always read as 0.

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 93/598

Bit 23 USBRST: USB reset
This bit is set and cleared by software.
0: No effect
1: Reset USB

Bit 22 I2C2RST: I2C 2 reset

This bit is set and cleared by software.
0: No effect
1: Reset I2C 2

Bit 21 I2C1RST: I2C 1 reset

This bit is set and cleared by software.
0: No effect
1: Reset I2C 1

Bits 20:19 Reserved, always read as 0.

Bit 18 USART3RST: USART 3 reset

This bit is set and cleared by software.
0: No effect
1: Reset USART 3

Bit 17 USART2RST: USART 2 reset
This bit is set and cleared by software.
0: No effect
1: Reset USART 2

Bits 16:15 Reserved, always read as 0.

Bit 14 SPI2RST: SPI 2 reset

This bit is set and cleared by software.
0: No effect
1: Reset SPI 2

Bits 13:12 Reserved, always read as 0.

Bit 11 WWDGRST: Window watchdog reset

This bit is set and cleared by software.
0: No effect
1: Reset window watchdog

Bits 10 Reserved, always read as 0.

Bit 9 LCDRST: LCD reset
This bit is set and cleared by software.
0: No effect
1: Reset LCD

Bits 8:6 Reserved, always read as 0.

Bit 5 TIM7RST: Timer 7 reset

This bit is set and cleared by software.
0: No effect
1: Reset timer 7

Bit 4 TIM6RST: Timer 6reset
Set and cleared by software.
0: No effect
1: Reset timer 6

Reset and clock control (RCC) RM0038

94/598 Doc ID 15965 Rev 4

4.3.8 AHB peripheral clock enable register (RCC_AHBENR)

Address offset: 0x1C

Reset value: 0x0000 8000

Access: no wait state, word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

Bit 3 Reserved, always read as 0.

Bit 2 TIM4RST: Timer 4 reset

Set and cleared by software.
0: No effect
1: Reset timer 4

Bit 1 TIM3RST: Timer 3 reset

Set and cleared by software.
0: No effect
1: Reset timer 3

Bit 0 TIM2RST: Timer 2 reset
Set and cleared by software.
0: No effect
1: Reset timer 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
DMA1EN

Reserved
rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLITF
EN Reserved

CRCEN
Reserved

GPIOH
EN

GPIOE
EN

GPIOD
EN

GPIOC
EN

GPIOB
EN

GPIOA
EN

rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, always read as 0.

Bit 24 DMA1EN: DMA1 clock enable

This bit is set and cleared by software.
0: DMA1 clock disabled
1: DMA1 clock enabled

Bits 23:16 Reserved, always read as 0.

Bit 15 FLITFEN: FLITF clock enable

This bit can be written only when the Flash memory is in power down mode.
0: FLITF clock disabled
1: FLITF clock enabled

Bits 14:13 Reserved, always read as 0.

Bit 12 CRCEN: CRC clock enable
This bit is set and cleared by software.
0: CRC clock disabled
1: CRC clock enabled

Bits 11:8 Reserved, always read as 0.

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 95/598

4.3.9 APB2 peripheral clock enable register (RCC_APB2ENR)

Address: 0x20

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB2
domain is on going. In this case, wait states are inserted until the access to APB2 peripheral
is finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

Bit 5 GPIOHEN: IO port H clock enable
This bit is set and cleared by software.
0: IO port H clock disabled
1: IO port H clock enabled

Bit 4 GPIOEEN: IO port E clock enable

This bit is set and cleared by software.
0: IO port E clock disabled
1: IO port E clock enabled

Bit 3 GPIODEN: IO port D clock enable

Set and cleared by software.

0: IO port D clock disabled
1: IO port D clock enabled

Bit 2 GPIOCEN: IO port C clock enable

This bit is set and cleared by software.
0: IO port C clock disabled
1: IO port C clock enabled

Bit 1 GPIOBEN: IO port B clock enable

This bit is set and cleared by software.
0: IO port B clock disabled
1: IO port B clock enabled

Bit 0 GPIOAEN: IO port A clock enable

This bit is set and cleared by software.
0: IO port A clock disabled
1: IO port A clock enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

USART1
EN Res.

SPI1
EN Reserved

ADC1
EN Reserved

TIM11
EN

TIM10
EN

TIM9
EN Res.

SYSCF
GEN

rw rw rw rw rw rw rw

Bits 31:15 Reserved, always read as 0.

Reset and clock control (RCC) RM0038

96/598 Doc ID 15965 Rev 4

Bit 14 USART1EN: USART1 clock enable
This bit is set and cleared by software.
0: USART1 clock disabled
1: USART1 clock enabled

Bit 13 Reserved, always read as 0.

Bit 12 SPI1EN: SPI 1 clock enable

This bit is set and cleared by software.
0: SPI 1 clock disabled
1: SPI 1 clock enabled

Bits 11:10 Reserved, always read as 0.

Bit 9 ADC1EN: ADC1 interface clock enable

This bit is set and cleared by software.
0: ADC1 interface disabled
1: ADC1 interface clock enabled

Bits 8:5 Reserved, always read as 0.

Bit 4 TIM11EN: TIM11 timer clock enable

This bit is set and cleared by software.
0: TIM11 timer clock disabled
1: TIM11 timer clock enabled

Bit 3 TIM10EN: TIM10 timer clock enable

This bit is set and cleared by software.
0: TIM10 timer clock disabled

1: TIM10 timer clock enabled

Bit 2 TIM9EN: TIM9 timer clock enable

This bit is set and cleared by software.
0: TIM9 timer clock disabled
1: TIM9 timer clock enabled

Bit 1 Reserved, always read as 0.

Bit 0 SYSCFGEN: System configuration controller clock enable
This bit is set and cleared by software.
0: System configuration controller clock disabled
1: System configuration controller clock enabled

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 97/598

4.3.10 APB1 peripheral clock enable register (RCC_APB1ENR)

Address: 0x24

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait state, except if the access occurs while an access to a peripheral on APB1 domain
is on going. In this case, wait states are inserted until this access to APB1 peripheral is
finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COMP
EN Res.

DAC
EN

PWR
EN Reserved

USB
EN

I2C2
EN

I2C1
EN Reserved

USART3
EN

USART2
EN Res.

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

SPI2
EN Reserved

WWD
GEN Res.

LCD
EN Reserved

TIM7
EN

TIM6
EN Res.

TIM4
EN

TIM3
EN

TIM2
EN

rw rw rw rw rw rw rw rw

Bit 31 COMPEN: COMP interface clock enable

This bit is set and cleared by software.
0: COMP interface clock disabled
1: COMP interface clock enable

Bits 30 Reserved, always read as 0.

Bit 29 DACEN: DAC interface clock enable
This bit is set and cleared by software.
0: DAC interface clock disabled
1: DAC interface clock enable

Bit 28 PWREN: Power interface clock enable

This bit is set and cleared by software.
0: Power interface clock disabled
1: Power interface clock enable

Bits 27:24 Reserved, always read as 0.

Bit 23 USBEN: USB clock enable
This bit is set and cleared by software.
0: USB clock disabled
1: USB clock enabled

Bit 22 I2C2EN: I2C 2 clock enable

This bit is set and cleared by software.
0: I2C 2 clock disabled
1: I2C 2 clock enabled

Bit 21 I2C1EN: I2C 1 clock enable

This bit is set and cleared by software.
0: I2C 1 clock disabled
1: I2C 1 clock enabled

Bits 20:19 Reserved, always read as 0.

Reset and clock control (RCC) RM0038

98/598 Doc ID 15965 Rev 4

Bit 18 USART3EN: USART 3 clock enable
This bit is set and cleared by software.
0: USART 3 clock disabled
1: USART 3 clock enabled

Bit 17 USART2EN: USART 2 clock enable

This bit is set and cleared by software.
0: USART 2 clock disabled
1: USART 2 clock enabled

Bits 16:15 Reserved, always read as 0.

Bit 14 SPI2EN: SPI 2 clock enable
This bit is set and cleared by software.
0: SPI 2 clock disabled
1: SPI 2 clock enabled

Bits 13:12 Reserved, always read as 0.

Bit 11 WWDGEN: Window watchdog clock enable

This bit is set and cleared by software.
0: Window watchdog clock disabled
1: Window watchdog clock enabled

Bit 10 Reserved, always read as 0.

Bit 9 LCDEN: LCD clock enable

This bit is set and cleared by software.
0: LCD clock disabled
1: LCD clock enabled

Bits 8:6 Reserved, always read as 0.

Bit 5 TIM7EN: Timer 7 clock enable

This bit is set and cleared by software.
0: Timer 7 clock disabled
1: Timer 7 clock enabled

Bit 4 TIM6EN: Timer 6 clock enable

This bit is set and cleared by software.
0: Timer 6 clock disabled
1: Timer 6 clock enabled

Bit 3 Reserved, always read as 0.

Bit 2 TIM4EN: Timer 4 clock enable

This bit is set and cleared by software.
0: Timer 4 clock disabled
1: Timer 4 clock enabled

Bit 1 TIM3EN: Timer 3 clock enable

This bit is set and cleared by software.
0: Timer 3 clock disabled
1: Timer 3 clock enabled

Bit 0 TIM2EN: Timer 2 clock enable
This bit is set and cleared by software.
0: Timer 2 clock disabled
1: Timer 2 clock enabled

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 99/598

4.3.11 AHB peripheral clock enable in low power mode register
(RCC_AHBLPENR)

Address offset: 0x28

Reset value: 0x0101 903F

Access: no wait state, word, half-word and byte access

Note: The peripheral clock is enabled in sleep mode only if it previously has been enabled in
AHBENR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

DMA1L
PEN Reserved

SRAML
PEN

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLITFL
PEN Reserved

CRCLP
EN Reserved

GPIOH
LPEN

GPIOE
LPEN

GPIOD
LPEN

GPIOC
LPEN

GPIOB
LPEN

GPIOAL
PEN

rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, always read as 0.

Bit 24 DMA1LPEN: DMA1 clock enable during Sleep mode

This bit is set and cleared by software.
0: DMA1 clock disabled during Sleep mode
1: DMA1 clock enabled during Sleep mode

Bits 23:17 Reserved, always read as 0.

Bit 16 SRAMLPEN: SRAM clock enable during Sleep mode
This bit is set and cleared by software.
0: SRAM clock disabled during Sleep mode
1: SRAM clock enabled during Sleep mode

Bit 15 FLITFLPEN: FLITF clock enable during Sleep mode
This bit can be written only when the Flash memory is in power down mode.
0: FLITF clock disabled during Sleep mode
1: FLITF clock enabled during Sleep mode

Bits 14:13 Reserved, always read as 0.

Bit 12 CRCLPEN: CRC clock enable during Sleep mode

This bit is set and cleared by software.
0: CRC clock disabled during Sleep mode
1: CRC clock enabled during Sleep mode

Bits 11:6 Reserved, always read as 0.

Bit 5 GPIOHLPEN: IO port H clock enable during Sleep mode

This bit is set and cleared by software.
0: IO port H clock disabled during Sleep mode
1: IO port H clock enabled during Sleep mode

Bit 4 GPIOELPEN: IO port E clock enable during Sleep mode
This bit is set and cleared by software.
0: IO port E clock disabled during Sleep mode
1: IO port E clock enabled during Sleep mode

Reset and clock control (RCC) RM0038

100/598 Doc ID 15965 Rev 4

4.3.12 APB2 peripheral clock enable in low power mode register
(RCC_APB2LPENR)

Address: 0x2C

Reset value: 0x0000 521D

Access: no wait states, word, half-word and byte access

Note: The peripheral clock is enabled in sleep mode only if it’s previously has been enabled in
APB2ENR register.

Bit 3 GPIODLPEN: IO port D clock enable during Sleep mode
This bit is set and cleared by software.
0: IO port D clock disabled during Sleep mode
1: IO port D clock enabled during Sleep mode

Bit 2 GPIOCLPEN: IO port C clock enable during Sleep mode

This bit is set and cleared by software.
0: IO port C clock disabled during Sleep mode
1: IO port C clock enabled during Sleep mode

Bit 1 GPIOBLPEN: IO port B clock enable during Sleep mode

This bit is set and cleared by software.
0: IO port B clock disabled during Sleep mode
1: IO port B clock enabled during Sleep mode

Bit 0 GPIOALPEN: IO port A clock enable during Sleep mode
This bit is set and cleared by software.
0: IO port A clock disabled during Sleep mode
1: IO port A clock enabled during Sleep mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

USART1
LPEN Res.

SPI1
LPEN Reserved

ADC1
LPEN Reserved

TIM11
LPEN

TIM10
LPEN

TIM9
LPEN Res.

SYSCF
GLPEN

rw rw rw rw rw rw rw

Bits 31:15 Reserved, always read as 0.

Bit 14 USART1LPEN: USART1 clock enable during Sleep mode
This bit is set and cleared by software.
0: USART1 clock disabled during Sleep mode
1: USART1 clock enabled during Sleep mode

Bit 13 Reserved, always read as 0.

Bit 12 SPI1LPEN: SPI 1 clock enable during Sleep mode

This bit is set and cleared by software.
0: SPI 1 clock disabled during Sleep mode
1: SPI 1 clock enabled during Sleep mode

Bits 11:10 Reserved, always read as 0.

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 101/598

4.3.13 APB1 peripheral clock enable in low power mode register
(RCC_APB1LPENR)

Address: 0x30

Reset value: 0xB0E6 4A37

Access: no wait state, word, half-word and byte access

Note: The peripheral clock is enabled in sleep mode only if it’s previously has been enabled in
APB1ENR register.

Bit 9 ADC1LPEN: ADC1 interface clock enable during Sleep mode
This bit is set and cleared by software.
0: ADC1 interface disabled during Sleep mode
1: ADC1 interface clock enabled during Sleep mode

Bits 8:5 Reserved, always read as 0.

Bit 4 TIM11LPEN: TIM11 timer clock enable during Sleep mode

This bit is set and cleared by software.
0: TIM11 timer clock disabled during Sleep mode
1: TIM11 timer clock enabled during Sleep mode

Bit 3 TIM10LPEN: TIM10 timer clock enable during Sleep mode

This bit is set and cleared by software.
0: TIM10 timer clock disabled during Sleep mode
1: TIM10 timer clock enabled during Sleep mode

Bit 2 TIM9LPEN: TIM9 timer clock enable during Sleep mode

This bit is set and cleared by software.
0: TIM9 timer clock disabled during Sleep mode
1: TIM9 timer clock enabled during Sleep mode

Bit 1 Reserved, always read as 0.

Bit 0 SYSCFGLPEN: System configuration controller clock enable during Sleep mode
This bit is set and cleared by software.
0: System configuration controller clock disabled during Sleep mode
1: System configuration controller clock enabled during Sleep mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COMP
LPEN Res.

DAC
LPEN

PWR
LPEN Reserved

USB
LPEN

I2C2
LPEN

I2C1
LPEN Reserved

USART3
LPEN

USART2
LPEN Res.

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

SPI2
LPEN Reserved

WWD
GLPE

N Res.

LCD
LPEN Reserved

TIM7
LPEN

TIM6
LPEN Res.

TIM4
LPEN

TIM3
LPEN

TIM2
LPEN

rw rw rw rw rw rw rw rw

Bit 31 COMPLPEN: COMP interface clock enable during Sleep mode

This bit is set and cleared by software.
0: COMP interface clock disabled during Sleep mode
1: COMP interface clock enable during Sleep mode

Bits 30 Reserved, always read as 0.

Reset and clock control (RCC) RM0038

102/598 Doc ID 15965 Rev 4

Bit 29 DACLPEN: DAC interface clock enable during Sleep mode
This bit is set and cleared by software.
0: DAC interface clock disabled during Sleep mode
1: DAC interface clock enable during Sleep mode

Bit 28 PWRLPEN: Power interface clock enable during Sleep mode
This bit is set and cleared by software.
0: Power interface clock disabled during Sleep mode
1: Power interface clock enable during Sleep mode

Bits 27:24 Reserved, always read as 0.

Bit 23 USBLPEN: USB clock enable during Sleep mode

This bit is set and cleared by software.
0: USB clock disabled during Sleep mode
1: USB clock enabled during Sleep mode

Bit 22 I2C2LPEN: I2C 2 clock enable during Sleep mode

This bit is set and cleared by software.
0: I2C 2 clock disabled during Sleep mode
1: I2C 2 clock enabled during Sleep mode

Bit 21 I2C1LPEN: I2C 1 clock enable during Sleep mode

This bit is set and cleared by software.
0: I2C 1 clock disabled during Sleep mode
1: I2C 1 clock enabled during Sleep mode

Bits 20:19 Reserved, always read as 0.

Bit 18 USART3LPEN: USART 3 clock enable during Sleep mode
This bit is set and cleared by software.
0: USART 3 clock disabled during Sleep mode
1: USART 3 clock enabled during Sleep mode

Bit 17 USART2LPEN: USART 2 clock enable during Sleep mode
This bit is set and cleared by software.
0: USART 2 clock disabled during Sleep mode
1: USART 2 clock enabled during Sleep mode

Bits 16:15 Reserved, always read as 0.

Bit 14 SPI2LPEN: SPI 2 clock enable during Sleep mode

This bit is set and cleared by software.
0: SPI 2 clock disabled during Sleep mode
1: SPI 2 clock enabled during Sleep mode

Bits 13:12 Reserved, always read as 0.

Bit 11 WWDGLPEN: Window watchdog clock enable during Sleep mode

This bit is set and cleared by software.
0: Window watchdog clock disabled during Sleep mode
1: Window watchdog clock enabled during Sleep mode

Bit 10 Reserved, always read as 0.

Bit 9 LCDLPEN: LCD clock enable during Sleep mode
This bit is set and cleared by software.
0: LCD clock disabled during Sleep mode
1: LCD clock enabled during Sleep mode

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 103/598

4.3.14 Control/status register (RCC_CSR)

Address: 0x34

Reset value: 0x0C00 0000,

Access: 0 ≤ wait state ≤ 3, word, half-word and byte access

Wait states are inserted in case of successive accesses to this register.

Note: 1 The LSEON, LSEBYP, RTCSEL and RTCEN bits in the RCC control and status register
(RCC_CSR) are in the RTC domain. As these bits are write protected after reset, the DBP
bit in the Power control register (PWR_CR) has to be set to be able to modify them. Refer to
Section RTC and RTC backup registers for further information. These bits are only reset
after a RTC domain reset (see RTC and backup registers reset). Any internal or external
reset does not have any effect on them.

Bits 8:6 Reserved, always read as 0.

Bit 5 TIM7LPEN: Timer 7 clock enable during Sleep mode

This bit is set and cleared by software.
0: Timer 7 clock disabled during Sleep mode
1: Timer 7 clock enabled during Sleep mode

Bit 4 TIM6LPEN: Timer 6 clock enable during Sleep mode

This bit is set and cleared by software.
0: Timer 6 clock disabled during Sleep mode
1: Timer 6 clock enabled during Sleep mode

Bit 3 Reserved, always read as 0.

Bit 2 TIM4LPEN: Timer 4 clock enable during Sleep mode

This bit is set and cleared by software.
0: Timer 4 clock disabled during Sleep mode
1: Timer 4 clock enabled during Sleep mode

Bit 1 TIM3LPEN: Timer 3 clock enable during Sleep mode

This bit is set and cleared by software.
0: Timer 3 clock disabled during Sleep mode
1: Timer 3 clock enabled during Sleep mode

Bit 0 TIM2LPEN: Timer 2 clock enable during Sleep mode
This bit is set and cleared by software.
0: Timer 2 clock disabled during Sleep mode
1: Timer 2 clock enabled during Sleep mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LPWR
RSTF

WWDG
RSTF

IWDG
RSTF

SFT
RSTF

POR
RSTF

PIN
RSTF

OBLRS
TF RMVF RTC

RST
RTC
EN Reserved

RTCSEL[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

LSE
BYP LSERDY LSEON

Reserved

LSI
RDY LSION

rw r rw r rw

Reset and clock control (RCC) RM0038

104/598 Doc ID 15965 Rev 4

Bit 31 LPWRRSTF: Low-power reset flag

This bit is set by hardware when a Low-power management reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No Low-power management reset occurred
1: Low-power management reset occurred
For further information on Low-power management reset, refer to Low-power management
reset.

Bit 30 WWDGRSTF: Window watchdog reset flag

This bit is set by hardware when a window watchdog reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No window watchdog reset occurred
1: Window watchdog reset occurred

Bit 29 IWDGRSTF: Independent watchdog reset flag

This bit is set by hardware when an independent watchdog reset from VDD domain occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No watchdog reset occurred
1: Watchdog reset occurred

Bit 28 SFTRSTF: Software reset flag

This bit is set by hardware when a software reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No software reset occurred
1: Software reset occurred

Bit 27 PORRSTF: POR/PDR reset flag
This bit is set by hardware when a POR/PDR reset occurs.
It is cleared by writing to the RMVF bit.
0: No POR/PDR reset occurred
1: POR/PDR reset occurred

Bit 26 PINRSTF: PIN reset flag

This bit is set by hardware when a reset from the NRST pin occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No reset from NRST pin occurred
1: Reset from NRST pin occurred

Bit 25 OBLRSTF Options bytes loading reset flag

This bit is set by hardware when an OBL reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No OBL reset occurred
1: OBL reset occurred

Bit 24 RMVF: Remove reset flag

This bit is set by software to clear the reset flags.
0: No effect
1: Clear the reset flags

Bit 23 RTCRST: RTC software reset

This bit is set and cleared by software.
0: Reset not activated
1: Resets the RTC peripheral, its clock source selection and the backup registers.

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 105/598

Bit 22 RTCEN: RTC clock enable
This bit is set and cleared by software.
It is reset by setting the RTCRST bit or by a POR.
0: RTC clock disabled
1: RTC clock enabled

Bits 21:18 Reserved, always read as 0.

Bits 17:16 RTCSEL[1:0]: RTC and LCD clock source selection

These bits are set by software to select the clock source for the RTC.
Once the RTC and LCD clock source has been selected, the only possible way of modifying
the selection is to set the RTCRST bit, or issuing a POR.
00: No clock
01: LSE oscillator clock used as RTC clock
10: LSI oscillator clock used as RTC clock
11: HSE oscillator clock divided by a programmable prescaler (selection through the
RTCPRE[1:0] bits in the RCC clock control register (RCC_CR)) used as the RTC clock

If the LSE or LSI is used as RTC clock source, the RTC continues to work in Stop and
Standby low power modes, and can be used as wake-up source. However, when the HSE
clock is used as RTC clock source, the RTC cannot be used in Stop and Standby low power
modes.

Bits 15:11 Reserved, always read as 0.

Bit 10 LSEBYP: External low-speed oscillator bypass

This bit is set and cleared by software to bypass oscillator in debug mode. This bit can be
written only when the LSE oscillator is disabled.
It is reset by setting the RTCRST bit or by a POR.
0: LSE oscillator not bypassed
1: LSE oscillator bypassed

Bit 9 LSERDY: External low-speed oscillator ready
This bit is set and cleared by hardware to indicate when the LSE oscillator is stable. After the
LSEON bit is cleared, LSERDY goes low after 6 LSE oscillator clock cycles.
It is reset by setting the RTCRST bit or by a POR.
0: External 32 kHz oscillator not ready
1: External 32 kHz oscillator ready

Bit 8 LSEON: External low-speed oscillator enable

This bit is set and cleared by software.
It is reset by setting the RTCRST bit or by a POR.
0: LSE oscillator OFF
1:LSE oscillator ON

Bits 7:2 Reserved, always read as 0.

Bit 1 LSIRDY: Internal low-speed oscillator ready

This bit is set and cleared by hardware to indicate when the LSI oscillator is stable. After the
LSION bit is cleared, LSIRDY goes low after 3 LSI oscillator clock cycles.
This bit is reset by system reset.
0: LSI oscillator not ready
1: LSI oscillator ready

Reset and clock control (RCC) RM0038

106/598 Doc ID 15965 Rev 4

4.3.15 RCC register map

The following table gives the RCC register map and the reset values.

Bit 0 LSION: Internal low-speed oscillator enable
This bit is set and cleared by software.
It is reset by system reset.
0: LSI oscillator OFF
1: LSI oscillator ON

Table 17. RCC register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
RCC_CR

R
es

er
ve

d

R
T

C
P

R
E

1

R
T

C
P

R
E

0

C
S

S
O

N

R
es

er
ve

d

P
LL

 R
D

Y

P
LL

 O
N

Reserved

H
S

E
B

Y
P

H
S

E
R

D
Y

H
S

E
O

N

Reserved

M
S

IR
D

Y

M
S

IO
N

Reserved

H
S

IR
D

Y

H
S

IO
N

Reset value 0 0 0 0 0 0 0 0 1 1 0 0

0x04
RCC_ICSCR MSITRIM[7:0] MSICAL[7:0] MSIRAN

GE[2:0] HSITRIM[4:0] HSICAL[7:0]

Reset value 0 0 0 0 0 0 0 0 x x x x x x x x 1 0 1 1 0 0 0 0 x x x x x x x x

0x08
RCC_CFGR

R
es

er
ve

d MCOPRE
[2:0]

R
es

er
ve

d MCOSEL
[2:0]

PLL
DIV
[1:0]

PLLMUL[3:0]
R

es
er

ve
d

P
LL

S
R

C

R
es

er
ve

d PPRE2
[2:0]

PPRE1
[2:0] HPRE[3:0] SWS

[1:0]
SW
[1:0]

Reset value 0

0x0C
RCC_CIR

Reserved

C
S

S
C

R
es

er
ve

d

M
S

IR
D

Y
C

P
LL

R
D

Y
C

H
S

E
R

D
Y

C

H
S

IR
D

Y
C

LS
E

R
D

Y
C

LS
IR

D
Y

C

R
es

er
ve

d

M
S

IR
D

Y
IE

P
LL

R
D

Y
IE

H
S

E
R

D
Y

IE

H
S

IR
D

Y
IE

LS
E

R
D

Y
IE

LS
IR

D
Y

IE

C
S

S
F

R
es

er
ve

d

M
S

IR
D

Y
F

P
LL

R
D

Y
F

H
S

E
R

D
Y

F

H
S

IR
D

Y
F

LS
E

R
D

Y
F

LS
IR

D
Y

F

Reset value 0

0x10
RCC_AHBRSTR

Reserved

D
M

A
1R

S
T

Reserved

F
LI

T
F

R
S

T

R
es

er
ve

d

C
R

C
R

S
T

Reserved

G
P

IO
H

R
S

T

G
P

IO
E

R
S

T

G
P

IO
D

R
S

T

G
P

IO
C

R
S

T

G
P

IO
B

R
S

T

G
P

IO
A

R
S

T

Reset value 0 0 0 0 0 0 0 0 0

0x14
RCC_APB2RSTR

Reserved

U
S

A
R

T
1R

S
T

R
es

er
ve

d

S
P

I1
R

S
T

S
D

IO
R

S
T

R
es

er
ve

d

A
D

C
1R

S
T

Reserved
T

M
11

R
S

T

T
M

10
R

S
T

T
IM

9R
S

T

R
es

er
ve

d

S
Y

S
C

F
G

R
S

T

Reset value 0 0 0 0 0 0 0 0

0x18
RCC_APB1RSTR

C
O

M
P

R
S

T

R
es

er
ve

d

D
A

C
R

S
T

P
W

R
R

S
T

Reserved

U
S

B
R

S
T

I2
C

2R
S

T

I2
C

1R
S

T

R
es

er
ve

d

U
S

A
R

T
3R

S
T

U
S

A
R

T
2R

S
T

R
es

er
ve

d

S
P

I2
R

S
T

R
es

er
ve

d

W
W

D
R

S
T

R
es

er
ve

d

LC
D

R
S

T

R
es

er
ve

d

T
IM

7R
S

T

T
IM

6R
S

T

R
es

er
ve

d

T
IM

4R
S

T

T
IM

3R
S

T

T
IM

2R
S

T

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
RCC_AHBENR

Reserved

D
M

A
1E

N

Reserved

F
LI

T
F

E
N

R
es

er
ve

d

C
R

C
E

N

Reserved

G
P

IO
P

H
E

N

G
P

IO
P

E
E

N

G
P

IO
P

D
E

N

G
P

IO
P

C
E

N

G
P

IO
P

B
E

N

G
P

IO
PA

E
N

Reset value 0 1 0 0 0 0 0 0 0

0x20
RCC_APB2ENR

Reserved

U
S

A
R

T
1E

N

R
es

er
ve

d

S
P

I1
E

N

S
D

IO
E

N

R
es

er
ve

d

A
D

C
1E

N

Reserved

T
IM

11
E

N

T
IM

10
E

N

T
IM

9E
N

R
es

er
ve

d

S
Y

S
C

F
G

E
N

Reset value 0 0 0 0 0 0 0 0

0x24
RCC_APB1ENR

C
O

M
P

E
N

R
es

er
ve

d

D
A

C
E

N

P
W

R
E

N

Reserved

U
S

B
E

N

I2
C

2E
N

I2
C

1E
N

R
es

er
ve

d

U
S

A
R

T
3E

N

U
S

A
R

T
2E

N

R
es

er
ve

d

S
P

I2
E

N

R
es

er
ve

d

W
W

D
G

E
N

R
es

er
ve

d

LC
D

E
N

Reserved

T
IM

7E
N

T
IM

6E
N

R
es

er
ve

d

T
IM

4E
N

T
IM

3E
N

T
IM

2E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0038 Reset and clock control (RCC)

Doc ID 15965 Rev 4 107/598

Refer to Table 1: Register boundary addresses for the register boundary addresses.

0x28
RCC_AHBLP

ENR Reserved

D
M

A
1L

P
E

N

Reserved

S
R

A
M

LP
E

N

F
LI

T
F

LP
E

N

R
es

er
ve

d

C
R

C
LP

E
N

Reserved

G
P

IO
H

LP
E

N

G
P

IO
E

LP
E

N

G
P

IO
D

LP
E

N

G
P

IO
C

LP
E

N

G
P

IO
B

LP
E

N

G
P

IO
A

LP
E

N

Reset value 1 1 1 1 1 1 1 1 1 1

0x2C
RCC_APB2LP

ENR Reserved

U
S

A
R

T
1L

P
E

N

R
es

er
ve

d

S
P

I1
LP

E
N

R
es

er
ve

d

A
D

C
1L

P
E

N

Reserved

T
IM

11
LP

E
N

T
IM

10
LP

E
N

T
IM

9L
P

E
N

R
es

er
ve

d

S
Y

S
C

F
G

LP
E

N

Reset value 1 1 1 1 1 1 1

0x30
RCC_APB1LP

ENR

C
O

M
P

LP
E

N

R
es

er
ve

d

D
A

C
LP

E
N

P
W

R
LP

E
N

Reserved
U

S
B

LP
E

N

I2
C

2L
P

E
N

I2
C

1L
P

E
N

R
es

er
ve

d

U
S

A
R

T
3L

P
E

N

U
S

A
R

T
2L

P
E

N

R
es

er
ve

d

S
P

I2
LP

E
N

R
es

er
ve

d

W
W

D
G

LP
E

N

R
es

er
ve

d

LC
D

LP
E

N

Reserved

T
IM

7L
P

E
N

T
IM

6L
P

E
N

R
es

er
ve

d

T
IM

4L
P

E
N

T
IM

3L
P

E
N

T
IM

2L
P

E
N

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x034
RCC_CSR

LP
W

R
S

T
F

W
W

D
G

R
S

T
F

IW
D

G
R

S
T

F

S
F

T
R

S
T

F

P
O

R
R

S
T

F

P
IN

R
S

T
F

R
es

er
ve

d

R
M

V
F

R
T

C
R

S
T

R
T

C
E

N

R
es

er
ve

d RTC
SEL
[1:0] Reserved

LS
E

B
Y

P

LS
E

R
D

Y

LS
E

O
N

Reserved

LS
IR

D
Y

LS
IO

N

Reset value 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Table 17. RCC register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

General-purpose I/Os (GPIO) RM0038

108/598 Doc ID 15965 Rev 4

5 General-purpose I/Os (GPIO)

5.1 GPIO introduction
Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers
(GPIOx_IDR and GPIOx_ODR), a 32-bit set/reset register (GPIOx_BSRR), a 32-bit locking
register (GPIOx_LCKR) and two 32-bit alternate function selection register (GPIOx_AFRH
and GPIOx_AFRL).

5.2 GPIO main features
● Up to 16 I/Os under control

● Output states: push-pull or open drain + pull-up/down

● Output data from output data register (GPIOx_ODR) or peripheral (alternate function
output)

● Speed selection for each I/O

● Input states: floating, pull-up/down, analog

● Input data to input data register (GPIOx_IDR) or peripheral (alternate function input)

● Bit set and reset register (GPIOx_BSRR) for bitwise write access to GPIOx_ODR

● Locking mechanism (GPIOx_LCKR) provided to freeze the I/O configuration

● Analog function

● Alternate function input/output selection registers (at most 16 AFs per I/O)

● Fast toggle capable of changing every two clock cycles

● Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several
peripheral functions

5.3 GPIO functional description
Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
port bit of the general-purpose I/O (GPIO) ports can be individually configured by software
in several modes:

● Input floating

● Input pull-up

● Input-pull-down

● Analog

● Output open-drain with pull-up or pull-down capability

● Output push-pull with pull-up or pull-down capability

● Alternate function push-pull with pull-up or pull-down capability

● Alternate function open-drain with pull-up or pull-down capability

Each I/O port bit is freely programmable, however the I/O port registers have to be accessed
as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR register is to allow
atomic read/modify accesses to any of the GPIO registers. In this way, there is no risk of an
IRQ occurring between the read and the modify access.

RM0038 General-purpose I/Os (GPIO)

Doc ID 15965 Rev 4 109/598

Figure 13 and Figure 14 show the basic structures of a standard and a 5 V tolerant I/O port
bit, respectively. Table 21 gives the possible port bit configurations.

Figure 13. Basic structure of a standard I/O port bit

Figure 14. Basic structure of a five-volt tolerant I/O port bit

1. VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD.

Alternate function output

Alternate function input

Push-pull,
open-drain or
disabled

In
pu

t d
at

a
re

gi
st

er

O
ut

pu
t d

at
a

re
gi

st
er

Read/write

From on-chip
peripheral

To on-chip
peripheral

Output
control

Analog

on/off
Pull

Pull
down

on/off

I/O pin

VDD

VDD

VSS

VSS

 trigger

VSS

VDD

Protection
diode

Protection
diode

on/off

Input driver

Output driver

up

P-MOS

N-MOS

Read

B
it

se
t/r

es
et

 r
eg

is
te

rs

Write

Analog

ai15938b

General-purpose I/Os (GPIO) RM0038

110/598 Doc ID 15965 Rev 4

5.3.1 General-purpose I/O (GPIO)

During and just after reset, the alternate functions are not active and the I/O ports are
configured in input floating mode.

The JTAG pins are in input pull-up/pull-down after reset:

● PA15: JTDI in pull-up

● PA14: JTCK in pull-down

● PA13: JTMS in pull-up

● PB4: NJTRST in pull-up

Table 18. Port bit configuration table(1)

1. GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate
function.

MODER(i)
[1:0]

OTYPER(i)
OSPEEDR(i)

[B:A]
PUPDR(i)

[1:0]
I/O configuration

01

0

SPEED

[B:A]

0 0 GP output PP

0 0 1 GP output PP + PU

0 1 0 GP output PP + PD

0 1 1 Reserved

1 0 0 GP output OD

1 0 1 GP output OD + PU

1 1 0 GP output OD + PD

1 1 1 Reserved (GP output OD)

10

0

SPEED

[B:A]

0 0 AF PP

0 0 1 AF PP + PU

0 1 0 AF PP + PD

0 1 1 Reserved

1 0 0 AF OD

1 0 1 AF OD + PU

1 1 0 AF OD + PD

1 1 1 Reserved

00

x x x 0 0 Input Floating

x x x 0 1 Input PU

x x x 1 0 Input PD

x x x 1 1 Reserved (input floating)

11

x x x 0 0 Input/output Analog

x x x 0 1

Reservedx x x 1 0

x x x 1 1

RM0038 General-purpose I/Os (GPIO)

Doc ID 15965 Rev 4 111/598

When the pin is configured as output, the value written to the output data register
(GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull
mode or open-drain mode (only the N-MOS is activated when 0 is output).

The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB
clock cycle.

All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or
not depending on the value in the GPIOx_PUPDR register.

5.3.2 I/O pin multiplexer and mapping

The STM32L15xxx I/O pins are connected to onboard peripherals/modules through a
multiplexer that allows only one peripheral’s alternate function (AF) connected to an I/O pin
at a time. In this way, there can be no conflict between peripherals sharing the same I/O pin.

Each I/O pin has a multiplexer with sixteen alternate function inputs (AF0 to AF15) that can
be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to 15)
registers:

● After reset all I/Os are connected to the system’s alternate function 0 (AF0)

● The peripherals’ alternate functions are mapped from AF1 to AF14

● Cortex-M3 EVENTOUT is mapped on AF15

This structure is shown in Figure 15 below.

In addition to this flexible I/O multiplexing architecture, each peripheral has alternate
functions mapped onto different I/O pins to optimize the number of peripherals available in
smaller packages.

To use an I/O in a given configuration, you have to proceed as follows:

● System function: you have to connect the I/O to AF0 and configure it depending on
the function used:

– JTAG/SWD, after each device reset these pins are assigned as dedicated pins
immediately usable by the debugger host (not controlled by the GPIO controller)

– RTC_AF1: refer to Table 20: RTC_AF1 pin for more details about this pin
configuration

– RTC_50Hz: this pin should be configured in Input floating mode

– MCO: this pin has to be configured in alternate function mode.

Note: You can disable some or all of the JTAG/SWD pins and so release the associated pins for
GPIO usage.

For more details please refer to Section 4.2.12: Clock-out capability.

Table 19. Flexible SWJ-DP pin assignment

Available debug ports

SWJ I/O pin assigned

PA13 /
JTMS/
SWDIO

PA14 /
JTCK/

SWCLK

PA15 /
JTDI

PB3 /
JTDO

PB4/
NJTRST

Full SWJ (JTAG-DP + SW-DP) - Reset state X X X X X

General-purpose I/Os (GPIO) RM0038

112/598 Doc ID 15965 Rev 4

● GPIO: configure the desired I/O as output, input or analog in the GPIOx_MODER
register.

● Peripheral’s alternate function:

For the ADC and DAC, configure the desired I/O as analog in the GPIOx_MODER
register.

For other peripherals:

– Configure the desired I/O as an alternate function in the GPIOx_MODER register

– Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER,
GPIOx_PUPDR and GPIOx_OSPEEDER registers, respectively

– Connect the I/O to the desired AFx in the GPIOx_AFRL or GPIOx_AFRH register

● EVENTOUT: you can configure the I/O pin used to output the Cortex-M3 EVENTOUT
signal by connecting it to AF15

Note: EVENTOUT is not mapped onto the following I/O pins: PH0, PH1 and PH2.

Please refer to the “Alternate function mapping” table in the STM32L15xxx datasheets for
the detailed mapping of the system and peripherals’ alternate function I/O pins.

Full SWJ (JTAG-DP + SW-DP) but without
NJTRST

X X X X

JTAG-DP Disabled and SW-DP Enabled X X

JTAG-DP Disabled and SW-DP Disabled Released

Table 19. Flexible SWJ-DP pin assignment (continued)

Available debug ports

SWJ I/O pin assigned

PA13 /
JTMS/
SWDIO

PA14 /
JTCK/

SWCLK

PA15 /
JTDI

PB3 /
JTDO

PB4/
NJTRST

RM0038 General-purpose I/Os (GPIO)

Doc ID 15965 Rev 4 113/598

Figure 15. Selecting an alternate function

5.3.3 I/O port control registers

Each of the GPIOs has four 32-bit memory-mapped control registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os. The
GPIOx_MODER register is used to select the I/O direction (input, output, AF, analog). The
GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type (push-
pull or open-drain) and speed (the I/O speed pins are directly connected to the
corresponding GPIOx_OSPEEDR register bits whatever the I/O direction). The
GPIOx_PUPDR register is used to select the pull-up/pull-down whatever the I/O direction.

5.3.4 I/O port data registers

Each GPIO has two 16-bit memory-mapped data registers: input and output data registers
(GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write

General-purpose I/Os (GPIO) RM0038

114/598 Doc ID 15965 Rev 4

accessible. The data input through the I/O are stored into the input data register
(GPIOx_IDR), a read-only register.

See Section 5.4.5: GPIO port input data register (GPIOx_IDR) (x = A..E and H) and
Section 5.4.6: GPIO port output data register (GPIOx_ODR) (x = A..E and H) for the register
descriptions.

5.3.5 I/O data bitwise handling

The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to
set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset
register has twice the size of GPIOx_ODR.

To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BSRR(i) and
BSRR(i+SIZE). When written to 1, bit BSRR(i) sets the corresponding ODR(i) bit. When
written to 1, bit BSRR(i+SIZE) resets the ODR(i) corresponding bit.

Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in
GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set
action takes priority.

Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a
“one-shot” effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always
be accessed directly. The GPIOx_BSRR register provides a way of performing atomic
bitwise handling.

There is no need for the software to disable interrupts when programming the GPIOx_ODR
at bit level: it is possible to modify one or more bits in a single atomic AHB write access.

5.3.6 GPIO locking mechanism

It is possible to freeze the GPIO control registers by applying a specific write sequence to
the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER,
GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When
the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used
to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must
be the same). When the LOCK sequence has been applied to a port bit, the value of the port
bit can no longer be modified until the next reset. Each GPIOx_LCKR bit freezes the
corresponding bit in the control registers (GPIOx_MODER, GPIOx_OTYPER,
GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH).

The LOCK sequence (refer to Section 5.4.8: GPIO port configuration lock register
(GPIOx_LCKR) (x = A..E and H)) can only be performed using a word (32-bit long) access
to the GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the
same time as the [15:0] bits.

For more details please refer to LCKR register description in Section 5.4.8: GPIO port
configuration lock register (GPIOx_LCKR) (x = A..E and H).

5.3.7 I/O alternate function input/output

Two registers are provided to select one out of the sixteen alternate function inputs/outputs
available for each I/O. With these registers, you can connect an alternate function to some
other pin as required by your application.

RM0038 General-purpose I/Os (GPIO)

Doc ID 15965 Rev 4 115/598

This means that a number of possible peripheral functions are multiplexed on each GPIO
using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can
thus select any one of the possible functions for each I/O. The AF selection signal being
common to the alternate function input and alternate function output, a single channel is
selected for the alternate function input/output of one I/O.

To know which functions are multiplexed on each GPIO pin, refer to the STM32L15xxx
datasheets.

Note: The application is allowed to select one of the possible peripheral functions for each I/O at a
time.

5.3.8 External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be
configured in input mode, refer to Section 7.2: External interrupt/event controller (EXTI) and
Section 7.2.3: Wakeup event management.

5.3.9 Input configuration

When the I/O port is programmed as Input:

● the output buffer is disabled

● the Schmitt trigger input is activated

● the pull-up and pull-down resistors are activated depending on the value in the
GPIOx_PUPDR register

● The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

● A read access to the input data register provides the I/O State

Figure 16 shows the input configuration of the I/O port bit.

Figure 16. Input floating/pull up/pull down configurations

General-purpose I/Os (GPIO) RM0038

116/598 Doc ID 15965 Rev 4

5.3.10 Output configuration

When the I/O port is programmed as output:

● The output buffer is enabled:

– Open drain mode: A “0” in the Output register activates the N-MOS whereas a “1”
in the Output register leaves the port in Hi-Z (the P-MOS is never activated)

– Push-pull mode: A “0” in the Output register activates the N-MOS whereas a “1” in
the Output register activates the P-MOS

● The Schmitt trigger input is activated

● The weak pull-up and pull-down resistors are activated or not depending on the value in
the GPIOx_PUPDR register

● The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

● A read access to the input data register gets the I/O state

● A read access to the output data register gets the last written value in Push-pull mode

Figure 17 shows the output configuration of the I/O port bit.

Figure 17. Output configuration

5.3.11 Alternate function configuration

When the I/O port is programmed as alternate function:

● The output buffer is turned on in open-drain or push-pull configuration

● The output buffer is driven by the signal coming from the peripheral (alternate function
out)

● The Schmitt trigger input is activated

● The weak pull-up and pull-down resistors are activated or not depending on the value in
the GPIOx_PUPDR register

● The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

● A read access to the input data register gets the I/O state

● A read access to the output data register gets the last value written in push-pull mode

RM0038 General-purpose I/Os (GPIO)

Doc ID 15965 Rev 4 117/598

Figure 18 shows the Alternate function configuration of the I/O port bit.

Figure 18. Alternate function configuration

5.3.12 Analog configuration

When the I/O port is programmed as analog configuration:

● The output buffer is disabled

● The Schmitt trigger input is deactivated, providing zero consumption for every analog
value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0).

● The weak pull-up and pull-down resistors are disabled

● Read access to the input data register gets the value “0”

Figure 19 shows the high-impedance, analog-input configuration of the I/O port bit.

Figure 19. High impedance-analog configuration

General-purpose I/Os (GPIO) RM0038

118/598 Doc ID 15965 Rev 4

5.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15
port pins

The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general-purpose
PC14 and PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE
oscillator is off). The PC14 and PC15 I/Os are only configured as OSC32_IN and
OSC32_OUT LSE oscillator pins when the LSE oscillator is ON (by setting the LSEON bit in
the RCC_CSR register). The LSE has priority over the GPIO function.

Note: 1 The PC14/PC15 GPIO functionality is lost when the VCORE domain is powered off (by the
device entering the standby mode) . In this case the I/Os are set in analog input mode.

5.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins

The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1
I/Os, respectively, when the HSE oscillator is off. (after reset, the HSE oscillator is off). The
PH0/PH1 I/Os are only configured as OSC_IN/OSC_OUT HSE oscillator pins when the
HSE oscillator is ON (by setting the HSEON bit in the RCC_CR register). The HSE has
priority over the GPIO function.

5.3.15 Selection of RTC_AF1 alternate functions

The STM32L15xxx features:

■ Two GPIO pins, which can be used as wakeup pins (WKUP1 and WKUP3).

■ One GPIO pin, which can be used as a wakeup pin (WKUP2), for the detection of a
tamper or time-stamp event, or to output RTC AFO_ALARM or AFO_CALIB.

The RTC_AF1 pin (PC13) can be used for the following purposes:

● Wakeup pin 2 (WKUP2): this feature is enabled by setting the EWUP2 in the
PWR_CSR register.

● RTC AFO_ALARM output: this output can be RTC Alarm A, RTC Alarm B or RTC
Wakeup depending on the OSEL[1:0] bits in the RTC_CR register.

● RTC AFO_CALIB output: this feature is enabled by setting the COE[23] bit in the
RTC_CR register.

● RTC AFI_TAMPER1: Tamper event detection

● Time-stamp event detection

The selection of the RTC AFO_ALARM output is performed through the RTC_TAFCR
register as follows: ALARMOUTTYPE is used to select whether the RTC AFO_ALARM
output is configured in push-pull or open-drain mode.

The output mechanism follows the priority order shown in Table 20.

Table 20. RTC_AF1 pin (1)

Pin
configuration
and function

AFO_ALARM
enabled

AFO_CALIB
enabled

Tamper
enabled

Time-stamp
enabled

EWUP2
enabled

ALARMOUTTYPE
AFO_ALARM
configuration

Alarm out output
OD

1 0 Don’t care Don’t care Don’t care 0

Alarm out output
PP

1 0 Don’t care Don’t care Don’t care 1

RM0038 General-purpose I/Os (GPIO)

Doc ID 15965 Rev 4 119/598

5.4 GPIO registers
This section gives a detailed description of the GPIO registers.
For a summary of register bits, register address offsets and reset values, refer to Table 21.

The peripheral registers have to be accessed by words (32-bit).

5.4.1 GPIO port mode register (GPIOx_MODER) (x = A..E and H)

Address offset: 0x00

Reset values:

● 0xA800 0000 for port A

● 0x0000 0280 for port B

● 0x0000 0000 for other ports

Calibration out
output PP

0 1 Don’t care Don’t care Don’t care Don’t care

TAMPER input
floating

0 0 1 0 Don’t care Don’t care

TIMESTAMP and
TAMPER input
floating

0 0 1 1 Don’t care Don’t care

TIMESTAMP
input floating

0 0 0 1 Don’t care Don’t care

Wakeup Pin 2 0 0 0 0 1 Don’t care

Standard GPIO 0 0 0 0 0 Don’t care

1. OD: open drain; PP: push-pull.

Table 20. RTC_AF1 pin (continued)(1)

Pin
configuration
and function

AFO_ALARM
enabled

AFO_CALIB
enabled

Tamper
enabled

Time-stamp
enabled

EWUP2
enabled

ALARMOUTTYPE
AFO_ALARM
configuration

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MODER15[1:0] MODER14[1:0] MODER13[1:0] MODER12[1:0] MODER11[1:0] MODER10[1:0] MODER9[1:0] MODER8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODER7[1:0] MODER6[1:0] MODER5[1:0] MODER4[1:0] MODER3[1:0] MODER2[1:0] MODER1[1:0] MODER0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.
00: Input (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode

General-purpose I/Os (GPIO) RM0038

120/598 Doc ID 15965 Rev 4

5.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..E and H)

Address offset: 0x04

Reset value: 0x0000 0000

5.4.3 GPIO port output speed register (GPIOx_OSPEEDR)
(x = A..E and H)

Address offset: 0x08

Reset values:

● 0x0000 00C0 for port B

● 0x0000 0000 for other ports

5.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x = A..E and H)

Address offset: 0x0C

Reset values:

● 0x6400 0000 for port A

● 0x0000 0100 for port B

● 0x0000 0000 for other ports

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OT15 OT14 OT13 OT12 OT11 OT10 OT9 OT8 OT7 OT6 OT5 OT4 OT3 OT2 OT1 OT0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0.

Bits 15:0 OTy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the output type of the I/O port.
0: Output push-pull (reset state)
1: Output open-drain

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OSPEEDR15[1:0] OSPEEDR14[1:0] OSPEEDR13[1:0] OSPEEDR12[1:0] OSPEEDR11[1:0] OSPEEDR10[1:0] OSPEEDR9[1:0] OSPEEDR8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OSPEEDR7[1:0] OSPEEDR6[1:0] OSPEEDR5[1:0] OSPEEDR4[1:0] OSPEEDR3[1:0] OSPEEDR2[1:0] OSPEEDR1[1:0] OSPEEDR0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y:2y+1 OSPEEDRy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the I/O output speed.
00: 400 kHz Very low speed
01: 2 MHz Low speed
10: 10 MHz Medium speed
11: 40 MHz High speed on 50 pF (50 MHz output max speed on 30 pF)

RM0038 General-purpose I/Os (GPIO)

Doc ID 15965 Rev 4 121/598

5.4.5 GPIO port input data register (GPIOx_IDR) (x = A..E and H)

Address offset: 0x10

Reset value: 0x0000 xxxx (where x means undefined)

5.4.6 GPIO port output data register (GPIOx_ODR) (x = A..E and H)

Address offset: 0x14

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PUPDR15[1:0] PUPDR14[1:0] PUPDR13[1:0] PUPDR12[1:0] PUPDR11[1:0] PUPDR10[1:0] PUPDR9[1:0] PUPDR8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUPDR7[1:0] PUPDR6[1:0] PUPDR5[1:0] PUPDR4[1:0] PUPDR3[1:0] PUPDR2[1:0] PUPDR1[1:0] PUPDR0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y:2y+1 PUPDRy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down
00: No pull-up, pull-down
01: Pull-up
10: Pull-down
11: Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDR15 IDR14 IDR13 IDR12 IDR11 IDR10 IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, always read as 0.

Bits 15:0 IDRy[15:0]: Port input data (y = 0..15)

These bits are read-only and can be accessed in word mode only. They contain the input
value of the corresponding I/O port.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ODR15 ODR14 ODR13 ODR12 ODR11 ODR10 ODR9 ODR8 ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0.

Bits 15:0 ODRy[15:0]: Port output data (y = 0..15)
These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the
GPIOx_BSRR register (x = A..E and H).

General-purpose I/Os (GPIO) RM0038

122/598 Doc ID 15965 Rev 4

5.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..E and H)

Address offset: 0x18

Reset value: 0x0000 0000

5.4.8 GPIO port configuration lock register (GPIOx_LCKR)
(x = A..E and H)

This register is used to lock the configuration of the port bits when a correct write sequence
is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the
GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the
LOCK sequence has been applied on a port bit, the value of this port bit can no longer be
modified until the next reset.

Note: A specific write sequence is used to write to the GPIOx_LCKR register. Only word access
(32-bit long) is allowed during this write sequence.

Each lock bit freezes a specific configuration register (control and alternate function
registers).

Address offset: 0x1C

Reset value: 0x0000 0000

Access: 32-bit word only, read/write register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BS15 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0

w w w w w w w w w w w w w w w w

Bits 31:16 BRy: Port x reset bit y (y = 0..15)
These bits are write-only and can be accessed in word, half-word or byte mode. A read to
these bits returns the value 0x0000.
0: No action on the corresponding ODRx bit
1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 BSy: Port x set bit y (y= 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to
these bits returns the value 0x0000.
0: No action on the corresponding ODRx bit
1: Sets the corresponding ODRx bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
LCKK

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCK15 LCK14 LCK13 LCK12 LCK11 LCK10 LCK9 LCK8 LCK7 LCK6 LCK5 LCK4 LCK3 LCK2 LCK1 LCK0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0038 General-purpose I/Os (GPIO)

Doc ID 15965 Rev 4 123/598

5.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..E and H)

Address offset: 0x20
Reset value: 0x0000 0000

Bits 31:17 Reserved

Bit 16 LCKK[16]: Lock key

This bit can be read any time. It can only be modified using the lock key write sequence.
0: Port configuration lock key not active
1: Port configuration lock key active. The GPIOx_LCKR register is locked until an MCU reset
occurs.

LOCK key write sequence:
WR LCKR[16] = ‘1’ + LCKR[15:0]
WR LCKR[16] = ‘0’ + LCKR[15:0]
WR LCKR[16] = ‘1’ + LCKR[15:0]
RD LCKR
RD LCKR[16] = ‘1’ (this read operation is optional but it confirms that the lock is active)

Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence aborts the lock.

After the first lock sequence on any bit of the port, any read access on the LCKK bit will
return ‘1’ until the next CPU reset.

Bits 15:0 LCKy: Port x lock bit y (y= 0..15)
These bits are read/write but can only be written when the LCKK bit is ‘0.
0: Port configuration not locked
1: Port configuration locked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AFRL7[3:0] AFRL6[3:0] AFRL5[3:0] AFRL4[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AFRL3[3:0] AFRL2[3:0] AFRL1[3:0] AFRL0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 AFRLy: Alternate function selection for port x bit y (y = 0..7)

These bits are written by software to configure alternate function I/Os

AFRLy selection:
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7

1000: AF8
1001: AF9
1010: AF10
1011: AF11
1100: AF12
1101: AF13
1110: AF14
1111: AF15

General-purpose I/Os (GPIO) RM0038

124/598 Doc ID 15965 Rev 4

5.4.10 GPIO alternate function high register (GPIOx_AFRH)
(x = A..E and H)

Address offset: 0x24

Reset value: 0x0000 0000

5.4.11 GPIO register map

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AFRH15[3:0] AFRH14[3:0] AFRH13[3:0] AFRH12[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AFRH11[3:0] AFRH10[3:0] AFRH9[3:0] AFRH8[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 AFRHy: Alternate function selection for port x bit y (y = 8..15)

These bits are written by software to configure alternate function I/Os

AFRHy selection:
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7

1000: AF8
1001: AF9
1010: AF10
1011: AF11
1100: AF12
1101: AF13
1110: AF14
1111: AF15

Table 21. GPIO register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
GPIOA_MODER

M
O

D
E

R
15

[1
:0

]

M
O

D
E

R
14

[1
:0

]

M
O

D
E

R
13

[1
:0

]

M
O

D
E

R
12

[1
:0

]

M
O

D
E

R
11

[1
:0

]

M
O

D
E

R
10

[1
:0

]

M
O

D
E

R
9[

1:
0]

M
O

D
E

R
8[

1:
0]

M
O

D
E

R
7[

1:
0]

M
O

D
E

R
6[

1:
0]

M
O

D
E

R
5[

1:
0]

M
O

D
E

R
4[

1:
0]

M
O

D
E

R
3[

1:
0]

M
O

D
E

R
2[

1:
0]

M
O

D
E

R
1[

1:
0]

M
O

D
E

R
0[

1:
0]

Reset value 1 0 1 0 1 0

0x00
GPIOB_MODER

M
O

D
E

R
15

[1
:0

]

M
O

D
E

R
14

[1
:0

]

M
O

D
E

R
13

[1
:0

]

M
O

D
E

R
12

[1
:0

]

M
O

D
E

R
11

[1
:0

]

M
O

D
E

R
10

[1
:0

]

M
O

D
E

R
9[

1:
0]

M
O

D
E

R
8[

1:
0]

M
O

D
E

R
7[

1:
0]

M
O

D
E

R
6[

1:
0]

M
O

D
E

R
5[

1:
0]

M
O

D
E

R
4[

1:
0]

M
O

D
E

R
3[

1:
0]

M
O

D
E

R
2[

1:
0]

M
O

D
E

R
1[

1:
0]

M
O

D
E

R
0[

1:
0]

Reset value 0 1 0 1 0 0 0 0 0 0 0

0x00
GPIOx_MODER
(where x = C..F)

M
O

D
E

R
15

[1
:0

]

M
O

D
E

R
14

[1
:0

]

M
O

D
E

R
13

[1
:0

]

M
O

D
E

R
12

[1
:0

]

M
O

D
E

R
11

[1
:0

]

M
O

D
E

R
10

[1
:0

]

M
O

D
E

R
9[

1:
0]

M
O

D
E

R
8[

1:
0]

M
O

D
E

R
7[

1:
0]

M
O

D
E

R
6[

1:
0]

M
O

D
E

R
5[

1:
0]

M
O

D
E

R
4[

1:
0]

M
O

D
E

R
3[

1:
0]

M
O

D
E

R
2[

1:
0]

M
O

D
E

R
1[

1:
0]

M
O

D
E

R
0[

1:
0]

Reset value 0

0x04

GPIOx_OTYPER
(where x = A..E

and H) Reserved O
T

15

O
T

14

O
T

13

O
T

12

O
T

11

O
T

10

O
T

9

O
T

8

O
T

7

O
T

6

O
T

5

O
T

4

O
T

3

O
T

2

O
T

1

O
T

0

Reset value 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

RM0038 General-purpose I/Os (GPIO)

Doc ID 15965 Rev 4 125/598

Refer to Table 1: Register boundary addresses for the register boundary addresses. The
following tables give the GPIO register map and the reset values.

0x08

GPIOx_OSPEED
ER (where x =

A..E and H except
B)

O
S

P
E

E
D

R
15

[1
:0

]

O
S

P
E

E
D

R
14

[1
:0

]

O
S

P
E

E
D

R
13

[1
:0

]

O
S

P
E

E
D

R
12

[1
:0

]

O
S

P
E

E
D

R
11

[1
:0

]

O
S

P
E

E
D

R
10

[1
:0

]

O
S

P
E

E
D

R
9[

1:
0]

O
S

P
E

E
D

R
8[

1:
0]

O
S

P
E

E
D

R
7[

1:
0]

O
S

P
E

E
D

R
6[

1:
0]

O
S

P
E

E
D

R
5[

1:
0]

O
S

P
E

E
D

R
4[

1:
0]

O
S

P
E

E
D

R
3[

1:
0]

O
S

P
E

E
D

R
2[

1:
0]

O
S

P
E

E
D

R
1[

1:
0]

O
S

P
E

E
D

R
0[

1:
0]

Reset value 0

0x08
GPIOB_OSPEED

ER

O
S

P
E

E
D

R
15

[1
:0

]

O
S

P
E

E
D

R
14

[1
:0

]

O
S

P
E

E
D

R
13

[1
:0

]

O
S

P
E

E
D

R
12

[1
:0

]

O
S

P
E

E
D

R
11

[1
:0

]

O
S

P
E

E
D

R
10

[1
:0

]

O
S

P
E

E
D

R
9[

1:
0]

O
S

P
E

E
D

R
8[

1:
0]

O
S

P
E

E
D

R
7[

1:
0]

O
S

P
E

E
D

R
6[

1:
0]

O
S

P
E

E
D

R
5[

1:
0]

O
S

P
E

E
D

R
4[

1:
0]

O
S

P
E

E
D

R
3[

1:
0]

O
S

P
E

E
D

R
2[

1:
0]

O
S

P
E

E
D

R
1[

1:
0]

O
S

P
E

E
D

R
0[

1:
0]

Reset value 0 1 1 0 0 0 0 0 0

0x0C
GPIOA_PUPDR

P
U

P
D

R
15

[1
:0

]

P
U

P
D

R
14

[1
:0

]

P
U

P
D

R
13

[1
:0

]

P
U

P
D

R
12

[1
:0

]

P
U

P
D

R
11

[1
:0

]

P
U

P
D

R
10

[1
:0

]

P
U

P
D

R
9[

1:
0]

P
U

P
D

R
8[

1:
0]

P
U

P
D

R
7[

1:
0]

P
U

P
D

R
6[

1:
0]

P
U

P
D

R
5[

1:
0]

P
U

P
D

R
4[

1:
0]

P
U

P
D

R
3[

1:
0]

P
U

P
D

R
2[

1:
0]

P
U

P
D

R
1[

1:
0]

P
U

P
D

R
0[

1:
0]

Reset value 0 1 1 0 0 1 0

0x0C
GPIOB_PUPDR

P
U

P
D

R
15

[1
:0

]

P
U

P
D

R
14

[1
:0

]

P
U

P
D

R
13

[1
:0

]

P
U

P
D

R
12

[1
:0

]

P
U

P
D

R
11

[1
:0

]

P
U

P
D

R
10

[1
:0

]

P
U

P
D

R
9[

1:
0]

P
U

P
D

R
8[

1:
0]

P
U

P
D

R
7[

1:
0]

P
U

P
D

R
6[

1:
0]

P
U

P
D

R
5[

1:
0]

P
U

P
D

R
4[

1:
0]

P
U

P
D

R
3[

1:
0]

P
U

P
D

R
2[

1:
0]

P
U

P
D

R
1[

1:
0]

P
U

P
D

R
0[

1:
0]

Reset value 0 1 0 0 0 0 0 0 0 0

0x0C
GPIOx_PUPDR
(where x = C..F)

P
U

P
D

R
15

[1
:0

]

P
U

P
D

R
14

[1
:0

]

P
U

P
D

R
13

[1
:0

]

P
U

P
D

R
12

[1
:0

]

P
U

P
D

R
11

[1
:0

]

P
U

P
D

R
10

[1
:0

]

P
U

P
D

R
9[

1:
0]

P
U

P
D

R
8[

1:
0]

P
U

P
D

R
7[

1:
0]

P
U

P
D

R
6[

1:
0]

P
U

P
D

R
5[

1:
0]

P
U

P
D

R
4[

1:
0]

P
U

P
D

R
3[

1:
0]

P
U

P
D

R
2[

1:
0]

P
U

P
D

R
1[

1:
0]

P
U

P
D

R
0[

1:
0]

Reset value 0

0x10

GPIOx_IDR
(where x = A..E

and H) Reserved ID
R

15

ID
R

14

ID
R

13

ID
R

12

ID
R

11

ID
R

10

ID
R

9

ID
R

8

ID
R

7

ID
R

6

ID
R

5

ID
R

4

ID
R

3

ID
R

2

ID
R

1

ID
R

0

Reset value x x x x x x x x x x x x x x x x

0x14

GPIOx_ODR
(where x = A..E

and H) Reserved

O
D

R
15

O
D

R
14

O
D

R
13

O
D

R
12

O
D

R
11

O
D

R
10

O
D

R
9

O
D

R
8

O
D

R
7

O
D

R
6

O
D

R
5

O
D

R
4

O
D

R
3

O
D

R
2

O
D

R
1

O
D

R
0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18

GPIOx_BSRR
(where x = A..E

and H) B
R

15

B
R

14

B
R

13

B
R

12

B
R

11

B
R

10

B
R

9

B
R

8

B
R

7

B
R

6

B
R

5

B
R

4

B
R

3

B
R

2

B
R

1

B
R

0

B
S

15

B
S

14

B
S

13

B
S

12

B
S

11

B
S

10

B
S

9

B
S

8

B
S

7

B
S

6

B
S

5

B
S

4

B
S

3

B
S

2

B
S

1

B
S

0

Reset value 0

0x1C

GPIOx_LCKR
(where x = A..E

and H) Reserved LC
K

K

LC
K

15

LC
K

14

LC
K

13

LC
K

12

LC
K

11

LC
K

10

LC
K

9

LC
K

8

LC
K

7

LC
K

6

LC
K

5

LC
K

4

LC
K

3

LC
K

2

LC
K

1

LC
K

0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20

GPIOx_AFRL
(where x = A..E

and H)
AFRL7[3:0] AFRL6[3:0] AFRL5[3:0] AFRL4[3:0] AFRL3[3:0] AFRL2[3:0] AFRL1[3:0] AFRL0[3:0]

Reset value 0

0x24

GPIOx_AFRH
(where x = A..E

and H)
AFRH15[3:0] AFRH14[3:0] AFRH13[3:0] AFRH12[3:0] AFRH11[3:0] AFRH10[3:0] AFRH9[3:0] AFRH8[3:0]

Reset value 0

Table 21. GPIO register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

System configuration controller (SYSCFG) and routing interface (RI) RM0038

126/598 Doc ID 15965 Rev 4

6 System configuration controller (SYSCFG) and
routing interface (RI)

6.1 SYSCFG and RI introduction
The system configuration controller is mainly used to remap the memory accessible in the
code area, and manage the external interrupt line connection to the GPIOs.

The routing interface provides high flexibility by allowing the software routing of I/Os toward
the input captures of the STM32L15xxx’s three high-end timers (TIM2, TIM3 and TIM4).
The STM32L15xxx’s ADC has an analog input matrix that is usually managed by a specific
ADC interface. With the routing interface, it is possible to connect several I/O analog pins to
a given channel of the ADC matrix by managing the analog switches of each I/O.

6.2 RI main features
● TIM2/TIM3/TIM4’s input captures 1,2,3 and four routing selections from selectable I/Os

● Routing of internal reference voltage VREFINT to selectable I/Os for all packages

● 24 external I/Os + 2 internal nodes (internal reference voltage + temperature sensor)
can be used for data acquisition purposes in conjunction with the ADC interface

● Input and output routing of COMP1 and COMP2

Note: The RI registers can be accessed only when the comparator interface clock is enabled by
setting the COMPEN bit in the RCC_APB1ENR register. Refer to Section 4.3.10 on page
97.

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

Doc ID 15965 Rev 4 127/598

Figure 20. Routing interface (RI) block diagram

Note: The internal reference voltage and temperature sensor cannot be used as COMP1 non-
inverting input.

PB4

PB5

PB3

VREFINT ~1.2 V

3/4 VREFINT

1/2 V REFINT

1/4 V REFINT

From DAC_OUT1

(I/O ports)

V
REFINT

From DAC2_OUT2

TIM2 input capture 4
TIM2 OCREF clear

TIM3 input capture 4
TIM3 OCREF clear

TIM4 input capture 4

TIM4 OCREF clear

TIM10 input capture 1

COMP1

+

-

ADC

ADC_IN10

ADC_IN11

ADC_IN6

ADC_IN7

ADC_IN14

ADC_IN15

ADC_IN12

ADC_IN13

ADC_IN0

ADC_IN1

ADC_IN2

ADC_IN3

VCOMP

PC0

PC1

PC2

PC3

PA0

PA1

PA2

PA3

PA6

PA7

PC4

PC5

ADC_IN18

ADC_IN19

ADC_IN20

ADC_IN21

PB12

PB13

PB14

PB15

VDD

VSS

10 kΩ

10 kΩ 400 kΩ

400 kΩ

ADC switch matrix

VREFINT

ai17155b

COMP2

+

-

OUTSEL[2:0] bits

Group 8

Group 1

Group 2

Group 9

Group 7

ADC_IN8

ADC_IN9
PB0

PB1

Group 3

PA4

PE9

PE8

PE7

PA5

PE10

Temp. sensor

VREFINT

Group 6

GR10-1

GR6-2

WNDWE

PC6

PA8

PC9

PC8

PC7

PA9

GR4-1

GR10-4

GR10-3

GR10-2

GR4-2

GR4-3PA10

PA15

PA14

PA13

GR5-3
GR5-2

GR5-1

Group 10

Group 4

Group 5

GR6-1

VREFOUTEN

ADC_IN4

ADC_IN5

ADC_IN23

ADC_IN22

ADC_IN24

ADC_IN25

System configuration controller (SYSCFG) and routing interface (RI) RM0038

128/598 Doc ID 15965 Rev 4

6.3 RI functional description

6.3.1 Special I/O configuration

Two matrices of switches control the routing of I/Os toward analog blocks (that is the ADC or
the comparator): I/O switches and ADC switches (refer to Figure 20: Routing interface (RI)
block diagram).

● When I/Os are used for analog purposes other than data acquisition, the I/O and ADC
switch matrices have to be controlled by the RI_ASCR1 and RI_ASCR2 registers.
These registers are then used to close or open switches by software: closing switches
sets the corresponding bits whereas opening switches clears them.

● When I/Os are used as ADC inputs for data acquisition purposes, the I/O and ADC
switch matrices are directly controlled by the ADC interface. The corresponding bits in
the RI_ASCR1 and RI_ASCR2 registers must be kept cleared (switches open).

Up to 6 I/Os are connected directly and independently to the ADC through the pad resistor:
these fast channels are capable of fast acquisition (1 megasample/s at the maximum ADC
acquisition time). Other ADC channels do not exceed 800 kilosamples/s.

When the I/Os are programmed in input mode by standard I/O port registers, the Schmitt
trigger and the hysteresis are enabled by default. In this mode, the RI_ASCRx and
RI_HYSCR registers can be used to simultaneously close the corresponding I/O analog
switch and disable the Schmitt trigger hysteresis. It is therefore possible to read the
corresponding port with a trigger level of VDDIO/2.

Only 6 groups (18 I/Os) are multiplexed to the ADC by the I/O analog switches. With the 8 or
6 fast channels, this makes 24 I/Os available for data acquisition and COMP1 comparison
versus VREFINT.

Note: For all I/Os used as comparator inputs, the I/O port configuration must be kept in analog
mode.

Table 22 shows the grouping of I/Os, the control register bits used to configure them as
analog inputs or outputs (irrespective of standard I/O port programming), and the associated
ADC channel number.

Table 22. I/O groups and selection

Group
numbering

GPIO port
Analog ADC

channel
I/O + ADC analog

switch
I/O functions

Group
1

GR1-1 PA0 CH0 RI_ASCR1->CH0

COMP1_INP
GR1-2 PA1 CH1 RI_ASCR1->CH1

GR1-3 PA2 CH2 RI_ASCR1->CH2

GR1-4 PA3 CH3 RI_ASCR1->CH3

Group
2

GR2-1 PA6 CH6 RI_ASCR1->CH6
COMP1_INP

GR2-2 PA7 CH7 RI_ASCR1->CH7

Group
3

GR3-1 PB0 CH8 RI_ASCR1->CH8
COMP1_INP/VREF_OUT

GR3-2 PB1 CH9 RI_ASCR1->CH9

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

Doc ID 15965 Rev 4 129/598

Group
4

GR4-1 PA8

NA

RI_ASCR2->GR4-1

GR4-2 PA9 RI_ASCR2->GR4-2

GR4-3 PA10 RI_ASCR2->GR4-3

Group
5

GR5-1 PA13

NA

RI_ASCR2->GR5-1

GR5-2 PA14 RI_ASCR2->GR5-2

GR5-3 PA15 RI_ASCR2->GR5-3

Group
6

GR6-1 PB4
NA

RI_ASCR2->GR6-1
COMP2_INP

GR6-2 PB5 RI_ASCR2->GR6-2

Group
7

GR7-1 PB12 CH18 RI_ASCR1->CH18

COMP1_INP
GR7-2 PB13 CH19 RI_ASCR1->CH19

GR7-3 PB14 CH20 RI_ASCR1->CH20

GR7-4 PB15 CH21 RI_ASCR1->CH21

Group
8

GR8-1 PC0 CH10 RI_ASCR1->CH10

COMP1_INP
GR8-2 PC1 CH11 RI_ASCR1->CH11

GR8-3 PC2 CH12 RI_ASCR1->CH12

GR8-4 PC3 CH13 RI_ASCR1->CH13

Group
9

GR9-1 PC4 CH14 RI_ASCR1->CH14
COMP1_INP

GR9-2 PC5 CH15 RI_ASCR1->CH15

Group
10

GR10-1 PC6

NA

RI_ASCR2->GR10-1

GR10-2 PC7 RI_ASCR2->GR10-2

GR10-3 PC8 RI_ASCR2->GR10-3

GR10-4 PC9 RI_ASCR2->GR10-4

Fast channels

PA4 CH4 RI_ASWCR->CH4 COMP1_INP/DAC1

PA5 CH5 RI_ASWCR->CH5 COMP1_INP/DAC2

PE7 CH22 RI_ASWCR->CH22 COMP1_INP

PE8 CH23 RI_ASWCR->CH23 COMP1_INP

PE9 CH24 RI_ASWCR->CH24 COMP1_INP

PE10 CH25 RI_ASWCR->CH25 COMP1_INP

NA PB3 NA COMP2_INN

NA PB7 NA PVD_IN/COMP2_INP

Table 22. I/O groups and selection (continued)

Group
numbering

GPIO port
Analog ADC

channel
I/O + ADC analog

switch
I/O functions

System configuration controller (SYSCFG) and routing interface (RI) RM0038

130/598 Doc ID 15965 Rev 4

6.3.2 Input capture routing

By default (at reset), the four input captures of the three general-purpose timers (TIM2,
TIM3, TIM4) are connected to the I/O port specified in the STM32L15xxx datasheet’s “pin
descriptions” table.

The I/O routing can be changed by programming register RI_ICR as indicated below:

● The input capture 1 of TIM2, TIM3 and TIM4 can be rerouted from any I/O by
configuring the IC1IOS[3:0] bits in RI_ICR.

● The input capture 2 of TIM2, TIM3 and TIM4 can be rerouted from any I/O by
configuring the IC2IOS[3:0] bits in RI_ICR.

● The input capture 3 of TIM2, TIM3 and TIM4 can be rerouted from any I/O by
configuring the IC3IOS[3:0] bits in RI_ICR.

● The input capture 4 of TIM2, TIM3 and TIM4 can be rerouted from any I/O by
configuring the IC4IOS[3:0] bits in RI_ICR.

Refer to the following table for I/O routing to the input capture timers.

This capability can be applied on only one out of the three timers at a time by configuring
TIM[1:0] in RI_ICR. When TIM[1:0]= 00 none of the three timers are affected by the I/O
routing: the defaults connections are enabled.

Moreover, when a timer is selected, I/O routing can be enabled for one or more input
captures by configuring the IC1, IC2, IC3 and IC4 bits in RI_ICR.

Refer to Table 23 for the I/O correspondence and to Table 24 for the timer selection.

Note: 1 The I/O should be configured in alternate function mode (AF14).

Table 23. Input capture mapping

IC1IOS / IC2IOS / IC3IOS / IC4IOS TIMx IC1 / TIMx IC2 / TIMx IC3 / TIMx IC4

0000 PA0 / PA1 / PA2 / PA3

0001 PA4 / PA5 / PA6 / PA7

0010 PA8 / PA9 / PA10 / PA11

0011 PA12 / PA13 / PA14 / PA15

0100 PC0 / PC1 / PC2 / PC3

0101 PC4 / PC5 / PC6 / PC7

0110 PC8 / PC9 / PC10 / PC11

0111 PC12 / PC13 / PC14 / PC15

1000 PD0 / PD1 / PD2 / PD3

1001 PD4 / PD5 / PD6 / PD7

1010 PD8 / PD9 / PD10 / PD11

1011 PD12 / PD13 / PD14 / PD15

1100 PE0 / PE1 / PE2 / PE3

1101 PE4 / PE5 / PE6 / PE7

1110 PE8 / PE9 / PE10 / PE11

1111 PE12 / PE13 / PE14 / PE15

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

Doc ID 15965 Rev 4 131/598

6.3.3 Reference voltage routing

Figure 21. Internal reference voltage output

The VREFINT output can be routed to any I/O in group 3 by following this procedure:

1. Set the VREFOUTEN bit in COMP_CSR.

2. Close the analog switch of all I/Os in group 3 by setting CH8 or CH9 in RI_ASCR1.

Table 24. Timer selection

TIM[1:0] Selected timer

00 No timer selected, default routing on all timers

01 TIM2 selected

10 TIM3 selected

11 TIM4 selected

Table 25. Input capture selection

IC4 / IC3 / IC2 / IC1 Selected input capture

0 IC deselected, default routing on the input capture (AF)

1 Input capture routing follows Table 24

System configuration controller (SYSCFG) and routing interface (RI) RM0038

132/598 Doc ID 15965 Rev 4

6.4 RI registers
The peripheral registers have to be accessed by words (32-bit).

6.4.1 RI input capture register (RI_ICR)

The RI_ICR register is used to select the routing of 4 full ports to the input captures of TIM2,
TIM3 and TIM4.

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
IC4 IC3 IC2 IC1 TIM[1:0]

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IC4IOS[3:0] IC3IOS[3:0] IC2IOS[3:0] IC1IOS[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:22 Reserved, must be kept cleared.

Bit 21 IC4: This bit is set and cleared by software to select the standard AF or the large routing
capability on the input capture 4 of the timer selected by TIM[1:0] (bits 17:16).

0: AF on IC4
1: Multiple port routing capability according to IC4IOS[3:0] (bits 15:12)

Bit 20 IC3: This bit is set and cleared by software to select the standard AF or the large routing
capability on the input capture 3 of the timer selected by TIM[1:0] (bits 17:16).

0: AF on IC3
1: Multiple port routing capability according to IC3IOS[3:0] (bits 11:8)

Bit 19 IC2: This bit is set and cleared by software to select the standard AF or the large routing
capability on the input capture 2 of the timer selected by TIM[1:0] (bits 17:16).

0: AF on IC2
1: Multiple port routing capability according to IC2IOS[3:0] (bits 7:4)

Bit 18 IC1: This bit is set and cleared by software to select the standard AF or the large routing
capability on the input capture 2 of the timer selected by TIM[1:0] (bits 17:16).

0: AF on IC1
1: Multiple port routing capability according to IC1IOS[3:0] (bits 3:0)

Bits 17:16 TIM[1:0]: Timer select bits
These bits are set and cleared by software. They are used to select one out of three timers
or none.
00: non timer selected
01: TIM2 selected
10: TIM3 selected
11: TIM4 selected

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

Doc ID 15965 Rev 4 133/598

Note: 1 The standard AFs dedicated to TIM2 are:
IC4-> PA3,PB11 or PE12
IC3-> PA2, PB10 or PE11
IC2-> PA1, PB3 or PE10
IC1-> PA0, PA5, PA15 or PE9

2 The standard AFs dedicated to TIM3 are:
IC4-> PB1 or PC9

Bits 15:12 IC4IOS[3:0]: Input capture 4 select bits
These bits are set and cleared by software. They select the input port to be routed to the IC4 of
the selected timer (see bits 16:17).

0000: PA3 1000: PD3
0001: PA7 1001: PD7
0010: PA11 1010: PD11
0011: PA15 1011: PD15
0100: PC3 1100: PE3
0101: PC7 1101: PE7
0110: PC11 1110: PE11
0111: PC15 1111: PE15

Bits 11:8 IC3IOS[3:0]: Input capture 3 select bits

These bits are set and cleared by software. They select the input port to be routed toward the
IC3 of the selected timer (see bits 16:17).

0000: PA2 1000: PD2
0001: PA6 1001: PD6
0010: PA10 1010: PD10
0011: PA14 1011: PD14
0100: PC2 1100: PE2
0101: PC6 1101: PE6
0110: PC10 1110: PE10
0111: PC14 1111: PE14

Bits 7:4 IC2IOS[3:0]: Input capture 2 select bits
These bits are set and cleared by software. They select the input port to be routed toward the
IC2 of the selected timer (see bits 16:17).

0000: PA1 1000: PD1
0001: PA5 1001: PD5
0010: PA9 1010: PD9
0011: PA13 1011: PD13
0100: PC1 1100: PE1
0101: PC5 1101: PE5
0110: PC9 1110: PE9
0111: PC13 1111: PE13

Bits 3:0 IC1IOS[3:0]: Input capture 1 select bits

These bits are set and cleared by software. They select the input port to be routed toward the
IC1 of the selected timer (see bits 16:17).

0000: PA0 1000: PD0
0001: PA4 1001: PD4
0010: PA8 1010: PD8
0011: PA12 1011: PD12
0100: PC0 1100: PE0
0101: PC4 1101: PE4
0110: PC8 1110: PE8
0111: PC12 1111: PE12

System configuration controller (SYSCFG) and routing interface (RI) RM0038

134/598 Doc ID 15965 Rev 4

IC3-> PB0 or PC8
IC2-> PA7, PC7, PB5 or PE4
IC1-> PA6, PC6, PB4 or PE3

3 The standard AFs dedicated to TIM4 are:
IC4-> PD15 or PB9
IC3-> PD14 or PB8
IC2-> PD13 or PB7
IC1-> PD12 or PB6

6.4.2 RI analog switches control register (RI_ASCR1)

The RI_ASCR1 register is used to configure the analog switches of the I/Os linked to the
ADC. These I/Os are pointed to by the ADC channel number.

Address offset: 0x08

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SCM
Reserved

VCOMP CH25 CH24 CH23 CH22 CH21 CH20 CH19 CH18
Reserved

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 SCM: Switch control mode
This bit is set and cleared by software to control the analog ADC switches according to the
state of the analog I/O switches controlled by bits [25:18] and [15:0].
0: ADC analog switches open or controlled by the ADC interface
1: ADC analog switches closed if the corresponding I/O switch is also closed

Bits 30:27 Reserved

Bit 26 VCOMP: ADC analog switch selection for internal node to comparator 1
This bit is set and cleared by software to control the VCOMP ADC analog switch. See
Figure 50 on page 236 .
0: Analog switch open
1: Analog switch closed

Bits 25:22 CH[25:22]: Analog I/O switch control of channels CH[25:22]

These bits are set and cleared by software to control the analog switches. If the I/O is used
as an ADC input, the switch must be left open to allow the ADC to control it.
0: Analog switch open
1: Analog switch closed

Bits 21:18 CH[21:18] Analog switch control

These bits are set and cleared by software to control the analog switches.
0: Analog switch open
1: Analog switch closed

Bits 17:16 Reserved

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

Doc ID 15965 Rev 4 135/598

Note: 1 The ADC_IN16 and ADC_IN17 channels are internal and controlled only by the ADC
interface for data acquisition purposes.

2 The ADC_IN4, ADC_IN5, ADC_IN22, ADC_IN23, ADC_IN24 and ADC_IN25 channels are
directly connected to the ADC through a resistor, no need to close external I/O analog
switches.

3 When the SCM bit is low, the CH bits are used to connect groups of I/Os together by analog
switches, independently of the ADC.

4 When the SCM bit is high, the CH bits are used to connect several I/Os together through the
ADC switch matrix in order to allow a possible wakeup by COMP1 if the VCOMP bit is high.

6.4.3 RI analog switch control register 2 (RI_ASCR2)

The RI_ASCR2 register is used to configure the analog switches of groups of I/Os not linked
to the ADC. In this way, predefined groups of I/Os can be connected together.

Address offset: 0x0C

Reset value: 0x0000 0000

Bits 15:0 CH[15:0]: Analog I/O switch control of channels CH[15:0]
These bits are set and cleared by software to control the analog switches. If the I/O is used
as an ADC input, the switch must be left open to allow the ADC to control it.
0: Analog switch open
1: Analog switch closed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
GR4-3 GR4-2 GR4-1 GR5-3 GR5-2 GR5-1 GR6-2 GR6-1 GR10-4 GR10-3 GR10-2 GR10-1

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept cleared.

Bit 11:0 GRx-x: GRx-x analog switch control
These bits are set and cleared by software to control the analog switches independently.
Refer to Table 22: I/O groups and selection on page 128 from the ADC interface.
0: Analog switch open
1: Analog switch closed

System configuration controller (SYSCFG) and routing interface (RI) RM0038

136/598 Doc ID 15965 Rev 4

6.4.4 RI hysteresis control register (RI_HYSCR1)

The RI_HYSCR1 register is used to enable/disable the hysteresis of the input Schmitt
trigger of ports A and B.

Address offset: 0x10

Reset value: 0x0000 0000

6.4.5 RI Hysteresis control register (RI_HYSCR2)

RI_HYSCR2 register allows to enable/disable hysteresis of input Schmitt trigger of ports C
and D.

Address offset: 0x14

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 PB[15:0]: Port B hysteresis control on/off
These bits are set and cleared by software to control the Schmitt trigger hysteresis of the
Port B[15:0].
0: Hysteresis on
1: Hysteresis off

Bits 15:0 PA[15:0]: Port A hysteresis control on/off
These bits are set and cleared by software to control the Schmitt trigger hysteresis of the
Port A[15:0].
0: Hysteresis on
1: Hysteresis off

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PD[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 PD[15:0]: Port D hysteresis control on/off
These bits are set and cleared by software to control the Schmitt trigger hysteresis of the
Port D[15:0].

0: Hysteresis on
1: Hysteresis off

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

Doc ID 15965 Rev 4 137/598

6.4.6 RI Hysteresis control register (RI_HYSCR3)

The RI_HYSCR3 register is used to enable/disable the hysteresis of the input Schmitt
trigger of the entire port E.

Address offset: 0x18

Reset value: 0x0000 0000

6.4.7 Analog switch mode register (RI_ASMR1)

The RI_ASMR1 register is used to select if analog switches of port A are to be controlled by
the timer OC or through the ADC interface or RI_ASCRx registers.

Address offset: 0x20

Reset value: 0x0000 0000

Bits 15:0 PC[15:0]: Port C hysteresis control on/off
These bits are set and cleared by software to control the Schmitt trigger hysteresis of the Port
C[15:0].

0: Hysteresis on
1: Hysteresis off

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PE[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 27:22 Reserved, must be kept cleared.

Bits 15:0 PE[15:0]: Port E hysteresis control on/off

These bits are set and cleared by software to control the Schmitt trigger hysteresis of the
Port E[15:0].

0: Hysteresis on
1: Hysteresis off

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

System configuration controller (SYSCFG) and routing interface (RI) RM0038

138/598 Doc ID 15965 Rev 4

6.4.8 Channel mask register (RI_CMR1)

RI_CMR1 is used to mask a port A channel designated as a timer input capture (after
acquisition completion to avoid triggering multiple detections).

Address offset: 0x24

Reset value: 0x0000 0000

6.4.9 Channel identification for capture register (RI_CICR1)

The RI_CICR1 register is used when analog switches are controlled by a timer OC.
RI_CICR1 allows a channel to be identifed for timer input capture.

Address offset: 0x28

Reset value: 0x0000 0000

Bits 31:16 Reserved, must be kept cleared.

Bits 15:0 PA[15:0]: Port A analog switch mode selection

These bits are set and cleared by software to select the mode of controlling the analog switches for
Port A.

0: ADC interface or RI_ASCRx controlled
1: Timer controlled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept cleared.

Bits 15:0 PA[15:0]: Port A channel masking

These bits are set and cleared by software to mask the ZI input of Port A.

0: Masked
1: Not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

Doc ID 15965 Rev 4 139/598

6.4.10 Analog switch mode register (RI_ASMR2)

The RI_ASMR2 register is used to select if analog switches of port B are to be controlled by
the timer OC or through the ADC interface or RI_ASCRx registers.

Address offset: 0x2C

Reset value: 0x0000 0000

6.4.11 Channel mask register (RI_CMR2)

RI_CMR2 is used to mask a por B channel designated as a timer input capture (after
acquisition completion to avoid triggering multiple detections)

Address offset: 0x30

Reset value: 0x0000 0000

Bits 31:16 Reserved, must be kept cleared.

Bits 15:0 PA[15:0]: Port A channel identification for capture

These bits are set and cleared by software to identify the sampling capacitor I/Os on Port A.

0: Channel I/O
1: Sampling capacitor I/O

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept cleared.

Bits 15:0 PB[15:0]: Port B analog switch mode selection

These bits are set and cleared by software to select the mode of controlling the analog switches for
Port B.

0: ADC interface or RI_ASCRx controlled
1: Timer controlled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

System configuration controller (SYSCFG) and routing interface (RI) RM0038

140/598 Doc ID 15965 Rev 4

6.4.12 Channel identification for capture register (RI_CICR2)

The RI_CICR2 register is used when analog switches are controlled by a timer OC.
RI_CICR2 allows a port B channel to be identifed for timer input capture.

Address offset: 0x34

Reset value: 0x0000 0000

6.4.13 Analog switch mode register (RI_ASMR3)

The RI_ASMR3 register is used to select if analog switches of port C are to be controlled by
the timer OC or through the ADC interface or RI_ASCRx registers.

Address offset: 0x38

Reset value: 0x0000 0000

Bits 31:16 Reserved, must be kept cleared.

Bits 15:0 PB[15:0]: Port B channel masking

These bits are set and cleared by software to mask ZI input of Port B.

0: Masked
1: Not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept cleared.

Bits 15:0 PB[15:0]: Port B channel identification for capture

These bits are set and cleared by software to identify the sampling capacitor I/Os on Port B.
0: Channel I/O
1: Sampling capacitor I/O

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

Doc ID 15965 Rev 4 141/598

6.4.14 Channel mask register (RI_CMR3)

RI_CMR3 is used to mask a port C channel designated as a timer input capture (after
acquisition completion to avoid triggering multiple detections)

Address offset: 0x3C

Reset value: 0x0000 0000

6.4.15 Channel identification for capture register (RI_CICR3)

The RI_CICR3 register is used when analog switches are controlled by a timer OC.
RI_CICR3 allows a port C channel to be identifed for timer input capture.

Address offset: 0x40

Reset value: 0x0000 0000

Bits 31:16 Reserved, must be kept cleared.

Bits 15:0 PC[15:0]: Port C analog switch mode selection

These bits are set and cleared by software to select the mode of controlling the analog switches for
Port C.

0: ADC interface or RI_ASCRx controlled
1: Timer controlled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept cleared.

Bits 15:0 PC[15:0]: Port C channel masking

These bits are set and cleared by software to mask ZI input of Port C.

0: Masked
1: Not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

System configuration controller (SYSCFG) and routing interface (RI) RM0038

142/598 Doc ID 15965 Rev 4

6.4.16 RI register map

Table 26 summarizes the RI registers.

Bits 31:16 Reserved, must be kept cleared.

Bits 15:0 PC[15:0]: Port C channel identification for capture

These bits are set and cleared by software to identify the sampling capacitor I/Os on Port C.

0: Channel I/O
1: Sampling capacitor I/O

Table 26. RI register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x04
RI_ICR

Reserved
IC
4

IC
3

IC
2

IC
1

T
IM

[1
:0

]

IC4IOS[3:0] IC3IOS[3:0] IC2IOS[3:0] IC1IOS[3:0]

Reset value 0

0x08
RI_ASCR1

S
C

M

Reserved

V
C

O
M

P

CH25:22 CH[21:18]
R

es
er

ve
d

CH[15:6]

R
es

er
ve

d

CH[3:0]

Reset value 0

0x0C
RI_ASCR2

Reserved
GR4[3:1] GR5[3:1] GR6

[2:1] GR10[4:1]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x10
RI_HYSCR1 PB[15:0] PA[15:0]

Reset value 0

0x14
RI_HYSCR2 PD[15:0] PC[15:0]

Reset value 0

0x18
RI_HYSCR3

Reserved
PE[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
RI_ASMR1

Reserved
PA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x24
RI_CMR1

Reserved
PA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
RI_CICR1

Reserved
PA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
RI_ASMR2

Reserved
PB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30
RI_CMR2

Reserved
PB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x34
RI_CICR2

Reserved
PB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

Doc ID 15965 Rev 4 143/598

0x38
RI_ASMR3

Reserved
PC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
RI_CMR3

Reserved
PC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
RI_CICR3

Reserved
PC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44
RI_ASMR4

Reserved
PF[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
RI_CMR4

Reserved
PF[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4C
RI_CICR4

Reserved
PF[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
RI_ASMR5

Reserved
PG[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x54
RI_CMR5

Reserved
PG[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x58
RI_CICR5

Reserved
PG[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 26. RI register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

System configuration controller (SYSCFG) and routing interface (RI) RM0038

144/598 Doc ID 15965 Rev 4

6.5 SYSCFG registers
The peripheral registers have to be accessed by words (32-bit).

6.5.1 SYSCFG memory remap register (SYSCFG_MEMRMP)

This register is used for specific configurations on memory remap:

● Two bits are used to configure the type of memory accessible at address 0x0000 0000.
These bits are used to select the physical remap by software and so, bypass the BOOT
pins.

● After reset these bits take the value selected by the BOOT pins.

Note: This register is not reset through the SYSCFGRST bit in the RCC_APB2RSTR register.

Address offset: 0x00

Reset value: 0x0000 000X (X is the memory mode selected by the BOOT pins)

)

6.5.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC)

An internal pull-up resistor (1.5 kΩ) can be connected by software on the USB data + (DP)
line. This internal pull-up resistor is enabled if the USB is not in power-down mode and if the
USB_PU bit is set.

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MEM_MODE

rw rw

Bits 31:2 Reserved

Bits 1:0 MEM_MODE: Memory mapping selection

Set and cleared by software. This bit controls the memory’s internal mapping at address
0x0000 0000. After reset these bits take on the memory mapping selected by the BOOT pins.

00: Main Flash memory mapped at 0x0000 0000
01: System Flash memory mapped at 0x0000 0000
10: Reserved
11: SRAM mapped at 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved USB_PU

rw

Bits 31:1 Reserved

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

Doc ID 15965 Rev 4 145/598

6.5.3 SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1)

Address offset: 0x08

Reset value: 0x0000

6.5.4 SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2)

Address offset: 0x0C

Reset value: 0x0000

Bit 0 USB_PU USB pull-up enable on DP line
Set and cleared by software. This bit controls the internal pull-up (1.5 kΩ) on the USB DP line.

0: no pull-up on the USB DP line (even if USB is not in power down mode)
1: internal pull-up is connected on USB DP line (only if USB is not in power down mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 0 to 3)

These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PH[x] (only PH[2:0])
PH[3] is not used.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI4[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

System configuration controller (SYSCFG) and routing interface (RI) RM0038

146/598 Doc ID 15965 Rev 4

6.5.5 SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3)

Address offset: 0x10

Reset value: 0x0000

6.5.6 SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICR4)

Address offset: 0x14

Reset value: 0x0000

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 4 to 7)
These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
PH[7:4] are not used.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 8 to 11)

These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
PH[11:8] are not used.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

Doc ID 15965 Rev 4 147/598

6.5.7 SYSCFG register map

The following table gives the SYSCFG register map and the reset values.

Refer to Table: “Register boundary addresses”.

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 12 to 15)
These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
PH[15:12] are not used.

Table 27. SYSCFG register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
SYSCFG_MEMRMP

Reserved

M
E

M
_M

O
D

E

Reset value x x

0x04 SYSCFG_PMC
Reset value Reserved

U
S

B
_P

U

0

0x08
SYSCFG_EXTICR1

Reserved
EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
SYSCFG_EXTICR2

Reserved
EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI4[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
SYSCFG_EXTICR3

Reserved
EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
SYSCFG_EXTICR4

Reserved
EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Interrupts and events RM0038

148/598 Doc ID 15965 Rev 4

7 Interrupts and events

This Section applies to the whole STM32L15xxx family, unless otherwise specified.

7.1 Nested vectored interrupt controller (NVIC)

Features

● 45 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3)

● 16 programmable priority levels (4 bits of interrupt priority are used)

● Low-latency exception and interrupt handling

● Power management control

● Implementation of system control registers

The NVIC and the processor core interface are closely coupled, which enables low-latency
interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information
on exceptions and NVIC programming see Chapter 5 “Exceptions & Chap 8 Nested
Vectored Interrupt Controller” in the ARM Cortex™-M3 Technical Reference Manual.

7.1.1 SysTick calibration value register

The SysTick calibration value is fixed to 4000, which gives a reference time base of 1 ms
with the SysTick clock set to 4 MHz (max HCLK/8).

7.1.2 Interrupt and exception vectors

Table 28 is the vector table for STM32L15xxx devices.

Table 28. Vector table

Position Priority
Type of
priority

Acronym Description Address

- - - Reserved 0x0000_0000

-3 fixed Reset Reset 0x0000_0004

-2 fixed NMI_Handler
Non maskable interrupt. The RCC
Clock Security System (CSS) is
linked to the NMI vector.

0x0000_0008

-1 fixed HardFault_Handler All class of fault 0x0000_000C

0 settable MemManage_Handler Memory management 0x0000_0010

1 settable BusFault_Handler Pre-fetch fault, memory access fault 0x0000_0014

2 settable UsageFault_Handler Undefined instruction or illegal state 0x0000_0018

- - - Reserved
0x0000_001C -
0x0000_002B

3 settable SVC_Handler
System service call via SWI
instruction

0x0000_002C

RM0038 Interrupts and events

Doc ID 15965 Rev 4 149/598

4 settable DebugMon_Handler Debug Monitor 0x0000_0030

- - - Reserved 0x0000_0034

5 settable PendSV_Handler Pendable request for system service 0x0000_0038

6 settable SysTick_Handler System tick timer 0x0000_003C

0 7 settable WWDG Window Watchdog interrupt 0x0000_0040

1 8 settable PVD
PVD through EXTI Line detection
interrupt

0x0000_0044

2 9 settable TAMPER_STAMP
Tamper and TimeStamp through
EXTI line interrupts

0x0000_0048

3 10 settable RTC_WKUP
RTC Wakeup through EXTI line
interrupt

0x0000_004C

4 11 settable FLASH Flash global interrupt 0x0000_0050

5 12 settable RCC RCC global interrupt 0x0000_0054

6 13 settable EXTI0 EXTI Line0 interrupt 0x0000_0058

7 14 settable EXTI1 EXTI Line1 interrupt 0x0000_005C

8 15 settable EXTI2 EXTI Line2 interrupt 0x0000_0060

9 16 settable EXTI3 EXTI Line3 interrupt 0x0000_0064

10 17 settable EXTI4 EXTI Line4 interrupt 0x0000_0068

11 18 settable DMA1_Channel1 DMA1 Channel1 global interrupt 0x0000_006C

12 19 settable DMA1_Channel2 DMA1 Channel2 global interrupt 0x0000_0070

13 20 settable DMA1_Channel3 DMA1 Channel3 global interrupt 0x0000_0074

14 21 settable DMA1_Channel4 DMA1 Channel4 global interrupt 0x0000_0078

15 22 settable DMA1_Channel5 DMA1 Channel5 global interrupt 0x0000_007C

16 23 settable DMA1_Channel6 DMA1 Channel6 global interrupt 0x0000_0080

17 24 settable DMA1_Channel7 DMA1 Channel7 global interrupt 0x0000_0084

18 25 settable ADC1 ADC1 global interrupt 0x0000_0088

19 26 settable USB HP USB High priority interrupt 0x0000_008C

20 27 settable USB_LP USB Low priority interrupt 0x0000_0090

21 28 settable DAC DAC interrupt 0x0000_0094

22 29 settable COMP
Comparator wakeup through EXTI
line (21 and 22) interrupt

0x0000_0098

23 30 settable EXTI9_5 EXTI Line[9:5] interrupts 0x0000_009C

24 31 settable LCD LCD global interrupt 0x0000_00A0

25 32 settable TIM9 TIM9 global interrupt 0x0000_00A4

26 33 settable TIM10 TIM10 global interrupt 0x0000_00A8

Table 28. Vector table (continued)

Position Priority
Type of
priority

Acronym Description Address

Interrupts and events RM0038

150/598 Doc ID 15965 Rev 4

7.2 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of up to 23 edge detectors for generating
event/interrupt requests. Each input line can be independently configured to select the type
(pulse or pending) and the corresponding trigger event (rising edge, falling edge or both).
Each line can also be masked independently. A pending register maintains the status line of
the interrupt requests.

7.2.1 Main features

The main features of the EXTI controller are the following:

● Independent trigger and mask on each interrupt/event line

● Dedicated status bit for each interrupt line

● Generation of up to 23 software event/interrupt requests

● Detection of external signals with a pulse width lower than the APB2 clock period. Refer
to the electrical characteristics section of the STM32L15xxx datasheet for details on
this parameter.

27 34 settable TIM11 TIM11 global interrupt 0x0000_00AC

28 35 settable TIM2 TIM2 global interrupt 0x0000_00B0

29 36 settable TIM3 TIM3 global interrupt 0x0000_00B4

30 37 settable TIM4 TIM4 global interrupt 0x0000_00B8

31 38 settable I2C1_EV I2C1 event interrupt 0x0000_00BC

32 39 settable I2C1_ER I2C1 error interrupt 0x0000_00C0

33 40 settable I2C2_EV I2C2 event interrupt 0x0000_00C4

34 41 settable I2C2_ER I2C2 error interrupt 0x0000_00C8

35 42 settable SPI1 SPI1 global interrupt 0x0000_00CC

36 43 settable SPI2 SPI2 global interrupt 0x0000_00D0

37 44 settable USART1 USART1 global interrupt 0x0000_00D4

38 45 settable USART2 USART2 global interrupt 0x0000_00D8

39 46 settable USART3 USART3 global interrupt 0x0000_00DC

40 47 settable EXTI15_10 EXTI Line[15:10] interrupts 0x0000_00E0

41 48 settable RTC_Alarm
RTC Alarms (A and B) through EXTI
line interrupt

0x0000_00E4

42 49 settable USB_FS_WKUP
USB Device FS Wakeup through
EXTI line interrupt

0x0000_00E8

43 50 settable TIM6 TIM6 global interrupt 0x0000_00EC

44 51 settable TIM7 TIM7 global interrupt 0x0000_00F0

Table 28. Vector table (continued)

Position Priority
Type of
priority

Acronym Description Address

RM0038 Interrupts and events

Doc ID 15965 Rev 4 151/598

7.2.2 Block diagram

The block diagram is shown in Figure 22.

Figure 22. External interrupt/event controller block diagram

7.2.3 Wakeup event management

The STM32L15xxx is able to handle external or internal events in order to wake up the core
(WFE). The wakeup event can be generated by either:

● enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex-M3 system control register. When the MCU
resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ
channel pending bit (in the NVIC interrupt clear pending register) have to be cleared.

● or configuring an external or internal EXTI line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
IRQ channel pending bit as the pending bit corresponding to the event line is not set.

To use an external line as a wakeup event, refer to Section 7.2.4: Functional description.

7.2.4 Functional description

To generate the interrupt, the interrupt line should be configured and enabled. This is done
by programming the two trigger registers with the desired edge detection and by enabling
the interrupt request by writing a ‘1 to the corresponding bit in the interrupt mask register.
When the selected edge occurs on the external interrupt line, an interrupt request is
generated. The pending bit corresponding to the interrupt line is also set. This request is
reset by writing a ‘1 into the pending register.

Event
mask

register

Interrupts and events RM0038

152/598 Doc ID 15965 Rev 4

To generate the event, the event line should be configured and enabled. This is done by
programming the two trigger registers with the desired edge detection and by enabling the
event request by writing a ‘1 to the corresponding bit in the event mask register. When the
selected edge occurs on the event line, an event pulse is generated. The pending bit
corresponding to the event line is not set

An interrupt/event request can also be generated by software by writing a ‘1 into the
software interrupt/event register.

Hardware interrupt selection

To configure the 23 lines as interrupt sources, use the following procedure:

● Configure the mask bits of the 23 Interrupt lines (EXTI_IMR)

● Configure the Trigger Selection bits of the Interrupt lines (EXTI_RTSR and
EXTI_FTSR)

● Configure the enable and mask bits that control the NVIC IRQ channel mapped to the
external interrupt controller (EXTI) so that an interrupt coming from any one of the 23
lines can be correctly acknowledged.

Hardware event selection

To configure the 23 lines as event sources, use the following procedure:

● Configure the mask bits of the 23 Event lines (EXTI_EMR)

● Configure the Trigger Selection bits of the Event lines (EXTI_RTSR and EXTI_FTSR)

Software interrupt/event selection

The 23 lines can be configured as software interrupt/event lines. The following is the
procedure to generate a software interrupt.

● Configure the mask bits of the 23 Interrupt/Event lines (EXTI_IMR, EXTI_EMR)

● Set the required bit in the software interrupt register (EXTI_SWIER)

7.2.5 External interrupt/event line mapping

The 83 GPIOs are connected to the 16 external interrupt/event lines in the following manner:

RM0038 Interrupts and events

Doc ID 15965 Rev 4 153/598

Figure 23. External interrupt/event GPIO mapping

Interrupts and events RM0038

154/598 Doc ID 15965 Rev 4

The six other EXTI lines are connected as follows:

● EXTI line 16 is connected to the PVD output

● EXTI line 17 is connected to the RTC Alarm event

● EXTI line 18 is connected to the USB Device FS wakeup event

● EXTI line 19 is connected to the RTC Tamper and TimeStamp events

● EXTI line 20 is connected to the RTC Wakeup event

● EXTI line 21 is connected to the Comparator 1 wakeup event and EXTI line 22 is
connected to the Comparator 2 wakeup event

7.3 EXTI registers
Refer to Section 1.1 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

7.3.1 EXTI interrupt mask register (EXTI_IMR)

Address offset: 0x00
Reset value: 0x0000 0000

7.3.2 EXTI event mask register (EXTI_EMR)

Address offset: 0x04
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
MR22 MR21 MR20 MR19 MR18 MR17 MR16

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value (0).

Bits 22:0 MRx: Interrupt mask on line x

0: Interrupt request from Line x is masked
1: Interrupt request from Line x is not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
MR22 MR21 MR20 MR19 MR18 MR17 MR16

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0038 Interrupts and events

Doc ID 15965 Rev 4 155/598

7.3.3 EXTI rising edge trigger selection register (EXTI_RTSR)

Address offset: 0x08
Reset value: 0x0000 0000

Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines.
If a rising edge on the external interrupt line occurs while writing to the EXTI_RTSR register,
the pending bit will not be set.

Rising and falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

Bits 31:23 Reserved, must be kept at reset value (0).

Bits 22:0 MRx: Event mask on line x

0: Event request from Line x is masked
1: Event request from Line x is not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TR22 TR21 TR20 TR19 TR18 TR17 TR16

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value (0).

Bits 22:0 TRx: Rising edge trigger event configuration bit of line x
0: Rising edge trigger disabled (for Event and Interrupt) for input line x
1: Rising edge trigger enabled (for Event and Interrupt) for input line x

Interrupts and events RM0038

156/598 Doc ID 15965 Rev 4

7.3.4 Falling edge trigger selection register (EXTI_FTSR)

Address offset: 0x0C
Reset value: 0x0000 0000

Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines.
If a falling edge on the external interrupt line occurs while writing to the EXTI_FTSR register,
the pending bit will not be set.

Rising and falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

7.3.5 EXTI software interrupt event register (EXTI_SWIER)

Address offset: 0x10
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TR22 TR21 TR20 TR19 TR18 TR17 TR16

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value (0).

Bits 22:0 TRx: Falling edge trigger event configuration bit of line x

0: Falling edge trigger disabled (for Event and Interrupt) for input line x
1: Falling edge trigger enabled (for Event and Interrupt) for input line x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

SWIER
22

SWIER
21

SWIER
20

SWIER
19

SWIER
18

SWIER
17

SWIER
16

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWIER
15

SWIER
14

SWIER
13

SWIER
12

SWIER
11

SWIER
10

SWIER
9

SWIER
8

SWIER
7

SWIER
6

SWIER
5

SWIER
4

SWIER
3

SWIER
2

SWIER
1

SWIER
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value (0).

Bits 22:0 SWIERx: Software interrupt on line x

Writing a 1 to this bit when it is at 0 sets the corresponding pending bit in EXTI_PR. If the
interrupt is enabled on this line in EXTI_IMR and EXTI_EMR, an interrupt request is
generated.
This bit is cleared by clearing the corresponding bit in EXTI_PR (by writing a 1 to this bit).

RM0038 Interrupts and events

Doc ID 15965 Rev 4 157/598

7.3.6 EXTI pending register (EXTI_PR)

Address offset: 0x14
Reset value: undefined

7.3.7 EXTI register map

The following table gives the EXTI register map and the reset values.

Refer to Table 1 on page 32 for the register boundary addresses.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PR22 PR21 PR20 PR19 PR18 PR17 PR16

rw rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PR15 PR14 PR13 PR12 PR11 PR10 PR9 PR8 PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:23 Reserved, must be kept at reset value (0).

Bits 22:0 PRx: Pending bit

0: No trigger request occurred
1: The selected trigger request occurred
This bit is set when the selected edge event arrives on the external interrupt line. This bit is
cleared by writing it to 1 or by changing the sensitivity of the edge detector.

Table 29. External interrupt/event controller register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
EXTI_IMR

Reserved
MR[22:0]

Reset value 0

0x04
EXTI_EMR

Reserved
MR[22:0]

Reset value 0

0x08
EXTI_RTSR

Reserved
TR[22:0]

Reset value 0

0x0C
EXTI_FTSR

Reserved
TR[22:0]

Reset value 0

0x10
EXTI_SWIER

Reserved
SWIER[22:0]

Reset value 0

0x14
EXTI_PR

Reserved
PR[22:0]

Reset value 0

DMA controller (DMA) RM0038

158/598 Doc ID 15965 Rev 4

8 DMA controller (DMA)

8.1 DMA introduction
Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.

8.2 DMA main features
● Each of the channels is connected to dedicated hardware DMA requests, software

trigger is also supported on each channel. This configuration is done by software.

● Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(request 1 has priority over request 2, etc.)

● Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.

● Support for circular buffer management

● 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel

● Memory-to-memory transfer

● Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers

● Access to Flash, SRAM, APB1, APB2 and AHB peripherals as source and destination

● Programmable number of data to be transferred: up to 65536

RM0038 DMA controller (DMA)

Doc ID 15965 Rev 4 159/598

The block diagram is shown in Figure 24.

Figure 24. DMA block diagram in STM32L15xxx devices

8.3 DMA functional description
The DMA controller performs direct memory transfer by sharing the system bus with the
Cortex™-M3 core. The DMA request may stop the CPU access to the system bus for some
bus cycles, when the CPU and DMA are targeting the same destination (memory or
peripheral). The bus matrix implements round-robin scheduling, thus ensuring at least half
of the system bus bandwidth (both to memory and peripheral) for the CPU.

8.3.1 DMA transactions

After an event, the peripheral sends a request signal to the DMA Controller. The DMA
controller serves the request depending on the channel priorities. As soon as the DMA
Controller accesses the peripheral, an Acknowledge is sent to the peripheral by the DMA
Controller. The peripheral releases its request as soon as it gets the Acknowledge from the
DMA Controller. Once the request is deasserted by the peripheral, the DMA Controller
release the Acknowledge. If there are more requests, the peripheral can initiate the next
transaction.

In summary, each DMA transfer consists of three operations:

● The loading of data from the peripheral data register or a location in memory
addressed through an internal current peripheral/memory address register. The start
address used for the first transfer is the base peripheral/memory address programmed
in the DMA_CPARx or DMA_CMARx register

● The storage of the data loaded to the peripheral data register or a location in memory
addressed through an internal current peripheral/memory address register. The start

DMA controller (DMA) RM0038

160/598 Doc ID 15965 Rev 4

address used for the first transfer is the base peripheral/memory address programmed
in the DMA_CPARx or DMA_CMARx register

● The post-decrementing of the DMA_CNDTRx register, which contains the number of
transactions that have still to be performed.

8.3.2 Arbiter

The arbiter manages the channel requests based on their priority and launches the
peripheral/memory access sequences.

The priorities are managed in two stages:

● Software: each channel priority can be configured in the DMA_CCRx register. There
are four levels:

– Very high priority

– High priority

– Medium priority

– Low priority

● Hardware: if 2 requests have the same software priority level, the channel with the
lowest number will get priority versus the channel with the highest number. For
example, channel 2 gets priority over channel 4.

8.3.3 DMA channels

Each channel can handle DMA transfer between a peripheral register located at a fixed
address and a memory address. The amount of data to be transferred (up to 65535) is
programmable. The register which contains the amount of data items to be transferred is
decremented after each transaction.

Programmable data sizes

Transfer data sizes of the peripheral and memory are fully programmable through the PSIZE
and MSIZE bits in the DMA_CCRx register.

Pointer incrementation

Peripheral and memory pointers can optionally be automatically post-incremented after
each transaction depending on the PINC and MINC bits in the DMA_CCRx register. If
incremented mode is enabled, the address of the next transfer will be the address of the
previous one incremented by 1, 2 or 4 depending on the chosen data size. The first transfer
address is the one programmed in the DMA_CPARx/DMA_CMARx registers. During
transfer operations, these registers keep the initially programmed value. The current transfer
addresses (in the current internal peripheral/memory address register) are not accessible by
software.

If the channel is configured in noncircular mode, no DMA request is served after the last
transfer (that is once the number of data items to be transferred has reached zero). In order
to reload a new number of data items to be transferred into the DMA_CNDTRx register, the
DMA channel must be disabled.

Note: If a DMA channel is disabled, the DMA registers are not reset. The DMA channel registers
(DMA_CCRx, DMA_CPARx and DMA_CMARx) retain the initial values programmed during
the channel configuration phase.

RM0038 DMA controller (DMA)

Doc ID 15965 Rev 4 161/598

In circular mode, after the last transfer, the DMA_CNDTRx register is automatically reloaded
with the initially programmed value. The current internal address registers are reloaded with
the base address values from the DMA_CPARx/DMA_CMARx registers.

Channel configuration procedure

The following sequence should be followed to configure a DMA channelx (where x is the
channel number).

1. Set the peripheral register address in the DMA_CPARx register. The data will be
moved from/ to this address to/ from the memory after the peripheral event.

2. Set the memory address in the DMA_CMARx register. The data will be written to or
read from this memory after the peripheral event.

3. Configure the total number of data to be transferred in the DMA_CNDTRx register.
After each peripheral event, this value will be decremented.

4. Configure the channel priority using the PL[1:0] bits in the DMA_CCRx register

5. Configure data transfer direction, circular mode, peripheral & memory incremented
mode, peripheral & memory data size, and interrupt after half and/or full transfer in the
DMA_CCRx register

6. Activate the channel by setting the ENABLE bit in the DMA_CCRx register.

As soon as the channel is enabled, it can serve any DMA request from the peripheral
connected on the channel.

Once half of the bytes are transferred, the half-transfer flag (HTIF) is set and an interrupt is
generated if the Half-Transfer Interrupt Enable bit (HTIE) is set. At the end of the transfer,
the Transfer Complete Flag (TCIF) is set and an interrupt is generated if the Transfer
Complete Interrupt Enable bit (TCIE) is set.

Circular mode

Circular mode is available to handle circular buffers and continuous data flows (e.g. ADC
scan mode). This feature can be enabled using the CIRC bit in the DMA_CCRx register.
When circular mode is activated, the number of data to be transferred is automatically
reloaded with the initial value programmed during the channel configuration phase, and the
DMA requests continue to be served.

Memory-to-memory mode

The DMA channels can also work without being triggered by a request from a peripheral.
This mode is called Memory to Memory mode.

If the MEM2MEM bit in the DMA_CCRx register is set, then the channel initiates transfers as
soon as it is enabled by software by setting the Enable bit (EN) in the DMA_CCRx register.
The transfer stops once the DMA_CNDTRx register reaches zero. Memory to Memory
mode may not be used at the same time as Circular mode.

8.3.4 Programmable data width, data alignment and endians

When PSIZE and MSIZE are not equal, the DMA performs some data alignments as
described in Table 30: Programmable data width & endian behavior (when bits PINC =
MINC = 1).

DMA controller (DMA) RM0038

162/598 Doc ID 15965 Rev 4

Addressing an AHB peripheral that does not support byte or halfword write
operations

When the DMA initiates an AHB byte or halfword write operation, the data are duplicated on
the unused lanes of the HWDATA[31:0] bus. So when the used AHB slave peripheral does
not support byte or halfword write operations (when HSIZE is not used by the peripheral)
and does not generate any error, the DMA writes the 32 HWDATA bits as shown in the two
examples below:

● To write the halfword “0xABCD”, the DMA sets the HWDATA bus to “0xABCDABCD”
with HSIZE = HalfWord

● To write the byte “0xAB”, the DMA sets the HWDATA bus to “0xABABABAB” with
HSIZE = Byte

Table 30. Programmable data width & endian behavior (when bits PINC = MINC = 1)

Source
port
width

Destination
port width

Number
of data
items to
transfer
(NDT)

Source content:
address / data Transfer operations

Destination
content:

address / data

8 8 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B1[7:0] @0x1 then WRITE B1[7:0] @0x1
3: READ B2[7:0] @0x2 then WRITE B2[7:0] @0x2
4: READ B3[7:0] @0x3 then WRITE B3[7:0] @0x3

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

8 16 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE 00B0[15:0] @0x0
2: READ B1[7:0] @0x1 then WRITE 00B1[15:0] @0x2
3: READ B3[7:0] @0x2 then WRITE 00B2[15:0] @0x4
4: READ B4[7:0] @0x3 then WRITE 00B3[15:0] @0x6

@0x0 / 00B0
@0x2 / 00B1
@0x4 / 00B2
@0x6 / 00B3

8 32 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE 000000B0[31:0] @0x0
2: READ B1[7:0] @0x1 then WRITE 000000B1[31:0] @0x4
3: READ B3[7:0] @0x2 then WRITE 000000B2[31:0] @0x8
4: READ B4[7:0] @0x3 then WRITE 000000B3[31:0] @0xC

@0x0 / 000000B0
@0x4 / 000000B1
@0x8 / 000000B2
@0xC / 000000B3

16 8 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE B2[7:0] @0x1
3: READ B5B4[15:0] @0x4 then WRITE B4[7:0] @0x2
4: READ B7B6[15:0] @0x6 then WRITE B6[7:0] @0x3

@0x0 / B0
@0x1 / B2
@0x2 / B4
@0x3 / B6

16 16 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE B1B0[15:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE B3B2[15:0] @0x2
3: READ B5B4[15:0] @0x4 then WRITE B5B4[15:0] @0x4
4: READ B7B6[15:0] @0x6 then WRITE B7B6[15:0] @0x6

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

16 32 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE 0000B1B0[31:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE 0000B3B2[31:0] @0x4
3: READ B5B4[15:0] @0x4 then WRITE 0000B5B4[31:0] @0x8
4: READ B7B6[15:0] @0x6 then WRITE 0000B7B6[31:0] @0xC

@0x0 / 0000B1B0
@0x4 / 0000B3B2
@0x8 / 0000B5B4
@0xC / 0000B7B6

32 8 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B4[7:0] @0x1
3: READ BBBAB9B8[31:0] @0x8 then WRITE B8[7:0] @0x2
4: READ BFBEBDBC[31:0] @0xC then WRITE BC[7:0] @0x3

@0x0 / B0
@0x1 / B4
@0x2 / B8
@0x3 / BC

32 16 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B1B0[7:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B5B4[7:0] @0x1
3: READ BBBAB9B8[31:0] @0x8 then WRITE B9B8[7:0] @0x2
4: READ BFBEBDBC[31:0] @0xC then WRITE BDBC[7:0] @0x3

@0x0 / B1B0
@0x2 / B5B4
@0x4 / B9B8
@0x6 / BDBC

32 32 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B3B2B1B0[31:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B7B6B5B4[31:0] @0x4
3: READ BBBAB9B8[31:0] @0x8 then WRITE BBBAB9B8[31:0] @0x8
4: READ BFBEBDBC[31:0] @0xC then WRITE BFBEBDBC[31:0] @0xC

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

RM0038 DMA controller (DMA)

Doc ID 15965 Rev 4 163/598

Assuming that the AHB/APB bridge is an AHB 32-bit slave peripheral that does not take the
HSIZE data into account, it will transform any AHB byte or halfword operation into a 32-bit
APB operation in the following manner:

● an AHB byte write operation of the data “0xB0” to 0x0 (or to 0x1, 0x2 or 0x3) will be
converted to an APB word write operation of the data “0xB0B0B0B0” to 0x0

● an AHB halfword write operation of the data “0xB1B0” to 0x0 (or to 0x2) will be
converted to an APB word write operation of the data “0xB1B0B1B0” to 0x0

For instance, if you want to write the APB backup registers (16-bit registers aligned to a 32-
bit address boundary), you must configure the memory source size (MSIZE) to “16-bit” and
the peripheral destination size (PSIZE) to “32-bit”.

8.3.5 Error management

A DMA transfer error can be generated by reading from or writing to a reserved address
space. When a DMA transfer error occurs during a DMA read or a write access, the faulty
channel is automatically disabled through a hardware clear of its EN bit in the corresponding
Channel configuration register (DMA_CCRx). The channel's transfer error interrupt flag
(TEIF) in the DMA_IFR register is set and an interrupt is generated if the transfer error
interrupt enable bit (TEIE) in the DMA_CCRx register is set.

8.3.6 Interrupts

An interrupt can be produced on a Half-transfer, Transfer complete or Transfer error for each
DMA channel. Separate interrupt enable bits are available for flexibility.

8.3.7 DMA request mapping

DMA controller

The 7 requests from the peripherals (TIMx[2,3,4,6,7], ADC1, SPI[1,2], I2Cx[1,2],
USARTx[1,2,3]) and DAC Channelx[1,2] are simply logically ORed before entering the DMA,
this means that only one request must be enabled at a time. Refer to Figure 25: DMA
request mapping.

The peripheral DMA requests can be independently activated/de-activated by programming
the DMA control bit in the registers of the corresponding peripheral.

Table 31. DMA interrupt requests

Interrupt event Event flag Enable Control bit

Half-transfer HTIF HTIE

Transfer complete TCIF TCIE

Transfer error TEIF TEIE

DMA controller (DMA) RM0038

164/598 Doc ID 15965 Rev 4

Figure 25. DMA request mapping

Fixed hardware priority

Channel 3

internal

HW request 3

High priority

Low priority

Peripheral

Channel 2
HW request 2

Channel 1

SW trigger (MEM2MEM bit)

Channel 1 EN bit

HW request 1

Channel 4
HW request 4

DMA

Channel 5
HW request 5

Channel 6
HW REQUEST 6

Channel 7
HW request 7

 request

ADC1

USART1_TX

SPI1_TX

USART3_TX

USART1_RX

I2C1_TX

TIM3_CH1

I2C1_RX

TIM2_CH2

 SPI1_RX

 TIM4_CH3
TIM2_CH1

 I2C2_RX

USART2_RX

TIM3_TRIG

 USART2_TX

 TIM2_CH4
 TIM4_UP

I2C2_TX

 TIM4_CH2

TIM3_CH4
TIM3_UP

 USART3_RX

 TIM3_CH3
TIM2_UP

TIM2_CH3
TIM4_CH1

Channel 2 EN bit

Channel 3 EN bit

Channel 4 EN bit

Channel 5 EN bit

Channel 6 EN bit

Channel 7 EN bit

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW TRIGGER (MEM2MEM bit)

SW trigger (MEM2MEM bit)

 request signals

ai17147b

SPI2_RX

SPI2_TX

TIM6_UP/DAC_Channel1

TIM7_UP/DAC_Channel2

RM0038 DMA controller (DMA)

Doc ID 15965 Rev 4 165/598

Table 32 lists the DMA requests for each channel.

Table 32. Summary of DMA requests for each channel

Peripherals Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7

ADC1 ADC1

SPI SPI1_RX SPI1_TX SPI2_RX SPI2_TX

USART USART3_TX USART3_RX USART1_TX USART1_RX USART2_RX USART2_TX

I2C I2C2_TX I2C2_RX I2C1_TX I2C1_RX

TIM2 TIM2_CH3 TIM2_UP TIM2_CH1
TIM2_CH2
TIM2_CH4

TIM3 TIM3_CH3
TIM3_CH4
TIM3_UP

TIM3_CH1
TIM3_TRIG

TIM4 TIM4_CH1 TIM4_CH2 TIM4_CH3 TIM4_UP

TIM6/DAC_
Channel1

TIM6_UP/DA
C_Channel1

TIM7/DAC_
Channel2

TIM7_UP/DA
C_Channel2

DMA controller (DMA) RM0038

166/598 Doc ID 15965 Rev 4

8.4 DMA registers
Refer to for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by bytes (8-bit), half-words (16-bit) or words (32-
bit).

8.4.1 DMA interrupt status register (DMA_ISR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TEIF7 HTIF7 TCIF7 GIF7 TEIF6 HTIF6 TCIF6 GIF6 TEIF5 HTIF5 TCIF5 GIF5

r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TEIF4 HTIF4 TCIF4 GIF4 TEIF3 HTIF3 TCIF3 GIF3 TEIF2 HTIF2 TCIF2 GIF2 TEIF1 HTIF1 TCIF1 GIF1

r r r r r r r r r r r r r r r r

Bits 31:28 Reserved, always read as 0.

Bits 27, 23, 19, 15,
11, 7, 3

TEIFx: Channel x transfer error flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No transfer error (TE) on channel x
1: A transfer error (TE) occurred on channel x

Bits 26, 22, 18, 14,
10, 6, 2

HTIFx: Channel x half transfer flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No half transfer (HT) event on channel x
1: A half transfer (HT) event occurred on channel x

Bits 25, 21, 17, 13,
9, 5, 1

TCIFx: Channel x transfer complete flag (x = 1 ..7)
This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No transfer complete (TC) event on channel x
1: A transfer complete (TC) event occurred on channel x

Bits 24, 20, 16, 12,
8, 4, 0

GIFx: Channel x global interrupt flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No TE, HT or TC event on channel x
1: A TE, HT or TC event occurred on channel x

RM0038 DMA controller (DMA)

Doc ID 15965 Rev 4 167/598

8.4.2 DMA interrupt flag clear register (DMA_IFCR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
CTEIF7 CHTIF7 CTCIF7 CGIF7 CTEIF6 CHTIF6 CTCIF6 CGIF6 CTEIF5 CHTIF5 CTCIF5 CGIF5

w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTEIF4 CHTIF4 CTCIF4 CGIF4 CTEIF3 CHTIF3 CTCIF3 CGIF3 CTEIF2 CHTIF2 CTCIF2 CGIF2 CTEIF1 CHTIF1 CTCIF1 CGIF1

w w w w w w w w w w w w w w w w

Bits 31:28 Reserved, always read as 0.

Bits 27, 23, 19, 15,
11, 7, 3

CTEIFx: Channel x transfer error clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the corresponding TEIF flag in the DMA_ISR register

Bits 26, 22, 18, 14,
10, 6, 2

CHTIFx: Channel x half transfer clear (x = 1 ..7)
This bit is set and cleared by software.
0: No effect
1: Clears the corresponding HTIF flag in the DMA_ISR register

Bits 25, 21, 17, 13,
9, 5, 1

CTCIFx: Channel x transfer complete clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the corresponding TCIF flag in the DMA_ISR register

Bits 24, 20, 16, 12,
8, 4, 0

CGIFx: Channel x global interrupt clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the GIF, TEIF, HTIF and TCIF flags in the DMA_ISR register

DMA controller (DMA) RM0038

168/598 Doc ID 15965 Rev 4

8.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1..7,
where x = channel number)

Address offset: 0x08 + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

MEM2
MEM PL[1:0] MSIZE[1:0] PSIZE[1:0] MINC PINC CIRC DIR TEIE HTIE TCIE EN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, always read as 0.

Bit 14 MEM2MEM: Memory to memory mode

This bit is set and cleared by software.
0: Memory to memory mode disabled
1: Memory to memory mode enabled

Bits 13:12 PL[1:0]: Channel priority level
These bits are set and cleared by software.
00: Low
01: Medium
10: High
11: Very high

Bits 11:10 MSIZE[1:0]: Memory size
These bits are set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved

Bits 9:8 PSIZE[1:0]: Peripheral size
These bits are set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved

Bit 7 MINC: Memory increment mode
This bit is set and cleared by software.
0: Memory increment mode disabled
1: Memory increment mode enabled

Bit 6 PINC: Peripheral increment mode

This bit is set and cleared by software.
0: Peripheral increment mode disabled
1: Peripheral increment mode enabled

Bit 5 CIRC: Circular mode

This bit is set and cleared by software.
0: Circular mode disabled
1: Circular mode enabled

RM0038 DMA controller (DMA)

Doc ID 15965 Rev 4 169/598

8.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1..7),
where x = channel number)

Address offset: 0x0C + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

Bit 4 DIR: Data transfer direction
This bit is set and cleared by software.
0: Read from peripheral
1: Read from memory

Bit 3 TEIE: Transfer error interrupt enable

This bit is set and cleared by software.
0: TE interrupt disabled
1: TE interrupt enabled

Bit 2 HTIE: Half transfer interrupt enable

This bit is set and cleared by software.
0: HT interrupt disabled
1: HT interrupt enabled

Bit 1 TCIE: Transfer complete interrupt enable
This bit is set and cleared by software.
0: TC interrupt disabled
1: TC interrupt enabled

Bit 0 EN: Channel enable

This bit is set and cleared by software.
0: Channel disabled
1: Channel enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NDT

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, always read as 0.

Bits 15:0 NDT[15:0]: Number of data to transfer

Number of data to be transferred (0 up to 65535). This register can only be written when the
channel is disabled. Once the channel is enabled, this register is read-only, indicating the
remaining bytes to be transmitted. This register decrements after each DMA transfer.

Once the transfer is completed, this register can either stay at zero or be reloaded
automatically by the value previously programmed if the channel is configured in auto-reload
mode.

If this register is zero, no transaction can be served whether the channel is enabled or not.

DMA controller (DMA) RM0038

170/598 Doc ID 15965 Rev 4

8.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1..7),
where x = channel number)

Address offset: 0x10 + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

This register must not be written when the channel is enabled.

8.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1..7),
where x = channel number)

Address offset: 0x14 + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

This register must not be written when the channel is enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA

rw rw

Bits 31:0 PA[31:0]: Peripheral address

Base address of the peripheral data register from/to which the data will be read/written.

When PSIZE is 01 (16-bit), the PA[0] bit is ignored. Access is automatically aligned to a half-
word address.
When PSIZE is 10 (32-bit), PA[1:0] are ignored. Access is automatically aligned to a word
address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MA

rw rw

Bits 31:0 MA[31:0]: Memory address

Base address of the memory area from/to which the data will be read/written.

When MSIZE is 01 (16-bit), the MA[0] bit is ignored. Access is automatically aligned to a
half-word address.
When MSIZE is 10 (32-bit), MA[1:0] are ignored. Access is automatically aligned to a word
address.

RM0038 DMA controller (DMA)

Doc ID 15965 Rev 4 171/598

8.4.7 DMA register map

The following table gives the DMA register map and the reset values.

Table 33. DMA register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
DMA_ISR

Reserved T
E

IF
7

H
T

IF
7

T
C

IF
7

G
IF

7

T
E

IF
6

H
T

IF
6

T
C

IF
6

G
IF

6

T
E

IF
5

H
T

IF
5

T
C

IF
5

G
IF

5

T
E

IF
4

H
T

IF
4

T
C

IF
4

G
IF

4

T
E

IF
3

H
T

IF
3

T
C

IF
3

G
IF

3

T
E

IF
2

H
T

IF
2

T
C

IF
2

G
IF

2

T
E

IF
1

H
T

IF
1

T
C

IF
1

G
IF

1

Reset value 0

0x004
DMA_IFCR

Reserved

C
T

E
IF

7

C
H

T
IF

7

C
T

C
IF

7

C
G

IF
7

C
T

E
IF

6

C
H

T
IF

6

C
T

C
IF

6

C
G

IF
6

C
T

E
IF

5

C
H

T
IF

5

C
T

C
IF

5

C
G

IF
5

C
T

E
IF

4

C
H

T
IF

4

C
T

C
IF

4

C
G

IF
4

C
T

E
IF

3

C
H

T
IF

3

C
T

C
IF

3

C
G

IF
3

C
T

E
IF

2

C
H

T
IF

2

C
T

C
IF

2

C
G

IF
2

C
T

E
IF

1

C
H

T
IF

1

C
T

C
IF

1

C
G

IF
1

Reset value 0

0x008
DMA_CCR1

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
 S

IZ
E

 [1
:0

]

P
S

IZ
E

 [1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x00C
DMA_CNDTR1

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x010
DMA_CPAR1 PA[31:0]

Reset value 0

0x014
DMA_CMAR1 MA[31:0]

Reset value 0

0x018 Reserved

0x01C
DMA_CCR2

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
 S

IZ
E

 [1
:0

]

P
S

IZ
E

 [1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x020
DMA_CNDTR2

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x024
DMA_CPAR2 PA[31:0]

Reset value 0

0x028
DMA_CMAR2 MA[31:0]

Reset value 0

0x02C Reserved

0x030
DMA_CCR3

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
 S

IZ
E

 [1
:0

]

P
S

IZ
E

 [1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x034
DMA_CNDTR3

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x038
DMA_CPAR3 PA[31:0]

Reset value 0

0x03C
DMA_CMAR3 MA[31:0]

Reset value 0

0x040 Reserved

0x044
DMA_CCR4

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
 S

IZ
E

 [1
:0

]

P
S

IZ
E

 [1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x048
DMA_CNDTR4

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA controller (DMA) RM0038

172/598 Doc ID 15965 Rev 4

Refer to Table 1 on page 32 for the register boundary addresses.

0x04C
DMA_CPAR4 PA[31:0]

Reset value 0

0x050
DMA_CMAR4 MA[31:0]

Reset value 0

0x054 Reserved

0x058
DMA_CCR5

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
 S

IZ
E

 [1
:0

]

P
S

IZ
E

 [1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x05C
DMA_CNDTR5

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x060
DMA_CPAR5 PA[31:0]

Reset value 0

0x064
DMA_CMAR5 MA[31:0]

Reset value 0

0x068 Reserved

0x06C
DMA_CCR6

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
 S

IZ
E

 [1
:0

]

P
S

IZ
E

 [1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x070
DMA_CNDTR6

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x074
DMA_CPAR6 PA[31:0]

Reset value 0

0x078
DMA_CMAR6 MA[31:0]

Reset value 0

0x07C Reserved

0x080
DMA_CCR7

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
 S

IZ
E

 [1
:0

]

P
S

IZ
E

 [1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x084
DMA_CNDTR7

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x088
DMA_CPAR7 PA[31:0]

Reset value 0

0x08C
DMA_CMAR7 MA[31:0]

Reset value 0

0x090 Reserved

Table 33. DMA register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 173/598

9 Analog-to-digital converter (ADC)

9.1 ADC introduction
The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 26
multiplexed channels allowing it measure signals from 24 external and two internal sources.
The A/D conversion of the channels can be performed in single, continuous, scan or
discontinuous mode. The result of the ADC is stored into a left- or right-aligned 16-bit data
register.

The analog watchdog feature allows the application to detect if the input voltage goes
beyond the user-defined, higher or lower thresholds.

Conversions are always performed at maximum speed to have the highest possible
conversion rate for a given system clock frequency. The automatic power control
dramatically reduces the consumption by powering-on the ADC only during conversions.

9.2 ADC main features
● 12-bit, 10-bit, 8-bit or 6-bit configurable resolution

● Interrupt generation at the end of regular conversions, end of injected conversions, and
in case of analog watchdog or overrun events (for regular conversions)

● Single and continuous conversion modes

● Scan mode for automatic conversions in a fully programmable order

● Programmable data alignment with in-built data coherency

● Programmable and individual sampling time for each ADC channel

● External trigger option with configurable edge detection for both regular and injected
conversions

● Discontinuous mode

● ADC conversion time: 1 µs at full speed (ADC clocked at 16 MHz) down to 4 µs at low
speed (ADC clocked at 4 MHz), independent of the APB clock

● Automatic power-up/power-down to reduce the power consumption

● ADC supply requirements:

– 2.4 V to 3.6 V at full speed or with reference zooming (VREF+ < VDDA)

– down to 1.8 V at slower speeds

● ADC input range: VREF– ≤ VIN ≤ VREF+

● Automatic programmable hardware delay insertion between conversions

● DMA request generation during regular channel conversion

Figure 26 shows the block diagram of the ADC.

Note: VREF–, if available (depending on package), must be tied to VSSA.

9.3 ADC functional description
Figure 26 shows the ADC block diagram, Table 34 gives the pin description.

Analog-to-digital converter (ADC) RM0038

174/598 Doc ID 15965 Rev 4

Figure 26. ADC block diagram

Note: Due to internal connections (ADC multiplexer switches), ADC channels 4, 5, 22, 23, 24 and
25 are considered as fast channels (up to 1 Msample/s) and the other channels are slower
(they do not exceed 800 ksamples/s). For more details, refer to Figure 20: Routing interface
(RI) block diagram on page 127.

HSI RC

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 175/598

9.3.1 ADC power on-off control

The ADC is powered on by setting the ADON bit in the ADC_CR2 register. When the ADON
bit is set for the first time, it wakes up the ADC from the Power-down mode.

Conversion starts when either the SWSTART or the JSWSTART bit is set, or in response to
an external trigger. These software or hardware triggers must be enabled only when the
ADC is ready to convert (ADONS=1).

Resetting the ADON bit stops the conversions and put the ADC in power down mode. In this
mode the ADC consumes almost no power. ADONS is cleared after ADON has been
synchronized to the ADCCLK clock domain.

Note: Due to the latency introduced by the synchronization between the two clock domains, ADON
must be set only when ADONS=0 and it must be cleared only when the ADC is ready to
convert (ADONS=1).

Power down configurations (PDI and PDD)

In order to reduce the consumption when the ADC is ready to convert (ADONS=1), the ADC
can be automatically powered off when it is not converting, until the next conversion starts
depending on the PDI and PDD bits in the ADC_CR1 register. Refer to Section 9.10: Power
saving on page 188 for more details.

Table 34. ADC pins

Name Signal type Remarks

VREF+
Input, analog reference
positive

The higher/positive reference voltage for the ADC is:

2.4V ≤ VREF+ = VDDA for full speed

(ADCCLK = 16 MHz, 1 Msps)

1.8V ≤ VREF+ = VDDA for medium speed

(ADCCLK = 8 MHz, 500 Ksps)

2.4V ≤ VREF+ ≠ VDDA for medium speed

(ADCCLK = 8 MHz, 500 Ksps)

1.8V ≤ VREF+ < VDDA for low speed (ADCCLK = 4 MHz, 250

Ksps)

When product voltage range 3 is selected (VCORE = 1.2 V), the

ADC is low speed (ADCCLK = 4 MHz, 250 Ksps)

VDDA Input, analog supply
Analog power supply equal to VDD and
2.4 V ≤ VDDA ≤ VDD (3.6 V) for full speed
1.8 V ≤ VDDA ≤ VDD (3.6 V) for medium and low speed

VREF–
Input, analog reference
negative

The lower/negative reference voltage for the ADC,
VREF– = VSSA

VSSA
Input, analog supply
ground

Ground for analog power supply equal to VSS

ADC_IN[15:0]
and
ADC_IN[25:18]

Analog input signals 24 analog input channels

Analog-to-digital converter (ADC) RM0038

176/598 Doc ID 15965 Rev 4

Using the PDI bit, the user can determine whether the ADC is powered up or down when it
is not converting (waiting for a hardware or software trigger event).

Using the PDD bit, the user can determine whether the ADC is powered up or down
between 2 conversions (or sequences of conversions) when a delay is inserted (DELS bits).

When PDI=1, ADONS is the image of ADON (same value) as viewed from the ADCCLK
clock.

Conversion starts after the ADC power-up time (tSTAB) when either the SWSTART or the
JSWSTART bit is set, or in response to an external trigger. These software or hardware
triggers must be enabled only when the ADC is ready to convert (ADONS=1).

Resetting the ADON bit stops the conversions and places the ADC in a mode where it is no
longer supplied.

Note: Due to the latency introduced by the synchronization between the two clock domains, ADON
must be set only when ADONS=0 and it must be cleared only when ADONS=1.

9.3.2 ADC clock

To avoid unnecessary consumption while not converting, the ADC digital interface has been
designed to operate in a completely independent manner, at its maximum speed using an
internal 16 MHz clock source (HSI), whatever the CPU operating frequency (which can
range from a few sub-kHz up to 32 MHz).

Note: When entering Stop mode, the ADC analog and digital interfaces remain inactive as the HSI
and PCLK2 are disabled. Since the HSI is still deactived after resuming from Stop mode, the
user must enable the HSI as the ADC analog interface clock source and continue using
ADC conversions.

The ADCCLK clock is provided by the clock controller. It is generated from the HSI oscillator
after a clock divider:

● by 1 for full speed (fADCCLK = 16 MHz)

● by 2 for medium speed and by 4 for low speed (fADCCLK = 4 MHz)

Depending on the APB clock (PCLK) frequency, the ADCCLK clock frequency can be higher
or lower than PCLK. In particular, when the APB becomes too low, it can become difficult to
get the results of conversions at full speed without losing any data (because the data flow is
higher than what the CPU or the DMA can handle). This problem can be solved by inserting
a delay between 2 conversions or between 2 sequences of conversions in order to give the
system enough time to read and save the converted data before the next data arrive. Refer
to Section 9.9: Hardware freeze and delay insertion modes for slow conversions on
page 185 for more details.

9.3.3 Channel selection

There are 26 multiplexed channels. It is possible to organize the conversions in two groups:
regular and injected. A group consists of a sequence of conversions that can be done on
any channel and in any order. For instance, it is possible to implement the conversion
sequence in the following order: Ch3, Ch8, Ch2, Ch2, Ch0, Ch2, Ch2, Ch15.

● A regular group is composed of up to 27 conversions. The regular channels and their
order in the conversion sequence must be selected in the ADC_SQRx registers. The
total number of conversions, which can be up to 27 in the regular group must be written
in the L[4:0] bits in the ADC_SQR1 register.

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 177/598

● An injected group is composed of up to 4 conversions. The injected channels and
their order in the conversion sequence must be selected in the ADC_JSQR register.
The total number of conversions, which can be up to 4 in the injected group must be
written in the L[1:0] bits in the ADC_JSQR register.

Note: If the ADC_SQRx register is modified during a regular conversion or the ADC_JSQR
register is modified during an injected conversion, the current conversion is reset and the
ADC waits for a new start pulse. If the conversion that is reset is an injected conversion that
had interrupted a regular conversion, then the regular conversion is resumed.

Temperature sensor, VREFINT internal channels

The temperature sensor is connected to channel ADCx_IN16 and the internal reference
voltage VREFINT is connected to ADCx_IN17. These two internal channels can be selected
and converted as injected or regular channels.

9.3.4 Single conversion mode

In Single conversion mode the ADC does one conversion. This mode is started with the
CONT bit in the ADC_CR2 at 0 by either:

● setting the SWSTART bit in the ADC_CR2 register (for a regular channel only)

● setting the JSWSTART bit (for an injected channel)

● external trigger (for a regular or injected channel)

Once the conversion of the selected channel is complete:

● If a regular channel was converted (converted channel is selected by the SQ1[4:0] bits
in the SQR5 register):

– The converted data are stored into the 16-bit ADC_DR register

– The EOC (end of conversion) flag is set

– An interrupt is generated if the EOCIE bit is set

● If an injected channel was converted (converted channel is selected by the JSQ1[4:0]
bits in the JSQR register):

– The converted data are stored into the 16-bit ADC_JDR1 register

– The JEOC (end of conversion injected) flag is set

– An interrupt is generated if the JEOCIE bit is set

Then the ADC stops.

9.3.5 Continuous conversion mode

In continuous conversion mode, the ADC starts a new conversion as soon as it finishes one.
This mode is started with the CONT bit at 1 either by external trigger or by setting the
SWSTART bit in the ADC_CR2 register (for regular channels only).

After each conversion:

● If a regular channel was converted (converted channel is selected by the SQ1[4:0] bits
in the SQR5 register):

– The last converted data are stored into the 16-bit ADC_DR register

– The EOC (end of conversion) flag is set

– An interrupt is generated if the EOCIE bit is set

Analog-to-digital converter (ADC) RM0038

178/598 Doc ID 15965 Rev 4

Note: Injected channels cannot be converted continuously. The only exception is when an injected
channel is configured to be converted automatically after regular channels in continuous
mode (using JAUTO bit), refer to Auto-injected conversion section).

9.3.6 Timing diagram

As shown in Figure 27, the ADC needs a stabilization time (tSTAB) before it can actually
convert. The ADONS bit is set when a conversion can be triggered. A conversion is
launched when the SWSTART bit is set (or when an external trigger is detected). After the
conversion time (programmable sampling time + 12 ADCCLK clock cycles for 12-bit data),
the EOC flag is set and the ADC data register contains the result of the conversion. Note
that some delays are needed to resynchronize the different signals from one clock domain
to the other.

Figure 27. Timing diagram (normal mode, PDI=0)

9.3.7 Analog watchdog

The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is
below a lower threshold or above a higher threshold. These thresholds are programmed in
the 12 least significant bits of the ADC_HTR and ADC_LTR 16-bit registers. An interrupt can
be enabled by using the AWDIE bit in the ADC_CR1 register.

EOC

ADC conversion

Conversion time

tSTAB

ADC

ADON

(total conversion time)

ADCCLK

PCLK

ADON
_Acknowledge

ADONS

SWSTART

SWSTART
_Acknowledge

DR New dataPrevious data

ai17158b

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 179/598

The threshold value is independent of the alignment selected by the ALIGN bit in the
ADC_CR2 register. The analog voltage is compared to the lower and higher thresholds
before alignment.

Table 35 shows how the ADC_CR1 register should be configured to enable the analog
watchdog on one or more channels.

Figure 28. Analog watchdog’s guarded area

9.3.8 Scan mode

This mode is used to scan a group of analog channels.

The Scan mode is selected by setting the SCAN bit in the ADC_CR1 register. Once this bit
has been set, the ADC scans all the channels selected in the ADC_SQRx registers (for
regular channels) or in the ADC_JSQR register (for injected channels). A single conversion
is performed for each channel of the group. After each end of conversion, the next channel
in the group is converted automatically. If the CONT bit in the ADC_CR2 register is set,
regular channel conversion does not stop at the last selected channel in the group but
continues again from the first selected channel.

If the DMA bit is set, the direct memory access (DMA) controller is used to transfer the data
converted from the regular group of channels (stored in the ADC_DR register) to memory
after each regular channel conversion.

The EOC bit is set in the ADC_SR register if:

● At the end of each regular group sequence the EOCS bit is cleared to 0

● At the end of each regular channel conversion the EOCS bit is set to 1

The data converted from an injected channel is always stored into the ADC_JDRx registers.

Table 35. Analog watchdog channel selection

Channels guarded by the analog
watchdog

ADC_CR1 register control bits (x = don’t care)

AWDSGL bit AWDEN bit JAWDEN bit

None x 0 0

All injected channels 0 0 1

All regular channels 0 1 0

All regular and injected channels 0 1 1

Single(1) injected channel

1. Selected by the AWDCH[4:0] bits

1 0 1

Single(1) regular channel 1 1 0

Single (1) regular or injected channel 1 1 1

Analog-to-digital converter (ADC) RM0038

180/598 Doc ID 15965 Rev 4

9.3.9 Injected channel management

Triggered injected conversion

To use triggered injection, the JAUTO bit must be cleared in the ADC_CR1 register.

1. Start the conversion of a group of injected channels either by external trigger or by
setting the JSWSTART bit in the ADC_CR2 register.

2. If an external injected trigger occurs or if the JSWSTART bit is set during the
conversion of a regular group of channels, the current conversion is reset and the
injected channel sequence switches to Scan-once mode.

3. Then, the regular conversion of the regular group of channels is resumed from the last
interrupted regular conversion.
If a regular event occurs during an injected conversion, the injected conversion is not
interrupted but the regular sequence is executed at the end of the injected sequence.
Figure 29 shows the corresponding timing diagram.

Note: When using triggered injection, one must ensure that the interval between trigger events is
longer than the injection sequence. For instance, if the sequence length is 30 ADC clock
cycles (that is two conversions with a sampling time of 3 clock periods), the minimum
interval between triggers must be 31 ADC clock cycles.

Figure 29. Injected conversion latency

1. The maximum latency value can be found in the electrical characteristics of the STM32L15xxx datasheet.

Auto-injected conversion

If the JAUTO bit is set, then the channels in the injected group are automatically converted
after the regular group of channels. This can be used to convert a sequence of up to 31
conversions programmed in the ADC_SQRx and ADC_JSQR registers.

In this mode, external trigger on injected channels must be disabled.

If the CONT bit is also set in addition to the JAUTO bit, regular channels followed by injected
channels are continuously converted.

Note: It is not possible to use both the auto-injected and discontinuous modes simultaneously.

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 181/598

9.3.10 Discontinuous mode

Regular group

This mode is enabled by setting the DISCEN bit in the ADC_CR1 register. It can be used to
convert a short sequence of n conversions (n ≤ 8) that is part of the sequence of
conversions selected in the ADC_SQRx registers. The value of n is specified by writing to
the DISCNUM[2:0] bits in the ADC_CR1 register.

When an external trigger occurs, it starts the next n conversions selected in the ADC_SQRx
registers until all the conversions in the sequence are done. The total sequence length is
defined by the L[4:0] bits in the ADC_SQR1 register.

Example:

n = 3, regular channels to be converted = 0, 1, 2, 3, 6, 7, 9, 10
1st trigger: sequence converted 0, 1, 2
2nd trigger: sequence converted 3, 6, 7
3rd trigger: sequence converted 9, 10 and an EOC event generated
4th trigger: sequence converted 0, 1, 2

Note: When a regular group is converted in discontinuous mode, no rollover occurs.

When all subgroups are converted, the next trigger starts the conversion of the first
subgroup. In the example above, the 4th trigger reconverts the channels 0, 1 and 2 in the 1st
subgroup.

Injected group

This mode is enabled by setting the JDISCEN bit in the ADC_CR1 register. It can be used to
convert a short sequence of n conversions (n ≤ 3) part of the sequence of conversions
selected in the ADC_JSQR registers. The value of n is specified by writing to the
DISCNUM[2:0] bits in the ADC_CR1 register.

When an external trigger occurs, it starts the next channel conversions selected in the
ADC_JSQR registers until all the conversions in the sequence are done. The total sequence
length is defined by the JL[1:0] bits in the ADC_JSQR register.

Example:

n = 1, injected channels to be converted = 1, 2, 3
1st trigger: channel 1 converted
2nd trigger: channel 2 converted
3rd trigger: channel 3 converted and EOC and JEOC events generated
4th trigger: channel 1

Note: 1 When all injected channels are converted, the next trigger starts the conversion of the first
injected channel. In the example above, the 4th trigger reconverts the 1st injected channel
1.

2 It is not possible to use both the auto-injected and discontinuous modes simultaneously.

3 Discontinuous mode must not be set for regular and injected groups at the same time.

9.4 Data alignment
The ALIGN bit in the ADC_CR2 register selects the alignment of the data stored after
conversion. Data can be right- or left-aligned as shown in Figure 30 and Figure 31.

Analog-to-digital converter (ADC) RM0038

182/598 Doc ID 15965 Rev 4

The converted data value from the injected group of channels is decreased by the user-
defined offset written in the ADC_JOFRx registers so the result can be a negative value.
The SEXT bit represents the extended sign value.

For channels in a regular group, no offset is subtracted so only twelve bits are significant.

Figure 30. Right alignment of 12-bit data

Figure 31. Left alignment of 12-bit data

Special case: when left-aligned, the data are aligned on a half-word basis except when the
resolution is set to 6-bit. in that case, the data are aligned on a byte basis as shown in
Figure 32.

Figure 32. Left alignment of 6-bit data

9.5 Channel-wise programmable sampling time
The ADC samples the input voltage for a number of ADCCLK cycles that can be modified
using the SMP[2:0] bits in the ADC_SMPRx registers (x =1 to 3). Each channel can be
sampled with a different sampling time.

The total conversion time is calculated as follows:

Tconv = Sampling time + channel conversion time

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 183/598

Example:

With ADCCLK = 16 MHz and sampling time = 4 cycles:

Tconv = 4 + 12 = 16 cycles = 1 µs (for 12-bit conversion)

Tconv = 4 + 7 = 11 cycles = 685 ns (for 6-bit conversion)

9.6 Conversion on external trigger
Conversion can be triggered by an external event (e.g. timer capture, EXTI line). If the
EXTEN[1:0] control bits (for a regular conversion) or JEXTEN[1:0] bits (for an injected
conversion) are different from “0b00”, then external events are able to trigger a conversion
with the selected edge. Table 36 provides the correspondence between the EXTEN[1:0] and
JEXTEN[1:0] values and the trigger edge.

Note: The edge detection of the external trigger can be changed on the fly.

The EXTSEL[3:0] and JEXTSEL[3:0] control bits are used to select which out of 16 possible
events can trigger conversion for the regular and injected groups.

Table 37 gives the possible external trigger for regular conversion.

Table 36. Configuring the trigger edge detection

Source EXTEN[1:0] / JEXTEN[1:0]

Trigger detection disabled 00

Detection on the rising edge 01

Detection on the falling edge 10

Detection on both the rising and falling edges 11

Table 37. External trigger for regular channels

Source Type EXTSEL[3:0]

TIM9_CC2 event

Internal signal from on-chip
timers

0000

TIM9_TRGO event 0001

TIM2_CC3 event 0010

TIM2_CC2 event 0011

TIM3_TRGO event 0100

TIM4_CC4 event 0101

TIM2_TRGO event 0110

TIM3_CC1 event 0111

TIM3_CC3 event 1000

TIM4_TRGO event 1001

TIM6_TRGO event 1010

Analog-to-digital converter (ADC) RM0038

184/598 Doc ID 15965 Rev 4

Table 38 gives the possible external trigger for injected conversion.

A regular group conversion can be interrupted by an injected trigger.

Note: 1 The trigger selection can be changed on the fly. When this is done, however, trigger
detection is disabled for a period of 2 PCLK cycles. This is to avoid spurious detections
during the transition.

2 The interval between trigger events must be longer than:

● the sequence for regular conversions

● the sequence + 1 ADCCLK cycle for injected conversions

For instance, if the sequence length is 32 ADC clock cycles (that is two conversions with a 4
clock-period sampling time), the minimum interval between regular triggers must be greater

Reserved

NA

1011

Reserved 1100

Reserved 1101

Reserved 1110

EXTI line11 External pin 1111

Table 38. External trigger for injected channels

Source Type EXTSEL[3:0]

TIM9_CC1 event

Internal signal from on-chip timers

 0000

TIM9_TRGO event 0001

TIM2_TRGO event 0010

TIM2_CC1 event 0011

TIM3_CC4 event 0100

TIM4_TRGO event 0101

TIM4_CC1 event 0110

TIM4_CC2 event 0111

TIM4_CC3 event 1000

TIM10_CC1 event 1001

TIM7_TRGO event 1010

Reserved

NA

 1011

Reserved 1100

Reserved 1101

Reserved 1110

EXTI line15 External pin 1111

Table 37. External trigger for regular channels (continued)

Source Type EXTSEL[3:0]

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 185/598

than 32 ADC clock cycles and the interval between injected triggers must be greater than 33
ADC clock cycles.

9.7 Aborting a conversion

9.7.1 Injected channels

An injected conversion or a sequence of conversions can be stopped by writing to the JSQR
register (the JL[1:0] bitfield has to be written with its current value). Then any ongoing
injected conversion aborts and any pending trigger is reset. A new injected conversion can
start when a new hardware or software trigger occurs.

After aborting an injected conversion, the system requires a few clock cycles before a new
injected conversion can start (3 to 5 ADC clock cycles + 2 to 5 APB clock cycles). To meet
this requirement, JSWSTART should not be set before JCNR=0.

9.7.2 Regular channels

A regular conversion or a sequence of conversions can be stopped by writing to any of the
SQR1 to SQR5 registers (if SQR1 is written, the L[4:0] bitfield has to be written with its
current value). The ADC then behaves in the same way as in the case of injected
conversions (see Section 9.7.2: Regular channels).

If several of the SQRi registers have to be written in order to configure a new sequence, no
conversion should be launched between the different write accesses. In this case, the
following sequence must be applied:

1. Disable the external triggers by writing the EXTEN bits to 00 (when external triggers
are used)

2. Change the sequence configuration (by writing to the SQRi registers)

3. Wait for RCNR=0 in the ADC_SR register

4. Enable the external trigger or set the SWSTART bit

9.8 Conversion resolution
It is possible to perform faster conversion by reducing the ADC resolution. The RES[1:0] bits
are used to select the number of bits available in the data register. The minimal conversion
time for each resolution, when the sampling time is 4 cycles, is then as follows:

● for 12-bit resolution : 12 + 4 = 16 cycles

● for 10-bit resolution : 11 + 4 = 15 cycles

● for 8-bit resolution : 9 + 4 = 13 cycles

● for 6-bit resolution : 7 + 4 = 11 cycles

9.9 Hardware freeze and delay insertion modes for slow
conversions
When the APB clock is not fast enough to manage the data rate, a delay can be introduced
between conversions to reduce this data rate. The delay is inserted after each regular

Analog-to-digital converter (ADC) RM0038

186/598 Doc ID 15965 Rev 4

conversion and after each sequence of injected conversions as, during conversion, a trigger
event (for the same group of conversions) occurring during this delay is ignored.

No delay is inserted between conversions of different groups (a regular conversion followed
by an injected conversion or conversely):

● If an injected trigger occurs during the delay of a regular conversion, the injected
conversion starts immediately.

● If a regular conversion is to be resumed after being interrupted by an injected
sequence, it starts as soon as the delay of the previous regular conversion is finished.

The behavior is slightly different in auto-injected mode where a new regular conversion can
start only when the delay of the previous injected conversion has ended. This is to ensure
that the software can read all the data of a given sequence before starting a new sequence.
In this mode, a regular trigger is ignored if it occurs during the delay that follows a regular
conversion. It is however considered pending if it occurs after this delay, even if it occurs
during an injected sequence or the delay that follows it. The conversion then starts at the
end of the delay of the injected sequence.

The length of the delay is configured using the DELS[2:0] bits in the ADC_CR2 register. Two
cases should be considered:

● ADC freeze mode:
When DELS[2:0]=001, a new conversion can start only if all the previous data of the
same group have been treated:

– for a regular conversion: once the ADC_DR register has been read or if the EOC
bit has been cleared

– for an injected conversion: when the JEOC bit has been cleared

● ADC delay insertion mode:
When DELS[2:0]>001, a new conversion can start only after a given number of APB
clock cycles after the end of the previous conversion in the same group.

Figure 33. ADC freeze mode

9.9.1 Inserting a delay after each regular conversion

When enabled, a delay is inserted at the end of each regular conversion before a new
regular conversion can start. It gives time to read the converted data in the ADC_DR
register before a new regular conversion is completed. The length of the delay is configured
by the DELS[2:0] bits. Figure 34 shows an example of continuous regular conversions
where a 10 PCLK cycle delay is inserted after each conversion.

EOC flag

ADC state

Hardware/
software trigger

ai18211

Freeze Freeze Freeze

i Regular conversion #i

1 2 3

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 187/598

Note: When ADC_CR2_EOCS = 1, the delay is inserted after each sequence of regular group
conversions.

Figure 34. Continuous regular conversions with a delay

1. tconv1: including sampling and conversion times (for instance 16 ADC clock cycles with the minimum
sampling time)

2. tdelay: delay from the end of a conversion to the start of the next conversion (number of PCLK periods
configured with the DELS[2:0] bits) + delay to synchronize the end of conversion (0 to 1 PCLK clock cycles)
+ delay to synchronize the end of delay (2 or 3 ADC clock cycles).

9.9.2 Inserting a delay after each sequence of auto-injected conversions

When enabled, a delay is inserted at the end of each sequence of injected conversions. Up
to 5 conversion results can be stored into the ADC_DR and the ADC_JDRx registers. The
length of the delay is configured by the DELS[2:0] bits. Figure 35 shows an example of
continuous conversions (the CONT bit is set) where a delay is inserted after each sequence
of injected conversions. Here the JAUTO bit is set and the sequence ends after the last
injected conversion (the sequence is made of 1 regular conversion + 2 injected
conversions).

SR.EOC

ADC conv. 1 conv. 3conv. 2 delaydelay

DR data 2data 1

Start of ADC
conversion

tconv1 tdelay

PCLK

ADCCLK

ai17159c

Analog-to-digital converter (ADC) RM0038

188/598 Doc ID 15965 Rev 4

Figure 35. Continuous conversions with a delay between each conversion

1. tconv1/2/3: including sampling and conversion times for channels 1, 2 and 3.

2. tdelay: delay from the end of the previous sequence to the start of the new sequence (number of PCLK periods
configured with the DELS bits) + delay to synchronize the end of conversion (0 to 1 PCLK clock cycles) + delay to
synchronize the end of delay (2 or 3 ADC clock cycles).

9.10 Power saving
ADC power-on and power-off can be managed by hardware to cut the consumption when
the ADC is not converting. The ADC can be powered down:

● during the delay described above (when the PDD bit is set). Then the ADC is powered
up again at the end of the delay
and/or

● when the ADC is waiting for a trigger event (when the PDI bit is set). In this case the
ADC is powered up at the next trigger event.

The ADC needs a certain time to start up before a conversion can actually be launched.
This startup time must be taken into account before selecting the automatic power control
modes or when configuring the delay. For this reason, it is also more efficient (from the

SR.EOC

ADC ch. 1 (reg) ch. 2 (inj) delay

DR data channel 1

ch. 3 (inj)

SR.JEOC

ch. 1

JDR1 data channel 2

JDR2 data channel 3

SOC

tconv1/2/3 tdelay

PCLK

ADCCLK

Data stored but not yet available for reading

ai17160b

b

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 189/598

power point of view and when possible) when scanning several channels to launch a
sequence of several conversions and stop the consumption after the sequence, than when
launching each conversion one by one with a delay after each conversion.

For a given sequence of conversions, the ADCCLK clock must be enabled before launching
the first conversion, and be present until the EOC bit (or the JEOC bit in case of injected
channels) is set.

Figure 36, Figure 37 and Figure 38 show examples of power management in different
configurations. ADON=1 in all these examples.

Figure 36. Automatic power-down control: example 1

Figure 37. Automatic power-down control: example 2

ai17161b

1 2 1delay delay

OFF OFF OFFON

OFF OFF OFF

OFF

ON

ON ON

ON ON

ON ON ON

Hardware/software
trigger

ADC state

ADC power (PDI =1, PDD=0)

ADC power (PDI =0, PDD=1)

ADC power (PDI =1, PDD=1)

ADC power (PDI =0, PDD=0)

Startup time

i Regular conversion #i

delay

OFFOFF

OFF

ADC state 1

Configuration 2: PDI=1, PDD=1, delay after each conversion
Sequence: 2 regular conversions, CONT=0

startup time

1 conversion #1delay

2 1

(hardware or software trigger)

ADC power OFF ON

ai17162

2 conversion #2

Analog-to-digital converter (ADC) RM0038

190/598 Doc ID 15965 Rev 4

Figure 38. Automatic power-down control: example 3

9.11 Data management and overrun detection

9.11.1 Using the DMA

Since converted regular channel values are stored into a unique data register, it is useful to
use DMA for conversion of more than one regular channel. This avoids the loss of the data
already stored in the ADC_DR register.

When the DMA mode is enabled (DMA bit set to 1 in the ADC_CR2 register), after each
conversion of a regular channel, a DMA request is generated. This allows the transfer of the
converted data from the ADC_DR register to the destination location selected by the
software.

Despite this, if data are lost (overrun), the OVR bit in the ADC_SR register is set and an
interrupt is generated (if the OVRIE enable bit is set). DMA transfers are then disabled and
DMA requests are no longer accepted. In this case, if a DMA request is made, the regular
conversion in progress is aborted and further regular triggers are ignored. It is then
necessary to clear the OVR flag and the DMAEN bit in the used DMA stream, and to re-
initialize both the DMA and the ADC to have the wanted converted channel data transferred
to the right memory location. Only then can the conversion be resumed and the data
transfer, enabled again. Injected channel conversions are not impacted by overrun errors.

When OVR = 1 in DMA mode, the DMA requests are blocked after the last valid data have
been transferred, which means that all the data transferred to the RAM can be considered
as valid.

At the end of the last DMA transfer (number of transfers configured in the DMA controller’s
DMA_SxRTR register):

● No new DMA request is issued to the DMA controller if the DDS bit is cleared to 0 in the
ADC_CR2 register (this avoids generating an overrun error). However the DMA bit is
not cleared by hardware. It must be written to 0, then to 1 to start a new transfer.

● Requests can continue to be generated if the DDS bit is set to 1. This allows
configuring the DMA in double-buffer circular mode.

9.11.2 Managing a sequence of conversions without using the DMA

If the conversions are slow enough, the conversion sequence can be handled by the
software. In this case the EOCS bit must be set in the ADC_CR2 register for the EOC status

ADC state 1 2 3 4 5 1 2 3 4 5

Configuration 3: PDI=1, PDD=1, delay after each sequence
Sequence: 1 regular conversion + 4 injected conversions, CONT=1 then 0

startup time

conversion number

delay

CONT

1 2 3 4 5

ADC power OFF ON

(hardware or software trigger) (hardware or software trigger)

ai17163b

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 191/598

bit to be set at the end of each conversion, and not only at the end of the sequence. When
EOCS = 1, overrun detection is automatically enabled. Thus, each time a conversion is
complete, EOC is set and the ADC_DR register can be read. The overrun management is
the same as when the DMA is used.

9.11.3 Conversions without reading all the data

It may be useful to let the ADC convert one or more channels without reading the data each
time (if there is an analog watchdog for instance). For that, the DMA must be disabled
(DMA = 0) and the EOC bit must be set at the end of a sequence only (EOCS = 0). In this
configuration no overrun error is reported if a conversion finishes when the result of the
previous conversion has not been read.

9.11.4 Overrun detection

Overrun detection is always enabled. It takes place before the data are synchronized to the
APB clock.

Note: Only regular channel conversions generate overrun errors.

At the end of a conversion, the result is stored into an intermediate buffer (in the ADC clock
domain) until it is transferred to the data register (ADC_DR, in the APB clock domain). If new
data arrive before the previous data are transferred, the new data are lost and an overrun
error is detected. The OVR bit is set in the ADC_SR register and an interrupt is generated if
the OVRIE bit is set.

This may occur in two cases:

● either the delay is not properly set with respect to the APB clock frequency (the delay is
too short to synchronize the data), or

● the previous data could not be synchronized to the APB clock because the ADC_DR
register is not empty (when DMA=1 or EOCS=1). Indeed, in these modes, the contents
of the ADC_DR register cannot be overwritten and so the register always contains the
last valid data. ADC_DR is emptied by reading it or by clearing the EOC bit in the
ADC_SR register.

Note: 1 An overrun may happen to be detected just after clearing the DMA (or EOCS) when the last
data transferred by the DMA are read very late, which causes the next data to be lost.

2 After clearing the OVR bit, the software should not launch a new regular conversion until
RCNR=0 in the ADC_SR register.

9.12 Temperature sensor
The temperature sensor can be used to measure the internal temperature of the device. It is
internally connected to the ADC TS (ADC channel 16: temperature sensor) input channel
that is used to convert the sensor output voltage into a digital value.

Note: When it is not used, this sensor can be put in power-down mode.

Note: The TSVREFE bit must be set to enable the conversion of both internal channels: ADC
channel 16 (temperature sensor) and ADC channel 17 (VREFINT). If the temperature
sensor conversion is required, this connection must be enabled.

The internal temperature sensor can also be used to detect temperature variations.

Analog-to-digital converter (ADC) RM0038

192/598 Doc ID 15965 Rev 4

The temperature sensor is factory measured at high temperature and the result of the ADC
conversion is stored in a specific data address : the TS_Factory_CONV_V90 data (result of
the factory TS voltage conversion at 90°C; refer to the device datasheet for more details).

To reduce the temperature sensor error, the user can measure it at ambient temperature
(25°C) to redefine more accurately the average slope (avg_slope) and the offset.

Figure 39. Temperature sensor and VREFINT channel block diagram

9.12.1 How to read the temperature

To read the temperature from the sensor, use the following procedure:

1. Select the ADC TS (temperature sensor) input channel.

2. Select a sample time of 10 µs.

3. Set the TSVREFE bit in the ADC_CCR register to wake up the temperature sensor
from power-down mode.

4. Start the ADC conversion.

5. Read the resulting VSENSE data in the ADC data register.

6. Calculate the temperature using the following formulae:

Avg_Slope = average slope of the "Temperature vs. VSENSE" curves (given in mV/°C).

Refer to the Electrical characteristics section for the Avg_Slope value.

Note: When the sensor wakes up from power-down mode, a stabilization time is required before a
correct voltage can be output.

After power-on, the ADC also needs a stabilization time. To minimize this delay, the ADON
and TSON bits should be set at the same time.

T °K[]
VSENSE

AvgSlope
----------------------------=

T °C[]
VSENSE

AvgSlope
---------------------------- 273.15–=

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 193/598

9.13 Internal reference voltage (VREFINT) conversion
The internal reference voltage is internally connected to the VREFINT channel. This analog
input channel is used to convert the internal reference voltage into a digital value.

The TSVREFE bit in the ADC_CCR register must be set to enable the internal reference
voltage (and also the Temperature sensor). This reference voltage must be enabled only if
its conversion is required.

The internal reference voltage is factory measured and the result of the ADC conversion is
stored in a specific data address : the VREFINT_Factory_CONV byte.

9.14 ADC interrupts
An interrupt can be produced on the end of conversion for regular and injected groups, when
the analog watchdog status bit is set and when the overrun status bit is set. Separate
interrupt enable bits are available for flexibility.

Five other flags are present in the ADC_SR register, but there is no interrupt associated with
them:

● JCNR (injected channel not ready)

● RCNR (regular channel not ready)

● ADONS (ADON status)

● JSTRT (Start of conversion for channels of an injected group)

● STRT (Start of conversion for channels of a regular group)

Figure 40. ADC flags and interrupts

ai18212

OVRIE

EOCIE

JEOCIE

AWDIE

Interrupt enable
bits

STRT

RCNR

JSTRT

JCNR

ADONS

OVR

EOC

JEOC

AWD

Flags

OVR : Overrun detection when regular converted data are
lost

JEOC : « Injected channel end of conversion» to indicate
the end of injected GROUP conversion

ADONS : « ADC ON status » to indicate if the ADC is ready
to convert.

STRT: « Regular channel start » to indicate when regular
CHANNEL conversion starts.

JSTRT: « Injected channel start » to indicate hardware when
injected GROUP conversion starts.

EOC : « Regular channel end of conversion » to indicate
(depending on EOCS bit) the end of :

a regular CHANNEL conversion
a sequence of regular GROUP conversions .

AWD : « Analog watchdog » to indicate if the converted
voltage crosses the programmed threeshold values.

RCNR: « Regular channel not ready» to indicate if a new
regular conversion can be launched

Flag for ADC regular channels

Flag for ADC Injected channels

General flag for the ADC

JNCR: « Injected channel not ready » to indicate if a new
injected conversion can be launched.

ADC1 global interrupt
(NVIC)

Analog-to-digital converter (ADC) RM0038

194/598 Doc ID 15965 Rev 4

9.15 ADC registers
Refer to Section 1.1 on page 29 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

9.15.1 ADC status register (ADC_SR)

Address offset: 0x00

Reset value: 0x0000 0000

Table 39. ADC interrupts

Interrupt event Event flag Enable control bit

End of conversion of a regular group EOC EOCIE

End of conversion of an injected group JEOC JEOCIE

Analog watchdog status bit is set AWD AWDIE

Overrun OVR OVRIE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
JCNR RCNR Reserv

ed

ADONS OVR STRT JSTRT JEOC EOC AWD

r r r rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 31:10 Reserved, must be kept cleared.

Bit 9 JCNR: Injected channel not ready

This bit is set and cleared by hardware after the JSQR register is written. It indicates if a new
injected conversion can be launched (by setting the JSWSTART bit).
0: Injected channel ready
1: Injected channel not ready, JSWSTART must not be set

Bit 8 RCNR: Regular channel not ready
This bit is set and cleared by hardware after one of the SQRx register is written or after the
OVR bit is cleared. It indicates if a new regular conversion can be launched (by setting the
SWSTART bit).
0: Regular channel ready
1: Regular channel not ready, SWSTART must not be set

Bit 7 Reserved, must be kept cleared.

Bit 6 ADONS: ADC ON status

This bit is set and cleared by hardware to indicate if the ADC is ready to convert.
0: The ADC is not ready
1: The ADC is ready to convert. External triggers can be enabled, the SWSTART and
JSWSTART bits can be set.

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 195/598

Bit 5 OVR: Overrun
This bit is set by hardware when regular conversion data are lost. It is cleared by software.
Overrun detection is enabled only when DMA = 1 or EOCS = 1.
0: No overrun occurredF
1: Overrun has occurred

Bit 4 STRT: Regular channel start flag

This bit is set by hardware when regular channel conversion starts. It is cleared by software.
0: No regular channel conversion started
1: Regular channel conversion has started

Bit 3 JSTRT: Injected channel start flag
This bit is set by hardware when injected group conversion starts. It is cleared by software.
0: No injected group conversion started
1: Injected group conversion has started

Bit 2 JEOC: Injected channel end of conversion

This bit is set by hardware at the end of the conversion of all injected channels in the group.
It is cleared by software.
0: Conversion is not complete
1: Conversion complete

Bit 1 EOC: Regular channel end of conversion

This bit is set by hardware at the end of the conversion of a regular group of channels. It is
cleared by software or by reading the ADC_DR register.
0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1)
1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1)

Bit 0 AWD: Analog watchdog flag
This bit is set by hardware when the converted voltage crosses the values programmed in
the ADC_LTR and ADC_HTR registers. It is cleared by software.
0: No analog watchdog event occurred
1: Analog watchdog event occurred

Analog-to-digital converter (ADC) RM0038

196/598 Doc ID 15965 Rev 4

9.15.2 ADC control register 1 (ADC_CR1)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
OVRIE RES[1:0] AWDEN JAWDEN

Reserved
PDI PDD

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DISCNUM[2:0] JDISCE
N

DISC
EN JAUTO AWDSG

L SCAN JEOCIE AWDIE EOCIE AWDCH[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:27 Reserved, must be kept cleared.

Bit 26 OVRIE: Overrun interrupt enable
This bit is set and cleared by software to enable/disable the Overrun interrupt.
0: Overrun interrupt disabled
1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set.

Bits 25:24 RES[1:0]: Resolution

These bits are written by software to select the resolution of the conversion.
00: 12-bit (TCONV = 12 ADCCLK cycles)
01: 10-bit (TCONV = 11 ADCCLK cycles)
10: 8-bit (TCONV = 9 ADCCLK cycles)
11: 6-bit (TCONV = 7 ADCCLK cycles)
This bit must be written only when ADON=0.

Bit 23 AWDEN: Analog watchdog enable on regular channels

This bit is set and cleared by software.
0: Analog watchdog disabled on regular channels
1: Analog watchdog enabled on regular channels

Bit 22 JAWDEN: Analog watchdog enable on injected channels
This bit is set and cleared by software.
0: Analog watchdog disabled on injected channels
1: Analog watchdog enabled on injected channels

Bits 21:18 Reserved, must be kept cleared.

Bit 17 PDI: Power down during the idle phase

This bit is written and cleared by software. When ADON=1, it determines whether the ADC is
powered up or down when not converting (waiting for a hardware or software trigger event).
0: The ADC is powered up when waiting for a start event
1: The ADC is powered down when waiting for a start event

Note: This bit must be written only when ADON=0.

Bit 16 PDD: Power down during the delay phase
This bit is written and cleared by software. When ADON=1, it determines whether the ADC is
powered up or down between 2 conversions (or sequences of conversions) when a delay is
inserted (DELS bits).
0: The ADC is powered up during the delay
1: The ADC is powered down during the delay

Note: This bit must be written only when ADON=0.

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 197/598

Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count
These bits are written by software to define the number of channels to be converted in
discontinuous mode, after receiving an external trigger.
000: 1 channel
001: 2 channels
...
111: 8 channels

Note: This bit must be written only when ADON=0.

Bit 12 JDISCEN: Discontinuous mode on injected channels
This bit is set and cleared by software to enable/disable discontinuous mode on the injected
channels of a group.
0: Discontinuous mode on injected channels disabled
1: Discontinuous mode on injected channels enabled

Note: This bit must be written only when ADON=0.

Bit 11 DISCEN: Discontinuous mode on regular channels

This bit is set and cleared by software to enable/disable Discontinuous mode on regular
channels.
0: Discontinuous mode on regular channels disabled
1: Discontinuous mode on regular channels enabled

Note: This bit must be written only when ADON=0.

Bit 10 JAUTO: Automatic injected group conversion
This bit is set and cleared by software to enable/disable automatic injected group conversion
after regular group conversion.
0: Automatic injected group conversion disabled
1: Automatic injected group conversion enabled

Note: This bit must be written only when ADON=0.

Bit 9 AWDSGL: Enable the watchdog on a single channel in scan mode

This bit is set and cleared by software to enable/disable the analog watchdog on the channel
identified by the AWDCH[4:0] bits.
0: Analog watchdog enabled on all channels
1: Analog watchdog enabled on a single channel

Bit 8 SCAN: Scan mode
This bit is set and cleared by software to enable/disable the Scan mode. In the Scan mode,
the inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted.
0: Scan mode disabled
1: Scan mode enabled

Note: This bit must be written only when ADON=0.

Bit 7 JEOCIE: Interrupt enable for injected channels

This bit is set and cleared by software to enable/disable the end of conversion interrupt for
injected channels.
0: JEOC interrupt disabled
1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set.

Analog-to-digital converter (ADC) RM0038

198/598 Doc ID 15965 Rev 4

9.15.3 ADC control register 2 (ADC_CR2)

Address offset: 0x08

Reset value: 0x0000 0000

Bit 6 AWDIE: Analog watchdog interrupt enable
This bit is set and cleared by software to enable/disable the analog watchdog interrupt. In
Scan mode if the watchdog thresholds are crossed, scan is aborted only if this bit is enabled.
0: Analog watchdog interrupt disabled
1: Analog watchdog interrupt enabled

Bit 5 EOCIE: Interrupt enable for EOC

This bit is set and cleared by software to enable/disable the end of conversion interrupt.
0: EOC interrupt disabled
1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits
These bits are set and cleared by software. They select the input channel to be guarded by
the analog watchdog.
00000: ADC analog input Channel0
00001: ADC analog input Channel1
...

11000: ADC analog input Channel24
11001: ADC analog input Channel25
11010: ADC analog input Channel26
Other values reserved.

Note: ADC1 analog inputs Channel16, Channel 17 and Channel26 are internally connected
to the temperature sensor, to VREFINT and to VCOMP, respectively.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserv
ed

SWST
ART EXTEN EXTSEL[3:0] Reserv

ed

JSWST
ART JEXTEN JEXTSEL[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ALIGN EOCS DDS DMA

Res.
DELS

Reserved
CONT ADON

rw rw rw rw rw rw rw rw rw

Bit 31 Reserved, must be kept cleared.

Bit 30 SWSTART: Start conversion of regular channels
This bit is set by software to start conversion and cleared by hardware as soon as the
conversion starts.
0: Reset state
1: Starts conversion of regular channels

Note: This bit must be set only when ADONS=1 and RCNR=0.

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 199/598

Bits 29:28 EXTEN: External trigger enable for regular channels
These bits are set and cleared by software to select the external trigger polarity and enable
the trigger of a regular group.
00: Trigger detection disabled
01: Trigger detection on the rising edge
10: Trigger detection on the falling edge
11: Trigger detection on both the rising and falling edges

Note: The external trigger must be enabled only when ADONS=1.

Bits 27:24 EXTSEL[3:0]: External event select for regular group
These bits select the external event used to trigger the start of conversion of a regular group:
0000: TIM9_CC2 event
0001: TIM9_TRGO event
0010: TIM2_CC3 event
0011: TIM2_CC2 event
0100: TIM3_TRGO event
0101: TIM4_CC4 event
0110: TIM2_TRGO event
0111: TIM3_CC1 event
1000: TIM3_CC3 event
1001: TIM4_TRGO event
1010: TIM6_TRGO event
1011: Reserved
1100: Reserved
1101: Reserved
1110: Reserved
1111: EXTI line11

Bit 23 Reserved, must be kept cleared.

Bit 22 JSWSTART: Start conversion of injected channels

This bit is set by software and cleared by hardware as soon as the conversion starts.
0: Reset state
1: Starts conversion of injected channels

Note: This bit must be set only when ADONS=1 and JCNR=0.

Bits 21:20 JEXTEN: External trigger enable for injected channels

These bits are set and cleared by software to select the external trigger polarity and enable
the trigger of an injected group.
00: Trigger detection disabled
01: Trigger detection on the rising edge
10: Trigger detection on the falling edge
11: Trigger detection on both the rising and falling edges

Note: The external trigger must be enabled only when ADONS=1.

Analog-to-digital converter (ADC) RM0038

200/598 Doc ID 15965 Rev 4

Bits 19:16 JEXTSEL[3:0]: External event select for injected group
These bits select the external event used to trigger the start of conversion of an injected
group.
0000: TIM9_CC1 event
0001: TIM9_TRGO event
0010: TIM2_TRGO event
0011: TIM2_CC1 event
0100: TIM3_CC4 event
0101: TIM4_TRGO event
0110: TIM4_CC1 event
0111: TIM4_CC2 event
1000: TIM4_CC3 event
1001: TIM10_CC1 event
1010: TIM7_TRGO event
1011: Reserved
1100: Reserved
1101: Reserved
1110: Reserved
1111: EXTI line15

Bits 15:12 Reserved, must be kept cleared.

Bit 11 ALIGN: Data alignment
This bit is set and cleared by software. Refer to Figure 30 and Figure 31.
0: Right alignment
1: Left alignment

Bit 10 EOCS: End of conversion selection

This bit is set and cleared by software.
0: The EOC bit is set at the end of each sequence of regular conversions
1: The EOC bit is set at the end of each regular conversion

Bit 9 DDS: DMA disable selection

This bit is set and cleared by software.
0: No new DMA request is issued after the last transfer (as configured in the DMA controller)
1: DMA requests are issued as long as data are converted and DMA=1

Bit 8 DMA: Direct memory access mode
This bit is set and cleared by software. Refer to the DMA controller chapter for more details.
0: DMA mode disabled
1: DMA mode enabled

Bit 7 Reserved, must be kept cleared.

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 201/598

Bit 6:4 DELS: Delay selection
These bits are set and cleared by software. They define the length of the delay which is
applied after a conversion or a sequence of conversions.
000: No delay
001: Until the converted data have been read (DR read or EOC=0 for regular conversions,
JEOC=0 for injected conversions)
010: 7 APB clock cycles after the end of conversion
011: 15 APB clock cycles after the end of conversion
100: 31 APB clock cycles after the end of conversion
101: 63 APB clock cycles after the end of conversion
110: 127 APB clock cycles after the end of conversion
111: 255 APB clock cycles after the end of conversion

Note: 1- This bit must be written only when ADON=0.

2- Due to clock domain crossing, a latency of 2 or 3 ADC clock cycles is added to the
delay before a new conversion can start.

3- The delay required for a given frequency ratio between the APB clock and the ADC
clock depends on the activity on the AHB and APB busses. If the ADC is the only
peripheral that needs to transfer data, then a minimum delay should be configured:
15 APB clock cycles if fAPB < fADCCLK/2 or else 7 APB clock cycles if fAPB < fADCCLK,
otherwise no delay is needed.

Bits 3:2 Reserved, must be kept cleared.

Bit 1 CONT: Continuous conversion

This bit is set and cleared by software. If it is set, conversion takes place continuously until it
is cleared.
0: Single conversion mode
1: Continuous conversion mode

Bit 0 ADON: A/D Converter ON / OFF
This bit is set and cleared by software.
0: Disable ADC conversion and go to power down mode
1: Enable ADC: conversions can start as soon as a start event (hardware or software) is
received. When not converting, the ADC goes to the power up or power down mode
depending on the PDI and PDD bits.

Note: This bit must be set only when ADONS=0 and cleared only when ADONS=1.

Analog-to-digital converter (ADC) RM0038

202/598 Doc ID 15965 Rev 4

9.15.4 ADC sample time register 1 (ADC_SMPR1)

Address offset: 0x0C

Reset value: 0x0000 0000

9.15.5 ADC sample time register 2 (ADC_SMPR2)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SMP25[2:1]

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP25[0] SMP24[2:0] SMP23[2:0] SMP22[2:0] SMP21[2:0] SMP20[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31: 21 Reserved, must be kept cleared.

Bits 20:0 SMPx[2:0]: Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel.
During sampling cycles, the channel selection bits must remain unchanged.
000: 4 cycles
001: 9 cycles
010: 16 cycles
011: 24 cycles
100: 48 cycles
101: 96 cycles
110: 192 cycles
111: 384 cycles

Note: These bits must be written only when ADON=0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SMP19[2:0] SMP18[2:0] SMP17[2:0] SMP16[2:0] SMP15[2:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP15[0] SMP14[2:0] SMP13[2:0] SMP12[2:0] SMP11[2:0] SMP10[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept cleared.

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 203/598

9.15.6 ADC sample time register 3 (ADC_SMPR3)

Address offset: 0x14

Reset value: 0x0000 0000

Bits 29:0 SMPx[2:0]: Channel x sampling time selection
These bits are written by software to select the sampling time individually for each channel.
During sample cycles, the channel selection bits must remain unchanged.
000: 4 cycles
001: 9 cycles
010: 16 cycles
011: 24 cycles
100: 48 cycles
101: 96 cycles
110: 192 cycles
111: 384 cycles

Note: These bits must be written only when ADON=0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SMP9[2:0] SMP8[2:0] SMP7[2:0] SMP6[2:0] SMP5[2:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP5[0] SMP4[2:0] SMP3[2:0] SMP2[2:0] SMP1[2:0] SMP0[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept cleared.

Bits 29:0 SMPx[2:0]: Channel x Sample time selection

These bits are written by software to select the sampling time individually for each channel.
During the sampling cycles, the channel selection bits must remain unchanged.
000: 4 cycles
001: 9 cycles
010: 16 cycles
011: 24 cycles
100: 48 cycles
101: 96 cycles
110: 192 cycles
111: 384 cycles

Note: These bits must be written only when ADON=0.

Analog-to-digital converter (ADC) RM0038

204/598 Doc ID 15965 Rev 4

9.15.7 ADC injected channel data offset register x (ADC_JOFRx)(x=1..4)

Address offset: 0x18-0x24

Reset value: 0x0000 0000

9.15.8 ADC watchdog higher threshold register (ADC_HTR)

Address offset: 0x28

Reset value: 0x0000 0FFF

9.15.9 ADC watchdog lower threshold register (ADC_LTR)

Address offset: 0x2C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
JOFFSETx[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept cleared.

Bits 11:0 JOFFSETx[11:0]: Data offset for injected channel x

These bits are written by software to define the offset to be subtracted from the raw
converted data when converting injected channels. The conversion result can be read from
in the ADC_JDRx registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
HT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept cleared.

Bits 11:0 HT[11:0]: Analog watchdog higher threshold

These bits are written by software to define the higher threshold for the analog watchdog.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
LT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept cleared.

Bits 11:0 LT[11:0]: Analog watchdog lower threshold

These bits are written by software to define the lower threshold for the analog watchdog.

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 205/598

9.15.10 ADC regular sequence register 1 (ADC_SQR1)

Address offset: 0x30

Reset value: 0x0000 0000

9.15.11 ADC regular sequence register 2 (ADC_SQR2)

Address offset: 0x34

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
L[4:0]

Reserved
rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserv-
ed

SQ27[4:0] SQ26[4:0] SQ25[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, must be kept cleared.

Bits 24:20 L[4:0]: Regular channel sequence length

These bits are written by software to define the total number of conversions in the regular
channel conversion sequence.
00000: 1 conversion
00001: 2 conversions
...
11010: 27 conversions

Bits 19:15 Reserved, must be kept cleared.

Bits 14:10 SQ27[4:0]: 27th conversion in regular sequence

These bits are written by software with the channel number (0..26) assigned as the 27th in
the conversion sequence.

Bits 9:5 SQ26[4:0]: 26th conversion in regular sequence

Bits 4:0 SQ25[4:0]: 25th conversion in regular sequence

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ24[4:0] SQ23[4:0] SQ22[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ22[0] SQ21[4:0] SQ20[4:0] SQ19[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept cleared.

Bits 29:26 SQ24[4:0]: 24th conversion in regular sequence
These bits are written by software with the channel number (0..26) assigned as the 24th in the
sequence to be converted.

Bits 24:20 SQ23[4:0]: 23rd conversion in regular sequence

Bits 19:15 SQ22[4:0]: 22nd conversion in regular sequence

Analog-to-digital converter (ADC) RM0038

206/598 Doc ID 15965 Rev 4

9.15.12 ADC regular sequence register 3 (ADC_SQR3)

Address offset: 0x38

Reset value: 0x0000 0000

Bits 14:10 SQ21[4:0]: 21st conversion in regular sequence

Bits 9:5 SQ20[4:0]: 20th conversion in regular sequence

Bits 4:0 SQ19[4:0]: 19th conversion in regular sequence

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ18[4:0] SQ17[4:0] SQ16[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ16[0
] SQ15[4:0] SQ14[4:0] SQ13[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept cleared.

Bits 29:25 SQ18[4:0]: 18th conversion in regular sequence

These bits are written by software with the channel number (0..26) assigned as the 18th in
the sequence to be converted.

Bits 24:20 SQ17[4:0]: 17th conversion in regular sequence

Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence

Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence

Bits 9:5 SQ14[4:0]: 14th conversion in regular sequence

Bits 4:0 SQ13[4:0]: 13th conversion in regular sequence

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 207/598

9.15.13 ADC regular sequence register 4 (ADC_SQR4)

Address offset: 0x3C

Reset value: 0x0000 0000

9.15.14 ADC regular sequence register 5 (ADC_SQR5)

Address offset: 0x40

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ12[4:0] SQ11[4:0] SQ10[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ10[0] SQ9[4:0] SQ8[4:0] SQ7[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept cleared.

Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence

These bits are written by software with the channel number (0..26) assigned as the 12th in the
sequence to be converted.

Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence

Bits 19:15 SQ10[4:0]: 10th conversion in regular sequence

Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence

Bits 9:5 SQ8[4:0]: 8th conversion in regular sequence

Bits 4:0 SQ7[4:0]: 7th conversion in regular sequence

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ6[4:0] SQ5[4:0] SQ4[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ4_0 SQ3[4:0] SQ2[4:0] SQ1[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept cleared.

Bits 29:25 SQ6[4:0]: 6th conversion in regular sequence

These bits are written by software with the channel number (0..26) assigned as the 6th in the
sequence to be converted.

Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence

Bits 19:15 SQ4[4:0]: 4th conversion in regular sequence

Bits 14:10 SQ3[4:0]: 3rd conversion in regular sequence

Bits 9:5 SQ2[4:0]: 2nd conversion in regular sequence

Bits 4:0 SQ1[4:0]: 1st conversion in regular sequence

Analog-to-digital converter (ADC) RM0038

208/598 Doc ID 15965 Rev 4

9.15.15 ADC injected sequence register (ADC_JSQR)

Address offset: 0x44

Reset value: 0x0000 0000

Note: When JL[1:0]=3 (4 injected conversions in the sequencer), the ADC converts the channels
in the following order: JSQ1[4:0], JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].

When JL=2 (3 injected conversions in the sequencer), the ADC converts the channels in
the following order: JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].

When JL=1 (2 injected conversions in the sequencer), the ADC converts the channels in
starting from JSQ3[4:0], and then JSQ4[4:0].

When JL=0 (1 injected conversion in the sequencer), the ADC converts only JSQ4[4:0]
channel.

9.15.16 ADC injected data register x (ADC_JDRx) (x= 1..4)

Address offset: 0x48 - 0x54

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
JL[1:0] JSQ4[4:1]

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSQ4[0] JSQ3[4:0] JSQ2[4:0] JSQ1[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:22 Reserved, must be kept cleared.

Bits 21:20 JL[1:0]: Injected sequence length

These bits are written by software to define the total number of conversions in the injected
channel conversion sequence.
00: 1 conversion
01: 2 conversions
10: 3 conversions
11: 4 conversions

Bits 19:15 JSQ4[4:0]: 4th conversion in injected sequence (when JL[1:0]=3, see note below)
These bits are written by software with the channel number (0..18) assigned as the 4th in the
sequence to be converted.

Bits 14:10 JSQ3[4:0]: 3rd conversion in injected sequence (when JL[1:0]=3, see note below)

Bits 9:5 JSQ2[4:0]: 2nd conversion in injected sequence (when JL[1:0]=3, see note below)

Bits 4:0 JSQ1[4:0]: 1st conversion in injected sequence (when JL[1:0]=3, see note below)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JDATA[15:0]

r r r r r r r r r r r r r r r r

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 209/598

9.15.17 ADC regular data register (ADC_DR)

Address offset: 0x58

Reset value: 0x0000 0000

9.15.18 ADC common status register (ADC_CSR)

Address offset: 0x00 (this offset address is relative to the base address of ADC common
registers, i.e. 0x300)

Reset value: 0x0000 0000

This register provides an image of the status bits of the different ADCs. Nevertheless it is
read-only and does not allow to clear the different status bits. Instead each status bit must
be cleared by writing it to 0 in the corresponding ADC_SR register.

Bits 31:16 Reserved, must be kept cleared.

Bits 15:0 JDATA[15:0]: Injected data

These bits are read-only. They contain the conversion result from injected channel x. The
data are left -or right-aligned as shown in Figure 30 and Figure 31.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved.

Bits 15:0 DATA[15:0]: Regular data

These bits are read-only. They contain the conversion result from the regular channels. The
data are left- or right-aligned as shown in Figure 30 and Figure 31.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ADONS1 OVR1 STRT1 JSTRT1 JEOC 1 EOC1 AWD1

r r r r r r r

Bits 31:7 Reserved, must be kept cleared.

Bit 6 ADONS1: ADON Status of ADC1
This bit is a copy of the ADONS bit in the ADC_SR register.

Bit 5 OVR1: Overrun flag of the ADC
This bit is a copy of the OVR bit in the ADC_SR register.

Bit 4 STRT1: Regular channel Start flag of the ADC
This bit is a copy of the STRT bit in the ADC_SR register.

Analog-to-digital converter (ADC) RM0038

210/598 Doc ID 15965 Rev 4

9.15.19 ADC common control register (ADC_CCR)

Address offset: 0x04 (this offset address is relative to the base address of ADC common
registers, i.e. 0x300)

Reset value: 0x0000 0000

Bit 3 JSTRT1: Injected channel Start flag of the ADC
This bit is a copy of the JSTRT bit in the ADC_SR register.

Bit 2 JEOC1: Injected channel end of conversion of the ADC
This bit is a copy of the JEOC bit in the ADC_SR register.

Bit 1 EOC1: End of conversion of the ADC
This bit is a copy of the EOC bit in the ADC_SR register.

Bit 0 AWD1: Analog watchdog flag of the ADC
This bit is a copy of the AWD bit in the ADC_SR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TSVREFE

Reserved
ADCPRE[1:0]

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Bits 31:24 Reserved, must be kept cleared.

Bit 23 TSVREFE: Temperature sensor and VREFINT enable

This bit is set and cleared by software to enable/disable the temperature sensor and the
VREFINT channel.
0: Temperature sensor and VREFINT channel disabled
1: Temperature sensor and VREFINT channel enabled

Bits 22:18 Reserved, must be kept cleared.

Bits 17:16 ADCPRE: ADC prescaler

Set and cleared by software to select the frequency of the clock to the ADC.
00: HSI divided by 1
01: HSI divided by 2
10: HSI divided by 4
11: Reserved

Bits 15:0 Reserved, must be kept cleared.

RM0038 Analog-to-digital converter (ADC)

Doc ID 15965 Rev 4 211/598

9.15.20 ADC register map

The following table summarizes the ADC registers.

Table 40. ADC global register map

Offset Register

0x000 - 0x058 ADC

0x05C - 0x2FC Reserved

0x300 - 0x304 Common registers

Table 41. ADC register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
ADC_SR

Reserved JC
N

R

R
C

N
R

R
es

er
ve

d

A
D

O
N

S

O
V

R

S
T

R
T

JS
T

R
T

JE
O

C

E
O

C

A
W

D

Reset value 0 0 0 0 0 0 0 0 0

0x04
ADC_CR1

Reserved

O
V

R
IE

R
E

S
[1

:0
]

A
W

D
E

N

JA
W

D
E

N

Reserved P
D

I

P
D

D DISC
NUM [2:0]

JD
IS

C
E

N

D
IS

C
E

N

JA
U

TO

A
W

D
 S

G
L

S
C

A
N

JE
O

C
IE

A
W

D
IE

E
O

C
IE

AWDCH[4:0]

Reset value 0

0x08
ADC_CR2

R
es

er
ve

d

S
W

S
TA

R
T

E
X

T
E

N
[1

:0
]

EXTSEL [3:0]

R
es

er
ve

d

JS
W

S
TA

R
T

JE
X

T
E

N
[1

:0
]

JEXTSEL
[3:0] Reserved

A
LI

G
N

E
O

C
S

D
D

S

D
M

A

R
es

er
ve

d

DELS[2:0] Reser
ved C

O
N

T

A
D

O
N

Reset value 0

0x0C
ADC_SMPR1 Sample time bits SMPx_x

Reset value 0

0x10
ADC_SMPR2 Sample time bits SMPx_x

Reset value 0

0x14
ADC_SMPR3 Sample time bits SMPx_x

Reset value 0

0x18
ADC_JOFR1

Reserved
JOFFSET1[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
ADC_JOFR2

Reserved
JOFFSET2[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x20
ADC_JOFR3

Reserved
JOFFSET3[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x24
ADC_JOFR4

Reserved
JOFFSET4[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x28
ADC_HTR

Reserved
HT[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1

0x2C
ADC_LTR

Reserved
LT[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

Analog-to-digital converter (ADC) RM0038

212/598 Doc ID 15965 Rev 4

Refer to Table 1 on page 32 for the Register boundary addresses table.

0x30
ADC_SQR1

Reserved
L[4:0] Regular channel sequence SQx_x bits

Reset value 0

0x34
ADC_SQR2

R
es

er
ve

d
Regular channel sequence SQx_x bits

Reset value 0

0x38
ADC_SQR3

R
es

er
ve

d

Regular channel sequence SQx_x bits

Reset value 0

0x3C
ADC_SQR4

R
es

er
ve

d

Regular channel sequence SQx_x bits

Reset value 0

0x40
ADC_SQR5

R
es

er
ve

d

Regular channel sequence SQx_x bits

Reset value 0

0x44
ADC_JSQR

Reserved
JL[1:0] Injected channel sequence JSQx_x bits

Reset value 0

0x48
ADC_JDR1

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4C
ADC_JDR2

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
ADC_JDR3

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x54
ADC_JDR4

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x58
ADC_DR

Reserved
Regular DATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 41. ADC register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Table 42. ADC register map and reset values (common registers)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
ADC_CSR

Reserved A
D

O
N

S

O
V

R

S
T

R
T

JS
T

R
T

JE
O

C

E
O

C

A
W

D

Reset value 0 0 0 0 0 0 0
ADC1

0x04
ADC_CCR

Reserved

T
S

V
R

E
F

E

Reserved

A
D

C
P

R
E

Reserved

Reset value 0 0 0

RM0038 Digital-to-analog converter (DAC)

Doc ID 15965 Rev 4 213/598

10 Digital-to-analog converter (DAC)

10.1 DAC introduction
The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be
configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In
12-bit mode, the data could be left- or right-aligned. The DAC has two output channels, each
with its own converter. In dual DAC channel mode, conversions could be done
independently or simultaneously when both channels are grouped together for synchronous
update operations. An input reference pin, VREF+ (shared with ADC) is available for better
resolution.

10.2 DAC main features
● Two DAC converters: one output channel each

● Left or right data alignment in 12-bit mode

● Synchronized update capability

● Noise-wave generation

● Triangular-wave generation

● Dual DAC channel for independent or simultaneous conversions

● DMA capability for each channel

● DMA underrun error detection

● External triggers for conversion

● Input voltage reference, VREF+

Figure 41 shows the block diagram of a DAC channel and Table 43 gives the pin description.

Digital-to-analog converter (DAC) RM0038

214/598 Doc ID 15965 Rev 4

Figure 41. DAC channel block diagram

Note: Once the DAC channelx is enabled, the corresponding GPIO pin (PA4 or PA5) is
automatically connected to the analog converter output (DAC_OUTx). In order to avoid
parasitic consumption, the PA4 or PA5 pin should first be configured to analog (AIN).

Table 43. DAC pins

Name Signal type Remarks

VREF+
Input, analog reference
positive

The higher/positive reference voltage for the DAC,
1.8 V ≤ VREF+ ≤ VDDA

VDDA Input, analog supply Analog power supply

VSSA Input, analog supply ground Ground for analog power supply

DAC_OUTx Analog output signal DAC channelx analog output

VDDA

VSSA

VREF+

DAC_OUTx

Control logicx

DHRx

12-bit

12-bit

LFSRx tr ianglex

DM A requestx

TSELx[2:0] bits

TIM7_TRGO
TIM9_TRGO
TIM2_TRGO
TIM4_TRGO

TIM6_TRGO

EXTI_9

DMAENx

TENx

MAMPx[3:0] bits

WAVENx[1:0] bits

SWTRIGx

DORx

Digital-to-analog
converterx

12-bit

DAC control register

ai17153

T
rig

ge
r

se
le

ct
or

 x

RM0038 Digital-to-analog converter (DAC)

Doc ID 15965 Rev 4 215/598

10.3 DAC functional description

10.3.1 DAC channel enable

Each DAC channel can be powered on by setting its corresponding ENx bit in the DAC_CR
register. The DAC channel is then enabled after a startup time tWAKEUP.

Note: The ENx bit enables the analog DAC Channelx macrocell only. The DAC Channelx digital
interface is enabled even if the ENx bit is reset.

10.3.2 DAC output buffer enable

The DAC integrates two output buffers that can be used to reduce the output impedance,
and to drive external loads directly without having to add an external operational amplifier.
Each DAC channel output buffer can be enabled and disabled using the corresponding
BOFFx bit in the DAC_CR register.

10.3.3 DAC data format

Depending on the selected configuration mode, the data have to be written into the specified
register as described below:

● Single DAC channelx, there are three possibilities:

– 8-bit right alignment: the software has to load data into the DAC_DHR8Rx [7:0]
bits (stored into the DHRx[11:4] bits)

– 12-bit left alignment: the software has to load data into the DAC_DHR12Lx [15:4]
bits (stored into the DHRx[11:0] bits)

– 12-bit right alignment: the software has to load data into the DAC_DHR12Rx [11:0]
bits (stored into the DHRx[11:0] bits)

Depending on the loaded DAC_DHRyyyx register, the data written by the user is shifted and
stored into the corresponding DHRx (data holding registerx, which are internal non-
memory-mapped registers). The DHRx register is then loaded into the DORx register either
automatically, by software trigger or by an external event trigger.

Figure 42. Data registers in single DAC channel mode

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14710

Digital-to-analog converter (DAC) RM0038

216/598 Doc ID 15965 Rev 4

● Dual DAC channels, there are three possibilities:

– 8-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR8RD
[7:0] bits (stored into the DHR1[11:4] bits) and data for DAC channel2 to be loaded
into the DAC_DHR8RD [15:8] bits (stored into the DHR2[11:4] bits)

– 12-bit left alignment: data for DAC channel1 to be loaded into the DAC_DHR12LD
[15:4] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be
loaded into the DAC_DHR12LD [31:20] bits (stored into the DHR2[11:0] bits)

– 12-bit right alignment: data for DAC channel1 to be loaded into the
DAC_DHR12RD [11:0] bits (stored into the DHR1[11:0] bits) and data for DAC
channel2 to be loaded into the DAC_DHR12LD [27:16] bits (stored into the
DHR2[11:0] bits)

Depending on the loaded DAC_DHRyyyD register, the data written by the user is shifted and
stored into DHR1 and DHR2 (data holding registers, which are internal non-memory-
mapped registers). The DHR1 and DHR2 registers are then loaded into the DOR1 and
DOR2 registers, respectively, either automatically, by software trigger or by an external
event trigger.

Figure 43. Data registers in dual DAC channel mode

10.3.4 DAC conversion

The DAC_DORx cannot be written directly and any data transfer to the DAC channelx must
be performed by loading the DAC_DHRx register (write to DAC_DHR8Rx, DAC_DHR12Lx,
DAC_DHR12Rx, DAC_DHR8RD, DAC_DHR12LD or DAC_DHR12LD).

Data stored in the DAC_DHRx register are automatically transferred to the DAC_DORx
register after one APB1 clock cycle, if no hardware trigger is selected (TENx bit in DAC_CR
register is reset). However, when a hardware trigger is selected (TENx bit in DAC_CR
register is set) and a trigger occurs, the transfer is performed three APB1 clock cycles later.

When DAC_DORx is loaded with the DAC_DHRx contents, the analog output voltage
becomes available after a time tSETTLING that depends on the power supply voltage and the
analog output load.

Figure 44. Timing diagram for conversion with trigger disabled TEN = 0

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14709

APB1_CLK

0x1AC

0x1AC

tSETTLING

DHR

DOR
Output voltage
available on DAC_OUT pin

ai14711b

RM0038 Digital-to-analog converter (DAC)

Doc ID 15965 Rev 4 217/598

10.3.5 DAC output voltage

Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+.

The analog output voltages on each DAC channel pin are determined by the following
equation:

10.3.6 DAC trigger selection

If the TENx control bit is set, conversion can then be triggered by an external event (timer
counter, external interrupt line). The TSELx[2:0] control bits determine which out of 8 possi-
ble events will trigger conversion as shown in Table 44.

Each time a DAC interface detects a rising edge on the selected timer TRGO output, or on
the selected external interrupt line 9, the last data stored into the DAC_DHRx register are
transferred into the DAC_DORx register. The DAC_DORx register is updated three APB1
cycles after the trigger occurs.

If the software trigger is selected, the conversion starts once the SWTRIG bit is set.
SWTRIG is reset by hardware once the DAC_DORx register has been loaded with the
DAC_DHRx register contents.

Note: 1 TSELx[2:0] bit cannot be changed when the ENx bit is set.

2 When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DORx register takes only one APB1 clock cycle.

10.3.7 DMA request

Each DAC channel has a DMA capability. Two DMA channels are used to service DAC
channel DMA requests.

A DAC DMA request is generated when an external trigger (but not a software trigger)
occurs while the DMAENx bit is set. The value of the DAC_DHRx register is then transferred
into the DAC_DORx register.
In dual mode, if both DMAENx bits are set, two DMA requests are generated. If only one
DMA request is needed, you should set only the corresponding DMAENx bit. In this way, the
application can manage both DAC channels in dual mode by using one DMA request and a
unique DMA channel.

DACoutput VREF
DOR
4095
--------------×=

Table 44. External triggers

Source Type TSEL[2:0]

Timer 6 TRGO event

Internal signal from on-chip
timers

000

Reserved 001

Timer 7 TRGO event 010

Timer 9 TRGO event 011

Timer 2 TRGO event 100

Timer 4 TRGO event 101

EXTI line9 External pin 110

SWTRIG Software control bit 111

Digital-to-analog converter (DAC) RM0038

218/598 Doc ID 15965 Rev 4

DMA underrun

The DAC DMA request is not queued so that if a second external trigger arrives before the
acknowledgement for the first external trigger is received (first request), then no new request
is issued and the DMA channelx underrun flag DMAUDRx in the DAC_SR register is set,
reporting the error condition. DMA data transfers are then disabled and no further DMA
request is treated. The DAC channelx continues to convert old data.

The software should clear the DMAUDRx flag by writing “1”, clear the DMAEN bit of the
used DMA stream and re-initialize both DMA and DAC channelx to restart the transfer
correctly. The software should modify the DAC trigger conversion frequency or lighten the
DMA workload to avoid a new DMA underrun. Finally, the DAC conversion could be
resumed by enabling both DMA data transfer and conversion trigger.

For each DAC channlex, an interrupt is also generated if its corresponding DMAUDRIEx bit
in the DAC_CR register is enabled.

10.3.8 Noise generation

In order to generate a variable-amplitude pseudonoise, an LFSR (linear feedback shift
register) is available. DAC noise generation is selected by setting WAVEx[1:0] to “01”. The
preloaded value in LFSR is 0xAAA. This register is updated three APB1 clock cycles after
each trigger event, following a specific calculation algorithm.

Figure 45. DAC LFSR register calculation algorithm

The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in
the DAC_CR register, is added up to the DAC_DHRx contents without overflow and this
value is then stored into the DAC_DORx register.

If LFSR is 0x0000, a ‘1 is injected into it (antilock-up mechanism).

It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits.

11 10 9 8 7 6 5 4 3 2 1 0

12

NOR

X12

X0XX4X6

XOR

ai14713b

RM0038 Digital-to-analog converter (DAC)

Doc ID 15965 Rev 4 219/598

Figure 46. DAC conversion (SW trigger enabled) with LFSR wave generation

Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the
DAC_CR register.

10.3.9 Triangle-wave generation

It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal.
DAC triangle-wave generation is selected by setting WAVEx[1:0] to “10”. The amplitude is
configured through the MAMPx[3:0] bits in the DAC_CR register. An internal triangle counter
is incremented three APB1 clock cycles after each trigger event. The value of this counter is
then added to the DAC_DHRx register without overflow and the sum is stored into the
DAC_DORx register. The triangle counter is incremented as long as it is less than the
maximum amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is
reached, the counter is decremented down to 0, then incremented again and so on.

It is possible to reset triangle wave generation by resetting the WAVEx[1:0] bits.

Figure 47. DAC triangle wave generation

APB1_CLK

0x00

0xAAA

DHR

DOR

ai14714

0xD55

SWTRIG

Digital-to-analog converter (DAC) RM0038

220/598 Doc ID 15965 Rev 4

Figure 48. DAC conversion (SW trigger enabled) with triangle wave generation

Note: 1 The DAC trigger must be enabled for noise generation by setting the TENx bit in the
DAC_CR register.

2 The MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot
be changed.

10.4 Dual DAC channel conversion
To efficiently use the bus bandwidth in applications that require the two DAC channels at the
same time, three dual registers are implemented: DHR8RD, DHR12RD and DHR12LD. A
unique register access is then required to drive both DAC channels at the same time.

Eleven possible conversion modes are possible using the two DAC channels and these dual
registers. All the conversion modes can nevertheless be obtained using separate DHRx
registers if needed.

All modes are described in the paragraphs below.

10.4.1 Independent trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_DOR1
(three APB1 clock cycles later).

When a DAC channel2 trigger arrives, the DHR2 register is transferred into DAC_DOR2
(three APB1 clock cycles later).

APB1_CLK

0xABE

0xABE

DHR

DOR

ai14714

0xABF

SWTRIG

0xAC0

RM0038 Digital-to-analog converter (DAC)

Doc ID 15965 Rev 4 221/598

10.4.2 Independent trigger with single LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DHR12RD, DHR12LD
or DHR8RD)

When a DAC channel1 trigger arrives, the LFSR1 counter, with the same mask, is added to
the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles
later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the same mask, is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles
later). Then the LFSR2 counter is updated.

10.4.3 Independent trigger with different LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR masks
values in the MAMP1[3:0] and MAMP2[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the LFSR1 counter, with the mask configured by
MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1
(three APB1 clock cycles later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the mask configured by
MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB1 clock cycles later). Then the LFSR2 counter is updated.

10.4.4 Independent trigger with single triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum
amplitude value in the MAMPx[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with the same
triangle amplitude, is added to the DHR1 register and the sum is transferred into

Digital-to-analog converter (DAC) RM0038

222/598 Doc ID 15965 Rev 4

DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then
updated.

When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with the same
triangle amplitude, is added to the DHR2 register and the sum is transferred into
DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then
updated.

10.4.5 Independent trigger with different triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with a triangle
amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is
transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle
counter is then updated.

When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with a triangle
amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is
transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle
counter is then updated.

10.4.6 Simultaneous software start

To configure the DAC in this conversion mode, the following sequence is required:

● Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

In this configuration, one APB1 clock cycle later, the DHR1 and DHR2 registers are
transferred into DAC_DOR1 and DAC_DOR2, respectively.

10.4.7 Simultaneous trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

● Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and
DAC_DOR2, respectively (after three APB1 clock cycles).

RM0038 Digital-to-analog converter (DAC)

Doc ID 15965 Rev 4 223/598

10.4.8 Simultaneous trigger with single LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits

● Load the dual DAC channel data to the desired DHR register (DHR12RD, DHR12LD or
DHR8RD)

When a trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1
register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The
LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the same mask,
is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock
cycles later). The LFSR2 counter is then updated.

10.4.9 Simultaneous trigger with different LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR mask
values using the MAMP1[3:0] and MAMP2[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is
added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock
cycles later). The LFSR1 counter is then updated.
At the same time, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles
later). The LFSR2 counter is then updated.

10.4.10 Simultaneous trigger with single triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum
amplitude value using the MAMPx[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DAC channel1 triangle counter, with the same triangle amplitude,
is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock
cycles later). The DAC channel1 triangle counter is then updated.
At the same time, the DAC channel2 triangle counter, with the same triangle amplitude, is

Digital-to-analog converter (DAC) RM0038

224/598 Doc ID 15965 Rev 4

added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock
cycles later). The DAC channel2 triangle counter is then updated.

10.4.11 Simultaneous trigger with different triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

● Set the two DAC channel trigger enable bits TEN1 and TEN2

● Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

● Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits

● Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude
configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into
DAC_DOR1 (three APB1 clock cycles later). Then the DAC channel1 triangle counter is
updated.
At the same time, the DAC channel2 triangle counter, with a triangle amplitude configured
by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB1 clock cycles later). Then the DAC channel2 triangle counter is updated.

10.5 DAC registers
Refer to Section 1.1 on page 29 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

10.5.1 DAC control register (DAC_CR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

DMAU
DRIE2

DMA
EN2 MAMP2[3:0] WAVE2[1:0] TSEL2[2:0] TEN2 BOFF2 EN2

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

DMAU
DRIE1

DMA
EN1 MAMP1[3:0] WAVE1[1:0] TSEL1[2:0] TEN1 BOFF1 EN1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved.

Bits 29 DMAUDRIE2: DAC channel2 DMA underrun interrupt enable

This bit is set and cleared by software.
0: DAC channel2 DMA underrun interrupt disabled
1: DAC channel2 DMA underrun interrupt enabled

Bit 28 DMAEN2: DAC channel2 DMA enable

This bit is set and cleared by software.
0: DAC channel2 DMA mode disabled
1: DAC channel2 DMA mode enabled

RM0038 Digital-to-analog converter (DAC)

Doc ID 15965 Rev 4 225/598

Bit 27:24 MAMP2[3:0]: DAC channel2 mask/amplitude selector
These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.
0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095

Bit 23:22 WAVE2[1:0]: DAC channel2 noise/triangle wave generation enable

These bits are set/reset by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled

Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled)

Bits 21:19 TSEL2[2:0]: DAC channel2 trigger selection

These bits select the external event used to trigger DAC channel2
000: Timer 6 TRGO event
001: Reserved
010: Timer 7 TRGO event
011: Timer 9 TRGO event
100: Timer 2 TRGO event
101: Timer 4 TRGO event
110: External line9
111: Software trigger

Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled).

Bit 18 TEN2: DAC channel2 trigger enable
This bit is set and cleared by software to enable/disable DAC channel2 trigger
0: DAC channel2 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1 clock cycle later to the DAC_DOR2 register
1: DAC channel2 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR2 register

Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR2 register takes only one APB1 clock cycle.

Bit 17 BOFF2: DAC channel2 output buffer disable
This bit is set and cleared by software to enable/disable DAC channel2 output buffer.
0: DAC channel2 output buffer enabled
1: DAC channel2 output buffer disabled

Bit 16 EN2: DAC channel2 enable

This bit is set and cleared by software to enable/disable DAC channel2.
0: DAC channel2 disabled
1: DAC channel2 enabled

Bits 15:14 Reserved.

Digital-to-analog converter (DAC) RM0038

226/598 Doc ID 15965 Rev 4

Bit 13 DMAUDRIE1: DAC channel1 DMA Underrun Interrupt enable
This bit is set and cleared by software.
0: DAC channel1 DMA Underrun Interrupt disabled
1: DAC channel1 DMA Underrun Interrupt enabled

Bit 12 DMAEN1: DAC channel1 DMA enable

This bit is set and cleared by software.
0: DAC channel1 DMA mode disabled
1: DAC channel1 DMA mode enabled

Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.
0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095

Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable

These bits are set and cleared by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection

These bits select the external event used to trigger DAC channel1.
000: Timer 6 TRGO event
001: Reserved
010: Timer 7 TRGO event
011: Timer 9 TRGO event
100: Timer 2 TRGO event
101: Timer 4 TRGO event
110: External line9
111: Software trigger

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

RM0038 Digital-to-analog converter (DAC)

Doc ID 15965 Rev 4 227/598

10.5.2 DAC software trigger register (DAC_SWTRIGR)

Address offset: 0x04
Reset value: 0x0000 0000

Bit 2 TEN1: DAC channel1 trigger enable
This bit is set and cleared by software to enable/disable DAC channel1 trigger.
0: DAC channel1 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1 clock cycle later to the DAC_DOR1 register
1: DAC channel1 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR1 register

Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR1 register takes only one APB1 clock cycle.

Bit 1 BOFF1: DAC channel1 output buffer disable

This bit is set and cleared by software to enable/disable DAC channel1 output buffer.
0: DAC channel1 output buffer enabled
1: DAC channel1 output buffer disabled

Bit 0 EN1: DAC channel1 enable
This bit is set and cleared by software to enable/disable DAC channel1.
0: DAC channel1 disabled
1: DAC channel1 enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
SWTRIG2 SWTRIG1

w w

Bits 31:2 Reserved.

Bit 1 SWTRIG2: DAC channel2 software trigger

This bit is set and cleared by software to enable/disable the software trigger.
0: Software trigger disabled
1: Software trigger enabled

Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR2
register value has been loaded into the DAC_DOR2 register.

Bit 0 SWTRIG1: DAC channel1 software trigger
This bit is set and cleared by software to enable/disable the software trigger.
0: Software trigger disabled
1: Software trigger enabled

Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR1
register value has been loaded into the DAC_DOR1 register.

Digital-to-analog converter (DAC) RM0038

228/598 Doc ID 15965 Rev 4

10.5.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1)

Address offset: 0x08
Reset value: 0x0000 0000

10.5.4 DAC channel1 12-bit left aligned data holding register
(DAC_DHR12L1)

Address offset: 0x0C

Reset value: 0x0000 0000

10.5.5 DAC channel1 8-bit right aligned data holding register
(DAC_DHR8R1)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved.

Bit 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data
These bits are written by software which specifies 12-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC1DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved.

Bit 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

Bits 3:0 Reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel1.

RM0038 Digital-to-analog converter (DAC)

Doc ID 15965 Rev 4 229/598

10.5.6 DAC channel2 12-bit right aligned data holding register
(DAC_DHR12R2)

Address offset: 0x14

Reset value: 0x0000 0000

10.5.7 DAC channel2 12-bit left aligned data holding register
(DAC_DHR12L2)

Address offset: 0x18

Reset value: 0x0000 0000

10.5.8 DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2)

Address offset: 0x1C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved.

Bits 11:0 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data
These bits are written by software which specifies 12-bit data for DAC channel2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC2DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved.

Bits 15:4 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data

These bits are written by software which specify 12-bit data for DAC channel2.

Bits 3:0 Reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DHR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved.

Bits 7:0 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel2.

Digital-to-analog converter (DAC) RM0038

230/598 Doc ID 15965 Rev 4

10.5.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD)

Address offset: 0x20

Reset value: 0x0000 0000

10.5.10 DUAL DAC 12-bit left aligned data holding register
(DAC_DHR12LD)

Address offset: 0x24

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
DACC2DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved.

Bits 27:16 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data
These bits are written by software which specifies 12-bit data for DAC channel2.

Bits 15:12 Reserved.

Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data
These bits are written by software which specifies 12-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DACC2DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC1DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:20 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel2.

Bits 19:16 Reserved.

Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

Bits 3:0 Reserved.

RM0038 Digital-to-analog converter (DAC)

Doc ID 15965 Rev 4 231/598

10.5.11 DUAL DAC 8-bit right aligned data holding register
(DAC_DHR8RD)

Address offset: 0x28

Reset value: 0x0000 0000

10.5.12 DAC channel1 data output register (DAC_DOR1)

Address offset: 0x2C

Reset value: 0x0000 0000

10.5.13 DAC channel2 data output register (DAC_DOR2)

Address offset: 0x30
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC2DHR[7:0] DACC1DHR[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved.

Bits 15:8 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data
These bits are written by software which specifies 8-bit data for DAC channel2.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data
These bits are written by software which specifies 8-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DOR[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved.

Bit 11:0 DACC1DOR[11:0]: DAC channel1 data output

These bits are read-only, they contain data output for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DOR[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved.

Bit 11:0 DACC2DOR[11:0]: DAC channel2 data output

These bits are read-only, they contain data output for DAC channel2.

Digital-to-analog converter (DAC) RM0038

232/598 Doc ID 15965 Rev 4

10.5.14 DAC status register (DAC_SR)

Address offset: 0x34

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
DMAUDR2

Reserved
rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DMAUDR1

Reserved
rc_w1

Bits 31:30 Reserved.

Bit 29 DMAUDR2: DAC channel2 DMA underrun flag

This bit is set by hardware and cleared by software (by writing it to 1).
0: No DMA underrun error condition occurred for DAC channel2
1: DMA underrun error condition occurred for DAC channel2 (the currently selected trigger is
driving DAC channel2 conversion at a frequency higher than the DMA service capability rate)

Bits 28:14 Reserved.

Bit 13 DMAUDR1: DAC channel1 DMA underrun flag

This bit is set by hardware and cleared by software (by writing it to 1).
0: No DMA underrun error condition occurred for DAC channel1
1: DMA underrun error condition occurred for DAC channel1 (the currently selected trigger is
driving DAC channel1 conversion at a frequency higher than the DMA service capability rate)

Bits 12:0 Reserved.

RM0038 Digital-to-analog converter (DAC)

Doc ID 15965 Rev 4 233/598

10.5.15 DAC register map

Table 45 summarizes the DAC registers.

Refer to Table 1 on page 32for the register boundary addresses.

Table 45. DAC register map
Address

offset
Register

name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00 DAC_CR

R
es

er
ve

d

D
M

A
U

D
R

IE
2

D
M

A
E

N
2

MAMP2[3:0] WAVE
2[2:0] TSEL2[2:0]

T
E

N
2

B
O

F
F

2

E
N

2

R
es

er
ve

d

D
M

A
U

D
R

IE
1

D
M

A
E

N
1

MAMP1[3:0] WAVE
1[2:0] TSEL1[2:0]

T
E

N
1

B
O

F
F

1

E
N

1

0x04 DAC_SWT
RIGR Reserved

S
W

T
R

IG
2

S
W

T
R

IG
1

0x08 DAC_DHR1
2R1 Reserved DACC1DHR[11:0]

0x0C DAC_DHR1
2L1 Reserved DACC1DHR[11:0] Reserved

0x10 DAC_DHR8
R1 Reserved DACC1DHR[7:0]

0x14 DAC_DHR1
2R2 Reserved DACC2DHR[11:0]

0x18 DAC_DHR1
2L2 Reserved DACC2DHR[11:0] Reserved

0x1C DAC_DHR8
R2 Reserved DACC2DHR[7:0]

0x20 DAC_DHR1
2RD Reserved DACC2DHR[11:0] Reserved DACC1DHR[11:0]

0x24 DAC_DHR1
2LD DACC2DHR[11:0] Reserved DACC1DHR[11:0] Reserved

0x28 DAC_DHR8
RD Reserved DACC2DHR[7:0] DACC1DHR[7:0]

0x2C DAC_DOR1 Reserved DACC1DOR[11:0]

0x30 DAC_DOR2 Reserved DACC2DOR[11:0]

0x34 DAC_SR

R
es

er
ve

d

D
M

A
U

D
R

2

Reserved

D
M

A
U

D
R

1

Reserved

Comparators (COMP) RM0038

234/598 Doc ID 15965 Rev 4

11 Comparators (COMP)

11.1 Introduction
The STM32L15xxx contains two zero-crossing comparators COMP1 and COMP2, that
share the same current bias.

Note: For all I/Os used as comparator inputs, the GPIO registers must be configured in analog
mode.

When using the routing interface (see Section 6: System configuration controller (SYSCFG)
and routing interface (RI)), the comparator inputs can be connected to external I/Os.

11.2 Main features
● A comparator (COMP1) with fixed threshold (internal reference voltage). The non-

inverting input can be selected among 24 external I/Os.

● A rail-to-rail comparator (COMP2) with selectable threshold. The non-inverting input
can be selected among 2 I/Os. The threshold can be selected among:

– the internal reference voltage (VREFINT)

– an internal reference voltage submultiple (1/4, 1/2, 3/4)

– the DAC1 output

– the DAC2 output

– an external I/O (PB3)

● The 2 comparators can be combined to form window comparators.

● Zero-crossing can generate a rising or falling edge on the comparator outputs
depending on the trigger configuration.

● Each comparator has an interrupt generation capability with wakeup from the Sleep
and Stop.

● The COMP2 output can be redirected to TIM2/TIM3/TIM4’s input capture 4 (IC4) or
OCREF_CLR inputs, or to the TIM10s input capture 1 (IC1).

● COMP2 speed is configurable for optimum speed/consumption ratio.

The block diagram of the COMP is shown in Figure 49.

RM0038 Comparators (COMP)

Doc ID 15965 Rev 4 235/598

Figure 49. Comparator block diagram

Note: The internal reference voltage and temperature sensor cannot be used as COMP1 non-
inverting input.

PB4

PB5

PB3

VREFINT ~1.2 V

3/4 VREFINT

1/2 V REFINT

1/4 V REFINT

From DAC_OUT1

(I/O ports)

V
REFINT

From DAC2_OUT2

TIM2 input capture 4
TIM2 OCREF clear

TIM3 input capture 4
TIM3 OCREF clear

TIM4 input capture 4

TIM4 OCREF clear

TIM10 input capture 1

COMP1

+

-

ADC

ADC_IN10

ADC_IN11

ADC_IN6

ADC_IN7

ADC_IN14

ADC_IN15

ADC_IN12

ADC_IN13

ADC_IN0

ADC_IN1

ADC_IN2

ADC_IN3

VCOMP

PC0

PC1

PC2

PC3

PA0

PA1

PA2

PA3

PA6

PA7

PC4

PC5

ADC_IN18

ADC_IN19

ADC_IN20

ADC_IN21

PB12

PB13

PB14

PB15

VDD

VSS

10 kΩ

10 kΩ 400 kΩ

400 kΩ

ADC switch matrix

VREFINT

ai18204

COMP2

+

-

OUTSEL[2:0] bits

Group 8

Group 1

Group 2

Group 9

Group 7

ADC_IN8

ADC_IN9
PB0

PB1

Group 3

PA4

PE9

PE8

PE7

PA5

PE10

Temp. sensor

VREFINT

Group 6

GR6-2

WNDWE

GR6-1

ADC_IN4

ADC_IN5

ADC_IN23

ADC_IN22

ADC_IN24

ADC_IN25

Comparators (COMP) RM0038

236/598 Doc ID 15965 Rev 4

11.3 COMP clock
The COMP clock provided by the clock controller is synchronous with the PCLK1 (APB1
clock).

11.4 Comparator 1 (COMP1)
Figure 50 shows the comparator 1 interconnections.

Figure 50. COMP1 interconnections

Note: The internal reference voltage and temperature sensor cannot be used as COMP1 non-
inverting input.

COMP1 comparator and ADC cannot be used at the same time since they share the ADC
switch matrix.

COMP1

+

-

ADC

ADC_IN10

ADC_IN11

ADC_IN6

ADC_IN7

ADC_IN14

ADC_IN15

ADC_IN12

ADC_IN13

ADC_IN0

ADC_IN1

ADC_IN2

ADC_IN3

VCOMP

PC0

PC1

PC2

PC3

PA0

PA1

PA2

PA3

PA6

PA7

PC4

PC5

ADC_IN18

ADC_IN19

ADC_IN20

ADC_IN21

PB12

PB13

PB14

PB15

VDD

VSS

10 kΩ

10 kΩ 400 kΩ

400 kΩ

ADC switch matrix

ai18205

Group 8

Group 1

Group 2

Group 9

Group 7

ADC_IN8

ADC_IN9
PB0

PB1

Group 3

PA4

PE9

PE8

PE7

PA5

PE10

Temp. sensor

VREFINT

ADC_IN4

ADC_IN5

ADC_IN23

ADC_IN22

ADC_IN24

ADC_IN25

V
REFINT

CMP1OUT

Wakeup
EXTI line 21

RM0038 Comparators (COMP)

Doc ID 15965 Rev 4 237/598

Note: The internal reference voltage and temperature sensor cannot be used as COMP1 non-
inverting input.

COMP1 comparator and ADC cannot be used at the same time since they share the ADC
switch matrix.

To use the COMP1 comparator, the application has to perform the following steps:

1. Enable the comparator 1 by setting the CMP1EN bit in the COMP_CSR register

2. Wait until the comparator is ready (when the startup time has elapsed). Refer to the
electrical characteristics of the STM32L15xxx datasheet.

3. Set the SCM bit in the RI_ASCR1 register so as to close the ADC switches if the
corresponding I/O switch is also closed

4. Close the ADC switches to create the path from the selected I/O to the non-inverting
input. The input can be any of the up to 29 available I/Os and can be split into groups or
not (see Figure 22: I/O groups and selection on page 128):

a) Close the VCOMP ADC analog switch by setting the VCOMP bit in the RI_ASCR1
register.

b) Close the I/O analog switch number n corresponding to the I/O group that must be
connected to the COMP1 non-inverting input, by setting the CHn bit in RI_ASCR1.

5. If required enable the COMP1 interrupt by configuring and enabling EXTI line21 in
interrupt mode and selecting the desired trigger event (rising edge, falling edge or
both).

11.5 Comparator 2 (COMP2)
Figure 51 shows the comparator 2 interconnections.

Figure 51. COMP2 interconnections

PB4

PB5

PB3

VREFINT ~1.2 V

3/4 VREFINT

1/2 VREFINT

1/4 V REFINT

From DAC_OUT1

(I/O ports)

V
REFINT

From DAC2_OUT2

TIM2 input capture 4
TIM2 OCREF clear

TIM3 input capture 4
TIM3 OCREF clear

TIM4 input capture 4

TIM4 OCREF clear

TIM10 input capture 1

ai18206b

COMP2

+

-

OUTSEL[2:0] bits

Group 6

GR6-2

GR6-1 CMP2OUT

Wakeup
EXTI line 22

Comparators (COMP) RM0038

238/598 Doc ID 15965 Rev 4

To use the COMP2 comparator, the application has to perform the following steps:

1. Select COMP2's inverting input with the INSEL[2:0] bits in COMP_CSR.

– In the case of an external I/O selection (PB3 I/O), the I/O should be configured in
analog input mode.

2. Close the I/O's analog switch to connect to COMP2 non-inverting input. The input can
be any I/O in group 6 (see Table 22: I/O groups and selection on page 128). GR6-1 or
GR6-2 switches are closed as soon as the corresponding I/O is configured in analog
mode.

3. Wait until the comparator is ready (when the startup time has elapsed). Refer to the
electrical characteristics of the STM32L15xxx datasheet.

4. If required, perform the following procedures:

– Select the speed with the SPEED bit in COMP_CSR.

– Redirect the COMP2 output to TIM2, TIM3, TIM4 or TIM10 by configuring the
OUTSEL[2:0] bits in COMP_CSR (refer to Figure 52).

– Enable the COMP2 interrupt by configuring and enabling EXTI line22 in interrupt
mode and selecting the desired sensitivity level.

Note: GR6-1 and GR6-2 I/O switches can be closed by either configuring the corresponding I/O
(PB4 or PB5) in analog mode (Schmitt trigger disabled) or configuring the I/O in input
floating mode and setting GR6-1 or GR6-2 in RI_ASCR2 (Schmitt trigger enabled).
If PB4 or PB5 is used as comparator input, it is recommended to use analog configuration to
avoid any overconsumption around VDD/2.

Note: The COMP2 comparator is enabled as soon as the inverting input is selected.

The channel can be changed when the comparator is enabled.

The following figure shows the output redirection possibilities of the COMP2 output.

Figure 52. Redirecting the COMP2 output

Note: For more details about “clearing TIMx OCREF”, refer to Section 13.3.11: Clearing the
OCxREF signal on an external event on page 294.

RM0038 Comparators (COMP)

Doc ID 15965 Rev 4 239/598

11.6 Comparators in Window mode

Figure 53. Comparators in Window mode

To use the COMP1 and COMP2 comparators in window mode, the application has to
perform the following steps:

1. Select COMP2’s inverting input as explained in Section 11.5: Comparator 2 (COMP2).

2. Enable the Window mode by setting WNDWE in the COMP_CSR register.

3. Select the non-inverting input:

– for COMP1: follow the steps 2 and 3 from Section 11.4: Comparator 1 (COMP1)

– for COMP2: follow steps 3 and 4 from Section 11.5: Comparator 2 (COMP2)

4. Enable COMP1 by setting the CMP1EN in the COMP_CSR register.

Note: In window mode, only the Group 6 (PB4 and PB5) can be used as a non-inverting input.

11.7 Low power modes

Note: Comparators cannot be used to exit the device from Sleep or Stop mode when the internal
reference voltage is switched off using the ULP bit in the PWR_CR register.

Table 46. Comparator behavior in the low power modes

Mode Description

Sleep
No effect on the comparators.
Comparator interrupts cause the device to exit the Sleep mode.

Stop
No effect on the comparators.
Comparator interrupts cause the device to exit the Stop mode.

Comparators (COMP) RM0038

240/598 Doc ID 15965 Rev 4

11.8 Interrupts
The comparator interrupts are connected to EXTI controller (lines 21 and 22).

To enable the COMP interrupt, the following sequence is required:

1. Configure and enable the EXTI line 21 (COMP1) or EXTI line 22 (COMP2) in interrupt
mode and select the desired trigger event (rising edge, falling edge, or both),

2. Configure and enable the COMP_IRQ channel in the NVIC.

11.9 COMP registers
The peripheral registers have to be accessed by words (32-bit).

11.9.1 COMP comparator control and status register (COMP_CSR)

The COMP_CSR register is the control/status register of the comparators. It contains all the
bits related to both comparators.

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
OUTSEL[2:0] INSEL[2:0] WNDWE VREFOU

TEN

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

CMP2
OUT SPEED

Reserved
CMP1OUT

Res.

CMP1
EN 400KPD 10KPD 400KPU 10KPU

r rw r rw rw rw rw rw

Bits 31:24 Reserved, must be kept cleared.

Bits 23:21 OUTSEL: Comparator 2 output selection

These bits are written by software to connect the output of COMP2 to a selected timer input.
000 = TIM2 Input Capture 4
001 = TIM2 OCREF_CLR
010 = TIM3 Input Capture 4
011 = TIM3 OCREF_CLR
100 = TIM4 Input Capture 4
101 = TIM4 OCREF_CLR
110 = TIM10 Input Capture 1
111 = no redirection

RM0038 Comparators (COMP)

Doc ID 15965 Rev 4 241/598

Bits 20:18 INSEL: Inverted input selection
000 = no selection
001 = External I/O: PB3 (COMP2_INM)
010 = VREFINT
011 = 3/4 VREFINT
100 = 1/2 VREFINT
101 = 1/4 VREFINT
110 = DAC_OUT1
111 = DAC_OUT2

Note: The COMP2 comparator is enabled when the INSEL bit values are different from "000”.

Bit 17 WNDWE: Window mode enable
0: Disabled
1: Enabled

Bit 16 VREFOUTEN: VREFINT output enable
This bit is used to output VREFINT on Group 3 (refer to Figure 21: Internal reference voltage
output).
0: Disabled
1: Enabled

Bits 15:14 Reserved, must be kept cleared.

Bit 13 CMP2OUT: Comparator 2 output

This bit indicates the low or high level of the comparator 2 output.
0: Comparator 2 output is low when the non-inverting input is at a lower voltage than the
inverting input
1: Comparator 2 output is high when the non-inverting input is at a higher voltage than the
inverting input

Bit 12 SPEED: Comparator 2 speed mode

0: slow speed
1: fast speed

Bits 11:8 Reserved, must be kept cleared.

Bit 7 CMP1OUT: Comparator 1 output

This bit indicates the high or low level of the comparator 1 output.
0: Comparator 1 output is low when the non-inverting input is at a lower voltage than the
inverting input
1: Comparator 1 output is high when the non-inverting input is at a higher voltage than the
inverting input

Bits 6:5 Reserved, must be kept cleared.

Bit 4 CMP1EN: Comparator 1 enable

0: Comparator 1 disabled
1: Comparator 1 enabled

Bit 3 400KPD: 400 kΩ pull-down resistor

This bit enables the 400 kΩ pull-down resistor.

0: 400 kΩ pull-down resistor disabled
1: 400 kΩ pull-down resistor enabled

Comparators (COMP) RM0038

242/598 Doc ID 15965 Rev 4

Note: 1 To avoid extra power consumption, only one resistor should be enabled at a time.

11.9.2 COMP register map

Table 47: COMP register map and reset values summarizes the COMP registers.

Bit 2 10KPD: 10 kΩ pull-down resistor
This bit enables the 10 kΩ pull-down resistor.

0: 10 kΩ pull-down resistor disabled
1: 10 kΩ pull-down resistor enabled

Bit 1 400KPU: 400 kΩ pull-up resistor
This bit enables the 400 kΩ pull-up resistor.

0: 400 kΩ pull-up resistor disabled
1: 400 kΩ pull-up resistor enabled

Bit 0 10KPU: 10 kΩ pull-up resistor
This bit enables the 10 kΩ pull-up resistor.

0: 10 kΩ pull-up resistor disabled
1: 10 kΩ pull-up resistor enabled

Table 47. COMP register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
COMP_CSR

Reserved
OUTSEL

[2:0]
INSEL
[2:0]

W
N

D
W

E

V
R

E
F

O
U

T
E

N

R
es

er
ve

d

C
M

P
2O

U
T

S
P

E
E

D

R
es

er
ve

d

C
M

P
1O

U
T

R
es

er
ve

d

C
M

P
1E

N

40
0K

P
D

10
K

P
D

40
0K

P
U

10
K

P
U

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 243/598

12 LCD controller (LCD)

12.1 Introduction
The LCD controller is a digital controller/driver for monochrome passive liquid crystal display
(LCD) with up to 8 common terminals and up to 44 segment terminals to drive 176 (44x4) or
320 (40x8) LCD picture elements (pixels). The exact number of terminals depends on the
device pinout as described in the datasheet.

The LCD is made up of several segments (pixels or complete symbols) which can be turned
visible or invisible. Each segment consists of a layer of liquid crystal molecules aligned
between two electrodes. When a voltage greater than a threshold voltage is applied across
the liquid crystal, the segment becomes visible. The segment voltage must be alternated to
avoid an electrophoresis effect in the liquid crystal (which degrades the display). The
waveform across a segment must then be generated so as to avoid having a direct current
(DC).

12.2 LCD main features
● Highly flexible frame rate control.

● Supports Static, 1/2, 1/3, 1/4 and 1/8 duty.

● Supports Static, 1/2, 1/3 and 1/4 bias.

● Double buffered memory allows data in LCD_RAM registers to be updated at any time
by the application firmware without affecting the integrity of the data displayed.

– LCD data RAM of up to 16 x 32-bit registers which contain pixel information
(active/inactive)

● Software selectable LCD output voltage (contrast) from VLCDmin to VLCDmax.

● No need for external analog components:

– A step-up converter is embedded to generate an internal VLCD voltage higher than
VDD

– Software selection between external and internal VLCD voltage source. In case of
an external source, the internal boost circuit is disabled to reduce power
consumption

– A resistive network is embedded to generate intermediate VLCD voltages

– The structure of the resistive network is configurable by software to adapt the
power consumption to match the capacitive charge required by the LCD panel.

● The contrast can be adjusted using two different methods:

– When using the internal step-up converter, the software can adjust VLCD between
VLCDmin and VLCDmax.

– Programmable dead time (up to 8 phase periods) between frames.

● Full support of Low power modes: the LCD controller can be displayed in Sleep, Low
power run, Low power sleep and Low power STOP modes or can be fully disabled to
reduce power consumption

● Built in phase inversion for reduced power consumption and EMI. (electromagnetic
interference)

● Start of frame interrupt to synchronize the software when updating the LCD data RAM.

LCD controller (LCD) RM0038

244/598 Doc ID 15965 Rev 4

● Blink capability:

– Up to 1, 2, 3, 4, 8 or all pixels which can be programmed to blink at a configurable
frequency.

– Software adjustable blink frequency to achieve around 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.

● Used LCD segment and common pins should be configured as GPIO alternate
functions and unused segment and common pins can be used for general purpose I/O
or for another peripheral alternate function.

Note: 1 When the LCD relies on the internal step-up converter, the VLCD pin should be connected
to VSS with a capacitor. Its typical value is 1 µF (see CEXT value in the product datasheets
for futher information).

2 The VLCD pin should be connected to VDDA:
- For devices without LCD
- If the LCD peripheral is not used for devices with LCD.

12.3 Glossary
Bias: Number of voltage levels used when driving an LCD. It is defined as 1/(number of
voltage levels used to drive an LCD display - 1).

Boost circuit: Contrast controller circuit

Common: Electrical connection terminal connected to several segments (44 segments).

Duty ratio: Number defined as 1/(number of common terminals on a given LCD display).

Frame: One period of the waveform written to a segment.

Frame rate: Number of frames per second, that is, the number of times the LCD segments
are energized per second.

LCD: (liquid crystal display) a passive display panel with terminals leading directly to a
segment.

Segment: The smallest viewing element (a single bar or dot that is used to help create a
character on an LCD display).

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 245/598

12.4 LCD functional description

12.4.1 General description

The LCD controller has five main blocks (see Figure 54):

Figure 54. LCD controller block diagram

Note: LCDCLK is the same as RTCCLK. Please refer to the RTC/LCD clock description in the
RCC section of this manual.

LCDCLK

LCD RAM

(32x16 bits)

8-
to

-1
 M

U
X

COM0

COM3

SEG39

SEG0

VLCD

VSS

SEG[43:0]

COM[3:0]

PS[3:0]

DIV[3:0]

LCDCLK/32768LCDCLK

ck_div

CLOCK MUX

Divide by 16 to 31

A
D

D
R

E
S

S
 B

U
S

D
AT

A
 B

U
S

EN

HD

Analog
switch
array

CONTRAST
CONTROLLER

LCD REGS

VOLTAGE
GENERATOR

CC[2:0]

1/3-1/4 VLCD

2/3 -3/4VLCD

1/2 VLCD

COM
DRIVER

SEG
DRIVER

BIAS[1:0]

Interrupt

PULSE GEN

ck_ps

I/O Ports
Analog step-up

READY

VSEL
STATIC

SEG[43:40]

SEG[39:0]

4044
S

E
G

[4
3:

40
]

S
E

G
[3

1:
28

]

16-bit Prescaler

LCD REGS

FREQUENCY GENERATOR

COM[7:4]

SEG

MUX
COM

SEG40/
COM4

SEG41/
COM5

SEG42/
COM6

SEG43/
COM7

converter

LCD controller (LCD) RM0038

246/598 Doc ID 15965 Rev 4

12.4.2 Frequency generator

The frequency generator allows you to achieve various LCD frame rates starting from an
LCD input clock frequency (LCDCLK) which can vary from 32 kHz up to 1 MHz.

3 different clock sources can be used to provide the LCD clock (LCDCLK/RTCCLK):

● 32 kHz Low speed external RC (LSE)

● 37 kHz Low speed internal RC (LSI)

● 1-24 MHz High speed external crystal oscillator (HSE) divided by 2, 4, 8 or 16 to obtain
a 1 MHz clock

Please refer to the RTC/LCD Clock configuration in the RCC section of this manual.

 This clock source must be stable in order to obtain accurate LCD timing and hence
minimize DC voltage offset across LCD segments. The input clock LCDCLK can be divided
by any value from 1 to 215x 31 (see Section 12.5.2: LCD frame control register (LCD_FCR)
on page 263). The frequency generator consists of a prescaler (16-bit ripple counter) and a
16 to 31 clock divider. The PS[3:0] bits, in the LCD_FCR register, select LCDCLK divided by
2PS[3:0]. If a finer resolution rate is required, the DIV[3:0] bits, in the LCD_FCR register, can
be used to divide the clock further by 16 to 31. In this way you can roughly scale the
frequency, and then fine-tune it by linearly scaling the clock with the counter. The output of
the frequency generator block is fck_div which constitutes the time base for the entire LCD
controller. The ck_div frequency is equivalent to the LCD phase frequency, rather than the
frame frequency (they are equal only in case of static duty). The frame frequency (fframe) is
obtained from fck_div by dividing it by the number of active common terminals (or by
multiplying it for the duty). Thus the relation between the input clock frequency (fLCDCLK) of
the frequency generator and its output clock frequency fck_div is:

This makes the frequency generator very flexible. An example of frame rate calculation is
shown in Table 48.

Table 48. Example of frame rate calculation

LCDCLK PS[3:0] DIV[3:0] Ratio Duty fframe

32.768 kHz 3 1 136 1/8 30.12 Hz

32.768 kHz 4 1 272 1/4 30.12 Hz

32.768 kHz 4 6 352 1/3 31.03 Hz

32.768 kHz 5 1 544 1/2 30.12 Hz

32.768 kHz 6 1 1088 static 30.12 Hz

32.768 kHz 1 4 40 1/8 102.40 Hz

32.768 kHz 2 4 80 1/4 102.40 Hz

32.768 kHz 2 11 108 1/3 101.14 Hz

fckdiv
fLCDCLK

2PS 16 DIV+〈 〉×
---=

fframe fckdiv duty×=

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 247/598

The frame frequency must be selected to be within a range of around ~30 Hz to ~100 Hz
and is a compromise between power consumption and the acceptable refresh rate. In
addition, a dedicated blink prescaler selects the blink frequency. This frequency is defined
as:

 fBLINK = fck_div/2(BLINKF + 3),

with BLINKF[2:0] = 0, 1, 2, ..,7

The blink frequency achieved is in the range of 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.

12.4.3 Common driver

Common signals are generated by the common driver block (see Figure 54).

COM signal bias

Each COM signal has identical waveforms, but different phases. It has its max amplitude
VLCD or VSS only in the corresponding phase of a frame cycle, while during the other
phases, the signal amplitude is:

● 1/4 VLCD or 3/4 VLCD in case of 1/4 bias

● 1/3 VLCD or 2/3 VLCD in case of 1/3 bias

● and 1/2 VLCD in case of 1/2 bias.

Selection between 1/2, 1/3 and 1/4 bias mode can be done through the BIAS bits in the
LCD_CR register.

A pixel is activated when both of its corresponding common and segment lines have max
amplitudes during the same phase. Common signals are phase inverted in order to reduce
EMI. As shown in Figure 55, with phase inversion, there is a mean voltage of 1/2 VLCD at the
end of every odd cycle.

32.768 kHz 3 4 160 1/2 102.40 Hz

32.768 kHz 4 4 320 static 102.40 Hz

1.00 MHz 6 3 1216 1/8 102.80 Hz

1.00 MHz 7 3 2432 1/4 102.80 Hz

1.00 MHz 7 10 3328 1/3 100.16 Hz

1.00 MHz 8 3 4864 1/2 102.80 Hz

1.00 MHz 9 3 9728 static 102.80 Hz

Table 48. Example of frame rate calculation (continued)

LCDCLK PS[3:0] DIV[3:0] Ratio Duty fframe

LCD controller (LCD) RM0038

248/598 Doc ID 15965 Rev 4

Figure 55. 1/3 bias, 1/4 duty

In case of 1/2 bias (BIAS = 01) the VLCD pin generates an intermediate voltage (node B =
node A) equal to 1/2 VLCD for odd and even frames (see Figure 62).

COM signal duty

Depending on the DUTY[2:0] bits in the LCD_CR register, the COM signals are generated
with static duty (see Figure 57), 1/2 duty (see Figure 58), 1/3 duty (see Figure 59), 1/4 duty
(see Figure 60) or 1/8 duty (see Figure 61).

COM[n] n[0 to 7] is active during phase n in the odd frame, so the COM pin is driven to VLCD,

During phase n of the even frame the COM pin is driven to VSS.

In the case of 1/3 or 1/4) bias:

● COM[n] is inactive during phases other than n so the COM pin is driven to 1/3 (1/4)
VLCD during odd frames and to 2/3 (3/4) VLCD during even frames

In the case of 1/2 bias:

● If COM[n] is inactive during phases other than n, the COM pin is always driven (odd
and even frame) to 1/2 VLCD.

When static duty is selected, the segment lines are not multiplexed, which means that each
segment output corresponds to one pixel. In this way only up to 44 pixels can be driven.
COM[0] is always active while COM[7:1] are not used and are driven to VSS.

When the LCDEN bit in the LCD_CR register is reset, all common lines are pulled down to
VSS and the ENS flag in the LCD_SR register becomes 0. Static duty means that COM[0] is
always active and only two voltage levels are used for the segment and common lines: VLCD
and VSS. A pixel is active if the corresponding SEG line has a voltage opposite to that of the
COM, and inactive when the voltages are equal. In this way the LCD has maximum contrast
(see Figure 56, Figure 57). In the Figure 56 pixel 0 is active while pixel 1 is inactive.

2/3 VLCD
1/3 VLCD

VSS

VLCD

C
om

m
on

2/3 VLCD
1/3 VLCD

VSS

VLCD

S
eg

m
en

t

Phase 0 Phase 1 Phase 2 Phase 3 Phase 0 Phase 1 Phase 2 Phase 3

Odd Frame Even Frame

Com Active Com Inactive Com Inactive Com Inactive Com Active Com Inactive Com InactiveCom Inactive

Seg Inactive Seg InactiveSeg Active Seg Active Seg Inactive Seg InactiveSeg Active Seg Active

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 249/598

Figure 56. Static duty

In each frame there is only one phase, this is why fframe is equal to fLCD. If 1/4 duty is
selected there are four phases in a frame in which COM[0] is active during phase 0, COM[1]
is active during phase 1, COM[2] is active during phase 2, and COM[3] is active during
phase 3.

Figure 57. Static duty

In this mode, the segment terminals are multiplexed and each of them control four pixels. A
pixel is activated only when both of its corresponding SEG and COM lines are active in the
same phase. In case of 1/4 duty, to deactivate pixel 0 connected to COM[0] the SEG[0]
needs to be inactive during the phase 0 when COM[0] is active. To activate pixel44

VLCD
VSS

COM0

VLCD
VSS

SEG0

VLCD
VSS

SEG1

VLCD

0COM0-

-VLCD
SEG0

VLCD

0
COM0-

-VLCD
SEG1

Even
Frame

Odd
Frame

Even
Frame

Odd
Frame

1/1 V

0/1 V

1/1 V

0/1 V

1/1 V

0/1 V

1/1 V

0/1 V

-1/1 V

0/1 V

PIN

PIN

SEG0

COM0

COM0 - SEG0

COM0 - SEG1

Selected Waveform

Non selected waveform

PIN
SEG1

Liquid Crystal Display
and Terminal Connection

COM0

SE
G

0
SE

G
1

SE
G

2

SE
G

3
SE

G
4

SEG6

SEG5

SEG7

1 frame

LCD controller (LCD) RM0038

250/598 Doc ID 15965 Rev 4

connected to COM[1] the SEG[0] needs to be active during phase 1 when COM[1] is active
(see Figure 60). To activate pixels from 0 to 43 connected to COM[0], SEG[0:43] need to be
active during phase 0 when COM[0] is active. These considerations can be extended to the
other pixels.

8 to 1 Mux

When COM[0] is active the common driver block, also drives the 8 to 1 mux shown in
Figure 54 in order to select the content of first two RAM register locations. When COM[7] is
active, the output of the 8 to 1 mux is the content of the last two RAM locations.

Start of frame (SOF)

The common driver block is also able to generate an SOF (start of frame flag) (see
Section 12.5.3: LCD status register (LCD_SR)). The LCD start of frame interrupt is executed
if the SOFIE (start of frame interrupt enable) bit is set (see Section 12.5.2: LCD frame
control register (LCD_FCR)). SOF is cleared by writing the SOFC bit to 1 in the LCD_CLR
register when executing the corresponding interrupt handling vector.

Figure 58. 1/2 duty, 1/2 bias

PIN

PIN

PIN

COM1

SEG0

COM0

COM0 - SEG0

COM0 - SEG1

Selected Waveform

Non selected waveform

PIN
SEG1

2/2 V

1/2 V

0/2 V

2/2 V

0/2 V

2/2 V

0/2 V

2/2 V

1/2 V

0/2 V

2/2 V

1/2 V

0/2 V

-1/2 V

-2/2 V

1/2 V

0/2 V

-1/2 V

1 frame

Liquid crystal display
and terminal connection

COM0

COM1

SE
G

0

SE
G

1

SE
G

2

SE
G

3

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 251/598

12.4.4 Segment driver

The segment driver block controls the SEG lines according to the pixel data coming from the
8 to 1 mux driven in each phase by the common driver block.

In the case of 1/4 or 1/8 duty

When COM[0] is active, the pixel information (active/inactive) related to the pixel connected
to COM[0] (content of the first two LCD_RAM locations) goes through the 8 to 1 mux.

The SEG[n] pin n [0 to 43] is driven to VSS (indicating pixel n is active when COM[0] is
active) in phase 0 of the odd frame,

The SEG[n] pin is driven to VLCD in phase 0 of the even frame. If pixel n is inactive then the
SEG[n] pin is driven to 2/3 (2/4) VLCD in the odd frame or 1/3 (2/4) VLCD in the even frame
(current inversion in VLCD pad). (see Figure 55)

In case of 1/2 bias, if the pixel is inactive the SEG[n] pin is driven to VLCD in the odd and to
VSS in the even frame.

When the LCD controller is disabled (LCDEN bit cleared in the LCD_CR register) then the
SEG lines are pulled down to VSS.

LCD controller (LCD) RM0038

252/598 Doc ID 15965 Rev 4

Figure 59. 1/3 duty, 1/3 bias

PIN

PIN

PIN

PIN

COM1

COM2

COM0

SEG0

PIN
SEG1

COM0 - SEG1

COM0 - SEG0

Selected Waveform

Non selected waveform

3/3 V

2/3 V

1/3 V

0/3 V

3/3 V

2/3 V

1/3 V

0/3 V

3/3 V

2/3 V

1/3 V

0/3 V

3/3 V

2/3 V

1/3 V

0/3 V

3/3 V

2/3 V

1/3 V

0/3 V

3/3 V

2/3 V

1/3 V

0/3 V

-3/3 V

-2/3 V

-1/3 V

1/3 V

0/3 V

-1/3 V

1 frame

Liquid Crystal Display
and Terminal Connection

COM0

COM1

COM2

SEG0 SEG1 SEG2

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 253/598

Figure 60. 1/4 duty, 1/3 bias

1 frame

PIN

PIN

PIN

PIN

PIN

COM0

COM1

COM2

COM3

SEG0

PIN
SEG1

COM3 - SEG0

COM0 - SEG0

Selected Waveform

Non selected waveform

3/3 V

2/3 V

1/3 V

0/3 V

3/3 V

2/3 V

1/3 V

0/3 V

3/3 V

2/3 V

1/3 V

0/3 V

3/3 V

2/3 V

1/3 V

0/3 V

3/3 V

2/3 V

1/3 V

0/3 V

3/3 V

2/3 V

1/3 V

0/3 V

3/3 V

2/3 V

1/3 V

0/3 V

-3/3 V

-2/3 V

-1/3 V

1/3 V

0/3 V

-1/3 V

Liquid Crystal Display
and Terminal Connection

COM0

COM1

COM2

SEG0

COM3

SEG1

LCD controller (LCD) RM0038

254/598 Doc ID 15965 Rev 4

Figure 61. 1/8 duty, 1/4 bias

4/4 V
3/4 V

2/4 V

1/4 V
0/4 V

4/4 V
3/4 V

2/4 V

1/4 V
0/4 V

4/4 V
3/4 V

2/4 V

1/4 V
0/4 V

4/4 V

3/4 V
2/4 V

1/4 V
0/4 V

4/4 V
3/4 V

2/4 V

1/4 V
0/4 V

4/4 V

3/4 V

2/4 V

1/4 V
0/4 V

-1/4 V
-2/4 V

-3/4 V

-4/4 V

PIN

PIN

PIN

PIN

PIN

COM0 - SEG0

1 frame

4/4 V

3/4 V
2/4 V

1/4 V
0/4 V
-1/4 V

-2/4 V

-3/4 V

-4/4 V

COM2 - SEG0

Selected Waveform

Non selected waveform

COM0

COM1

COM2

COM7

SEG0

Liquid Crystal Display
and Terminal Connection

COM0

COM1

COM5

COM7

COM6

COM4

COM3

COM2

SEG0

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 255/598

Blink

The segment driver also implements a programmable blink feature to allow some pixels to
continuously switch on at a specific frequency. The blink mode can be configured by the
BLINK[1:0] bits in the LCD_FCR register, making possible to blink up to 1, 2, 4, 8 or all pixels
(see Section 12.5.2: LCD frame control register (LCD_FCR)). The blink frequency can be
selected from eight different values using the BLINKF[2:0] bits in the LCD_FCR register.

Table 49 gives examples of different blink frequencies (as a function of ck_div frequency).

12.4.5 Voltage generator

The LCD voltage levels are generated by the VLCD pin or by the internal voltage step-up
converter (depending on the VSEL bit in the LCD_CR register), through an internal resistor
divider network as shown in Figure 62.

The LCD voltage generator generates up to three intermediate voltage levels (1/3 VLCD, 2/3
VLCD or 1/4 VLCD, 2/4 VLCD, 3/4 VLCD) between VSS and VLCD in case of 1/3 (1/4) bias and
only one voltage level (1/2 VLCD) between VSS and VLCD in case of 1/2 bias.

In the case of 1/3 or 1/4 bias:

● During odd frames, node b voltage (VbCOM) is 1/3 (1/4) VLCD, while node a voltage
(VaSEG) is 2/3 (3/4) VLCD,

● During even frames, node b voltage is 2/3 (3/4) VLCD and node a voltage is 1/3 (1/4)
VLCD.

In the case of 1/2 bias:

● Node a voltage is equal to node b voltage and its value is 1/2 VLCD.

For the divider network, two resistive networks one with low value resistors (RL) and one
with high value resistors (RH) are respectively used to increase the current during transitions
and to reduce power consumption in static state.

The PON[2:0] (Pulse ON duration) bits in the LCD_FCR register configure the time during
which RL is enabled (see Figure 54) when the levels of the common and segment lines
change. A short drive time will lead to lower power consumption, but displays with high
internal resistance may need a longer drive time to achieve satisfactory contrast.

Table 49. Blink frequency

BLINKF[2:0]

bits

ck_div frequency (with LCDCLK frequency of 32.768 kHz)

32 Hz 64 Hz 128 Hz 256 Hz

0 0 0 4.0 Hz N/A N/A N/A

0 0 1 2.0 Hz 4.0 Hz N/A N/A

0 1 0 1.0 Hz 2.0 Hz 4.0 Hz N/A

0 1 1 0.5 Hz 1.0 Hz 2.0 Hz 4.0 Hz

1 0 0 0.25 Hz 0.5 Hz 1.0 Hz 2.0 Hz

1 0 1 N/A 0.25 Hz 0.5 Hz 1.0 Hz

1 1 0 N/A N/A 0.25 Hz 0.5 Hz

1 1 1 N/A N/A N/A 0.25 Hz

LCD controller (LCD) RM0038

256/598 Doc ID 15965 Rev 4

Figure 62. VLCD pin for 1/2 1/3 1/4 bias

The RL divider can be always switched on using the HD bit in the LCD_FCR configuration
register (see Section 12.5.2). The VLCD value can be chosen among a wide set of values
from VLCDmin to VLCDmax by means of CC[2:0] (Contrast Control) bits inside LCD_FCR (see
Section 12.5.2) register. New values of VLCD takes effect every beginning of a new frame.

After the LCDEN bit is activated the voltage generator sets the RDY bit in the LCD_SR
register to indicate that the voltage levels are stable and the LCD controller can start to
work.

Deadtime

In addition to using the CC[2:0] bits, the contrast can be controlled by programming a dead
time between each frame. During the dead time the COM and SEG values are put to VSS.
The DEAD[2:0] bits in the LCD_FCR register can be used to program a time of up to eight
phase periods. This dead time reduces the contrast without modifying the frame rate.

Figure 63. Deadtime

RH

RH

RL

RL

RL

EN HD

node a

node b

VLCD

VSS

RH

BIAS[1]

BIAS[0]

RHRL

odd frame even frame odd frame even frame
dead time

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 257/598

12.4.6 Double buffer memory

Using its double buffer memory the LCD controller ensures the coherency of the displayed
information without having to use interrupts to control LCD_RAM modification.

The application software can access the first buffer level (LCD_RAM) through the APB
interface. Once it has modified the LCD_RAM, it sets the UDR flag in the LCD_SR register.
This UDR flag (update display request) requests the updated information to be moved into
the second buffer level (LCD_DISPLAY).

This operation is done synchronously with the frame (at the beginning of the next frame),
until the update is completed, the LCD_RAM is write protected and the UDR flag stays high.
Once the update is completed another flag (UDD - Update Display Done) is set and
generates an interrupt if the UDDIE bit in the LCD_FCR register is set.

The time it takes to update LCD_DISPLAY is, in the worst case, one odd and one even
frame.

The update will not occur (UDR = 1 and UDD = 0) until the display is enabled (LCDEN = 1)

12.4.7 COM and SEG multiplexing

Output pins versus duty modes

The output pins consists of:

● SEG[43:0]

● COM[3:0]

Depending on the duty configuration, the COM and SEG output pins may have different
functions:

● In static, 1/2, 1/3 and 1/4 duty modes there are up to 44 SEG pins and respectively 1, 2,
3 and 4 COM pins

● In 1/8 duty mode (DUTY[2:0] = 100), the COM[7:4] outputs are available on the
SEG[43:40] pins, reducing to the number of available segments 40 .

Remapping capability

Additionally, it is possible to remap 4 segments by setting the MUX_SEG bit in the LCD_CR
register. This is particularly useful when using smaller device types with fewer external pins.

When MUX_SEG is set, output pins SEG[43:40] have function SEG[31:28].

Summary of COM and SEG functions versus duty and remap

All the possible ways of multiplexing the COM and SEG functions are described in Table 50.
Figure 64 gives examples showing the signal connections to the external pins.

LCD controller (LCD) RM0038

258/598 Doc ID 15965 Rev 4

Table 50. Remapping capability

Configuration bits
Capability Output pin Function

DUTY MUX_SEG

1/8

0 40x8

SEG[43:40] COM[7:4]

COM[3:0] COM[3:0]

SEG[39:0] SEG[39:0]

1 28x8

SEG[43:40] COM[7:4]

COM[3:0] COM[3:0]

SEG[39:28] not used

SEG[27:0] SEG[27:0]

1/4

0 44x4
COM[3:0] COM[3:0]

SEG[43:0] SEG[43:0]

1 32x4

COM[3:0] COM[3:0]

SEG[43:40] SEG[31:28]

SEG[39:28] not used

SEG[27:0] SEG[27:0]

1/3

0 44x3

COM[3] not used

COM[2:0] COM[2:0]

SEG[43:0] SEG[43:0]

1 32x3

COM[3] not used

COM[2:0] COM[2:0]

SEG[43:40] SEG[31:28]

SEG[39:28] not used

SEG[27:0] SEG[27:0]

1/2

0 44x2

COM[3:2] not used

COM[1:0] COM[1:0]

SEG[43:0] SEG[43:0]

1 32x2

COM[3:2] not used

COM[1:0] COM[1:0]

SEG[43:40] SEG[31:28]

SEG[39:28] not used

SEG[27:0] SEG[27:0]

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 259/598

STATIC

0 44x1

COM[3:1] not used

COM[0] COM[0]

SEG[43:0] SEG[43:0]

1 32x1

COM[3:1] not used

COM[0] COM[0]

SEG[43:40] SEG[31:28]

SEG[39:28] not used

SEG[27:0] SEG[27:0]

Table 50. Remapping capability (continued)

Configuration bits
Capability Output pin Function

DUTY MUX_SEG

LCD controller (LCD) RM0038

260/598 Doc ID 15965 Rev 4

Figure 64. SEG/COM mux feature example

LCD CONTROLLER

LCD_SEG[43]
PIN

SEG[43]

SEG[31]

COM[7]

SEG DRIVER

COM DRIVER

SEG_OUT[43]SEG
COM
MUX

DUTY ≠ 1/8 and MUX_SEG = 0

LCD CONTROLLER

LCD_SEG[43]
PIN

SEG[43]

SEG[31]

COM[7]

SEG DRIVER

COM DRIVER

SEG_OUT[43]SEG
COM
MUX

DUTY ≠ 1/8 and MUX_SEG = 1

LCD CONTROLLER

LCD_SEG[43]
PIN

SEG[43]

SEG[31]

COM[7]

SEG DRIVER

COM DRIVER

SEG_OUT[43]SEG
COM
MUX

DUTY = 1/8 and MUX_SEG = 0/1

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 261/598

12.4.8 Flowchart

Figure 65. Flowchart example

START

END

INIT

- Enable the GPIO port clocks

- Configure the LCD GPIO pins as alternate functions

Configure LCD controller according to the Display to be driven:

- Program desired DUTY in LCD_CR

- Program desired BIAS in LCD_CR

Enable the display (LCDEN bit in LCD_CR register)

Adjust contrast?

Modify data?

Change Blink?

Disable LCD?

No

No

No

No

No

Yes

Yes

Yes

Yes

Change PS, DIV, CC, PON,
DEAD or HD in LCD_FCR

UDR = 1?

Yes

Change BLINK or BLINKF
in LCD_FCR

ENS = 0?

Yes

No

Modify the LCD_RAM

Set UDR bit in LCD_SR

Load the initial data to be displayed into LCD_RAM and set the
UDR bit in the LCD_SR register

- Program the desired frame rate (PS and DIV bits in LCD_FCR)

- Program the contrast (CC bits in LCD_FCR register)

- Program optional features (BLINK, BLINKF, PON, DEAD, HD)

- Program the required interrupts

Disable the display (LCDEN bit in LCD_CR register)

LCD controller (LCD) RM0038

262/598 Doc ID 15965 Rev 4

12.5 LCD registers
The peripheral registers have to be accessed by words (32-bit).

12.5.1 LCD control register (LCD_CR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

MUX_
SEG BIAS[1:0] DUTY[2:0] VSEL LCDEN

rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw

Bits 31:8 Reserved, must be kept cleared.

Bit 7 MUX_SEG: Mux segment enable

This bit is used to enable SEG pin remapping. Four SEG pins can be multiplexed with
SEG[31:28]. See Section 12.4.7.

0: SEG pin multiplexing disabled
1: SEG[31:28] are multiplexed with SEG[43:40]

Bits 6:5 BIAS[1:0]: Bias selector

These bits determine the bias used. Value 11 is forbidden.
00: Bias 1/4
01: Bias 1/2
10: Bias 1/3
11: Reserved

Bits 4:2 DUTY[2:0]: Duty selection

These bits determine the duty cycle. Values 101, 110 and 111 are forbidden.

000: Static duty
001: 1/2 duty
010: 1/3 duty
011: 1/4 duty
100: 1/8 duty
101: Reserved
110: Reserved
111: Reserved

Bit 1 VSEL: Voltage source selection

The VSEL bit determines the voltage source for the LCD.
0: Internal source (voltage step-up converter)
1: External source (VLCD pin)

Bit 0 LCDEN: LCD controller enable

This bit is set by software to enable the LCD Controller/Driver. It is cleared by software to turn
off the LCD at the beginning of the next frame. When the LCD is disabled all COM and SEG
pins are driven to VSS.

0: LCD Controller disabled
1: LCD Controller enabled

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 263/598

Note: The VSEL, MUX_SEG, BIAS and DUTY bits are write protected when the LCD is enabled
(ENS bit in LCD_SR to 1).

12.5.2 LCD frame control register (LCD_FCR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PS[3:0] DIV[3:0] BLINK[1:0]

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLINKF[2:0] CC[2:0] DEAD[2:0] PON[2:0] UDDIE
Res.

SOFIE HD

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:26 Reserved, must be kept cleared.

Bits 25:22 PS[3:0]: PS 16-bit prescaler
These bits are written by software to define the division factor of the PS 16-bit prescaler.
ck_ps = LCDCLK/(2). See Section 12.4.2.
0000: ck_ps = LCDCLK

0001: ck_ps = LCDCLK/2

0002: ck_ps = LCDCLK/4
...

1111: ck_ps = LCDCLK/32768

Bits 21:18 DIV[3:0]: DIV clock divider

These bits are written by software to define the division factor of the DIV divider. See
Section 12.4.2.

0000: ck_div = ck_ps/16

0001: ck_div = ck_ps/17
0002: ck_div = ck_ps/18

...

1111: ck_div = ck_ps/31

Bits 17:16 BLINK[1:0]: Blink mode selection

00: Blink disabled
01: Blink enabled on SEG[0], COM[0] (1 pixel)
10: Blink enabled on SEG[0], all COMs (up to 8 pixels depending on the programmed duty)
11: Blink enabled on all SEGs and all COMs (all pixels)

Bits 15:13 BLINKF[2:0]: Blink frequency selection

000: fLCD/8 100: fLCD/128
001: fLCD/16 101: fLCD/256
010: fLCD/32 110: fLCD/512
011: fLCD/64 111: fLCD/1024

LCD controller (LCD) RM0038

264/598 Doc ID 15965 Rev 4

Bits 12:10 CC[2:0]: Contrast control
These bits specify one of the VLCD maximum voltage (independent of VDD). It ranges from
2.60 V to 3.51V.

Note: 000: VLCD0
001: VLCD1
010: VLCD2
011: VLCD3
100: VLCD4
101: VLCD5
110 VLCD6
111: VLCD7

Bits 9:7 DEAD[2:0]: Dead time duration

These bits are written by software to configure the length of the dead time between frames.
During the dead time the COM and SEG voltage levels are held at 0 V to reduce the
contrast without modifying the frame rate.
000: No dead time
001: 1 phase period dead time
010: 2 phase period dead time
......
111: 7 phase period dead time

Bits 6:4 PON[2:0]: Pulse ON duration

These bits are written by software to define the pulse duration in terms of ck_ps
pulses. A short pulse will lead to lower power consumption, but displays with
high internal resistance may need a longer pulse to achieve satisfactory contrast.
Note that the pulse will never be longer than one half prescaled LCD clock period.
000: 0 100: 4/ck_ps
001: 1/ck_ps 101: 5/ck_ps
010: 2/ck_ps 110: 6/ck_ps
011: 3/ck_ps 111: 7/ck_ps

PON duration example with LCDCLK = 32.768 kHz and PS=0x03:
000: 0 µs 100: 976 µs
001: 244 µs 101: 1.22 ms
010: 488 µs 110: 1.46 ms
011: 782 µs 111: 1.71 ms

Bit 3 UDDIE: Update display done interrupt enable

This bit is set and cleared by software.
0: LCD Update Display Done interrupt disabled
1: LCD Update Display Done interrupt enabled

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 265/598

Note: The data in this register can be updated any time, however the new values are applied only
at the beginning of the next frame (except for CC, UDDIE, SOFIE that affect the device
behavior immediately).

Reading this register obtains the last value written in the register and not the configuration
used to display the current frame.

12.5.3 LCD status register (LCD_SR)

Address offset: 0x08

Reset value: 0x0000 0020

Bit 2 Reserved, must be kept cleared.

Bit 1 SOFIE: Start of frame interrupt enable

This bit is set and cleared by software.
0: LCD Start of Frame interrupt disabled
1: LCD Start of Frame interrupt enabled

Bit 0 HD: High drive enable

This bit is written by software to enable a low resistance divider. Displays with high internal
resistance may need a longer drive time to achieve satisfactory contrast. This bit is useful in
this case if some additional power consumption can be tolerated.

0: Permanent high drive disabled
1: Permanent high drive enabled. When HD=1, then the PON bits have to be programmed
to 001.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
FCRSF RDY UDD UDR SOF ENS

r r r rs r r

Bits 31:6 Reserved, must be kept cleared.

Bit 5 FCRSF: LCD Frame Control Register Synchronization flag
This bit is set by hardware each time the LCD_FCR register is updated in the LCDCLK
domain. It is cleared by hardware when writing to the LCD_FCR register.

0: LCD Frame Control Register not yet synchronized
1: LCD Frame Control Register synchronized

Bit 4 RDY: Ready flag
This bit is set and cleared by hardware. It indicates the status of the step-up converter.

0: Not ready
1: Step-up converter is enabled and ready to provide the correct voltage.

LCD controller (LCD) RM0038

266/598 Doc ID 15965 Rev 4

12.5.4 LCD clear register (LCD_CLR)

Address offset: 0x0C

Reset value: 0x0000 0000

Bit 3 UDD: Update Display Done
This bit is set by hardware. It is cleared by writing 1 to the UDDC bit in the LCD_CLR register.
The bit set has priority over the clear.

0: No event
1: Update Display Request done. A UDD interrupt is generated if the UDDIE bit in the
LCD_FCR register is set.

Note: If the device is in STOP mode (PCLK not provided) UDD will not generate an interrupt
even if UDDIE = 1.
If the display is not enabled the UDD interrupt will never occur.

Bit 2 UDR: Update display request
Each time software modifies the LCD_RAM it must set the UDR bit to transfer the updated
data to the second level buffer. The UDR bit stays set until the end of the update and during
this time the LCD_RAM is write protected.

0: No effect
1: Update Display request

Note: When the display is disabled, the update is performed for all LCD_DISPLAY locations.
When the display is enabled, the update is performed only for locations for which
commons are active (depending on DUTY). For example if DUTY = 1/2, only the
LCD_DISPLAY of COM0 and COM1 will be updated.

Note: Writing 0 on this bit or writing 1 when it is already 1 has no effect. This bit can be
cleared by hardware only. It can be cleared only when LCDEN = 1

Bit 1 SOF: Start of frame flag

This bit is set by hardware at the beginning of a new frame, at the same time as the display
data is updated. It is cleared by writing a 1 to the SOFC bit in the LCD_CLR register. The bit
clear has priority over the set.

0: No event

1: Start of Frame event occurred. An LCD Start of Frame Interrupt is generated if the SOFIE
bit is set.

Bit 0 ENS: LCD enabled status

This bit is set and cleared by hardware. It indicates the LCD controller status.

0: LCD Controller disabled.
1: LCD Controller enabled

Note: The ENS bit is set immediately when the LCDEN bit in the LCD_CR goes from 0 to 1.
On deactivation it reflects the real status of LCD so it becomes 0 at the end of the last
displayed frame.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UDDC

Res.
SOFC

Res.
w w

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 267/598

Bit 31:2 Reserved, must be kept cleared.

Bit 3 UDDC: Update display done clear

This bit is written by software to clear the UDD flag in the LCD_SR register.
0: No effect
1: Clear UDD flag

Bit 2 Reserved, must be kept cleared.

Bit 1 SOFC: Start of frame flag clear

This bit is written by software to clear the SOF flag in the LCD_SR register.
0: No effect
1: Clear SOF flag

Bit 0 Reserved, must be kept cleared.

LCD controller (LCD) RM0038

268/598 Doc ID 15965 Rev 4

12.5.5 LCD display memory (LCD_RAM)

Address offset: 0x14-0x50

Reset value: 0x0000 0000

Note: See register map for more details

12.5.6 LCD register map

The following table summarizes the LCD registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SEGMENT_DATA[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SEGMENT_DATA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 SEGMENT_DATA[31:0]
Each bit corresponds to one pixel of the LCD display.

0: Pixel inactive
1: Pixel active

Table 51. LCD register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
LCD_CR

Reserved

M
U

X
_S

E
G

B
IA

S
[1

:0
]

DUTY[2:0]

V
S

E
L

LC
D

E
N

Reset value 0 0 0 0 0 0 0 0

0x04
LCD_FCR

Reserved
PS[3:0] DIV[3:0]

B
LI

N
K

[1
:0

]

B
LI

N
K

F
[1

:0
]

CC[2:0] DEAD
[2:0] PON[2:0]

U
D

D
IE

R
es

er
ve

d

S
O

F
IE

H
D

Reset value 0

0x08
LCD_SR

Reserved

F
C

R
S

F

R
D

Y

U
D

D

U
D

R

S
O

F

E
N

S
Reset value 1 0 0 0 0 0

0x0C
LCD_CLR

Reserved

U
D

D
C

R
es

er
ve

d

S
O

F
C

R
es

er
ve

d

Reset value 0 0

0x14

LCD_RAM
(COM0)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x18 Reserved S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0

0x1C

LCD_RAM
(COM1)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x20 Reserved S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0

RM0038 LCD controller (LCD)

Doc ID 15965 Rev 4 269/598

0x24

LCD_RAM
(COM2)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x28 Reserved S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0

0x2C

LCD_RAM
(COM3)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x30 Reserved S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0

0x34

LCD_RAM
(COM4)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x38 Reserved S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0

0x3C

LCD_RAM
(COM5)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x40 Reserved S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0

0x44

LCD_RAM
(COM6)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x48 Reserved S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0

0x4C

LCD_RAM
(COM7)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x50 Reserved S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0

Table 51. LCD register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

General-purpose timers (TIM2 to TIM4) RM0038

270/598 Doc ID 15965 Rev 4

13 General-purpose timers (TIM2 to TIM4)

13.1 TIM2 to TIM4 introduction
The general-purpose timers consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The timers are completely independent, and do not share any resources. They can be
synchronized together as described in Section 13.3.15.

13.2 TIM2 to TIM4 main features
General-purpose TIMx timer features include:

● 16-bit up, down, up/down auto-reload counter.

● 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65535.

● Up to 4 independent channels for:

– Input capture

– Output compare

– PWM generation (Edge- and Center-aligned modes)

– One-pulse mode output

● Synchronization circuit to control the timer with external signals and to interconnect
several timers.

● Interrupt/DMA generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

● Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning
purposes

● Trigger input for external clock or cycle-by-cycle current management

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 271/598

Figure 66. General-purpose timer block diagram

13.3 TIM2 to TIM4 functional description

13.3.1 Time-base unit

The main block of the programmable timer is a 16-bit counter with its related auto-reload
register. The counter can count up but also down or both up and down. The counter clock
can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

● Counter Register (TIMx_CNT)

● Prescaler Register (TIMx_PSC):

● Auto-Reload Register (TIMx_ARR)

Autoreload register

Capture/compare 1 register

Capture/compare 2 register

U

U

U

CC1I

CC2I

Trigger
controller

Stop, clear or up/down

TI1FP1

TI2FP2

ITR0

ITR1

ITR2

ITR3
TRGI

Encoder
Interface

Capture/compare 3 register

U
CC3I

output
control

OC1

TRGO

OC1REF

OC2REF

OC3REF

U

UI

Reset, enable, up/down, count

Capture/compare 4 register

U
CC4I

OC4REF
Prescaler

Prescaler

IC4PS

IC3PS

IC1

IC2
Prescaler

PrescalerInput filter &
edge detector

IC2PS

IC1PSTI1FP1

OC2

OC3

OC4

Reg

event

Notes:

Preload registers transferred
to active registers on U event
according to control bit

interrupt & DMA output

TGI

TRC

TRC

IC3

IC4

ITR

TRC

TI1F_ED

Input filter &
edge detector

Input filter &
edge detector

Input filter &
edge detector

CC1I

CC2I

CC3I

CC4I

TI1FP2

TI2FP1
TI2FP2

TI3FP3

TRC

TRC

TI3FP4

TI4FP3
TI4FP4

TI4

TI3

TI1

TI2

XOR

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH4

TIMx_CH1

TIMx_CH2

TIMx_CH3

TIMx_CH4

to other timers

TIMxCLK from RCC

Prescaler counter
+/-CK_PSC PSC CNTCK_CNT

controller
mode
Slave

Internal clock (CK_INT)

ETR
Input filterPolarity selection & edge

detector & prescaler

ETRP
ETRF

TIMx_ETR

ETRF

to DAC/ADC

output
control

output
control

output
control

OCREF_CLR

ETRF

ai17188

General-purpose timers (TIM2 to TIM4) RM0038

272/598 Doc ID 15965 Rev 4

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 67 and Figure 68 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:

Figure 67. Counter timing diagram with prescaler division change from 1 to 2

 CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 1

Write a new value in TIMx_PSC

01 02 03

Prescaler buffer 0 1

Prescaler counter 0 1 0 1 0 1 0 1

F8

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 273/598

Figure 68. Counter timing diagram with prescaler division change from 1 to 4

13.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

An Update event can be generated at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register.
This is to avoid updating the shadow registers while writing new values in the preload
registers. Then no update event occurs until the UDIS bit has been written to 0. However,
the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate
does not change). In addition, if the URS bit (update request selection) in TIMx_CR1
register is set, setting the UG bit generates an update event UEV but without setting the UIF
flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and
capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

● The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

● The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 3

Write a new value in TIMx_PSC

Prescaler buffer 0 3

Prescaler counter 0 1 2 3 0 1 2 3

F8 01

General-purpose timers (TIM2 to TIM4) RM0038

274/598 Doc ID 15965 Rev 4

Figure 69. Counter timing diagram, internal clock divided by 1

Figure 70. Counter timing diagram, internal clock divided by 2

Figure 71. Counter timing diagram, internal clock divided by 4

 CK_INT

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

 CK_INT

0035 0000 0001 0002 0003

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0034 0036

Counter overflow

Update event (UEV)

0000 0001

CNT_EN

 TImer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0035 0036

Counter overflow

Update event (UEV)

 CK_INT

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 275/598

Figure 72. Counter timing diagram, internal clock divided by N

Figure 73. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not
preloaded)

 Timer clock = CK_CNT

Counter register 001F 20

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

 CK_INT

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

Auto-reload register FF 36

Write a new value in TIMx_ARR

 CK_INT

General-purpose timers (TIM2 to TIM4) RM0038

276/598 Doc ID 15965 Rev 4

Figure 74. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR
preloaded)

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

An Update event can be generate at each counter underflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller)

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

● The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

● The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one.

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 07F1 F2 F3 F4 F5F0

Auto-reload preload register F5 36

Auto-reload shadow register F5 36

Write a new value in TIMx_ARR

CK_PSC

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 277/598

Figure 75. Counter timing diagram, internal clock divided by 1

Figure 76. Counter timing diagram, internal clock divided by 2

Figure 77. Counter timing diagram, internal clock divided by 4

 CK_INT

36

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow (cnt_udf)

Update event (UEV)

35 34 33 32 31 30 2F04 03 02 01 0005

 CK_INT

0001 0036 0035 0034 0033

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0002 0000

Counter underflow

Update event (UEV)

0036 0035

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0001 0000

Counter underflow

Update event (UEV)

 CK_INT

General-purpose timers (TIM2 to TIM4) RM0038

278/598 Doc ID 15965 Rev 4

Figure 78. Counter timing diagram, internal clock divided by N

Figure 79. Counter timing diagram, Update event when repetition counter is not
used

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-
reload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.

Center-aligned mode is active when the CMS bits in TIMx_CR1 register arenot equal to '00'.
The Output compare interrupt flag of channels configured in output is set when: the counter
counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned
mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS =
"11").

In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

 Timer clock = CK_CNT

Counter register 3620 1F

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

 CK_INT

00

36

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

35 34 33 32 31 30 2F04 03 02 01 0005

Auto-reload register FF 36

Write a new value in TIMx_ARR

 CK_INT

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 279/598

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupt when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

● The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

● The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

Figure 80. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 13.4.1: TIMx control register 1 (TIMx_CR1) on
page 306).

 CK_INT

02

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

03 04 05 06 05 04 0303 02 01 00 0104

Counter overflow

General-purpose timers (TIM2 to TIM4) RM0038

280/598 Doc ID 15965 Rev 4

Figure 81. Counter timing diagram, internal clock divided by 2

Figure 82. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

1. Center-aligned mode 2 or 3 is used with an UIF on overflow.

Figure 83. Counter timing diagram, internal clock divided by N

0002 0000 0001 0002 0003

CNT_EN

 TImer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0003 0001

Counter underflow

Update event (UEV)

 CK_INT

 CK_INT

0036 0035

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0034 0035

Counter overflow (cnt_ovf)

Update event (UEV)

 Timer clock = CK_CNT

Counter register 0020 1F

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

 CK_INT

01

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 281/598

Figure 84. Counter timing diagram, Update event with ARPE=1 (counter underflow)

Figure 85. Counter timing diagram, Update event with ARPE=1 (counter overflow)

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

01 02 03 04 05 06 0705 04 03 02 0106

Auto-reload preload register FD 36

Write a new value in TIMx_ARR

Auto-reload active register FD 36

 CK_INT

36

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

35 34 33 32 31 30 2FF8 F9 FA FB FCF7

Auto-reload preload register FD 36

Write a new value in TIMx_ARR

Auto-reload active register FD 36

CK_INT

General-purpose timers (TIM2 to TIM4) RM0038

282/598 Doc ID 15965 Rev 4

13.3.3 Clock selection

The counter clock can be provided by the following clock sources:

● Internal clock (CK_INT)

● External clock mode1: external input pin (TIx)

● External clock mode2: external trigger input (ETR)

● Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for
example, you can configure Timer 3 to act as a prescaler for Timer 2. Refer to : Using
one timer as prescaler for another on page 301 for more details.

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the
CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except UG which remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 86 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 86. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count
at each rising or falling edge on a selected input.

CK_INT

00

 Counter clock = CK_CNT = CK_PSC

COUNTER REGISTER 01 02 03 04 05 06 0732 33 34 35 3631

CEN=CNT_EN

UG

CNT_INIT

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 283/598

Figure 87. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01 in the
TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

Note: The capture prescaler is not used for triggering, so you don’t need to configure it.

3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER
register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.

5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

Figure 88. Control circuit in external clock mode 1

CK_INT

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

ECE
TIMx_SMCR

SMS[2:0]

ITRx

TI1F_ED

TI1FP1

TI2FP2

ETRF

TIMx_SMCR
TS[2:0]

TI2
0

1

TIMx_CCER

CC2P

Filter

ICF[3:0]

TIMx_CCMR1

Edge
Detector

TI2F_Rising

TI2F_Falling 110

001

100

101

111

 Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

TI2

CNT_EN

TIF

Write TIF=0

General-purpose timers (TIM2 to TIM4) RM0038

284/598 Doc ID 15965 Rev 4

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

The Figure 89 gives an overview of the external trigger input block.

Figure 89. External trigger input block

For example, to configure the upcounter to count each 2 rising edges on ETR, use the
following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.

2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register

4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.

5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.

Figure 90. Control circuit in external clock mode 2

ETR
0

1

TIMx_SMCR

ETP

divider
/1, /2, /4, /8

ETPS[1:0]

ETRP filter

ETF[3:0]

downcounter
CK_INT

TIMx_SMCRTIMx_SMCR

ETR pin

CK_INT

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

ECE
TIMx_SMCR

SMS[2:0]

 Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

ETR

CNT_EN

CK_INT

ETRP

ETRF

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 285/598

13.3.4 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

The following figure gives an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

Figure 91. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

Figure 92. Capture/compare channel 1 main circuit

TI1

TIMx_CCER

CC1P/CC1NP

divider
/1, /2, /4, /8

ICPS[1:0]

TI1F_ED

filter

ICF[3:0]

downcounter

TIMx_CCMR1

Edge
Detector

TI1F_Rising

TI1F_Falling

to the slave mode controller

TI1FP1

11

01

TIMx_CCMR1

CC1S[1:0]

IC1TI2FP1

TRC

(from channel 2)

(from slave mode
controller)

10

fDTS

TIMx_CCER

CC1E

IC1PS

TI1F

TI2F_rising

TI2F_falling
(from channel 2)

CC1E

Capture/Compare Shadow Register

comparator

Capture/Compare Preload Register

Counter

IC1PS

CC1S[0]

CC1S[1]

capture

input
mode

S

R

read CCR1H

read CCR1L

read_in_progress

capture_transfer
CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L

write_in_progress

output
mode

UEV

OC1PE

(from time

compare_transfer

APB Bus

8 8

hi
gh lo
w

(if
 1

6-
bi

t)

MCU-peripheral interface

TIMx_CCMR1

OC1PE

base unit)

CNT>CCR1

CNT=CCR1

TIMx_EGR

CC1G

General-purpose timers (TIM2 to TIM4) RM0038

286/598 Doc ID 15965 Rev 4

Figure 93. Output stage of capture/compare channel (channel 1)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

Output mode
CNT > CCR1

CNT = CCR1 controller

TIMx_CCMR1

OC1M[2:0]

oc1ref

0

1

CC1P

TIMx_CCER

Output
Enable
Circuit

OC1

CC1E

TIMx_CCER

To the master mode
controller

ETRF

0

1

OCREF_CLR
ocref_clr_int

OCCS

TIMx_SMCR

ai17187

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 287/598

13.3.5 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to 0 or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when you write it to 0.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

● Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

● Program the input filter duration you need with respect to the signal you connect to the
timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let’s
imagine that, when toggling, the input signal is not stable during at must 5 internal clock
cycles. We must program a filter duration longer than these 5 clock cycles. We can
validate a transition on TI1 when 8 consecutive samples with the new level have been
detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the
TIMx_CCMR1 register.

● Select the edge of the active transition on the TI1 channel by writing the CC1P and
CC1NP bits to 00 in the TIMx_CCER register (rising edge in this case).

● Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the
TIMx_CCMR1 register).

● Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

● If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.

When an input capture occurs:

● The TIMx_CCR1 register gets the value of the counter on the active transition.

● CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

● An interrupt is generated depending on the CC1IE bit.

● A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.

General-purpose timers (TIM2 to TIM4) RM0038

288/598 Doc ID 15965 Rev 4

13.3.6 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

● Two ICx signals are mapped on the same TIx input.

● These 2 ICx signals are active on edges with opposite polarity.

● One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):

● Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

● Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P to ‘0’ and the CC1NP bit to ‘0’ (active on rising edge).

● Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

● Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ‘1’ and the CC2NP bit to ’0’ (active on falling edge).

● Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

● Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

● Enable the captures: write the CC1E and CC2E bits to ‘1 in the TIMx_CCER register.

Figure 94. PWM input mode timing

TI1

TIMx_CNT 0000 0001 0002 0003 0004 00000004

TIMx_CCR1

TIMx_CCR2

0004

0002

IC1 capture

IC2 capture

reset counter

IC2 capture
pulse width

IC1 capture
period
measurementmeasurement

ai15413

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 289/598

13.3.7 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (ocxref/OCx) to its active level, you just need to write 101
in the OCxM bits in the corresponding TIMx_CCMRx register. Thus ocxref is forced high
(OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.

e.g.: CCxP=0 (OCx active high) => OCx is forced to high level.

ocxref signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the Output Compare Mode section.

13.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

● Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

● Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

● Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

● Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on ocxref and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be
generated.

4. Select the output mode. For example, you must write OCxM=011, OCxPE=0, CCxP=0
and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx preload is not
used, OCx is enabled and active high.

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

General-purpose timers (TIM2 to TIM4) RM0038

290/598 Doc ID 15965 Rev 4

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=0, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 95.

Figure 95. Output compare mode, toggle on OC1.

13.3.9 PWM mode

Pulse width modulation mode allows you to generate a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. You must enable the corresponding preload register by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by the CCxE bit in
the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx≤ TIMx_CNT or TIMx_CNT≤ TIMx_CCRx (depending on the direction
of the counter). However, to comply with the OCREF_CLR functionality (OCREF can be
cleared by an external event through the ETR signal until the next PWM period), the OCREF
signal is asserted only:

● When the result of the comparison changes, or

● When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from
the “frozen” configuration (no comparison, OCxM=‘000) to one of the PWM modes
(OCxM=‘110 or ‘111).

OC1REF=OC1

TIMx_CNT B200 B2010039

TIMx_CCR1 003A

Write B201h in the CC1R register

Match detected on CCR1
Interrupt generated if enabled

003B

B201

003A

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 291/598

This forces the PWM by software while the timer is running.

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

PWM edge-aligned mode

Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to the Section :
Upcounting mode on page 273.

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT <TIMx_CCRx else it becomes low. If the compare value in
TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at ‘1.
If the compare value is 0 then OCxREF is held at ‘0. Figure 96 shows some edge-aligned
PWM waveforms in an example where TIMx_ARR=8.

Figure 96. Edge-aligned PWM waveforms (ARR=8)

Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to Downcounting
mode on page 276

In PWM mode 1, the reference signal ocxref is low as long as TIMx_CNT>TIMx_CCRx else
it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in
TIMx_ARR, then ocxref is held at ‘1. 0% PWM is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00 (all the remaining configurations having the same effect on the ocxref/OCx signals). The
compare flag is set when the counter counts up, when it counts down or both when it counts
up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to
the Center-aligned mode (up/down counting) on page 278.

Counter register

‘1

0 1 2 3 4 5 6 7 8 0 1

‘0

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

General-purpose timers (TIM2 to TIM4) RM0038

292/598 Doc ID 15965 Rev 4

Figure 97 shows some center-aligned PWM waveforms in an example where:

● TIMx_ARR=8,

● PWM mode is the PWM mode 1,

● The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.

Figure 97. Center-aligned PWM waveforms (ARR=8)

Hints on using center-aligned mode:

● When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit
in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.

● Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if you write a value in the counter that is greater than
the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was
counting up, it continues to count up.

– The direction is updated if you write 0 or write the TIMx_ARR value in the counter
but no Update Event UEV is generated.

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 293/598

● The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.

13.3.10 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. You select One-pulse mode
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

● In upcounting: CNT<CCRx≤ ARR (in particular, 0<CCRx),

● In downcounting: CNT>CCRx.

Figure 98. Example of one-pulse mode.

For example you may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use TI2FP2 as trigger 1:

● Map TI2FP2 on TI2 by writing IC2S=01 in the TIMx_CCMR1 register.

● TI2FP2 must detect a rising edge, write CC2P=0 and CC2NP=’0’ in the TIMx_CCER
register.

● Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=110 in
the TIMx_SMCR register.

● TI2FP2 is used to start the counter by writing SMS to ‘110 in the TIMx_SMCR register
(trigger mode).

TI2

OC1REF

C
ou

nt
er

t
0

TIMx_ARR

TIMx_CCR1

OC1

tDELAY
tPULSE

General-purpose timers (TIM2 to TIM4) RM0038

294/598 Doc ID 15965 Rev 4

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

● The tDELAY is defined by the value written in the TIMx_CCR1 register.

● The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

● Let’s say you want to build a waveform with a transition from ‘0 to ‘1 when a compare
match occurs and a transition from ‘1 to ‘0 when the counter reaches the auto-reload
value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1
register. You can optionally enable the preload registers by writing OC1PE=1 in the
TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to
write the compare value in the TIMx_CCR1 register, the auto-reload value in the
TIMx_ARR register, generate an update by setting the UG bit and wait for external
trigger event on TI2. CC1P is written to ‘0 in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

You only want 1 pulse(Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register
to stop the counter at the next update event (when the counter rolls over from the auto-
reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the
Repetitive Mode is selected.

Particular case: OCx fast enable:

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the
TIMx_CCMRx register. Then OCxRef (and OCx) is forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

13.3.11 Clearing the OCxREF signal on an external event

The OCxREF signal of a given channel can be cleared when a high level is applied on
OCREF_CLR_INPUT (OCxCE enable bit in the corresponding TIMx_CCMRx register set to
1). OCxREF remains low until the next update event UEV occurs. This function can only be
used in the output compare and PWM modes. It does not work in forced mode.

OCREF_CLR_INPUT can be selected between the OCREF_CLR input and ETRF (ETR
after the filter) by configuring the OCCS bit in the TIMx_SMCR register.

When ETRF is chosen, ETR must be configured as follows:

1. The external trigger prescaler should be kept off: bits ETPS[1:0] in the TIMx_SMCR
register are cleared to 00.

2. The external clock mode 2 must be disabled: bit ECE in the TIM1_SMCR register is
cleared to 0.

3. The external trigger polarity (ETP) and the external trigger filter (ETF) can be
configured according to the application’s needs.

Figure 99 shows the behavior of the OCxREF signal when the ETRF input becomes high,
for both values of the OCxCE enable bit. In this example, the timer TIMx is programmed in
PWM mode.

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 295/598

Figure 99. Clearing TIMx OCxREF

Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), OCxREF is enabled again at the
next counter overflow.

13.3.12 Encoder interface mode

To select Encoder Interface mode write SMS=‘001 in the TIMx_SMCR register if the counter
is counting on TI2 edges only, SMS=010 if it is counting on TI1 edges only and SMS=011 if
it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER
register. CC1NP and CC2NP must be kept cleared. When needed, you can program the
input filter as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 52. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,
TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must
configure TIMx_ARR before starting. In the same way, the capture, compare, prescaler,
trigger output features continue to work as normal.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction correspond to the rotation direction of the connected sensor.
The table summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the
same time.

OCxREF

counter (CNT)

OCxREF

ETRF

(OCxCE=0)

(OCxCE=1)

OCREF_CLR
becomes high

OCREF_CLR
still high

(CCRx)

General-purpose timers (TIM2 to TIM4) RM0038

296/598 Doc ID 15965 Rev 4

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

The Figure 100 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

● CC1S= 01 (TIMx_CCMR1 register, TI1FP1 mapped on TI1)

● CC2S= 01 (TIMx_CCMR2 register, TI2FP2 mapped on TI2)

● CC1P=0, CC1NP = ‘0 (TIMx_CCER register, TI1FP1 noninverted, TI1FP1=TI1)

● CC2P=0, CC2NP = ‘0 (TIMx_CCER register, TI2FP2 noninverted, TI2FP2=TI2)

● SMS= 011 (TIMx_SMCR register, both inputs are active on both rising and falling
edges)

● CEN= 1 (TIMx_CR1 register, Counter is enabled)

Figure 100. Example of counter operation in encoder interface mode.

Table 52. Counting direction versus encoder signals

Active edge
Level on opposite
signal (TI1FP1 for

TI2, TI2FP2 for TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No Count No Count

Low Up Down No Count No Count

Counting on
TI2 only

High No Count No Count Up Down

Low No Count No Count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

TI1

forward forwardbackwardjitter jitter

up down up

TI2

Counter

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 297/598

Figure 101 gives an example of counter behavior when IC1FP1 polarity is inverted (same
configuration as above except CC1P=1).

Figure 101. Example of encoder interface mode with IC1FP1 polarity inverted.

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. You can obtain dynamic information (speed, acceleration, deceleration) by
measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. You can do this by latching the counter value into a third input capture
register if available (then the capture signal must be periodic and can be generated by
another timer). when available, it is also possible to read its value through a DMA request
generated by a Real-Time clock.

13.3.13 Timer input XOR function

The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to
the output of a XOR gate, combining the three input pins TIMx_CH1 to TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input
capture.

13.3.14 Timers and external trigger synchronization

The TIMx Timers can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

● Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write

TI1

forward forwardbackwardjitter jitter

updown

TI2

Counter

down

General-purpose timers (TIM2 to TIM4) RM0038

298/598 Doc ID 15965 Rev 4

CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect
rising edges only).

● Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

● Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 102. Control circuit in reset mode

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

● Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits
select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write
CC1P=1 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect low
level only).

● Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

● Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

00

 Counter clock = CK_CNT = CK_PSC

Counter register 01 02 03 00 01 02 0332 33 34 35 36

UG

TI1

3130

TIF

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 299/598

Figure 103. Control circuit in gated mode

Note: The configuration “CCxP=CCxNP=1” (detection of both rising and falling edges) does not
have any effect in gated mode because gated mode acts on a level and not on an edge.

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

● Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so you don’t need to configure it. CC2S bits are
selecting the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write
CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity (and detect low
level only).

● Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 104. Control circuit in trigger mode

Slave mode: External Clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input when operating in reset mode,

 Counter clock = CK_CNT = CK_PSC

Counter register 35 36 37 3832 33 34

TI1

3130

CNT_EN

TIF

Write TIF=0

 Counter clock = CK_CNT = CK_PSC

Counter register 35 36 37 3834

TI2

CNT_EN

TIF

General-purpose timers (TIM2 to TIM4) RM0038

300/598 Doc ID 15965 Rev 4

gated mode or trigger mode. It is recommended not to select ETR as TRGI through the TS
bits of TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR signal
as soon as a rising edge of TI1 occurs:

1. Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:

– ETF = 0000: no filter

– ETPS=00: prescaler disabled

– ETP=0: detection of rising edges on ETR and ECE=1 to enable the external clock
mode 2.

2. Configure the channel 1 as follows, to detect rising edges on TI:

– IC1F=0000: no filter.

– The capture prescaler is not used for triggering and does not need to be
configured.

– CC1S=01in TIMx_CCMR1 register to select only the input capture source

– CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect
rising edge only).

3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on
ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter is
due to the resynchronization circuit on ETRP input.

Figure 105. Control circuit in external clock mode 2 + trigger mode

13.3.15 Timer synchronization

The TIMx timers are linked together internally for timer synchronization or chaining. When
one Timer is configured in Master Mode, it can reset, start, stop or clock the counter of
another Timer configured in Slave Mode.

Figure 106: Master/Slave timer example presents an overview of the trigger selection and
the master mode selection blocks.

 Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

ETR

CEN/CNT_EN

TIF

TI1

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 301/598

Using one timer as prescaler for another

Figure 106. Master/Slave timer example

For example, you can configure TIM3 to act as a prescaler for TIM2. Refer to Figure 106. To
do this:

● Configure TIM3 in master mode so that it outputs a periodic trigger signal on each
update event UEV. If you write MMS=010 in the TIM3_CR2 register, a rising edge is
output on TRGO1 each time an update event is generated.

● To connect the TRGO1 output of TIM3 to TIM2, TIM2 must be configured in slave mode
using ITR2 as internal trigger. You select this through the TS bits in the TIM2_SMCR
register (writing TS=000).

● Then you put the slave mode controller in external clock mode 1 (write SMS=111 in the
TIM2_SMCR register). This causes TIM2 to be clocked by the rising edge of the
periodic TIM3 trigger signal (which correspond to the TIM3 counter overflow).

● Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1
register).

Note: If OCx is selected on TIM3 as the trigger output (MMS=1xx), its rising edge is used to clock
the counter of TIM2.

Using one timer to enable another timer

In this example, we control the enable of TIM2 with the output compare 1 of Timer 3. Refer
to Figure 106 for connections. TIM2 counts on the divided internal clock only when OC1REF
of TIM3 is high. Both counter clock frequencies are divided by 3 by the prescaler compared
to CK_INT (fCK_CNT = fCK_INT/3).

● Configure TIM3 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM3_CR2 register).

● Configure the TIM3 OC1REF waveform (TIM3_CCMR1 register).

● Configure TIM2 to get the input trigger from TIM3 (TS=000 in the TIM2_SMCR
register).

● Configure TIM2 in gated mode (SMS=101 in TIM2_SMCR register).

● Enable TIM2 by writing ‘1 in the CEN bit (TIM2_CR1 register).

● Start TIM3 by writing ‘1 in the CEN bit (TIM3_CR1 register).

Note: The counter 2 clock is not synchronized with counter 1, this mode only affects the TIM2
counter enable signal.

TRGO1
UEV

ITR2

Prescaler Counter

SMSTSMMS

TIM3 TIM2

Master

mode

 control

Slave

mode

 control

 CK_PSC

Prescaler Counter

 Clock

Input

 selection
 trigger

General-purpose timers (TIM2 to TIM4) RM0038

302/598 Doc ID 15965 Rev 4

Figure 107. Gating TIM2 with OC1REF of TIM3

In the example in Figure 107, the TIM2 counter and prescaler are not initialized before being
started. So they start counting from their current value. It is possible to start from a given
value by resetting both timers before starting TIM3. You can then write any value you want in
the timer counters. The timers can easily be reset by software using the UG bit in the
TIMx_EGR registers.

In the next example, we synchronize TIM3 and TIM2. TIM3 is the master and starts from 0.
TIM2 is the slave and starts from 0xE7. The prescaler ratio is the same for both timers. TIM2
stops when TIM3 is disabled by writing ‘0 to the CEN bit in the TIM3_CR1 register:

● Configure TIM3 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM3_CR2 register).

● Configure the TIM3 OC1REF waveform (TIM3_CCMR1 register).

● Configure TIM2 to get the input trigger from TIM3 (TS=000 in the TIM2_SMCR
register).

● Configure TIM2 in gated mode (SMS=101 in TIM2_SMCR register).

● Reset TIM3 by writing ‘1 in UG bit (TIM3_EGR register).

● Reset TIM2 by writing ‘1 in UG bit (TIM2_EGR register).

● Initialize TIM2 to 0xE7 by writing ‘0xE7’ in the TIM2 counter (TIM2_CNTL).

● Enable TIM2 by writing ‘1 in the CEN bit (TIM2_CR1 register).

● Start TIM3 by writing ‘1 in the CEN bit (TIM3_CR1 register).

● Stop TIM3 by writing ‘0 in the CEN bit (TIM3_CR1 register).

TIM2-TIF

Write TIF=0

FC FD FE FF 00

3045 3047 3048

CK_INT

TIM3-OC1REF

TIM3-CNT

TIM2-CNT

01

3046

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 303/598

Figure 108. Gating TIM2 with Enable of TIM3

Using one timer to start another timer

In this example, we set the enable of Timer 2 with the update event of Timer 3. Refer to
Figure 106 for connections. Timer 2 starts counting from its current value (which can be
non-zero) on the divided internal clock as soon as the update event is generated by Timer 1.
When Timer 2 receives the trigger signal its CEN bit is automatically set and the counter
counts until we write ‘0 to the CEN bit in the TIM2_CR1 register. Both counter clock
frequencies are divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

● Configure TIM3 master mode to send its Update Event (UEV) as trigger output
(MMS=010 in the TIM3_CR2 register).

● Configure the TIM3 period (TIM3_ARR registers).

● Configure TIM2 to get the input trigger from TIM3 (TS=000 in the TIM2_SMCR
register).

● Configure TIM2 in trigger mode (SMS=110 in TIM2_SMCR register).

● Start TIM3 by writing ‘1 in the CEN bit (TIM3_CR1 register).

Figure 109. Triggering TIM2 with update of TIM3

TIM2-TIF

Write TIF=0

75 00 01

CK_INT

TIM3-CEN=CNT_EN

TIM3-CNT

TIM2-CNT

02

TIM3-CNT_INIT

AB 00 E7 E8 E9

TIM2-CNT_INIT

TIM2
write CNT

TIM2-TIF

Write TIF=0

FD FE FF 00 01

45 47 48

CK_INT

TIM3-UEV

TIM3-CNT

TIM2-CNT

02

46

TIM2-CEN=CNT_EN

General-purpose timers (TIM2 to TIM4) RM0038

304/598 Doc ID 15965 Rev 4

As in the previous example, you can initialize both counters before starting counting.
Figure 110 shows the behavior with the same configuration as in Figure 109 but in trigger
mode instead of gated mode (SMS=110 in the TIM2_SMCR register).

Figure 110. Triggering TIM2 with Enable of TIM3

Using one timer as prescaler for another timer

For example, you can configure TIM3 to act as a prescaler for TIM2. Refer to Figure 106 for
connections. To do this:

● Configure TIM3 master mode to send its Update Event (UEV) as trigger output
(MMS=010 in the TIM3_CR2 register). then it outputs a periodic signal on each counter
overflow.

● Configure the TIM3 period (TIM3_ARR registers).

● Configure TIM2 to get the input trigger from TIM3 (TS=000 in the TIM2_SMCR
register).

● Configure TIM2 in external clock mode 1 (SMS=111 in TIM2_SMCR register).

● Start TIM2 by writing ‘1 in the CEN bit (TIM2_CR1 register).

● Start TIM3 by writing ‘1 in the CEN bit (TIM3_CR1 register).

Starting 2 timers synchronously in response to an external trigger

In this example, we set the enable of TIM3 when its TI1 input rises, and the enable of TIM2
with the enable of TIM3. Refer to Figure 106 for connections. To ensure the counters are
aligned, TIM3 must be configured in Master/Slave mode (slave with respect to TI1, master
with respect to TIM2):

● Configure TIM3 master mode to send its Enable as trigger output (MMS=001 in the
TIM3_CR2 register).

● Configure TIM3 slave mode to get the input trigger from TI1 (TS=100 in the
TIM3_SMCR register).

● Configure TIM3 in trigger mode (SMS=110 in the TIM3_SMCR register).

● Configure the TIM3 in Master/Slave mode by writing MSM=1 (TIM3_SMCR register).

TIM2-TIF

Write TIF=0

75 00 01

CK_INT

TIM3-CEN=CNT_EN

TIM3-CNT

TIM2-CNT

02

TIM3-CNT_INIT

CD 00 E7 E8 EA

TIM2-CNT_INIT

TIM2
write CNT

E9

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 305/598

● Configure TIM2 to get the input trigger from TIM3 (TS=000 in the TIM2_SMCR
register).

● Configure TIM2 in trigger mode (SMS=110 in the TIM2_SMCR register).

When a rising edge occurs on TI1 (TIM3), both counters starts counting synchronously on
the internal clock and both TIF flags are set.

Note: In this example both timers are initialized before starting (by setting their respective UG
bits). Both counters starts from 0, but you can easily insert an offset between them by
writing any of the counter registers (TIMx_CNT). You can see that the master/slave mode
insert a delay between CNT_EN and CK_PSC on TIM3.

Figure 111. Triggering TIM3 and TIM2 with TIM3 TI1 input

13.3.16 Debug mode

When the microcontroller enters debug mode (Cortex-M3 core - halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBGMCU module. For more details, refer to Section 24.16.2: Debug support for
timers, watchdog and I2C.

00 01

CK_INT

TIM3-CEN=CNT_EN

TIM3-CNT

TIM3-TI1

TIM3-CK_PSC

02 03 04 05 06 07 08 09

TIM3-TIF

00 01

TIM2-CEN=CNT_EN

TIM2-CNT

TIM2-CK_PSC

02 03 04 05 06 07 08 09

TIM2-TIF

General-purpose timers (TIM2 to TIM4) RM0038

306/598 Doc ID 15965 Rev 4

13.4 TIMx registers
Refer to for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

13.4.1 TIMx control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE CMS DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, always read as 0

Bits 9:8 CKD: Clock division
This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (ETR, TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:5 CMS: Center-aligned mode selection
00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)

Bit 4 DIR: Direction

0: Counter used as upcounter
1: Counter used as downcounter

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 307/598

Bit 2 URS: Update request source
This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been
previously set by software. However trigger mode can set the CEN bit automatically by
hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

General-purpose timers (TIM2 to TIM4) RM0038

308/598 Doc ID 15965 Rev 4

13.4.2 TIMx control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TI1S MMS[2:0] CCDS

Reserved
rw rw rw rw rw

Bits 15:8 Reserved, always read as 0.

Bit 7 TI1S: TI1 selection

0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)

Bits 6:4 MMS: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enabled. The Counter Enable signal is generated by a logic OR between CEN control bit and
the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR
register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred. (TRGO)
100: Compare - OC1REF signal is used as trigger output (TRGO)
101: Compare - OC2REF signal is used as trigger output (TRGO)
110: Compare - OC3REF signal is used as trigger output (TRGO)
111: Compare - OC4REF signal is used as trigger output (TRGO)

Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

Bits 2:0 Reserved, always read as 0

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 309/598

13.4.3 TIMx slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0] OCCS SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ETP: External trigger polarity
This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge
1: ETR is inverted, active at low level or falling edge

Bit 14 ECE: External clock enable

This bit enables External clock mode 2
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.
1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI
connected to ETRF (SMS=111 and TS=111).
2: It is possible to simultaneously use external clock mode 2 with the following slave modes:
reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to
ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the
external clock input is ETRF.

Bits 13:12 ETPS: External trigger prescaler
External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N events
are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

General-purpose timers (TIM2 to TIM4) RM0038

310/598 Doc ID 15965 Rev 4

Bit 7 MSM: Master/Slave mode
0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.

Bits 6:4 TS: Trigger selection
This bit-field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0).
001: Internal Trigger 1 (ITR1).
010: Internal Trigger 2 (ITR2).
011: Internal Trigger 3 (ITR3).
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: External Trigger input (ETRF)
See Table 53: TIMx internal trigger connection on page 311for more details on ITRx
meaning for each Timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.

Bit 3 OCCS: OCREF clear selection

This bit is used to select the OCREF clear source
0: OCREF_CLR_INT is connected to the OCREF_CLR input
1: OCREF_CLR_INT is connected to ETRF

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input Control register and Control Register
description.
000: Slave mode disabled - if CEN = ‘1 then the prescaler is clocked directly by the internal
clock.
001: Encoder mode 1 - Counter counts up/down on TI2FP2 edge depending on TI1FP1
level.
010: Encoder mode 2 - Counter counts up/down on TI1FP1 edge depending on TI2FP2
level.
011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input.
100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=100).
Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode
checks the level of the trigger signal.

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 311/598

13.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

Table 53. TIMx internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

TIM2 TIM9 TIM10 TIM3 TIM4

TIM3 TIM9 TIM2 TIM11 TIM4

TIM4 TIM10 TIM2 TIM3 TIM9

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
TDE

Res
CC4DE CC3DE CC2DE CC1DE UDE

Res.
TIE

Res
CC4IE CC3IE CC2IE CC1IE UIE

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, always read as 0.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled
1: Trigger DMA request enabled

Bit 13 Reserved, always read as 0

Bit 12 CC4DE: Capture/Compare 4 DMA request enable

0: CC4 DMA request disabled
1: CC4 DMA request enabled

Bit 11 CC3DE: Capture/Compare 3 DMA request enable

0: CC3 DMA request disabled
1: CC3 DMA request enabled

Bit 10 CC2DE: Capture/Compare 2 DMA request enable
0: CC2 DMA request disabled
1: CC2 DMA request enabled

Bit 9 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled
1: CC1 DMA request enabled

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled
1: Update DMA request enabled

Bit 7 Reserved, always read as 0.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled
1: Trigger interrupt enabled

Bit 5 Reserved, always read as 0.

Bit 4 CC4IE: Capture/Compare 4 interrupt enable
0: CC4 interrupt disabled
1: CC4 interrupt enabled

General-purpose timers (TIM2 to TIM4) RM0038

312/598 Doc ID 15965 Rev 4

13.4.5 TIMx status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

Bit 3 CC3IE: Capture/Compare 3 interrupt enable
0: CC3 interrupt disabled
1: CC3 interrupt enabled

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled
1: CC2 interrupt enabled

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable
0: Update interrupt disabled
1: Update interrupt enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC4OF CC3OF CC2OF CC1OF

Reserved
TIF

Res
CC4IF CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bit 15:13 Reserved, always read as 0.

Bit 12 CC4OF: Capture/Compare 4 overcapture flag

refer to CC1OF description

Bit 11 CC3OF: Capture/Compare 3 overcapture flag

refer to CC1OF description

Bit 10 CC2OF: Capture/compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0.
0: No overcapture has been detected
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:7 Reserved, always read as 0.

Bit 6 TIF: Trigger interrupt flag
This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode. It is set when the counter
starts or stops when gated mode is selected. It is cleared by software.
0: No trigger event occurred
1: Trigger interrupt pending

Bit 5 Reserved, always read as 0

Bit 4 CC4IF: Capture/Compare 4 interrupt flag

refer to CC1IF description

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 313/598

Bit 3 CC3IF: Capture/Compare 3 interrupt flag
refer to CC1IF description

Bit 2 CC2IF: Capture/Compare 2 interrupt flag
refer to CC1IF description

Bit 1 CC1IF: Capture/compare 1 interrupt flag
If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit
goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow
(in downcounting mode)
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected
on IC1 which matches the selected polarity)

Bit 0 UIF: Update interrupt flag

● This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

● At overflow or underflow (for TIM2 to TIM4) and if UDIS=0 in the TIMx_CR1 register.

● When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0
and UDIS=0 in the TIMx_CR1 register.

When CNT is reinitialized by a trigger event (refer to the synchro control register description),
if URS=0 and UDIS=0 in the TIMx_CR1 register.

General-purpose timers (TIM2 to TIM4) RM0038

314/598 Doc ID 15965 Rev 4

13.4.6 TIMx event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TG

Res.
CC4G CC3G CC2G CC1G UG

w w w w w w

Bits 15:7 Reserved, always read as 0.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled.

Bit 5 Reserved, always read as 0.

Bit 4 CC4G: Capture/compare 4 generation

refer to CC1G description

Bit 3 CC3G: Capture/compare 3 generation

refer to CC1G description

Bit 2 CC2G: Capture/compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 315/598

13.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So you must take care that the same bit
can have a different meaning for the input stage and for the output stage.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2CE OC2M[2:0] OC2PE OC2FE
CC2S[1:0]

OC1CE OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC2CE: Output compare 2 clear enable

Bits 14:12 OC2M[2:0]: Output compare 2 mode

Bit 11 OC2PE: Output compare 2 preload enable

Bit 10 OC2FE: Output compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only
if an internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bit 7 OC1CE: Output compare 1 clear enable

OC1CE: Output Compare 1 Clear Enable
0: OC1Ref is not affected by the ETRF input
1: OC1Ref is cleared as soon as a High level is detected on ETRF input

General-purpose timers (TIM2 to TIM4) RM0038

316/598 Doc ID 15965 Rev 4

Bits 6:4 OC1M: Output compare 1 mode
These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends
on CC1P and CC1NP bits.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0) as long as
TIMx_CNT>TIMx_CCR1 else active (OC1REF=1).
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as
TIMx_CNT<TIMx_CCR1 else active. In downcounting, channel 1 is active as long as
TIMx_CNT>TIMx_CCR1 else inactive.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in
output).

2: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output compare 1 preload enable
0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in
output).
2: The PWM mode can be used without validating the preload register only in one-
pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC
is set to the compare level independently from the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if
the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2.
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only
if an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 317/598

Input capture mode

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/compare 2 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bits 7:4 IC1F: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter
applied to TI1. The digital filter is made of an event counter in which N events are needed to
validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Note: In current silicon revision, fDTS is replaced in the formula by CK_INT when ICxF[3:0]= 1,
2 or 3.

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=0 (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM2 to TIM4) RM0038

318/598 Doc ID 15965 Rev 4

13.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2)

Address offset: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC4CE OC4M[2:0] OC4PE OC4FE
CC4S[1:0]

OC3CE OC3M[2:0] OC3PE OC3FE
CC3S[1:0]

IC4F[3:0] IC4PSC[1:0] IC3F[3:0] IC3PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC4CE: Output compare 4 clear enable

Bits 14:12 OC4M: Output compare 4 mode

Bit 11 OC4PE: Output compare 4 preload enable

Bit 10 OC4FE: Output compare 4 fast enable

Bits 9:8 CC4S: Capture/Compare 4 selection
This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).

Bit 7 OC3CE: Output compare 3 clear enable

Bits 6:4 OC3M: Output compare 3 mode

Bit 3 OC3PE: Output compare 3 preload enable

Bit 2 OC3FE: Output compare 3 fast enable

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 319/598

Input capture mode

13.4.9 TIMx capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Bits 15:12 IC4F: Input capture 4 filter

Bits 11:10 IC4PSC: Input capture 4 prescaler

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).

Bits 7:4 IC3F: Input capture 3 filter

Bits 3:2 IC3PSC: Input capture 3 prescaler

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CC4NP
Res.

CC4P CC4E CC3NP
Res.

CC3P CC3E CC2NP
Res.

CC2P CC2E CC1NP
Res.

CC1P CC1E

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 CC4NP: Capture/Compare 4 output Polarity.
Refer to CC1NP description

Bit 14 Reserved, always read as 0.

Bit 13 CC4P: Capture/Compare 4 output Polarity.

refer to CC1P description

Bit 12 CC4E: Capture/Compare 4 output enable.

refer to CC1E description

Bit 13 CC3NP: Capture/Compare 3 output Polarity.

refer to CC1NP description

Bit 12 Reserved, always read as 0.

Bits 11:10 Reserved, always read as 0.

Bit 9 CC3P: Capture/Compare 3 output Polarity.
refer to CC1P description

General-purpose timers (TIM2 to TIM4) RM0038

320/598 Doc ID 15965 Rev 4

Bit 8 CC3E: Capture/Compare 3 output enable.
refer to CC1E description

Bit 7 CC2NP: Capture/Compare 2 output Polarity.
refer to CC1NP description

Bit 6 Reserved, always read as 0.

Bit 5 CC2P: Capture/Compare 2 output Polarity.

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable.

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
CC1NP must be kept cleared in this case.
CC1 channel configured as input:
This bit is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity. refer to CC1P
description.

Bit 2 Reserved, always read as 0.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge : circuit is sensitive to TIxFP1 rising edge (capture, trigger in
reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode, encoder
mode).
01: inverted/falling edge : circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset,
external clock or trigger mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.
11: noninverted/both edges: circuit is sensitive to both TIxFP1 rising and falling edges
(capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in
gated mode). This configuration must not be used for encoder mode.

Bit 0 CC1E: Capture/Compare 1 output enable.
CC1 channel configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output pin
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled

Table 54. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output Disabled (OCx=0, OCx_EN=0)

1 OCx=OCxREF + Polarity, OCx_EN=1

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 321/598

Note: The state of the external IO pins connected to the standard OCx channels depends on the
OCx channel state and the GPIO and AFIO registers.

13.4.10 TIMx counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

13.4.11 TIMx prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

13.4.12 TIMx auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).

PSC contains the value to be loaded in the active prescaler register at each update event.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value
ARR is the value to be loaded in the actual auto-reload register.

Refer to the Section 13.3.1: Time-base unit on page 271 for more details about ARR update
and behavior.

The counter is blocked while the auto-reload value is null.

General-purpose timers (TIM2 to TIM4) RM0038

322/598 Doc ID 15965 Rev 4

13.4.13 TIMx capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

13.4.14 TIMx capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value
If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 323/598

13.4.15 TIMx capture/compare register 3 (TIMx_CCR3)

Address offset: 0x3C

Reset value: 0x0000

13.4.16 TIMx capture/compare register 4 (TIMx_CCR4)

Address offset: 0x40

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR3[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR3[15:0]: Capture/Compare value
If channel CC3 is configured as output:
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC3 output.
If channel CC3is configured as input:
CCR3 is the counter value transferred by the last input capture 3 event (IC3).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR4[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR4[15:0]: Capture/Compare value

1/ if CC4 channel is configured as output (CC4S bits):
CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit
OC4PE). Else the preload value is copied in the active capture/compare 4 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.

2/ if CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register):
CCR4 is the counter value transferred by the last input capture 4 event (IC4).

General-purpose timers (TIM2 to TIM4) RM0038

324/598 Doc ID 15965 Rev 4

13.4.17 TIMx DMA control register (TIMx_DCR)

Address offset: 0x48

Reset value: 0x0000

13.4.18 TIMx DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DBL[4:0]

Reserved
DBA[4:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, always read as 0

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit vector defines the number of DMA transfers (the timer recognizes a burst transfer
when a read or a write access is done to the TIMx_DMAR address).
00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.

Bits 7:5 Reserved, always read as 0

Bits 4:0 DBA[4:0]: DMA base address
This 5-bit vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

Example: Let us consider the following transfer: DBL = 7 bytes & DBA = TIMx_CR1. In this
case the transfer is done to/from 7 registers starting from the TIMx_CR1 address..
– If DBL = 7 bytes and DBA = TIM2_CR1 represents the address of the byte to be transferred,

the address of the transfer should be given by the following equation:
(TIMx_CR1 address) + DBA + (DMA index), where DMA index = DBL

In this example, 7 bytes are added to (TIMx_CR1 address) + DBA, which gives us the address
from/to which the data will be copied. In this case, the transfer is done to 7 registers starting
from the following address: (TIMx_CR1 address) + DBA
According to the configuration of the DMA Data Size, several cases may occur:

– If you configure the DMA Data Size in half-words, 16-bit data will be transferred to each of
the 7 registers.

If you configure the DMA Data Size in bytes, the data will aslo be transferred to 7 registers:
the first register will contain the first MSB byte, the second register, the first LSB byte and so
on. So with the transfer Timer, you also have to specify the size of data transferred by DMA.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 325/598

Example of using the DMA burst feature:

In this example the Timer DMA burst feature is used to update the contents of the CCRx
registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers.

This is done in the following steps:

● Configure the corresponding DMA channel as follows:

– DMA channel peripheral address is the DMAR register address

– DMA channel memory address is the address of the buffer in the RAM containing
the data to be transferred by DMA into CCRx registers.

– Number of data to transfer = 3 (See note below).

– Circular mode disabled.

● Configure the DCR register by configuring the DBA and DBL bit fields as follows:
DBL = 3 transfers, DBA = 0xE.

● Enable the TIMx update DMA request (set the UDE bit in the DIER register).

● Enable TIMx

● Enable the DMA channel

Note: This example is for the case where every CCRx register to to be updated once. If every
CCRx register is to be updated twice for example, the number of data to transfer should be
6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5
and data6. The data is transferred to the CCRx registers as follows: on the first update DMA
request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to
CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is
transferred to CCR3 and data6 is transferred to CCR4.

Bits 15:0 DMAB[15:0]: DMA register for burst accesses

A read or write access to the DMAR register accesses the register located at the address:
“(TIMx_CR1 address) + DBA + (DMA index)” in which:

TIMx_CR1 address is the address of the control register 1,
DBA is the DMA base address configured in the TIMx_DCR register,
DMA index is the offset automatically controlled by the DMA transfer, depending on the
length of the transfer DBL in the TIMx_DCR register.

General-purpose timers (TIM2 to TIM4) RM0038

326/598 Doc ID 15965 Rev 4

13.4.19 TIMx register map

TIMx registers are mapped as 16-bit addressable registers as described in the table below:

Table 55. TIM2 to TIM4 register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved
CKD
[1:0]

A
R

P
E CMS

[1:0] D
IR

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0 0 0 0

0x04
TIMx_CR2

Reserved T
I1

S MMS[2:0]

C
C

D
S

Reserved

Reset value 0 0 0 0 0

0x08
TIMx_SMCR

Reserved E
T

P

E
C

E ETPS
[1:0] ETF[3:0]

M
S

M TS[2:0]

R
es

er
ve

d

SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

Reserved T
D

E

C
O

M
D

E

C
C

4D
E

C
C

3D
E

C
C

2D
E

C
C

1D
E

U
D

E

R
es

er
ve

d

T
IE

R
es

er
ve

d

C
C

4I
E

C
C

3I
E

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
TIMx_SR

Reserved

C
C

4O
F

C
C

3O
F

C
C

2O
F

C
C

1O
F

R
es

er
ve

d

T
IF

R
es

er
ve

d

C
C

4I
F

C
C

3I
F

C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0 0 0 0 0

0x14
TIMx_EGR

Reserved T
G

R
es

er
ve

d

C
C

4G

C
C

3G

C
C

2G

C
C

1G

U
G

Reset value 0 0 0 0 0 0

0x18

TIMx_CCMR1
Output Compare

mode Reserved

O
C

2C
E

OC2M
[2:0]

O
C

2P
E

O
C

2F
E

CC2S
[1:0]

O
C

1C
E

OC1M
[2:0]

O
C

1P
E

O
C

1F
E

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIMx_CCMR1
Input Capture

mode Reserved
IC2F[3:0]

IC2
PSC
[1:0]

CC2S
[1:0] IC1F[3:0]

IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C

TIMx_CCMR2
Output Compare

mode Reserved

O
24

C
E OC4M

[2:0]

O
C

4P
E

O
C

4F
E

CC4S
[1:0]

O
C

3C
E

OC3M
[2:0]

O
C

3P
E

O
C

3F
E

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIMx_CCMR2
Input Capture

mode Reserved
IC4F[3:0]

IC4
PSC
[1:0]

CC4S
[1:0] IC3F[3:0]

IC3
PSC
[1:0]

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
TIMx_CCER

Reserved

C
C

4N
P

R
es

er
ve

d

C
C

4P

C
C

4E

C
C

3N
P

R
es

er
ve

d

C
C

3P

C
C

3E

C
C

2N
P

R
es

er
ve

d

C
C

2P

C
C

2E

C
C

1N
P

R
es

er
ve

d

C
C

1P

C
C

1E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30 Reserved

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0038 General-purpose timers (TIM2 to TIM4)

Doc ID 15965 Rev 4 327/598

Refer to Table 1 on page 32 for the register boundary addresses.

0x38
TIMx_CCR2

Reserved
CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
TIMx_CCR3

Reserved
CCR3[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
TIMx_CCR4

Reserved
CCR4[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44 Reserved

0x48
TIMx_DCR

Reserved
DBL[4:0]

Reserved
DBA[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x4C
TIMx_DMAR

Reserved
DMAB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x50 Reserved

Table 55. TIM2 to TIM4 register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

General-purpose timers (TIM9/10/11) RM0038

328/598 Doc ID 15965 Rev 4

14 General-purpose timers (TIM9/10/11)

14.1 TIM9/10/11 introduction
The TIM9, TIM10 and TIM11 general-purpose timers consist of a 16-bit auto-reload counter
driven by a programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The TIM9, TIM10 and TIM11 timers are completely independent, and do not share any
resources. They can be synchronized together as described in Section 14.3.12.

14.2 TIM9/10/11 main features

14.2.1 TIM9 main features

The 2-channel TIM9 timer features include:

● 16-bit auto-reload upcounter

● 16-bit programmable prescaler used to divide (including “on the fly”) the counter clock
frequency by any factor between 1 and 65535

● 2 independent channels for:

– Input capture

– Output compare

– PWM generation (edge-aligned mode)

– One-pulse mode output

● Synchronization circuit to control the timer with external signals, and to interconnect
several timers

● Interrupt generation on the following events:

– Update: counter overflow, counter initialization (by software or internal trigger)

– Trigger event (counter start, stop, initialization or count by internal trigger)

– Input capture

– Output compare

● Trigger intput for external clock or cycle-by-cycle current management

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 329/598

Figure 112. General-purpose timer block diagram

14.2.2 TIM10 and TIM11 main features

The 1-channel TIM10 and TIM11 timer features include:

● 16-bit auto-reload upcounter

● 16-bit programmable prescaler used to divide (including “on the fly”) the counter clock
frequency by any factor between 1 and 65535

● 1 independent channel for:

– Input capture

– Output compare

– PWM generation (edge-aligned mode)

● Interrupt generation on the following events:

– Update: counter overflow, counter initialization (by software)

– Input capture

– Output compare

General-purpose timers (TIM9/10/11) RM0038

330/598 Doc ID 15965 Rev 4

Figure 113. General-purpose timer block diagram (TIM10)

Figure 114. General-purpose timer block diagram (TIM11)

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 331/598

14.3 TIM9/10/11 functional description

14.3.1 Time-base unit

The main block of the programmable timer is a 16-bit counter with its related auto-reload
register. The counter can count up only. The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

● Counter register (TIMx_CNT)

● Prescaler register (TIMx_PSC)

● Auto-reload register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The contents of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in the TIMx_CR1 register. The update event is sent when the
counter reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can
also be generated by software. The generation of the update event is described in detail for
each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in the TIMx_CR1 register is set (refer also to the slave mode
controller description to get more details on counter enabling).

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 115 and Figure 116 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.

General-purpose timers (TIM9/10/11) RM0038

332/598 Doc ID 15965 Rev 4

Figure 115. Counter timing diagram with prescaler division change from 1 to 2

Figure 116. Counter timing diagram with prescaler division change from 1 to 4

14.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

An update event can be generated at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values to the
preload registers. Then no update event occurs until the UDIS bit is written to 0. The
counter, however, restarts from 0, as well as the prescaler’s counter (but the prescaler rate
does not change). In addition, if the URS bit (update request selection) in the TIMx_CR1
register is set, setting the UG bit generates an update event UEV but without setting the UIF

 CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 1

Write a new value in TIMx_PSC

01 02 03

Prescaler buffer 0 1

Prescaler counter 0 1 0 1 0 1 0 1

F8

CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 3

Write a new value in TIMx_PSC

Prescaler buffer 0 3

Prescaler counter 0 1 2 3 0 1 2 3

F8 01

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 333/598

flag (thus no interrupt request is sent). This is to avoid generating both update and capture
interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
the TIMx_SR register) is set (depending on the URS bit):

● The buffer of the prescaler is reloaded with the preload value (contents of the
TIMx_PSC register)

● The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 117. Counter timing diagram, internal clock divided by 1

Figure 118. Counter timing diagram, internal clock divided by 2

 CK_INT

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

 CK_INT

0035 0000 0001 0002 0003

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0034 0036

Counter overflow

Update event (UEV)

General-purpose timers (TIM9/10/11) RM0038

334/598 Doc ID 15965 Rev 4

Figure 119. Counter timing diagram, internal clock divided by 4

Figure 120. Counter timing diagram, internal clock divided by N

Figure 121. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)

0000 0001

CNT_EN

 TImer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0035 0036

Counter overflow

Update event (UEV)

 CK_INT

 Timer clock = CK_CNT

Counter register 001F 20

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

 CK_INT

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

Auto-reload register FF 36

Write a new value in TIMx_ARR

 CK_INT

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 335/598

Figure 122. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

14.3.3 Clock selection

The counter clock can be provided by the following clock sources:

● Internal clock (CK_INT)

● External clock mode1: external input pin (TIx)

● External clock mode2: external trigger input (ETR)

● Internal trigger inputs (ITRx): using one timer as the prescaler for another timer,
available for TIM9 only. For example, you can configure TIM9 to act as the prescaler for
TIM2. Refer to Using one timer as the prescaler for another for more details.

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the
CEN bit (in the TIMx_CR1 register) and the UG bit (in the TIMx_EGR register) are actual
control bits. The CEN bit can be changed only by software while the UG bit remains cleared
automatically. As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 123 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 07F1 F2 F3 F4 F5F0

Auto-reload preload register F5 36

Auto-reload shadow register F5 36

Write a new value in TIMx_ARR

CK_PSC

General-purpose timers (TIM9/10/11) RM0038

336/598 Doc ID 15965 Rev 4

Figure 123. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count
at each rising or falling edge on a selected input.

Figure 124. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= 01 to the
TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

Note: The capture prescaler is not used for triggering, so you do not need to configure it.

3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER
register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.

5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on the TI2 input.

CK_INT

00

 Counter clock = CK_CNT = CK_PSC

COUNTER REGISTER 01 02 03 04 05 06 0732 33 34 35 3631

CEN=CNT_EN

UG

CNT_INIT

CK_INT

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

ECE
TIMx_SMCR

SMS[2:0]

ITRx

TI1F_ED

TI1FP1

TI2FP2

ETRF

TIMx_SMCR
TS[2:0]

TI2
0

1

TIMx_CCER

CC2P

Filter

ICF[3:0]

TIMx_CCMR1

Edge
Detector

TI2F_Rising

TI2F_Falling 110

001

100

101

111

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 337/598

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

Figure 125 gives an overview of the external trigger input block.

Figure 125. External trigger input block

For example, to configure the upcounter to count every 2 rising edges on ETR, use the
following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.

2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register

4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.

5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once every 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.

Figure 126. Control circuit in external clock mode 2

ETR
0

1

TIMx_SMCR

ETP

divider
/1, /2, /4, /8

ETPS[1:0]

ETRP filter

ETF[3:0]

downcounter
CK_INT

TIMx_SMCRTIMx_SMCR

ETR pin

CK_INT

encoder
mode

external clock
mode 1

external clock
mode 2

internal clock
mode

ETRF

TRGI

TI1F
TI2F or

or
or

(internal clock)

CK_PSC

ECE
TIMx_SMCR

SMS[2:0]

 Counter clock = CK_CNT = CK_PSC

Counter register 35 3634

ETR

CNT_EN

CK_INT

ETRP

ETRF

General-purpose timers (TIM9/10/11) RM0038

338/598 Doc ID 15965 Rev 4

14.3.4 Capture/compare channels

Each capture/compare channel is built around a capture/compare register (including a
shadow register), an input stage for capture (with digital filter, multiplexing and prescaler)
and an output stage (with comparator and output control).

The following figure gives an overview of a capture/compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as the trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

Figure 127. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

Figure 128. Capture/compare channel 1 main circuit

TI1

TIMx_CCER

CC1P/CC1NP

divider
/1, /2, /4, /8

ICPS[1:0]

TI1F_ED

filter

ICF[3:0]

downcounter

TIMx_CCMR1

Edge
Detector

TI1F_Rising

TI1F_Falling

to the slave mode controller

TI1FP1

11

01

TIMx_CCMR1

CC1S[1:0]

IC1TI2FP1

TRC

(from channel 2)

(from slave mode
controller)

10

fDTS

TIMx_CCER

CC1E

IC1PS

TI1F

TI2F_rising

TI2F_falling
(from channel 2)

CC1E

Capture/Compare Shadow Register

comparator

Capture/Compare Preload Register

Counter

IC1PS

CC1S[0]

CC1S[1]

capture

input
mode

S

R

read CCR1H

read CCR1L

read_in_progress

capture_transfer
CC1S[0]

CC1S[1]

S

R

write CCR1H

write CCR1L

write_in_progress

output
mode

UEV

OC1PE

(from time

compare_transfer

APB Bus

8 8

hi
gh lo
w

(if
 1

6-
bi

t)

MCU-peripheral interface

TIMx_CCMR1

OC1PE

base unit)

CNT>CCR1

CNT=CCR1

TIMx_EGR

CC1G

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 339/598

Figure 129. Output stage of capture/compare channel (channel 1)

The capture/compare block is made of a preload register and a shadow register. Write and
read operations always access the preload register.

In capture mode, captures are actually made in the shadow register, and then copied into
the preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

14.3.5 Input capture mode

In Input capture mode, the capture/compare registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCxIF flag (TIMx_SR register) is set and an interrupt
request can be sent if it is enabled. If a capture occurs while the CCxIF flag is already high,
then the overcapture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by
software by writing it to 0 or by reading the captured data stored in the TIMx_CCRx register.
CCxOF is cleared when you write it to 0.

The following example shows how to capture the counter value in TIMx_CCR1 when the TI1
input rises. To do this, use the following procedure:

● Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input mode and the TIMx_CCR1 register becomes read-
only.

● Program the needed input filter duration with respect to the signal connected to the
timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register)).
Let us imagine that, when toggling, the input signal is not stable for at most 5 internal
clock cycles. We will need to program a filter duration longer than these 5 clock cycles.
We can validate a transition on TI1 when 8 consecutive samples with the new level
have been detected (sampled at fDTS frequency). Then write the IC1F bits to 0011 in
the TIMx_CCMR1 register.

● Select the edge of the active transition on the TI1 channel by writing the CC1P and
CC1NP bits to 00 in the TIMx_CCER register (rising edge in this case).

● Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write the IC1PS bits to 00 in the
TIMx_CCMR1 register).

Output Mode
CNT > CCR1

CNT = CCR1 Controller

TIMx_CCMR1

OC1M[2:0]

oc1ref

0

1

CC1P

TIMx_CCER

Output
Enable
Circuit

OC1

CC1E TIMx_CCER

To the master mode
controller

ETRF

General-purpose timers (TIM9/10/11) RM0038

340/598 Doc ID 15965 Rev 4

● Enable capture from the counter in the capture register by setting the CC1E bit in the
TIMx_CCER register.

● If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register.

When an input capture occurs:

● The TIMx_CCR1 register gets the value of the counter on the active transition.

● The CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive
captures occurred while the flag was not cleared.

● An interrupt is generated depending on the CC1IE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: An IC interrupt request can be generated by software by setting the corresponding CCxG bit
in the TIMx_EGR register.

14.3.6 PWM input mode (available for TIM9 only)

This mode is a particular case of the input capture mode. The procedure is the same except
that:

● two ICx signals are mapped on the same TIx input

● these 2 ICx signals are active on edges with opposite polarity

● one of the two TIxFP signals is selected as the trigger input and the slave mode
controller is configured in reset mode

For example, you can measure the period (in the TIMx_CCR1 register) and the duty cycle
(in the TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on CK_INT frequency and prescaler value):

● Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

● Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P and the CC1NP bits to 00 (active on rising edge).

● Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

● Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to 1 and the CC2NP bit to 0 (active on falling edge).

● Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

● Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

● Enable the captures: write the CC1E and CC2E bits to ‘1 in the TIMx_CCER register.

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 341/598

Figure 130. PWM input mode timing

14.3.7 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCxREF/OCx) to its active level, you just need to write
101 to the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCxREF is forced
high (OCxREF is always active high) and OCx gets the opposite value to the CCxP polarity
bit.

e.g.: CCxP=0 (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is
described in the Output compare mode section.

14.3.8 Output compare mode

This function is used to control an output waveform or to indicate when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

● assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

● sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

● generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

TI1

TIMx_CNT 0000 0001 0002 0003 0004 00000004

TIMx_CCR1

TIMx_CCR2

0004

0002

IC1 capture

IC2 capture

reset counter

IC2 capture
pulse width

IC1 capture
period
measurementmeasurement

ai15413

General-purpose timers (TIM9/10/11) RM0038

342/598 Doc ID 15965 Rev 4

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on the OCxREF and OCx
output. The timing resolution is one count of the counter. The output compare mode can
also be used to output a single pulse (in one-pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE and/or CCxDE bits if an interrupt request is to be generated.

4. Select the output mode. For example, you must write OCxM=011, OCxPE=0, CCxP=0
and CCxE=1 to toggle the OCx output pin when CNT matches CCRx, CCRx preload is
not used, OCx is enabled and active high.

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=0, else the
TIMx_CCRx shadow register is updated only at the next update event UEV). An example is
given in Figure 131.

Figure 131. Output compare mode, toggle on OC1

14.3.9 PWM mode

The Pulse width modulation mode is used to generate a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing 110 (PWM mode 1) or 111 (PWM mode 2) to the OCxM bits in the
TIMx_CCMRx register. You must enable the corresponding preload register by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register by
setting the ARPE bit in the TIMx_CR1 register.

OC1REF=OC1

TIMx_CNT B200 B2010039

TIMx_CCR1 003A

Write B201h in the CC1R register

Match detected on CCR1
Interrupt generated if enabled

003B

B201

003A

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 343/598

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIMx_EGR register.

The OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register.
It can be programmed as active high or active low. The OCx output is enabled by the CCxE
bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more
details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CNT≤ TIMx_CCRx. However, to comply with the OCREF_CLR functionality
(OCREF can be cleared by an external event through the ETR signal until the next PWM
period), the OCREF signal is asserted only:

● when the result of the comparison changes, or

● when the output compare mode (OCxM bits in the TIMx_CCMRx register) switches
from the “frozen” configuration (no comparison, OCxM=000) to one of the PWM modes
(OCxM=110 or 111).

This forces the PWM by software while the timer is running.

The timer is able to generate PWM in edge-aligned mode only since the counter mode is
upcounting.

PWM edge-aligned mode

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT <TIMx_CCRx else it becomes low. If the compare value in
TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at 1.
If the compare value is 0 then OCxREF is held at 0. Figure 132 shows some edge-aligned
PWM waveforms in an example where TIMx_ARR=8.

Figure 132. Edge-aligned PWM waveforms (ARR=8)

Counter register

1

0 1 2 3 4 5 6 7 8 0 1

0

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

OCxREF

CCxIF

CCRx=4

CCRx=8

CCRx>8

CCRx=0

General-purpose timers (TIM9/10/11) RM0038

344/598 Doc ID 15965 Rev 4

14.3.10 One-pulse mode (available for TIM9 only)

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus, and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. The waveform can
be generated in output compare mode or PWM mode. You select One-pulse mode by
setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at
the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter’s
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

CNT < CCRx ≤ ARR (in particular, 0 < CCRx)

Figure 133. Example of one-pulse mode.

For example you may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let us use TI2FP2 as trigger 1:

● Map TI2FP2 on TI2 by writing IC2S=01 in the TIMx_CCMR1 register.

● TI2FP2 must detect a rising edge, write CC2P=0 and CC2NP=0 in the TIMx_CCER
register.

● Configure TI2FP2 as the trigger for the slave mode controller (TRGI) by writing TS=110
in the TIMx_SMCR register.

● TI2FP2 is used to start the counter by writing SMS to 110 in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

● tDELAY is defined by the value written in the TIMx_CCR1 register.

● tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

TI2

OC1REF

C
ou

nt
er

t
0

TIM9_ARR

TIM9_CCR1

OC1

tDELAY
tPULSE

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 345/598

● Let us say that you want to build a waveform with a transition from 0 to 1 when a
compare match occurs and a transition from 1 to 0 when the counter reaches the auto-
reload value. To do this you enable PWM mode 2 by writing OC1M=111 in the
TIMx_CCMR1 register. You can optionally enable the preload registers by writing
OC1PE=1 in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case you have to write the compare value in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by setting the UG bit and wait for
an external trigger event on TI2. CC1P is written to 0 in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

You only want 1 pulse, so you write 1 to the OPM bit in the TIMx_CR1 register to stop the
counter at the next update event (when the counter rolls over from the auto-reload value
back to 0).

Particular case: OCx fast enable

In One-pulse mode, edge detection on the TIx input sets the CEN bit, which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and, limiting the
minimum delay tDELAY we can get.

If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the
TIMx_CCMRx register. Then OCxREF (and OCx) is forced in response to the stimulus,
without taking the comparison into account. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

14.3.11 Timers and external trigger synchronization (available for TIM9 only)

The TIM9/10/11 timers can be synchronized with an external trigger in several modes:
Reset mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on the TI1
input:

● Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you do not need to configure it. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=0 and CC1NP=0 in the TIMx_CCER register to validate the polarity (and detect
rising edges only).

● Configure the timer in Reset mode by writing SMS=100 in the TIMx_SMCR register.
Select TI1 as the input source by writing TS=101 in the TIMx_SMCR register.

● Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1’s rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE bit in the TIMx_DIER register).

General-purpose timers (TIM9/10/11) RM0038

346/598 Doc ID 15965 Rev 4

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on the TI1 input.

Figure 134. Control circuit in Reset mode

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when the TI1 input is low:

● Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so you do not need to configure it. The CC1S bits
select the input capture source only, CC1S=01 in the TIMx_CCMR1 register. Write
CC1P=1 and CC1NP=0 in the TIMx_CCER register to validate the polarity (and detect
low levels only).

● Configure the timer in Gated mode by writing SMS=101 in the TIMx_SMCR register.
Select TI1 as the input source by writing TS=101 in the TIMx_SMCR register.

● Enable the counter by writing CEN=1 in the TIMx_CR1 register (in Gated mode, the
counter does not start if CEN=0, whatever the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on the TI1 input.

Figure 135. Control circuit in Gated mode

00

 Counter clock = CK_CNT = CK_PSC

Counter register 01 02 03 00 01 02 0332 33 34 35 36

UG

TI1

3130

TIF

 Counter clock = CK_CNT = CK_PSC

Counter register 35 36 37 3832 33 34

TI1

3130

CNT_EN

TIF

Write TIF=0

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 347/598

Note: The CCxP=CCxNP=1 configuration (detection of both rising and falling edges) does not
have any effect in the Gated mode because the Gated mode acts on levels and not on
edges.

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on the TI2 input:

● Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so you do not need to configure it. The CC2S bits
select the input capture source only, CC2S=01 in the TIMx_CCMR1 register. Write
CC2P=1 and CC2NP=0 in the TIMx_CCER register to validate the polarity (and detect
low levels only).

● Configure the timer in Trigger mode by writing SMS=110 in the TIMx_SMCR register.
Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on the TI2 input.

Figure 136. Control circuit in Trigger mode

14.3.12 Timer synchronization (available for TIM9 only)

The timers are linked together internally for timer synchronization or chaining. When one
timer is configured in Master mode, it can reset, start, stop or clock the counter of another
timer configured in Slave mode.

The following figure presents an overview of the trigger selection and the Master mode
selection blocks.

 Counter clock = CK_CNT = CK_PSC

Counter register 35 36 37 3834

TI2

CNT_EN

TIF

General-purpose timers (TIM9/10/11) RM0038

348/598 Doc ID 15965 Rev 4

Using one timer as the prescaler for another

Figure 137. Master/Slave timer example

For example, you can configure TIM9 to act as a prescaler for TIM2. Refer to Figure 137. To
do this:

● Configure TIM9 in Master mode so that it outputs a periodic trigger signal on each
update event UEV. If you write MMS=010 in the TIM9_CR2 register, a rising edge is
output on TRGO0 each time an update event is generated.

● To connect the TRGO0 output of TIM9 to TIM2, TIM2 must be configured in Slave
mode using ITR0 as the internal trigger. You select this through the TS bits in the
TIM2_SMCR register (writing TS=000).

● Then you put the slave mode controller in external clock mode 1 (write SMS=111 in the
TIM2_SMCR register). This causes TIM2 to be clocked by the rising edge of TIM9’s
periodic trigger signal (which corresponds to TIM9’s counter overflow).

● Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1
register).

Note: If OCx is selected on TIM9 as the trigger output (MMS=1xx), its rising edge is used to clock
the counter of TIM2.

Using one timer to enable another timer

In this example, we use the output compare 1 of TIM9 to enable TIM2. Refer to Figure 137
for connections. TIM2 counts on the divided internal clock only when the OC1REF of TIM9
is high. Both counter clock frequencies are divided by 3 by the prescaler compared to
CK_INT (fCK_CNT = fCK_INT/3).

● Configure TIM9 in Master mode to send its output compare 1 reference (OC1REF)
signal as the trigger output (MMS=100 in the TIM9_CR2 register).

● Configure the TIM9’s OC1REF waveform (TIM9_CCMR1 register).

● Configure TIM2 to get the input trigger from TIM9 (TS=000 in the TIM2_SMCR
register).

● Configure TIM2 in Gated mode (SMS=101 in the TIM2_SMCR register).

● Enable TIM2 by writing 1 to the CEN bit (TIM2_CR1 register).

● Start TIM9 by writing 1 to the CEN bit (TIM9_CR1 register).

Note: The TIM2 counter clock is not synchronized with the TIM9 counter clock, this mode only
affects the TIM2 counter enable signal.

TRGO0
UEV

ITR0

Prescaler Counter

SMSTSMMS

TIM9 TIM2

Master

mode

 control

Slave

mode

 control

 CK_PSC

Prescaler Counter

 Clock

Input

 selection
 trigger

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 349/598

Figure 138. Gating TIM2 with the OC1REF of TIM9

In the example in Figure 138, the TIM2 counter and prescaler are not initialized before being
started. So they start counting from their current value. It is possible to start from a given
value by resetting both timers before starting TIM9. You can then write any value into the
timer counters. The timers can easily be reset by software using the UG bit in the
TIMx_EGR registers.

In the next example, we synchronize TIM9 and TIM2. TIM9 is the master and starts from 0.
TIM2 is the slave and starts from 0xE7. The prescaler ratio is the same for both timers. TIM2
stops when TIM9 is disabled by writing 0 to the CEN bit in the TIM9_CR1 register:

● Configure TIM9 in Master mode to send its output compare 1 reference (OC1REF)
signal as the trigger output (MMS=100 in the TIM9_CR2 register).

● Configure TIM9’s OC1REF waveform (TIM9_CCMR1 register).

● Configure TIM2 to get the input trigger from TIM9 (TS=000 in the TIM2_SMCR
register).

● Configure TIM2 in Gated mode (SMS=101 in TIM2_SMCR register).

● Reset TIM9 by writing 1 to the UG bit (TIM9_EGR register).

● Reset TIM2 by writing 1 to the UG bit (TIM2_EGR register).

● Initialize TIM2 to 0xE7 by writing 0xE7 to the TIM2 counter (TIM2_CNT).

● Enable TIM2 by writing 1 to the CEN bit (TIM2_CR1 register).

● Start TIM9 by writing 1 to the CEN bit (TIM9_CR1 register).

● Stop TIM9 by writing 0 to the CEN bit (TIM9_CR1 register).

TIM2-TIF

Write TIF=0

FC FD FE FF 00

3045 3047 3048

CK_INT

TIM9-OC1REF

TIM9-CNT

TIM2-CNT

01

3046

General-purpose timers (TIM9/10/11) RM0038

350/598 Doc ID 15965 Rev 4

Figure 139. Gating TIM2 with the Enable of TIM9

Using one timer to start another timer

In this example, we set the enable of TIM2 with the update event of TIM9. Refer to
Figure 137 for connections. TIM2 starts counting from its current value (which can be non-
zero) on the divided internal clock as soon as the update event is generated by TIM9. When
TIM2 receives the trigger signal its CEN bit is automatically set and the counter counts until
we write 0 to the CEN bit in the TIM2_CR1 register. Both counter clock frequencies are
divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

● Configure TIM9 in Master mode to send its update event (UEV) as the trigger output
(MMS=010 in the TIM9_CR2 register).

● Configure the TIM9 period (TIM9_ARR registers).

● Configure TIM2 to get the input trigger from TIM9 (TS=000 in the TIM2_SMCR
register).

● Configure TIM2 in Trigger mode (SMS=110 in TIM2_SMCR register).

● Start TIM9 by writing 1 to the CEN bit (TIM9_CR1 register).

Figure 140. Triggering TIM2 with the update of TIM9

TIM2-TIF

Write TIF=0

75 00 01

CK_INT

TIM9-CEN=CNT_EN

TIM9-CNT

TIM2-CNT

02

TIM9-CNT_INIT

AB 00 E7 E8 E9

TIM2-CNT_INIT

TIM2
write CNT

TIM2-TIF

Write TIF=0

FD FE FF 00 01

45 47 48

CK_INT

TIM9-UEV

TIM9-CNT

TIM2-CNT

02

46

TIM2-CEN=CNT_EN

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 351/598

As in the previous example, you can initialize both counters before starting counting.
Figure 141 shows the behavior with the same configuration as in Figure 140 but in Trigger
mode instead of Gated mode (SMS=110 in the TIM2_SMCR register).

Figure 141. Triggering TIM2 with the Enable of TIM9

Using one timer as the prescaler for another timer

For example, you can configure TIM9 to act as a prescaler for TIM2. Refer to Figure 137 for
connections. To do this:

● Configure TIM9 in Master mode to send its update event (UEV) as the trigger output
(MMS=010 in the TIM9_CR2 register). It then outputs a periodic signal on each counter
overflow.

● Configure the TIM9 period (TIM9_ARR registers).

● Configure TIM2 to get the input trigger from TIM9 (TS=000 in the TIM2_SMCR
register).

● Configure TIM2 in external clock mode 1 (SMS=111 in TIM2_SMCR register).

● Start TIM2 by writing 1 to the CEN bit (TIM2_CR1 register).

● Start TIM9 by writing 1 to the CEN bit (TIM9_CR1 register).

Starting 2 timers synchronously in response to an external trigger

In this example, we set the enable of TIM9 when its TI1 input rises, and the enable of TIM2
with the enable of TIM9. Refer to Figure 137 for connections. To ensure that the counters

TIM2-TIF

Write TIF=0

75 00 01

CK_INT

TIM9-CEN=CNT_EN

TIM9-CNT

TIM2-CNT

02

TIM9-CNT_INIT

CD 00 E7 E8 EA

TIM2-CNT_INIT

TIM2
write CNT

E9

General-purpose timers (TIM9/10/11) RM0038

352/598 Doc ID 15965 Rev 4

are aligned, TIM9 must be configured in Master/Slave mode (slave with respect to TI1,
master with respect to TIM2):

● Configure TIM9 in Master mode to send its Enable as the trigger output (MMS=001 in
the TIM9_CR2 register).

● Configure TIM9 in Slave mode to get the input trigger from TI1 (TS=100 in the
TIM9_SMCR register).

● Configure TIM9 in Trigger mode (SMS=110 in the TIM9_SMCR register).

● Configure TIM9 in Master/Slave mode by writing MSM=1 (TIM9_SMCR register).

● Configure TIM2 to get the input trigger from TIM9 (TS=000 in the TIM2_SMCR
register).

● Configure TIM2 in Trigger mode (SMS=110 in the TIM2_SMCR register).

When a rising edge occurs on TI1 (TIM9), both counters starts counting synchronously on
the internal clock and both TIF flags are set.

Note: In this example both timers are initialized before starting (by setting their respective UG
bits). Both counters start from 0, but you can easily insert an offset between them by writing
any of the counter registers (TIMx_CNT). You can see that the master/slave mode inserts a
delay between CNT_EN and CK_PSC on TIM9.

Figure 142. Triggering TIM9 and TIM2 with TIM9’s TI1 input.

14.3.13 Debug mode

When the microcontroller enters the debug mode (Cortex-M3 core halted), the TIM9/10/11
counter either continues to work normally or stops, depending on the DBG_TIMx_STOP
configuration bit in the DBGMCU module. For more details, refer to Section 24.16.1: Debug
support for low-power modes.

00 01

CK_INT

TIM9-CEN=CNT_EN

TIM9-CNT

TIM9-TI1

TIM9-CK_PSC

02 03 04 05 06 07 08 09

TIM9-TIF

00 01

TIM2-CEN=CNT_EN

TIM2-CNT

TIM2-CK_PSC

02 03 04 05 06 07 08 09

TIM2-TIF

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 353/598

14.4 TIM9/10/11 registers
Refer to Section 1.1 for a list of abbreviations used in register descriptions.

14.4.1 TIMx control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE

Reserved
res OPM URS UDIS CEN

rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, always read as 0

Bits 9:8 CKD: Clock division
This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:4 Reserved

Bit 3 OPM: One-pulse mode

0: Counter is not stopped on the update event
1: Counter stops counting on the next update event (clearing the CEN bit).

Note: This bit is not available for the TIM10/11 timers.

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generates an update interrupt or DMA request if enabled.
These events are:

– Counter overflow/underflow
– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt request if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable the update event (UEV) generation.
0: UEV enabled. The UEV event is generated by one of the following events:

– Counter overflow/underflow
– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The UEV is not generated, shadow registers keep their value (ARR, PSC,
CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a
hardware reset is received from the slave mode controller.

General-purpose timers (TIM9/10/11) RM0038

354/598 Doc ID 15965 Rev 4

14.4.2 TIMx control register 2 (TIMx_CR2) (available for TIM9 only)

Address offset: 0x04

Reset value: 0x0000

Bit 0 CEN: Counter enable
0: Counter disabled
1: Counter enabled

CEN is cleared automatically in one-pulse mode, when an update event occurs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Res.
MMS[2:0]

Res. Reserved
rw rw rw

Bits 15:7 Reserved, always read as 0.

Bits 6:4 MMS: Master mode selection

These bits are used to select the information to be sent in Master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit in the TIMx_EGR register is used as the trigger output (TRGO). If
the reset is generated by the trigger input (slave mode controller configured in reset mode)
then the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as the trigger output (TRGO). It
is useful to start several timers at the same time or to control a window in which a slave timer
is enabled. The Counter Enable signal is generated by a logic OR between the CEN control
bit and the trigger input when configured in Gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR
register).
010: Update - The update event is selected as the trigger output (TRGO). For instance a
master timer can be used as a prescaler for a slave timer.
011: Compare pulse - The trigger output sends a positive pulse when the CC1IF flag is to
be set (even if it was already high), as soon as a capture or a compare match occurs.
(TRGO).
100: Compare - OC1REF signal is used as the trigger output (TRGO).
101: Compare - OC2REF signal is used as the trigger output (TRGO).
110: Reserved
111: Reserved

Bits 3:0 Reserved, always read as 0.

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 355/598

14.4.3 TIMx slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

TIM9_SMCR

TIM10/11_SMCR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0]
Res.

SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0]
Reserved

rw rw rw rw rw rw rw rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge
1: ETR is inverted, active at low level or falling edge

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal

Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with
TRGI connected to ETRF (SMS=111 and TS=111).
2: It is possible to simultaneously use external clock mode 2 with the following slave
modes: Reset mode, Gated mode and Trigger mode. Nevertheless, TRGI must not be
connected to ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time,
the external clock input is ETRF.

Bits 13:12 ETPS: External trigger prescaler
The frequency of the external trigger signal ETRP must be at most 1/4 of the CK_INT
frequency. A prescaler can be enabled to reduce the ETRP frequency. It is useful when
inputting fast external clocks.
00: Prescaler OFF.
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

General-purpose timers (TIM9/10/11) RM0038

356/598 Doc ID 15965 Rev 4

Bits 11:8 ETF[3:0]: External trigger filter
This bitfield then defines the frequency used to sample the ETRP signal and the length of
the digital filter applied to ETRP. The digital filter is made of an event counter in which N
events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bit 7(1) MSM: Master/Slave mode
0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful in
order to synchronize several timers on a single external event.

Bits 6:4(1) TS: Trigger selection
This bitfield selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1)
010: Internal Trigger 2 (ITR2)
011: Internal Trigger 3 (ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: Reserved.
See Table 56: TIMx internal trigger connection on page 357 for more details on the meaning
of ITRx for each timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.

Bit 3(1) Reserved, always read as 0.

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 357/598

Bits 2:0(1) SMS: Slave mode selection
When external signals are selected, the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input control register and Control register
descriptions.
000: Slave mode disabled - if CEN = 1 then the prescaler is clocked directly by the internal
clock
001: Reserved
010: Reserved
011: Reserved
100: Reset mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers
101: Gated mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Counter starts and
stops are both controlled
110: Trigger mode - The counter starts on a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled
111: External clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter

Note: The Gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
Gated mode checks the level of the trigger signal.

1. Bits [7:0] are not available for TIM10 and TIM11.

Table 56. TIMx internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

TIM9 TIM2 TIM3 TIM10 TIM11

General-purpose timers (TIM9/10/11) RM0038

358/598 Doc ID 15965 Rev 4

14.4.4 TIMx Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

14.4.5 TIMx status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TIE

Res
CC2IE CC1IE UIE

rw rw rw rw

Bit 15:7 Reserved, always read as 0.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled
1: Trigger interrupt enabled

Note: This bit is not available for the TIM10/11 timers.

Bit 5:3 Reserved, always read as 0.

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled
1: CC2 interrupt enabled

Note: This bit is not available for the TIM10/11 timers.

Bit 1 CC1IE: Capture/Compare 1 interrupt enable
0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC2OF CC1OF

Reserved
TIF

Reserved
CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bit 15:11 Reserved, always read as 0.

Bit 10 CC2OF: Capture/compare 2 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to 0.
0: No overcapture has been detected
1: The counter value was captured in the TIMx_CCR1 register with the CC1IF flag already
set

Note: This bit is not available for the TIM10/11 timers.

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to 0.
0: No overcapture has been detected
1: The counter value was captured in the TIMx_CCR1 register with the CC1IF flag already
set

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 359/598

Bits 8:7 Reserved, always read as 0.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on a trigger event (active edge detected on the TRGI input when
the slave mode controller is enabled in all modes except for the Gated mode. It is set when
the counter starts or stops and the Gated mode is selected. It is cleared by software.
0: No trigger event occurred
1: Trigger interrupt pending

Note: This bit is not available for the TIM10/11 timers.

Bit 5:3 Reserved, always read as 0

Bit 2 CC2IF: Capture/compare 2 interrupt flag

If channel CC2 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in the center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match
1: The contents of the TIMx_CNT counter match the contents of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow (in upcounting and up/downcounting modes) or
underflow (in downcounting mode)
If channel CC2 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in the TIMx_CCR1 register (an edge has been
detected on IC1 that matches the selected polarity)

Note: This bit is not available for the TIM10/11 timers.

Bit 1 CC1IF: Capture/compare 1 interrupt flag
If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in the center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match
1: The contents of the TIMx_CNT counter match the contents of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow (in upcounting and up/downcounting modes) or
underflow (in downcounting mode)
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in the TIMx_CCR1 register (an edge has been
detected on IC1 that matches the selected polarity)

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– on overflow and if UDIS=0 in the TIMx_CR1 register

– when CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if
URS=0 and UDIS=0 in the TIMx_CR1 register

– when CNT is reinitialized by a trigger event (refer to the synchro control register
description), if URS=0 and UDIS=0 in the TIMx_CR1 register.

General-purpose timers (TIM9/10/11) RM0038

360/598 Doc ID 15965 Rev 4

14.4.6 TIMx event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TG

Reserved
CC2G CC1G UG

w w w w

Bits 15:7 Reserved, always read as 0.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in the TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled

Note: This bit is not available for the TIM10/11 timers.

Bits 5:3 Reserved, always read as 0.

Bit 2 CC2G: Capture/compare 2 generation
This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC2 is configured as output:
the CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled.
If channel CC2 is configured as input:
The current counter value is captured in the TIMx_CCR1 register. The CC2IF flag is set, the
corresponding interrupt or DMA request is sent if enabled. The CC2OF flag is set if the
CC2IF flag was already high.

Note: This bit is not available on the TIM10/TIM11 timers.

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
the CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current counter value is captured in the TIMx_CCR1 register. The CC1IF flag is set, the
corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initializes the counter and generates an update of the registers. Note that the
prescaler counter is cleared too (the prescaler ratio is not affected). The counter is cleared if
DIR=0 (upcounting)

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 361/598

14.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits in this register have different functions in input and output modes. For a given bit, OCxx
describes its function when the channel is configured in output mode, ICxx describes its
function when the channel is configured in input mode. So you must take care that the same
bit can have different meanings for the input stage and the output stage.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2
CE OC2M[2:0] OC2

PE
OC2
FE CC2S[1:0]

OC1
CE OC1M[2:0] OC1

PE
OC1
FE CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC2CE: Output compare 2 clear enable
Note: This bit is not available for the TIM10/11 timers.

Bits 14:12 Note: OC2M[2:0]: Output compare 2 mode
Note: This bit is not available for the TIM10/11 timers.

Bit 11 Note: OC2PE: Output compare 2 preload enable
Note: This bit is not available for the TIM10/11 timers.

Bit 10 Note: OC2FE: Output compare 2 fast enable
Note: This bit is not available for the TIM10/11 timers.

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection
This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register

Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).
This bit is not available for the TIM10/11 timers.

Bit 7 OC1CE: Output compare 1 clear enable
OC1CE: Output compare 1 clear enable
0: OC1REF is not affected by the ETRF input
1: OC1REF is cleared as soon as a high level is detected on the ETRF input

General-purpose timers (TIM9/10/11) RM0038

362/598 Doc ID 15965 Rev 4

Bits 6:4 OC1M: Output compare 1 mode
These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas the active levels of OC1 and OC1N
depend on the CC1P and CC1NP bits, respectively.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs
001: Set channel 1 to active level on match. The OC1REF signal is forced high when the
TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. The OC1REF signal is forced low when the
TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1
100: Force inactive level - OC1REF is forced low
101: Force active level - OC1REF is forced high
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else it is inactive. In downcounting, channel 1 is inactive (OC1REF=‘0) as long as
TIMx_CNT>TIMx_CCR1, else it is active (OC1REF=1)
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as
TIMx_CNT<TIMx_CCR1 else it is active. In downcounting, channel 1 is active as long as
TIMx_CNT>TIMx_CCR1 else it is inactive.

Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken into account immediately
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded into the active register at each update event

Note: The PWM mode can be used without validating the preload register only in one-pulse
mode (OPM bit set in the TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on the counter and CCR1 values even when the
trigger is ON. The minimum delay to activate the CC1 output when an edge occurs on the
trigger input is 5 clock cycles
1: An active edge on the trigger input acts like a compare match on the CC1 output. Then,
OC is set to the compare level independently of the result of the comparison. Delay to
sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts
only if the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 363/598

Input capture mode

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/compare 2 selection
This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bits 7:4 IC1F: Input capture 1 filter

This bitfield defines the frequency used to sample the TI1 input and the length of the digital
filter applied to TI1. The digital filter is made of an event counter in which N events are
needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2.
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Note: In the current silicon revision, fDTS is replaced in the formula by CK_INT when
ICxF[3:0]= 1, 2 or 3.

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bitfield defines the ratio of the prescaler acting on the CC1 input (IC1).
The prescaler is reset as soon as CC1E=0 (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection
This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM9/10/11) RM0038

364/598 Doc ID 15965 Rev 4

14.4.8 TIMx capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC2NP

Res.
CC2P CC2E CC1NP

Res.
CC1P CC1E

rw rw rw rw rw rw

Bit 15:8 Reserved

Bit 7 CC2NP: Capture/Compare 2 output polarity
Note: Refer to the CC1NP description.

This bit is not available for the TIM10/11 timers.

Bit 6 Reserved, always read as 0.

Bit 5 CC2P: Capture/Compare 2 output polarity
Note: Refer to the CC1P description.

This bit is not available for the TIM10/11 timers.

Bit 4 CC2E: Capture/Compare 2 output enable

Note: Refer to the CC1E description.

This bit is not available for the TIM10/11 timers.

Bit 3 CC1NP: Capture/Compare 1 output polarity

CC1 channel configured as output:
CC1NP must be kept cleared in this case.
CC1 channel configured as input:
This bit is used in conjunction with CC1P to define the TI1FP1/TI2FP1 polarity. refer to the
CC1P description.

Bit 2 Reserved, always read as 0.

Bit 1 CC1P: Capture/Compare 1 output polarity
CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
The CC1NP/CC1P bits select the polarity of TI1FP1 and TI2FP1 for trigger or capture
operations.
00: noninverted/rising edge: circuit is sensitive to TIxFP1’s rising edge (capture, trigger in
reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode, encoder
mode).
01: inverted/falling edge: circuit is sensitive to TIxFP1’s falling edge (capture, trigger in reset,
external clock or trigger mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.
11: noninverted/both edges: circuit is sensitive to both the rising and falling edges of TIxFP1
(capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in
gated mode). This configuration must not be used for the encoder mode.

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 365/598

Note: The states of the external I/O pins connected to the standard OCx channels depend on the
state of the OCx channel and on the GPIO and AFIO registers.

14.4.9 TIMx counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000 0000

14.4.10 TIMx prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

Bit 0 CC1E: Capture/Compare 1 output enable
CC1 channel configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output pin
CC1 channel configured as input:
This bit determines if a capture of the counter value can be done into the input
capture/compare register 1 (TIMx_CCR1) or not
0: Capture disabled
1: Capture enabled

Table 57. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output disabled (OCx=0, OCx_EN=0)

1 OCx=OCxREF + Polarity, OCx_EN=1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded into the active prescaler register at each update event.

General-purpose timers (TIM9/10/11) RM0038

366/598 Doc ID 15965 Rev 4

14.4.11 TIMx auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000 0000

14.4.12 TIMx capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value
ARR is the value to be loaded into the actual auto-reload register.

Refer to the Section 14.3.1: Time-base unit on page 331 for more details about ARR update
and behavior.

The counter is blocked while the auto-reload value is null.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value
If channel CC1 is configured as output:
CCR1 is the value to be loaded into the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(OC1PE bit). Else the preload value is copied into the active capture/compare 1 register when
an update event occurs.

The active capture/compare register contains the value to be compared to the TIMx_CNT
counter and signaled on the OC1 output.
If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 367/598

14.4.13 TIMx capture/compare register 2 (TIMx_CCR2)
(available only for TIM9)

Address offset: 0x38

Reset value: 0x0000 0000

14.4.14 TIM9 option register 1 (TIM9_OR)

Address offset: 0x50

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded into the actual capture/compare 2 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(OC2PE bit). Else the preload value is copied into the active capture/compare 2 register when
an update event occurs.

The active capture/compare register contains the value to be compared to the TIMx_CNT
counter and signalled on the OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TI1_RMP

rw

Bits 15:2 Reserved

Bits 1:0 TI1_RMP: TIM9 input 1 remapping capability
Set and cleared by software.

00: TIM9 Channel1 is connected to GPIO: Refer to Alternate Function mapping
01: LSE external clock is connected to the TIM9_CH1 input for measurement purposes
10: TIM9 Channel1 is connected to GPIO
11: TIM9 Channel1 is connected to GPIO

General-purpose timers (TIM9/10/11) RM0038

368/598 Doc ID 15965 Rev 4

14.4.15 TIM10 option register 1 (TIM10_OR)

Address offset: 0x50

Reset value: 0x0000

14.4.16 TIM11 option register 1 (TIM11_OR)

Address offset: 0x50

Reset value: 0x0000

14.4.17 TIMx register map

TIMx registers are mapped as 16-bit addressable registers as described in the tables below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TI1_RMP

rw

Bits 15:2 Reserved

Bits 1:0 TI1_RMP: TIM10 Input 1 remapping capability
Set and cleared by software.

00: TIM10 Channel1 is connected to GPIO: Refer to Alternate Function mapping

01: LSI internal clock is connected to the TIM10_CH1 input for measurement purposes
10: LSE external clock is connected to the TIM10_CH1 input for measurement purposes

11: RTC output event is connected to the TIM10_CH1 input for measurement purposes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TI1_RMP

rw

Bits 15:2 Reserved

Bits 1:0 TI1_RMP: TIM11 Input 1 remapping capability
Set and cleared by software.
00: TIM11 Channel1 is connected to GPIO: Refer to Alternate Function mapping
01: MSI internal clock is connected to the TIM11_CH1 input for measurement purposes
10: HSE external clock (1MHz for RTC) is connected to the TIM11_CH1 input for
measurement purposes
11: TIM11 Channel1 is connected to GPIO

Table 58. TIM9 register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved
CKD
[1:0]

A
R

P
E

Reserved O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0

0x04
TIMx_CR2

Reserved
MMS[2:0]

Reserved

Reset value 0 0 0

0x08
TIMx_SMCR

Reserved E
T

P

E
C

E ETPS
[1:0] ETF[3:0]

M
S

M TS[2:0]

R
es

er
ve

d

SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0038 General-purpose timers (TIM9/10/11)

Doc ID 15965 Rev 4 369/598

0x0C
TIMx_DIER

Reserved T
IE

Reserved C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0

0x10
TIMx_SR

Reserved

C
C

2O
F

C
C

1O
F

R
es

er
ve

d

R
es

er
ve

d

T
IF

Reserved C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0

0x14
TIMx_EGR

Reserved T
G

Reserved C
C

2G

C
C

1G

U
G

Reset value 0 0 0 0

0x18

TIMx_CCMR1
Output

Compare
mode

Reserved

O
C

2C
E

OC2M
[2:0]

O
C

2P
E

O
C

2F
E

CC2S
[1:0]

O
C

1C
E

OC1M
[2:0]

O
C

1P
E

O
C

1F
E

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input Capture

mode Reserved
IC2F[3:0]

IC2
PSC
[1:0]

CC2S
[1:0] IC1F[3:0]

IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C Reserved

0x20
TIMx_CCER

Reserved

C
C

2N
P

R
es

er
ve

d

C
C

2P

C
C

2E

C
C

1N
P

R
es

er
ve

d

C
C

1P

C
C

1E

Reset value 0 0 0 0 0 0

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30 Reserved

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIMx_CCR2

Reserved
CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C to
0x4C Reserved

0x50
TIMx_OR

Not available Reserved
TI1_R

MP

Reset value 0 0

Table 58. TIM9 register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

General-purpose timers (TIM9/10/11) RM0038

370/598 Doc ID 15965 Rev 4

Table 59. TIM10/11 register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved
CKD
[1:0]

A
R

P
E

Reserved U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0

0x08
TIMx_SMCR

Reserved E
T

P

E
C

E ETPS
[1:0] ETF[3:0]

M
S

M

Reserved

Reset value 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

Reserved C
C

1I
E

U
IE

Reset value 0 0

0x10
TIMx_SR

Reserved

R
es

er
ve

d

C
C

1O
F

Reserved C
C

1I
F

U
IF

Reset value 0 0 0

0x14
TIMx_EGR

Reserved C
C

1G

U
G

Reset value 0 0

0x18

TIMx_CCMR1
Output

Compare
mode

Reserved

O
C

1C
E

OC1M
[2:0]

O
C

1P
E

O
C

1F
E

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input Capture

mode Reserved
IC1F[3:0]

IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0

0x1C Reserved

0x20
TIMx_CCER

Reserved

C
C

1N
P

R
es

er
ve

d

C
C

1P

C
C

1E

Reset value 0 0 0

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30 Reserved

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38 to
0x4C Reserved

0x50
TIMx_OR

Not available Reserved
TI1_R

MP

Reset value 0 0

RM0038 Basic timers (TIM6&TIM7)

Doc ID 15965 Rev 4 371/598

15 Basic timers (TIM6&TIM7)

15.1 TIM6&TIM7 introduction
The basic timers TIM6 and TIM7 consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used as generic timers for time-base generation but they are also specifically
used to drive the digital-to-analog converter (DAC). In fact, the timers are internally
connected to the DAC and are able to drive it through their trigger outputs.

The timers are completely independent, and do not share any resources.

15.2 TIM6&TIM7 main features
Basic timer (TIM6&TIM7) features include:

● 16-bit auto-reload upcounter

● 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65535

● Synchronization circuit to trigger the DAC

● Interrupt/DMA generation on the update event: counter overflow

Figure 143. Basic timer block diagram

U

Trigger
controller

Stop, Clear or up

TRGO

U

UI

Reset, Enable, Count,

event

Preload registers transferred
to active registers on U event according to control bit

interrupt & DMA output

to DAC

COUNTER
CK_PSC CNTCK_CNT

Controller

Internal clock (CK_INT)
TIMxCLK from RCC

±
Prescaler

PSC

Auto-reload Register

Flag

ai14749b

Basic timers (TIM6&TIM7) RM0038

372/598 Doc ID 15965 Rev 4

15.3 TIM6&TIM7 functional description

15.3.1 Time-base unit

The main block of the programmable timer is a 16-bit upcounter with its related auto-reload
register. The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

● Counter Register (TIMx_CNT)

● Prescaler Register (TIMx_PSC)

● Auto-Reload Register (TIMx_ARR)

The auto-reload register is preloaded. The preload register is accessed each time an
attempt is made to write or read the auto-reload register. The contents of the preload
register are transferred into the shadow register permanently or at each update event UEV,
depending on the auto-reload preload enable bit (ARPE) in the TIMx_CR1 register. The
update event is sent when the counter reaches the overflow value and if the UDIS bit equals
0 in the TIMx_CR1 register. It can also be generated by software. The generation of the
update event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in the TIMx_CR1 register is set.

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as the TIMx_PSC control register is buffered. The new
prescaler ratio is taken into account at the next update event.

Figure 144 and Figure 145 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.

RM0038 Basic timers (TIM6&TIM7)

Doc ID 15965 Rev 4 373/598

Figure 144. Counter timing diagram with prescaler division change from 1 to 2

Figure 145. Counter timing diagram with prescaler division change from 1 to 4

15.3.2 Counting mode

The counter counts from 0 to the auto-reload value (contents of the TIMx_ARR register),
then restarts from 0 and generates a counter overflow event.

An update event can be generate at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This avoids updating the shadow registers while writing new values into the preload
registers. In this way, no update event occurs until the UDIS bit has been written to 0,
however, the counter and the prescaler counter both restart from 0 (but the prescale rate
does not change). In addition, if the URS (update request selection) bit in the TIMx_CR1

 CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 1

Write a new value in TIMx_PSC

01 02 03

Prescaler buffer 0 1

Prescaler counter 0 1 0 1 0 1 0 1

F8

CK_PSC

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update event (UEV)

0

F9 FA FB FCF7

Prescaler control register 0 3

Write a new value in TIMx_PSC

Prescaler buffer 0 3

Prescaler counter 0 1 2 3 0 1 2 3

F8 01

Basic timers (TIM6&TIM7) RM0038

374/598 Doc ID 15965 Rev 4

register is set, setting the UG bit generates an update event UEV, but the UIF flag is not set
(so no interrupt or DMA request is sent).

When an update event occurs, all the registers are updated and the update flag (UIF bit in
the TIMx_SR register) is set (depending on the URS bit):

● The buffer of the prescaler is reloaded with the preload value (contents of the
TIMx_PSC register)

● The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR = 0x36.

Figure 146. Counter timing diagram, internal clock divided by 1

Figure 147. Counter timing diagram, internal clock divided by 2

 CK_INT

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

 CK_INT

0035 0000 0001 0002 0003

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0034 0036

Counter overflow

Update event (UEV)

RM0038 Basic timers (TIM6&TIM7)

Doc ID 15965 Rev 4 375/598

Figure 148. Counter timing diagram, internal clock divided by 4

Figure 149. Counter timing diagram, internal clock divided by N

Figure 150. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not
preloaded)

0000 0001

CNT_EN

 TImer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

0035 0036

Counter overflow

Update event (UEV)

 CK_INT

 Timer clock = CK_CNT

Counter register 001F 20

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

 CK_INT

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 0732 33 34 35 3631

Auto-reload register FF 36

Write a new value in TIMx_ARR

 CK_INT

Basic timers (TIM6&TIM7) RM0038

376/598 Doc ID 15965 Rev 4

Figure 151. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

15.3.3 Clock source

The counter clock is provided by the Internal clock (CK_INT) source.

The CEN (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except for UG that remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 152 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 152. Control circuit in normal mode, internal clock divided by 1

15.3.4 Debug mode

When the microcontroller enters the debug mode (Cortex-M3 core - halted), the TIMx
counter either continues to work normally or stops, depending on the DBG_TIMx_STOP
configuration bit in the DBG module. For more details, refer to Section 24.16.2: Debug
support for timers, watchdog and I2C.

00

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter overflow

Update event (UEV)

01 02 03 04 05 06 07F1 F2 F3 F4 F5F0

Auto-reload preload register F5 36

Auto-reload shadow register F5 36

Write a new value in TIMx_ARR

CK_PSC

CK_INT

00

 Counter clock = CK_CNT = CK_PSC

Counter register 01 02 03 04 05 06 0732 33 34 35 3631

CEN=CNT_EN

UG

CNT_INIT

RM0038 Basic timers (TIM6&TIM7)

Doc ID 15965 Rev 4 377/598

15.4 TIM6&TIM7 registers
Refer to for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

15.4.1 TIM6&TIM7 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ARPE

Reserved
OPM URS UDIS CEN

rw rw rw rw rw

Bits 15:8 Reserved, always read as 0

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:4 Reserved, always read as 0

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit).

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.

0: Any of the following events generates an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit
– Update generation through the slave mode controller

1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.

0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow
– Setting the UG bit

– Update generation through the slave mode controller

Buffered registers are then loaded with their preload values.

1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC). However the counter and the prescaler are reinitialized if the UG bit is set or if
a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable
0: Counter disabled
1: Counter enabled

Note: Gated mode can work only if the CEN bit has been previously set by software. However
trigger mode can set the CEN bit automatically by hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

Basic timers (TIM6&TIM7) RM0038

378/598 Doc ID 15965 Rev 4

15.4.2 TIM6&TIM7 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

15.4.3 TIM6&TIM7 DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MMS[2:0]

Reserved
rw rw rw

Bits 15:7 Reserved, always read as 0.

Bits 6:4 MMS: Master mode selection

These bits are used to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as a trigger output (TRGO). If
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.

001: Enable - the Counter enable signal, CNT_EN, is used as a trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer
is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.

When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR
register).

010: Update - The update event is selected as a trigger output (TRGO). For instance a
master timer can then be used as a prescaler for a slave timer.

Bits 3:0 Reserved, always read as 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UDE

Reserved
UIE

rw rw

Bit 15:9 Reserved, always read as 0.

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled.
1: Update DMA request enabled.

Bit 7:1 Reserved, always read as 0.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

RM0038 Basic timers (TIM6&TIM7)

Doc ID 15965 Rev 4 379/598

15.4.4 TIM6&TIM7 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15.4.5 TIM6&TIM7 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15.4.6 TIM6&TIM7 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UIF

rc_w0

Bits 15:1 Reserved, always read as 0.

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

–At overflow or underflow regarding the repetition counter value and if UDIS = 0 in the
TIMx_CR1 register.

–When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if
URS = 0 and UDIS = 0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UG

w

Bits 15:1 Reserved, always read as 0.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Re-initializes the timer counter and generates an update of the registers. Note that the
prescaler counter is cleared too (but the prescaler ratio is not affected).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

Basic timers (TIM6&TIM7) RM0038

380/598 Doc ID 15965 Rev 4

15.4.7 TIM6&TIM7 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

15.4.8 TIM6&TIM7 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value
The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).

PSC contains the value to be loaded into the active prescaler register at each update event.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Prescaler value

ARR is the value to be loaded into the actual auto-reload register.
Refer to Section 15.3.1: Time-base unit on page 372 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.

RM0038 Basic timers (TIM6&TIM7)

Doc ID 15965 Rev 4 381/598

15.4.9 TIM6&TIM7 register map

TIMx registers are mapped as 16-bit addressable registers as described in the table below:

Refer to Table 1 on page 32 for the register boundary addresses.

Table 60. TIM6&TIM7 register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved A
R

P
E

R
es

er
ve

d

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0

0x04
TIMx_CR2

Reserved
MMS[2:0]

R
es

er
ve

d

Reset value 0 0 0

0x08 Reserved

0x0C
TIMx_DIER

Reserved U
D

E

R
es

er
ve

d

U
IE

Reset value 0 0

0x10
TIMx_SR

Reserved U
IF

Reset value 0

0x14
TIMx_EGR

Reserved U
G

Reset value 0

0x18 Reserved

0x1C Reserved

0x20 Reserved

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Independent watchdog (IWDG) RM0038

382/598 Doc ID 15965 Rev 4

16 Independent watchdog (IWDG)

16.1 IWDG introduction
The STM32L15xxx have two embedded watchdog peripherals which offer a combination of
high safety level, timing accuracy and flexibility of use. Both watchdog peripherals
(Independent and Window) serve to detect and resolve malfunctions due to software failure,
and to trigger system reset or an interrupt (window watchdog only) when the counter
reaches a given timeout value.

The independent watchdog (IWDG) is clocked by its own dedicated low-speed clock (LSI)
and thus stays active even if the main clock fails. The window watchdog (WWDG) clock is
prescaled from the APB1 clock and has a configurable time-window that can be
programmed to detect abnormally late or early application behavior.

The IWDG is best suited to applications which require the watchdog to run as a totally
independent process outside the main application, but have lower timing accuracy
constraints. The WWDG is best suited to applications which require the watchdog to react
within an accurate timing window. For further information on the window watchdog, refer to
Section 17 on page 387.

16.2 IWDG main features
● Free-running downcounter

● clocked from an independent RC oscillator (can operate in Standby and Stop modes)

● Reset (if watchdog activated) when the downcounter value of 0x000 is reached

16.3 IWDG functional description
Figure 153 shows the functional blocks of the independent watchdog module.

When the independent watchdog is started by writing the value 0xCCCC in the Key register
(IWDG_KR), the counter starts counting down from the reset value of 0xFFF. When it
reaches the end of count value (0x000) a reset signal is generated (IWDG reset).

Whenever the key value 0xAAAA is written in the IWDG_KR register, the IWDG_RLR value
is reloaded in the counter and the watchdog reset is prevented.

16.3.1 Hardware watchdog

If the “Hardware watchdog” feature is enabled through the device option bits, the watchdog
is automatically enabled at power-on, and will generate a reset unless the Key register is
written by the software before the counter reaches end of count.

RM0038 Independent watchdog (IWDG)

Doc ID 15965 Rev 4 383/598

16.3.2 Register access protection

Write access to the IWDG_PR and IWDG_RLR registers is protected. To modify them, you
must first write the code 0x5555 in the IWDG_KR register. A write access to this register
with a different value will break the sequence and register access will be protected again.
This implies that it is the case of the reload operation (writing 0xAAAA).
A status register is available to indicate that an update of the prescaler or the down-counter
reload value is on going.

16.3.3 Debug mode

When the microcontroller enters debug mode (Cortex-M3 core halted), the IWDG counter
either continues to work normally or stops, depending on DBG_IWDG_STOP configuration
bit in DBG module. For more details, refer to Section 24.16.2: Debug support for timers,
watchdog and I2C.

Figure 153. Independent watchdog block diagram

Note: The watchdog function is implemented in the VDD voltage domain that is still functional in
Stop and Standby modes.

IWDG reset
prescaler

12-bit downcounter

IWDG_PR
Prescaler register

IWDG_RLR
Reload register

8-bitLSI

IWDG_KR
Key register

VCORE voltage domain

 VDD voltage domain

IWDG_SR
Status register

 12-bit reload value

ai17167

Table 61. Min/max IWDG timeout period at 37 kHz (LSI) (1)

1. These timings are given for a 37 kHz clock but the microcontroller’s internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler divider PR[2:0] bits
Min timeout (ms) RL[11:0]=

0x000
Max timeout (ms) RL[11:0]=

0xFFF

/4 0 0.108 442.81

/8 1 0.216 885.621

/16 2 0.432 1771.243

/32 3 0.864 3542.486

/64 4 1.729 7084.972

/128 5 3.459 14169.945

/256 6 6.918 28339.891

Independent watchdog (IWDG) RM0038

384/598 Doc ID 15965 Rev 4

16.4 IWDG registers
Refer to for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

16.4.1 Key register (IWDG_KR)

Address offset: 0x00

Reset value: 0x0000 0000 (reset by Standby mode)

16.4.2 Prescaler register (IWDG_PR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
KEY[15:0]

w w w w w w w w w w w w w w w w

Bits 31:16 Reserved, read as 0.

Bits 15:0 KEY[15:0]: Key value (write only, read 0000h)
These bits must be written by software at regular intervals with the key value AAAAh,
otherwise the watchdog generates a reset when the counter reaches 0.
Writing the key value 5555h to enable access to the IWDG_PR and IWDG_RLR registers
(see Section 16.3.2)
Writing the key value CCCCh starts the watchdog (except if the hardware watchdog option is
selected)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PR[2:0]

rw rw rw

Bits 31:3 Reserved, read as 0.

Bits 2:0 PR[2:0]: Prescaler divider
These bits are write access protected seeSection 16.3.2. They are written by software to
select the prescaler divider feeding the counter clock. PVU bit of IWDG_SR must be reset in
order to be able to change the prescaler divider.
000: divider /4
001: divider /8
010: divider /16
011: divider /32
100: divider /64
101: divider /128
110: divider /256
111: divider /256

Note: Reading this register returns the prescaler value from the VDD voltage domain. This
value may not be up to date/valid if a write operation to this register is ongoing. For this
reason the value read from this register is valid only when the PVU bit in the IWDG_SR
register is reset.

RM0038 Independent watchdog (IWDG)

Doc ID 15965 Rev 4 385/598

16.4.3 Reload register (IWDG_RLR)

Address offset: 0x08

Reset value: 0x0000 0FFF (reset by Standby mode)

16.4.4 Status register (IWDG_SR)

Address offset: 0x0C

Reset value: 0x0000 0000 (not reset by Standby mode)

Note: If several reload values or prescaler values are used by application, it is mandatory to wait
until RVU bit is reset before changing the reload value and to wait until PVU bit is reset
before changing the prescaler value. However, after updating the prescaler and/or the
reload value it is not necessary to wait until RVU or PVU is reset before continuing code
execution (even in case of low-power mode entry, the write operation is taken into account
and will complete)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RL[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, read as 0.

Bits11:0 RL[11:0]: Watchdog counter reload value

These bits are write access protected see Section 16.3.2. They are written by software to
define the value to be loaded in the watchdog counter each time the value AAAAh is written
in the IWDG_KR register. The watchdog counter counts down from this value. The timeout
period is a function of this value and the clock prescaler. Refer to Table 61.
The RVU bit in the IWDG_SR register must be reset in order to be able to change the reload
value.

Note: Reading this register returns the reload value from the VDD voltage domain. This value
may not be up to date/valid if a write operation to this register is ongoing on this register.
For this reason the value read from this register is valid only when the RVU bit in the
IWDG_SR register is reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RVU PVU

r r

Bits 31:2 Reserved

Bit 1 RVU: Watchdog counter reload value update

This bit is set by hardware to indicate that an update of the reload value is ongoing. It is reset
by hardware when the reload value update operation is completed in the VDD voltage domain
(takes up to 5 RC 40 kHz cycles).

Reload value can be updated only when RVU bit is reset.

Bit 0 PVU: Watchdog prescaler value update

This bit is set by hardware to indicate that an update of the prescaler value is ongoing. It is
reset by hardware when the prescaler update operation is completed in the VDD voltage
domain (takes up to 5 RC 40 kHz cycles).
Prescaler value can be updated only when PVU bit is reset.

Independent watchdog (IWDG) RM0038

386/598 Doc ID 15965 Rev 4

16.4.5 IWDG register map

The following table gives the IWDG register map and reset values.

Refer to Table 1 on page 32 for the register boundary addresses.

Table 62. IWDG register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
IWDG_KR

Reserved
KEY[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
IWDG_PR

Reserved
PR[2:0]

Reset value 0 0 0

0x08
IWDG_RLR

Reserved
RL[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1

0x0C
IWDG_SR

Reserved R
V

U

P
V

U

Reset value 0 0

RM0038 Window watchdog (WWDG)

Doc ID 15965 Rev 4 387/598

17 Window watchdog (WWDG)

17.1 WWDG introduction
The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interference or by unforeseen logical conditions, which causes the
application program to abandon its normal sequence. The watchdog circuit generates an
MCU reset on expiry of a programmed time period, unless the program refreshes the
contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also
generated if the 7-bit downcounter value (in the control register) is refreshed before the
downcounter has reached the window register value. This implies that the counter must be
refreshed in a limited window.

17.2 WWDG main features
● Programmable free-running downcounter

● Conditional reset

– Reset (if watchdog activated) when the downcounter value becomes less than 40h

– Reset (if watchdog activated) if the downcounter is reloaded outside the window
(see Figure 155)

● Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when
the downcounter is equal to 40h. Can be used to reload the counter and prevent
WWDG reset

17.3 WWDG functional description
If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when the
7-bit downcounter (T[6:0] bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates
a reset. If the software reloads the counter while the counter is greater than the value stored
in the window register, then a reset is generated.

Window watchdog (WWDG) RM0038

388/598 Doc ID 15965 Rev 4

Figure 154. Watchdog block diagram

The application program must write in the WWDG_CR register at regular intervals during
normal operation to prevent an MCU reset. This operation must occur only when the counter
value is lower than the window register value. The value to be stored in the WWDG_CR
register must be between 0xFF and 0xC0:

● Enabling the watchdog:

The watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in
the WWDG_CR register, then it cannot be disabled again except by a reset.

● Controlling the downcounter:

This downcounter is free-running: It counts down even if the watchdog is disabled.
When the watchdog is enabled, the T6 bit must be set to prevent generating an
immediate reset.
The T[5:0] bits contain the number of increments which represents the time delay
before the watchdog produces a reset. The timing varies between a minimum and a
maximum value due to the unknown status of the prescaler when writing to the
WWDG_CR register (see Figure 155).
The Configuration register (WWDG_CFR) contains the high limit of the window: To
prevent a reset, the downcounter must be reloaded when its value is lower than the
window register value and greater than 0x3F. Figure 155 describes the window
watchdog process.
Another way to reload the counter is to use the early wakeup interrupt (EWI). This
interrupt is enabled by setting the EWI bit in the WWDG_CFR register. When the
downcounter reaches the value 40h, this interrupt is generated and the corresponding
interrupt service routine (ISR) can be used to reload the counter to prevent WWDG
reset.
This interrupt is cleared by writing '0' to the EWIF bit in the WWDG_SR register.

Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is
cleared).

RESET

WDGA

6-bit downcounter (CNT)

T6

Watchdog control register (WWDG_CR)

T1T2T3T4T5

- W6 W0

Watchdog configuration register (WWDG_CFR)

W1W2W3W4W5

comparator

T6:0 > W6:0 CMP

= 1 when

Write WWDG_CR

WDG prescaler
(WDGTB)

PCLK1

T0

(from RCC clock controller)

RM0038 Window watchdog (WWDG)

Doc ID 15965 Rev 4 389/598

17.4 How to program the watchdog timeout
You can use the formula in Figure 155 to calculate the WWDG timeout.

Warning: When writing to the WWDG_CR register, always write 1 in the
T6 bit to avoid generating an immediate reset.

Figure 155. Window watchdog timing diagram

17.5 Debug mode
When the microcontroller enters debug mode (Cortex-M3 core halted), the WWDG counter
either continues to work normally or stops, depending on DBG_WWDG_STOP configuration
bit in DBG module. For more details, refer to Section 24.16.2: Debug support for timers,
watchdog and I2C.

T6 bit

Reset

W[6:0]

T[6:0] CNT downcounter

time
Refresh windowRefresh not allowed

0x3F

The formula to calculate the timeout value is given by:

where:

T WWDG: WWDG timeout

T PCLK1: APB1 clock period measured in ms

Min-max timeout value at 32 MHz (PCLK1)

WDGTB Min timeout (µs) Max timeout (ms)

8.19

T[5:0] = 0x00

0

16.382561

32.775122

65.5410243

T
WWDG

T
PCLK1

4096× 2
WDGTB

× T 5:0[] 1)+(×= (in ms)

T[5:0] = 0x3F

128

ai17101

Prescaler

1

2

4

8

Window watchdog (WWDG) RM0038

390/598 Doc ID 15965 Rev 4

17.6 WWDG registers
Refer to for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

17.6.1 Control register (WWDG_CR)

Address offset: 0x00

Reset value: 0x7F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
WDGA T[6:0]

rs rw

Bits 31:8 Reserved

Bit 7 WDGA: Activation bit
This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the
watchdog can generate a reset.
0: Watchdog disabled
1: Watchdog enabled

Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB)

These bits contain the value of the watchdog counter. It is decremented every (4096 x
2WDGTB) PCLK1 cycles. A reset is produced when it rolls over from 40h to 3Fh (T6 becomes
cleared).

RM0038 Window watchdog (WWDG)

Doc ID 15965 Rev 4 391/598

17.6.2 Configuration register (WWDG_CFR)

Address offset: 0x04

Reset value: 0x7F

17.6.3 Status register (WWDG_SR)

Address offset: 0x08
Reset value: 0x00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EWI

WDGTB[1:0]
W[6:0]

rs rw rw

Bit 31:10 Reserved

Bit 9 EWI: Early wakeup interrupt
When set, an interrupt occurs whenever the counter reaches the value 40h. This interrupt is
only cleared by hardware after a reset.

Bits 8:7 WDGTB[1:0]: Timer base

The time base of the prescaler can be modified as follows:
00: CK Counter Clock (PCLK1 div 4096) div 1
01: CK Counter Clock (PCLK1 div 4096) div 2
10: CK Counter Clock (PCLK1 div 4096) div 4
11: CK Counter Clock (PCLK1 div 4096) div 8

Bits 6:0 W[6:0]: 7-bit window value

These bits contain the window value to be compared to the downcounter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EWIF

rc_w0

Bit 31:1Reserved

Bit 0 EWIF: Early wakeup interrupt flag
This bit is set by hardware when the counter has reached the value 40h. It must be cleared
by software by writing ‘0. A write of ‘1 has no effect. This bit is also set if the interrupt is not
enabled.

Window watchdog (WWDG) RM0038

392/598 Doc ID 15965 Rev 4

17.6.4 WWDG register map

The following table gives the WWDG register map and reset values.

Refer to Table 1 on page 32 for the register boundary addresses.

Table 63. WWDG register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
WWDG_CR

Reserved

W
D

G
A

T[6:0]

Reset value 0 1 1 1 1 1 1 1

0x04
WWDG_CFR

Reserved E
W

I

W
D

G
T

B
1

W
D

G
T

B
0

W[6:0]

Reset value 0 0 0 1 1 1 1 1 1 1

0x08
WWDG_SR

Reserved E
W

IF

Reset value 0

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 393/598

18 Universal serial bus full-speed device interface (USB)

18.1 USB introduction
The USB peripheral implements an interface between a full-speed USB 2.0 bus and the
APB1 bus.

USB suspend/resume are supported which allows to stop the device clocks for low-power
consumption.

18.2 USB main features
● USB specification version 2.0 full-speed compliant

● Configurable number of endpoints from 1 to 8

● Cyclic redundancy check (CRC) generation/checking, Non-return-to-zero Inverted
(NRZI) encoding/decoding and bit-stuffing

● Isochronous transfers support

● Double-buffered bulk/isochronous endpoint support

● USB Suspend/Resume operations

● Frame locked clock pulse generation

● USB internal connect/disconnect feature (controlled by system configuration register)
with an internal pull-up resistor on the USB data+ (DP) line.

18.3 USB functional description
Figure 156 shows the block diagram of the USB peripheral.

Universal serial bus full-speed device interface (USB) RM0038

394/598 Doc ID 15965 Rev 4

Figure 156. USB peripheral block diagram

The USB peripheral provides an USB compliant connection between the host PC and the
function implemented by the microcontroller. Data transfer between the host PC and the
system memory occurs through a dedicated packet buffer memory accessed directly by the
USB peripheral. The size of this dedicated buffer memory must be according to the number
of endpoints used and the maximum packet size. This dedicated memory is sized to 512
bytes and up to 16 mono-directional or 8 bidirectional endpoints can be used.The USB
peripheral interfaces with the USB host, detecting token packets, handling data
transmission/reception, and processing handshake packets as required by the USB
standard. Transaction formatting is performed by the hardware, including CRC generation
and checking.

Each endpoint is associated with a buffer description block indicating where the endpoint
related memory area is located, how large it is or how many bytes must be transmitted.
When a token for a valid function/endpoint pair is recognized by the USB peripheral, the
related data transfer (if required and if the endpoint is configured) takes place. The data
buffered by the USB peripheral is loaded in an internal 16 bit register and memory access to
the dedicated buffer is performed. When all the data has been transferred, if needed, the

Arbiter

Packet
buffer
memory

Register
mapper

Interrupt
mapper

APB1 wrapper

Suspend

timer

Packet

buffer

interface

USB

RX-TX Clock

recovery

Control
Endpoint

selectionS.I.E.

Control
registers & logic

Interrupt
registers & logic

Analog

Endpoint

registers

DP DM

transceiver

Endpoint

registers

PCLK1 APB1 bus IRQs to NVIC

USB clock (48 MHz)

PCLK1

APB1 interface

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 395/598

proper handshake packet over the USB is generated or expected according to the direction
of the transfer.

At the end of the transaction, an endpoint-specific interrupt is generated, reading status
registers and/or using different interrupt response routines. The microcontroller can
determine:

● Which endpoint has to be served

● Which type of transaction took place, if errors occurred (bit stuffing, format, CRC,
protocol, missing ACK, over/underrun, etc.)

Special support is offered to Isochronous transfers and high throughput bulk transfers,
implementing a double buffer usage, which allows to always have an available buffer for the
USB peripheral while the microcontroller uses the other one.

The unit can be placed in low-power mode (SUSPEND mode), by writing in the control
register, whenever required. At this time, all static power dissipation is avoided, and the USB
clock can be slowed down or stopped. The detection of activity at the USB inputs, while in
low-power mode, wakes the device up asynchronously. A special interrupt source can be
connected directly to a wakeup line to allow the system to immediately restart the normal
clock generation and/or support direct clock start/stop.

18.3.1 Description of USB blocks

The USB peripheral implements all the features related to USB interfacing, which include
the following blocks:

● Serial Interface Engine (SIE): The functions of this block include: synchronization
pattern recognition, bit-stuffing, CRC generation and checking, PID
verification/generation, and handshake evaluation. It must interface with the USB
transceivers and uses the virtual buffers provided by the packet buffer interface for local
data storage,. This unit also generates signals according to USB peripheral events,
such as Start of Frame (SOF), USB_Reset, Data errors etc. and to Endpoint related
events like end of transmission or correct reception of a packet; these signals are then
used to generate interrupts.

● Timer: This block generates a start-of-frame locked clock pulse and detects a global
suspend (from the host) when no traffic has been received for 3 ms.

● Packet Buffer Interface: This block manages the local memory implementing a set of
buffers in a flexible way, both for transmission and reception. It can choose the proper
buffer according to requests coming from the SIE and locate them in the memory
addresses pointed by the Endpoint registers. It increments the address after each
exchanged word until the end of packet, keeping track of the number of exchanged
bytes and preventing the buffer to overrun the maximum capacity.

● Endpoint-Related Registers: Each endpoint has an associated register containing the
endpoint type and its current status. For mono-directional/single-buffer endpoints, a
single register can be used to implement two distinct endpoints. The number of
registers is 8, allowing up to 16 mono-directional/single-buffer or up to 7 double-buffer
endpoints* in any combination. For example the USB peripheral can be programmed to
have 4 double buffer endpoints and 8 single-buffer/mono-directional endpoints.

Universal serial bus full-speed device interface (USB) RM0038

396/598 Doc ID 15965 Rev 4

● Control Registers: These are the registers containing information about the status of
the whole USB peripheral and used to force some USB events, such as resume and
power-down.

● Interrupt Registers: These contain the Interrupt masks and a record of the events. They
can be used to inquire an interrupt reason, the interrupt status or to clear the status of a
pending interrupt.

Note: * Endpoint 0 is always used for control transfer in single-buffer mode.

The USB peripheral is connected to the APB1 bus through an APB1 interface, containing
the following blocks:

● Packet Memory: This is the local memory that physically contains the Packet Buffers. It
can be used by the Packet Buffer interface, which creates the data structure and can be
accessed directly by the application software. The size of the Packet Memory is 512
bytes, structured as 256 words by 16 bits.

● Arbiter: This block accepts memory requests coming from the APB1 bus and from the
USB interface. It resolves the conflicts by giving priority to APB1 accesses, while
always reserving half of the memory bandwidth to complete all USB transfers. This
time-duplex scheme implements a virtual dual-port SRAM that allows memory access,
while an USB transaction is happening. Multiword APB1 transfers of any length are
also allowed by this scheme.

● Register Mapper: This block collects the various byte-wide and bit-wide registers of the
USB peripheral in a structured 16-bit wide word set addressed by the APB1.

● APB1 Wrapper: This provides an interface to the APB1 for the memory and register. It
also maps the whole USB peripheral in the APB1 address space.

● Interrupt Mapper: This block is used to select how the possible USB events can
generate interrupts and map them to three different lines of the NVIC:

– USB low-priority interrupt (Channel 20): Triggered by all USB events (Correct
transfer, USB reset, etc.). The firmware has to check the interrupt source before
serving the interrupt.

– USB high-priority interrupt (Channel 19): Triggered only by a correct transfer event
for isochronous and double-buffer bulk transfer to reach the highest possible
transfer rate.

– USB wakeup interrupt (Channel 42): Triggered by the wakeup event from the USB
Suspend mode.

18.4 Programming considerations
In the following sections, the expected interactions between the USB peripheral and the
application program are described, in order to ease application software development.

18.4.1 Generic USB device programming

This part describes the main tasks required of the application software in order to obtain
USB compliant behavior. The actions related to the most general USB events are taken into
account and paragraphs are dedicated to the special cases of double-buffered endpoints
and Isochronous transfers. Apart from system reset, action is always initiated by the USB
peripheral, driven by one of the USB events described below.

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 397/598

18.4.2 System and power-on reset

Upon system and power-on reset, the first operation the application software should perform
is to provide all required clock signals to the USB peripheral and subsequently de-assert its
reset signal so to be able to access its registers. The whole initialization sequence is
hereafter described.

An internal pull-up resistor is connected to Data+ (DP) line and controlled by software using
the USB_PU bit in the SYSCFG_PMC register of the SYSCFG module (refer to Section 6:
System configuration controller (SYSCFG) and routing interface (RI). When the USB_PU bit
is reset, no pull-up is connected to the DP line and the device cannot be detected on the
USB bus (if no external pull-up is connected). When the USB_PU bit is set, the internal pull-
up is connected and the device can be detected on the USB bus.

As a first step application software needs to activate register macrocell clock and de-assert
macrocell specific reset signal using related control bits provided by device clock
management logic.

After that, the analog part of the device related to the USB transceiver must be switched on
using the PDWN bit in CNTR register, which requires a special handling. This bit is intended
to switch on the internal voltage references that supply the port transceiver. This circuit has
a defined startup time (tSTARTUP specified in the datasheet) during which the behavior of the
USB transceiver is not defined. It is thus necessary to wait this time, after setting the PDWN
bit in the CNTR register, before removing the reset condition on the USB part (by clearing
the FRES bit in the CNTR register). Clearing the ISTR register then removes any spurious
pending interrupt before any other macrocell operation is enabled.

At system reset, the microcontroller must initialize all required registers and the packet
buffer description table, to make the USB peripheral able to properly generate interrupts and
data transfers. All registers not specific to any endpoint must be initialized according to the
needs of application software (choice of enabled interrupts, chosen address of packet
buffers, etc.). Then the process continues as for the USB reset case (see further
paragraph).

USB reset (RESET interrupt)

When this event occurs, the USB peripheral is put in the same conditions it is left by the
system reset after the initialization described in the previous paragraph: communication is
disabled in all endpoint registers (the USB peripheral will not respond to any packet). As a
response to the USB reset event, the USB function must be enabled, having as USB
address 0, implementing only the default control endpoint (endpoint address is 0 too). This
is accomplished by setting the Enable Function (EF) bit of the USB_DADDR register and
initializing the EP0R register and its related packet buffers accordingly. During USB
enumeration process, the host assigns a unique address to this device, which must be
written in the ADD[6:0] bits of the USB_DADDR register, and configures any other
necessary endpoint.
When a RESET interrupt is received, the application software is responsible to enable again
the default endpoint of USB function 0 within 10mS from the end of reset sequence which
triggered the interrupt.

Structure and usage of packet buffers

Each bidirectional endpoint may receive or transmit data from/to the host. The received data
is stored in a dedicated memory buffer reserved for that endpoint, while another memory
buffer contains the data to be transmitted by the endpoint. Access to this memory is

Universal serial bus full-speed device interface (USB) RM0038

398/598 Doc ID 15965 Rev 4

performed by the packet buffer interface block, which delivers a memory access request and
waits for its acknowledgement. Since the packet buffer memory has to be accessed by the
microcontroller also, an arbitration logic takes care of the access conflicts, using half APB1
cycle for microcontroller access and the remaining half for the USB peripheral access. In
this way, both the agents can operate as if the packet memory is a dual-port SRAM, without
being aware of any conflict even when the microcontroller is performing back-to-back
accesses. The USB peripheral logic uses a dedicated clock. The frequency of this dedicated
clock is fixed by the requirements of the USB standard at 48 MHz, and this can be different
from the clock used for the interface to the APB1 bus. Different clock configurations are
possible where the APB1 clock frequency can be higher or lower than the USB peripheral
one.

Note: Due to USB data rate and packet memory interface requirements, the APB1 clock must
have a minimum frequency of 10 MHz to avoid data overrun/underrun problems.

Each endpoint is associated with two packet buffers (usually one for transmission and the
other one for reception). Buffers can be placed anywhere inside the packet memory
because their location and size is specified in a buffer description table, which is also
located in the packet memory at the address indicated by the USB_BTABLE register. Each
table entry is associated to an endpoint register and it is composed of four 16-bit words so
that table start address must always be aligned to an 8-byte boundary (the lowest three bits
of USB_BTABLE register are always “000”). Buffer descriptor table entries are described in
the Section 18.5.3: Buffer descriptor table. If an endpoint is unidirectional and it is neither an
Isochronous nor a double-buffered bulk, only one packet buffer is required (the one related
to the supported transfer direction). Other table locations related to unsupported transfer
directions or unused endpoints, are available to the user. Isochronous and double-buffered
bulk endpoints have special handling of packet buffers (Refer to Section 18.4.4: Isochronous
transfers and Section 18.4.3: Double-buffered endpoints respectively). The relationship
between buffer description table entries and packet buffer areas is depicted in Figure 157.

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 399/598

Figure 157. Packet buffer areas with examples of buffer description table locations

Buffer for
double-buffered
IN Endpoint 3

ADDR0_TX

COUNT0_TX

0000_0000 (00)

ADDR0_RX

COUNT0_RX

ADDR1_TX

COUNT1_TX

ADDR1_RX

COUNT1_RX

ADDR2_RX_0

COUNT2_RX_0

ADDR2_RX_1

COUNT2_RX_1

ADDR3_TX_0

COUNT3_TX_0

0000_0010 (02)

0000_0100 (04)

0000_0110 (06)

0000_1000 (08)

0000_1010 (0A)

0000_1100 (0C)

0000_1110 (0E)

0001_0000 (10)

0001_0010 (12)

0001_0100 (14)

0001_0110 (16)

0001_1000 (18)

0001_1010 (1A)

Buffer description table locations

Transmission
buffer for

Endpoint 0

Reception buffer
for

Endpoint 0

Transmission
buffer for

single-buffered
Endpoint 1

Packet buffers

ADDR3_TX_1

COUNT3_TX_1

0001_1100 (1C)

0001_1110 (1E)

Buffer for
double-buffered
OUT Endpoint 2

ai17109

Universal serial bus full-speed device interface (USB) RM0038

400/598 Doc ID 15965 Rev 4

Each packet buffer is used either during reception or transmission starting from the bottom.
The USB peripheral will never change the contents of memory locations adjacent to the
allocated memory buffers; if a packet bigger than the allocated buffer length is received
(buffer overrun condition) the data will be copied to the memory only up to the last available
location.

Endpoint initialization

The first step to initialize an endpoint is to write appropriate values to the
ADDRn_TX/ADDRn_RX registers so that the USB peripheral finds the data to be
transmitted already available and the data to be received can be buffered. The EP_TYPE
bits in the USB_EPnR register must be set according to the endpoint type, eventually using
the EP_KIND bit to enable any special required feature. On the transmit side, the endpoint
must be enabled using the STAT_TX bits in the USB_EPnR register and COUNTn_TX must
be initialized. For reception, STAT_RX bits must be set to enable reception and
COUNTn_RX must be written with the allocated buffer size using the BL_SIZE and
NUM_BLOCK fields. Unidirectional endpoints, except Isochronous and double-buffered bulk
endpoints, need to initialize only bits and registers related to the supported direction. Once
the transmission and/or reception are enabled, register USB_EPnR and locations
ADDRn_TX/ADDRn_RX, COUNTn_TX/COUNTn_RX (respectively), should not be modified
by the application software, as the hardware can change their value on the fly. When the
data transfer operation is completed, notified by a CTR interrupt event, they can be
accessed again to re-enable a new operation.

IN packets (data transmission)

When receiving an IN token packet, if the received address matches a configured and valid
endpoint one, the USB peripheral accesses the contents of ADDRn_TX and COUNTn_TX
locations inside buffer descriptor table entry related to the addressed endpoint. The content
of these locations is stored in its internal 16 bit registers ADDR and COUNT (not accessible
by software). The packet memory is accessed again to read the first word to be transmitted
(Refer to Structure and usage of packet buffers on page 397) and starts sending a DATA0 or
DATA1 PID according to USB_EPnR bit DTOG_TX. When the PID is completed, the first
byte from the word, read from buffer memory, is loaded into the output shift register to be
transmitted on the USB bus. After the last data byte is transmitted, the computed CRC is
sent. If the addressed endpoint is not valid, a NAK or STALL handshake packet is sent
instead of the data packet, according to STAT_TX bits in the USB_EPnR register.

The ADDR internal register is used as a pointer to the current buffer memory location while
COUNT is used to count the number of remaining bytes to be transmitted. Each word read
from the packet buffer memory is transmitted over the USB bus starting from the least
significant byte. Transmission buffer memory is read starting from the address pointed by
ADDRn_TX for COUNTn_TX/2 words. If a transmitted packet is composed of an odd
number of bytes, only the lower half of the last word accessed will be used.

On receiving the ACK receipt by the host, the USB_EPnR register is updated in the following
way: DTOG_TX bit is toggled, the endpoint is made invalid by setting STAT_TX=10 (NAK)
and bit CTR_TX is set. The application software must first identify the endpoint, which is
requesting microcontroller attention by examining the EP_ID and DIR bits in the USB_ISTR
register. Servicing of the CTR_TX event starts clearing the interrupt bit; the application
software then prepares another buffer full of data to be sent, updates the COUNTn_TX table
location with the number of byte to be transmitted during the next transfer, and finally sets
STAT_TX to ‘11 (VALID) to re-enable transmissions. While the STAT_TX bits are equal to ‘10
(NAK), any IN request addressed to that endpoint is NAKed, indicating a flow control

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 401/598

condition: the USB host will retry the transaction until it succeeds. It is mandatory to execute
the sequence of operations in the above mentioned order to avoid losing the notification of a
second IN transaction addressed to the same endpoint immediately following the one which
triggered the CTR interrupt.

OUT and SETUP packets (data reception)

These two tokens are handled by the USB peripheral more or less in the same way; the
differences in the handling of SETUP packets are detailed in the following paragraph about
control transfers. When receiving an OUT/SETUP PID, if the address matches a valid
endpoint, the USB peripheral accesses the contents of the ADDRn_RX and COUNTn_RX
locations inside the buffer descriptor table entry related to the addressed endpoint. The
content of the ADDRn_RX is stored directly in its internal register ADDR. While COUNT is
now reset and the values of BL_SIZE and NUM_BLOCK bit fields, which are read within
COUNTn_RX content are used to initialize BUF_COUNT, an internal 16 bit counter, which is
used to check the buffer overrun condition (all these internal registers are not accessible by
software). Data bytes subsequently received by the USB peripheral are packed in words
(the first byte received is stored as least significant byte) and then transferred to the packet
buffer starting from the address contained in the internal ADDR register while BUF_COUNT
is decremented and COUNT is incremented at each byte transfer. When the end of DATA
packet is detected, the correctness of the received CRC is tested and only if no errors
occurred during the reception, an ACK handshake packet is sent back to the transmitting
host. In case of wrong CRC or other kinds of errors (bit-stuff violations, frame errors, etc.),
data bytes are still copied in the packet memory buffer, at least until the error detection point,
but ACK packet is not sent and the ERR bit in USB_ISTR register is set. However, there is
usually no software action required in this case: the USB peripheral recovers from reception
errors and remains ready for the next transaction to come. If the addressed endpoint is not
valid, a NAK or STALL handshake packet is sent instead of the ACK, according to bits
STAT_RX in the USB_EPnR register and no data is written in the reception memory buffers.

Reception memory buffer locations are written starting from the address contained in the
ADDRn_RX for a number of bytes corresponding to the received data packet length, CRC
included (i.e. data payload length + 2), or up to the last allocated memory location, as
defined by BL_SIZE and NUM_BLOCK, whichever comes first. In this way, the USB
peripheral never writes beyond the end of the allocated reception memory buffer area. If the
length of the data packet payload (actual number of bytes used by the application) is greater
than the allocated buffer, the USB peripheral detects a buffer overrun condition. in this case,
a STALL handshake is sent instead of the usual ACK to notify the problem to the host, no
interrupt is generated and the transaction is considered failed.

When the transaction is completed correctly, by sending the ACK handshake packet, the
internal COUNT register is copied back in the COUNTn_RX location inside the buffer
description table entry, leaving unaffected BL_SIZE and NUM_BLOCK fields, which
normally do not require to be re-written, and the USB_EPnR register is updated in the
following way: DTOG_RX bit is toggled, the endpoint is made invalid by setting STAT_RX =
‘10 (NAK) and bit CTR_RX is set. If the transaction has failed due to errors or buffer overrun
condition, none of the previously listed actions take place. The application software must
first identify the endpoint, which is requesting microcontroller attention by examining the
EP_ID and DIR bits in the USB_ISTR register. The CTR_RX event is serviced by first
determining the transaction type (SETUP bit in the USB_EPnR register); the application
software must clear the interrupt flag bit and get the number of received bytes reading the
COUNTn_RX location inside the buffer description table entry related to the endpoint being
processed. After the received data is processed, the application software should set the
STAT_RX bits to ‘11 (Valid) in the USB_EPnR, enabling further transactions. While the

Universal serial bus full-speed device interface (USB) RM0038

402/598 Doc ID 15965 Rev 4

STAT_RX bits are equal to ‘10 (NAK), any OUT request addressed to that endpoint is
NAKed, indicating a flow control condition: the USB host will retry the transaction until it
succeeds. It is mandatory to execute the sequence of operations in the above mentioned
order to avoid losing the notification of a second OUT transaction addressed to the same
endpoint following immediately the one which triggered the CTR interrupt.

Control transfers

Control transfers are made of a SETUP transaction, followed by zero or more data stages,
all of the same direction, followed by a status stage (a zero-byte transfer in the opposite
direction). SETUP transactions are handled by control endpoints only and are very similar to
OUT ones (data reception) except that the values of DTOG_TX and DTOG_RX bits of the
addressed endpoint registers are set to 1 and 0 respectively, to initialize the control transfer,
and both STAT_TX and STAT_RX are set to ‘10 (NAK) to let software decide if subsequent
transactions must be IN or OUT depending on the SETUP contents. A control endpoint must
check SETUP bit in the USB_EPnR register at each CTR_RX event to distinguish normal
OUT transactions from SETUP ones. A USB device can determine the number and direction
of data stages by interpreting the data transferred in the SETUP stage, and is required to
STALL the transaction in the case of errors. To do so, at all data stages before the last, the
unused direction should be set to STALL, so that, if the host reverses the transfer direction
too soon, it gets a STALL as a status stage. While enabling the last data stage, the opposite
direction should be set to NAK, so that, if the host reverses the transfer direction (to perform
the status stage) immediately, it is kept waiting for the completion of the control operation. If
the control operation completes successfully, the software will change NAK to VALID,
otherwise to STALL. At the same time, if the status stage will be an OUT, the STATUS_OUT
(EP_KIND in the USB_EPnR register) bit should be set, so that an error is generated if a
status transaction is performed with not-zero data. When the status transaction is serviced,
the application clears the STATUS_OUT bit and sets STAT_RX to VALID (to accept a new
command) and STAT_TX to NAK (to delay a possible status stage immediately following the
next setup).

Since the USB specification states that a SETUP packet cannot be answered with a
handshake different from ACK, eventually aborting a previously issued command to start the
new one, the USB logic doesn’t allow a control endpoint to answer with a NAK or STALL
packet to a SETUP token received from the host.

When the STAT_RX bits are set to ‘01 (STALL) or ‘10 (NAK) and a SETUP token is received,
the USB accepts the data, performing the required data transfers and sends back an ACK
handshake. If that endpoint has a previously issued CTR_RX request not yet acknowledged
by the application (i.e. CTR_RX bit is still set from a previously completed reception), the
USB discards the SETUP transaction and does not answer with any handshake packet
regardless of its state, simulating a reception error and forcing the host to send the SETUP
token again. This is done to avoid losing the notification of a SETUP transaction addressed
to the same endpoint immediately following the transaction, which triggered the CTR_RX
interrupt.

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 403/598

18.4.3 Double-buffered endpoints

All different endpoint types defined by the USB standard represent different traffic models,
and describe the typical requirements of different kind of data transfer operations. When
large portions of data are to be transferred between the host PC and the USB function, the
bulk endpoint type is the most suited model. This is because the host schedules bulk
transactions so as to fill all the available bandwidth in the frame, maximizing the actual
transfer rate as long as the USB function is ready to handle a bulk transaction addressed to
it. If the USB function is still busy with the previous transaction when the next one arrives, it
will answer with a NAK handshake and the host PC will issue the same transaction again
until the USB function is ready to handle it, reducing the actual transfer rate due to the
bandwidth occupied by re-transmissions. For this reason, a dedicated feature called
‘double-buffering’ can be used with bulk endpoints.

When ‘double-buffering’ is activated, data toggle sequencing is used to select, which buffer
is to be used by the USB peripheral to perform the required data transfers, using both
‘transmission’ and ‘reception’ packet memory areas to manage buffer swapping on each
successful transaction in order to always have a complete buffer to be used by the
application, while the USB peripheral fills the other one. For example, during an OUT
transaction directed to a ‘reception’ double-buffered bulk endpoint, while one buffer is being
filled with new data coming from the USB host, the other one is available for the
microcontroller software usage (the same would happen with a ‘transmission’ double-
buffered bulk endpoint and an IN transaction).

Since the swapped buffer management requires the usage of all 4 buffer description table
locations hosting the address pointer and the length of the allocated memory buffers, the
USB_EPnR registers used to implement double-buffered bulk endpoints are forced to be
used as unidirectional ones. Therefore, only one STAT bit pair must be set at a value
different from ‘00 (Disabled): STAT_RX if the double-buffered bulk endpoint is enabled for
reception, STAT_TX if the double-buffered bulk endpoint is enabled for transmission. In case
it is required to have double-buffered bulk endpoints enabled both for reception and
transmission, two USB_EPnR registers must be used.

To exploit the double-buffering feature and reach the highest possible transfer rate, the
endpoint flow control structure, described in previous chapters, has to be modified, in order
to switch the endpoint status to NAK only when a buffer conflict occurs between the USB
peripheral and application software, instead of doing it at the end of each successful
transaction. The memory buffer which is currently being used by the USB peripheral is
defined by the DTOG bit related to the endpoint direction: DTOG_RX (bit 14 of USB_EPnR
register) for ‘reception’ double-buffered bulk endpoints or DTOG_TX (bit 6 of USB_EPnR
register) for ‘transmission’ double-buffered bulk endpoints. To implement the new flow
control scheme, the USB peripheral should know which packet buffer is currently in use by
the application software, so to be aware of any conflict. Since in the USB_EPnR register,
there are two DTOG bits but only one is used by USB peripheral for data and buffer
sequencing (due to the unidirectional constraint required by double-buffering feature) the
other one can be used by the application software to show which buffer it is currently using.
This new buffer flag is called SW_BUF. In the following table the correspondence between
USB_EPnR register bits and DTOG/SW_BUF definition is explained, for the cases of
‘transmission’ and ‘reception’ double-buffered bulk endpoints.

Universal serial bus full-speed device interface (USB) RM0038

404/598 Doc ID 15965 Rev 4

The memory buffer which is currently being used by the USB peripheral is defined by DTOG
buffer flag, while the buffer currently in use by application software is identified by SW_BUF
buffer flag. The relationship between the buffer flag value and the used packet buffer is the
same in both cases, and it is listed in the following table.

Double-buffering feature for a bulk endpoint is activated by:

● Writing EP_TYPE bit field at ‘00 in its USB_EPnR register, to define the endpoint as a
bulk, and

● Setting EP_KIND bit at ‘1 (DBL_BUF), in the same register.

The application software is responsible for DTOG and SW_BUF bits initialization according
to the first buffer to be used; this has to be done considering the special toggle-only property
that these two bits have. The end of the first transaction occurring after having set
DBL_BUF, triggers the special flow control of double-buffered bulk endpoints, which is used
for all other transactions addressed to this endpoint until DBL_BUF remain set. At the end of
each transaction the CTR_RX or CTR_TX bit of the addressed endpoint USB_EPnR
register is set, depending on the enabled direction. At the same time, the affected DTOG bit
in the USB_EPnR register is hardware toggled making the USB peripheral buffer swapping
completely software independent. Unlike common transactions, and the first one after

Table 64. Double-buffering buffer flag definition

Buffer flag ‘Transmission’ endpoint ‘Reception’ endpoint

DTOG DTOG_TX (USB_EPnRbit 6) DTOG_RX (USB_EPnRbit 14)

SW_BUF USB_EPnR bit 14 USB_EPnR bit 6

Table 65. Bulk double-buffering memory buffers usage

Endpoint
Type

DTOG SW_BUF
Packet buffer used by USB

Peripheral
Packet buffer used by
Application Software

IN

0 1
ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

ADDRn_TX_1 / COUNTn_TX_1

Buffer description table locations.

1 0
ADDRn_TX_1 / COUNTn_TX_1

Buffer description table locations

ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

0 0 None (1)

1. Endpoint in NAK Status.

ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

1 1 None (1) ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

OUT

0 1
ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

1 0
ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

0 0 None (1) ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

1 1 None (1) ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 405/598

DBL_BUF setting, STAT bit pair is not affected by the transaction termination and its value
remains ‘11 (Valid). However, as the token packet of a new transaction is received, the
actual endpoint status will be masked as ‘10 (NAK) when a buffer conflict between the USB
peripheral and the application software is detected (this condition is identified by DTOG and
SW_BUF having the same value, see Table 65 on page 404). The application software
responds to the CTR event notification by clearing the interrupt flag and starting any
required handling of the completed transaction. When the application packet buffer usage is
over, the software toggles the SW_BUF bit, writing ‘1 to it, to notify the USB peripheral about
the availability of that buffer. In this way, the number of NAKed transactions is limited only by
the application elaboration time of a transaction data: if the elaboration time is shorter than
the time required to complete a transaction on the USB bus, no re-transmissions due to flow
control will take place and the actual transfer rate will be limited only by the host PC.

The application software can always override the special flow control implemented for
double-buffered bulk endpoints, writing an explicit status different from ‘11 (Valid) into the
STAT bit pair of the related USB_EPnR register. In this case, the USB peripheral will always
use the programmed endpoint status, regardless of the buffer usage condition.

18.4.4 Isochronous transfers

The USB standard supports full speed peripherals requiring a fixed and accurate data
production/consume frequency, defining this kind of traffic as ‘Isochronous’. Typical
examples of this data are: audio samples, compressed video streams, and in general any
sort of sampled data having strict requirements for the accuracy of delivered frequency.
When an endpoint is defined to be ‘isochronous’ during the enumeration phase, the host
allocates in the frame the required bandwidth and delivers exactly one IN or OUT packet
each frame, depending on endpoint direction. To limit the bandwidth requirements, no re-
transmission of failed transactions is possible for Isochronous traffic; this leads to the fact
that an isochronous transaction does not have a handshake phase and no ACK packet is
expected or sent after the data packet. For the same reason, Isochronous transfers do not
support data toggle sequencing and always use DATA0 PID to start any data packet.

The Isochronous behavior for an endpoint is selected by setting the EP_TYPE bits at ‘10 in
its USB_EPnR register; since there is no handshake phase the only legal values for the
STAT_RX/STAT_TX bit pairs are ‘00 (Disabled) and ‘11 (Valid), any other value will produce
results not compliant to USB standard. Isochronous endpoints implement double-buffering
to ease application software development, using both ‘transmission’ and ‘reception’ packet
memory areas to manage buffer swapping on each successful transaction in order to have
always a complete buffer to be used by the application, while the USB peripheral fills the
other.

The memory buffer which is currently used by the USB peripheral is defined by the DTOG
bit related to the endpoint direction (DTOG_RX for ‘reception’ isochronous endpoints,
DTOG_TX for ‘transmission’ isochronous endpoints, both in the related USB_EPnR
register) according to Table 66.

Universal serial bus full-speed device interface (USB) RM0038

406/598 Doc ID 15965 Rev 4

As it happens with double-buffered bulk endpoints, the USB_EPnR registers used to
implement Isochronous endpoints are forced to be used as unidirectional ones. In case it is
required to have Isochronous endpoints enabled both for reception and transmission, two
USB_EPnR registers must be used.

The application software is responsible for the DTOG bit initialization according to the first
buffer to be used; this has to be done considering the special toggle-only property that these
two bits have. At the end of each transaction, the CTR_RX or CTR_TX bit of the addressed
endpoint USB_EPnR register is set, depending on the enabled direction. At the same time,
the affected DTOG bit in the USB_EPnR register is hardware toggled making buffer
swapping completely software independent. STAT bit pair is not affected by transaction
completion; since no flow control is possible for Isochronous transfers due to the lack of
handshake phase, the endpoint remains always ‘11 (Valid). CRC errors or buffer-overrun
conditions occurring during Isochronous OUT transfers are anyway considered as correct
transactions and they always trigger an CTR_RX event. However, CRC errors will anyway
set the ERR bit in the USB_ISTR register to notify the software of the possible data
corruption.

18.4.5 Suspend/Resume events

The USB standard defines a special peripheral state, called SUSPEND, in which the
average current drawn from the USB bus must not be greater than 500 μA. This requirement
is of fundamental importance for bus-powered devices, while self-powered devices are not
required to comply to this strict power consumption constraint. In suspend mode, the host
PC sends the notification to not send any traffic on the USB bus for more than 3mS: since a
SOF packet must be sent every mS during normal operations, the USB peripheral detects
the lack of 3 consecutive SOF packets as a suspend request from the host PC and set the
SUSP bit to ‘1 in USB_ISTR register, causing an interrupt if enabled. Once the device is
suspended, its normal operation can be restored by a so called RESUME sequence, which
can be started from the host PC or directly from the peripheral itself, but it is always
terminated by the host PC. The suspended USB peripheral must be anyway able to detect a
RESET sequence, reacting to this event as a normal USB reset event.

Table 66. Isochronous memory buffers usage

Endpoint
Type

DTOG bit
value

Packet buffer used by the
USB peripheral

Packet buffer used by the
application software

IN

0
ADDRn_TX_0 / COUNTn_TX_0
buffer description table
locations.

ADDRn_TX_1 / COUNTn_TX_1
buffer description table
locations.

1
ADDRn_TX_1 / COUNTn_TX_1
buffer description table
locations.

ADDRn_TX_0 / COUNTn_TX_0
buffer description table
locations.

OUT

0
ADDRn_RX_0 / COUNTn_RX_0
buffer description table
locations.

ADDRn_RX_1 / COUNTn_RX_1
buffer description table
locations.

1
ADDRn_RX_1 / COUNTn_RX_1
buffer description table
locations.

ADDRn_RX_0 / COUNTn_RX_0
buffer description table
locations.

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 407/598

The actual procedure used to suspend the USB peripheral is device dependent since
according to the device composition, different actions may be required to reduce the total
consumption.

A brief description of a typical suspend procedure is provided below, focused on the USB-
related aspects of the application software routine responding to the SUSP notification of
the USB peripheral:

1. Set the FSUSP bit in the USB_CNTR register to 1. This action activates the suspend
mode within the USB peripheral. As soon as the suspend mode is activated, the check
on SOF reception is disabled to avoid any further SUSP interrupts being issued while
the USB is suspended.

2. Remove or reduce any static power consumption in blocks different from the USB
peripheral.

3. Set LP_MODE bit in USB_CNTR register to 1 to remove static power consumption in
the analog USB transceivers but keeping them able to detect resume activity.

4. Optionally turn off external oscillator and device PLL to stop any activity inside the
device.

When an USB event occurs while the device is in SUSPEND mode, the RESUME procedure
must be invoked to restore nominal clocks and regain normal USB behavior. Particular care
must be taken to insure that this process does not take more than 10mS when the wakening
event is an USB reset sequence (See “Universal Serial Bus Specification” for more details).
The start of a resume or reset sequence, while the USB peripheral is suspended, clears the
LP_MODE bit in USB_CNTR register asynchronously. Even if this event can trigger an
WKUP interrupt if enabled, the use of an interrupt response routine must be carefully
evaluated because of the long latency due to system clock restart; to have the shorter
latency before re-activating the nominal clock it is suggested to put the resume procedure
just after the end of the suspend one, so its code is immediately executed as soon as the
system clock restarts. To prevent ESD discharges or any other kind of noise from waking-up
the system (the exit from suspend mode is an asynchronous event), a suitable analog filter
on data line status is activated during suspend; the filter width is about 70ns.

The following is a list of actions a resume procedure should address:

1. Optionally turn on external oscillator and/or device PLL.

2. Clear FSUSP bit of USB_CNTR register.

3. If the resume triggering event has to be identified, bits RXDP and RXDM in the
USB_FNR register can be used according to Table 67, which also lists the intended
software action in all the cases. If required, the end of resume or reset sequence can
be detected monitoring the status of the above mentioned bits by checking when they
reach the “10” configuration, which represent the Idle bus state; moreover at the end of
a reset sequence the RESET bit in USB_ISTR register is set to 1, issuing an interrupt if
enabled, which should be handled as usual.

Table 67. Resume event detection

[RXDP,RXDM] status Wakeup event Required resume software action

“00” Root reset None

“10” None (noise on bus) Go back in Suspend mode

“01” Root resume None

“11” Not allowed (noise on bus) Go back in Suspend mode

Universal serial bus full-speed device interface (USB) RM0038

408/598 Doc ID 15965 Rev 4

A device may require to exit from suspend mode as an answer to particular events not
directly related to the USB protocol (e.g. a mouse movement wakes up the whole system).
In this case, the resume sequence can be started by setting the RESUME bit in the
USB_CNTR register to ‘1 and resetting it to 0 after an interval between 1mS and 15mS (this
interval can be timed using ESOF interrupts, occurring with a 1mS period when the system
clock is running at nominal frequency). Once the RESUME bit is clear, the resume
sequence will be completed by the host PC and its end can be monitored again using the
RXDP and RXDM bits in the USB_FNR register.

Note: The RESUME bit must be anyway used only after the USB peripheral has been put in
suspend mode, setting the FSUSP bit in USB_CNTR register to 1.

18.5 USB registers
The USB peripheral registers can be divided into the following groups:

● Common Registers: Interrupt and Control registers

● Endpoint Registers: Endpoint configuration and status

● Buffer Descriptor Table: Location of packet memory used to locate data buffers

All register addresses are expressed as offsets with respect to the USB peripheral registers
base address 0x4000 5C00, except the buffer descriptor table locations, which starts at the
address specified by the USB_BTABLE register. Due to the common limitation of APB1
bridges on word addressability, all register addresses are aligned to 32-bit word boundaries
although they are 16-bit wide. The same address alignment is used to access packet buffer
memory locations, which are located starting from 0x4000 6000.

Refer to Section 1.1 on page 29 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 409/598

18.5.1 Common registers

These registers affect the general behavior of the USB peripheral defining operating mode,
interrupt handling, device address and giving access to the current frame number updated
by the host PC.

USB control register (USB_CNTR)

Address offset: 0x40

Reset value: 0x0003

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTRM PMAOVRM ERRM WKUPM SUSPM RESETM SOFM ESOFM
Reserved

RESUME FSUSP LP_MODE PDWN FRES

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 CTRM: Correct transfer interrupt mask
0: Correct Transfer (CTR) Interrupt disabled.
1: CTR Interrupt enabled, an interrupt request is generated when the corresponding bit in the
USB_ISTR register is set.

Bit 14 PMAOVRM: Packet memory area over / underrun interrupt mask
0: PMAOVR Interrupt disabled.
1: PMAOVR Interrupt enabled, an interrupt request is generated when the corresponding bit
in the USB_ISTR register is set.

Bit 13 ERRM: Error interrupt mask

0: ERR Interrupt disabled.
1: ERR Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 12 WKUPM: Wakeup interrupt mask

0: WKUP Interrupt disabled.
1: WKUP Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 11 SUSPM: Suspend mode interrupt mask
0: Suspend Mode Request (SUSP) Interrupt disabled.
1: SUSP Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 10 RESETM: USB reset interrupt mask

0: RESET Interrupt disabled.
1: RESET Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 9 SOFM: Start of frame interrupt mask

0: SOF Interrupt disabled.
1: SOF Interrupt enabled, an interrupt request is generated when the corresponding bit in the
USB_ISTR register is set.

Bit 8 ESOFM: Expected start of frame interrupt mask
0: Expected Start of Frame (ESOF) Interrupt disabled.
1: ESOF Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bits 7:5 Reserved.

Universal serial bus full-speed device interface (USB) RM0038

410/598 Doc ID 15965 Rev 4

Bit 4 RESUME: Resume request
The microcontroller can set this bit to send a Resume signal to the host. It must be activated,
according to USB specifications, for no less than 1mS and no more than 15mS after which
the Host PC is ready to drive the resume sequence up to its end.

Bit 3 FSUSP: Force suspend

Software must set this bit when the SUSP interrupt is received, which is issued when no
traffic is received by the USB peripheral for 3 mS.
0: No effect.
1: Enter suspend mode. Clocks and static power dissipation in the analog transceiver are left
unaffected. If suspend power consumption is a requirement (bus-powered device), the
application software should set the LP_MODE bit after FSUSP as explained below.

Bit 2 LP_MODE: Low-power mode

This mode is used when the suspend-mode power constraints require that all static power
dissipation is avoided, except the one required to supply the external pull-up resistor. This
condition should be entered when the application is ready to stop all system clocks, or
reduce their frequency in order to meet the power consumption requirements of the USB
suspend condition. The USB activity during the suspend mode (WKUP event)
asynchronously resets this bit (it can also be reset by software).
0: No Low-power mode.
1: Enter Low-power mode.

Bit 1 PDWN: Power down
This bit is used to completely switch off all USB-related analog parts if it is required to
completely disable the USB peripheral for any reason. When this bit is set, the USB
peripheral is disconnected from the transceivers and it cannot be used.
0: Exit Power Down.
1: Enter Power down mode.

Bit 0 FRES: Force USB Reset

0: Clear USB reset.
1: Force a reset of the USB peripheral, exactly like a RESET signalling on the USB. The USB
peripheral is held in RESET state until software clears this bit. A “USB-RESET” interrupt is
generated, if enabled.

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 411/598

USB interrupt status register (USB_ISTR)

Address offset: 0x44

Reset value: 0x0000 0000

This register contains the status of all the interrupt sources allowing application software to
determine, which events caused an interrupt request.

The upper part of this register contains single bits, each of them representing a specific
event. These bits are set by the hardware when the related event occurs; if the
corresponding bit in the USB_CNTR register is set, a generic interrupt request is generated.
The interrupt routine, examining each bit, will perform all necessary actions, and finally it will
clear the serviced bits. If any of them is not cleared, the interrupt is considered to be still
pending, and the interrupt line will be kept high again. If several bits are set simultaneously,
only a single interrupt will be generated.

Endpoint transaction completion can be handled in a different way to reduce interrupt
response latency. The CTR bit is set by the hardware as soon as an endpoint successfully
completes a transaction, generating a generic interrupt request if the corresponding bit in
USB_CNTR is set. An endpoint dedicated interrupt condition is activated independently
from the CTRM bit in the USB_CNTR register. Both interrupt conditions remain active until
software clears the pending bit in the corresponding USB_EPnR register (the CTR bit is
actually a read only bit). For endpoint-related interrupts, the software can use the Direction
of Transaction (DIR) and EP_ID read-only bits to identify, which endpoint made the last
interrupt request and called the corresponding interrupt service routine.

The user can choose the relative priority of simultaneously pending USB_ISTR events by
specifying the order in which software checks USB_ISTR bits in an interrupt service routine.
Only the bits related to events, which are serviced, are cleared. At the end of the service
routine, another interrupt will be requested, to service the remaining conditions.

To avoid spurious clearing of some bits, it is recommended to clear them with a load
instruction where all bits which must not be altered are written with 1, and all bits to be
cleared are written with ‘0 (these bits can only be cleared by software). Read-modify-write
cycles should be avoided because between the read and the write operations another bit
could be set by the hardware and the next write will clear it before the microprocessor has
the time to serve the event.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR PMA
OVR ERR WKUP SUSP RESET SOF ESOF

Reserved
DIR EP_ID[3:0]

r rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 r r r r r

Universal serial bus full-speed device interface (USB) RM0038

412/598 Doc ID 15965 Rev 4

The following describes each bit in detail:

Bit 15 CTR: Correct transfer
This bit is set by the hardware to indicate that an endpoint has successfully completed a
transaction; using DIR and EP_ID bits software can determine which endpoint requested the
interrupt. This bit is read-only.

Bit 14 PMAOVR: Packet memory area over / underrun

This bit is set if the microcontroller has not been able to respond in time to an USB memory
request. The USB peripheral handles this event in the following way: During reception an
ACK handshake packet is not sent, during transmission a bit-stuff error is forced on the
transmitted stream; in both cases the host will retry the transaction. The PMAOVR interrupt
should never occur during normal operations. Since the failed transaction is retried by the
host, the application software has the chance to speed-up device operations during this
interrupt handling, to be ready for the next transaction retry; however this does not happen
during Isochronous transfers (no isochronous transaction is anyway retried) leading to a loss
of data in this case. This bit is read/write but only ‘0 can be written and writing ‘1 has no
effect.

Bit 13 ERR: Error
This flag is set whenever one of the errors listed below has occurred:
NANS: No ANSwer. The timeout for a host response has expired.
CRC: Cyclic Redundancy Check error. One of the received CRCs, either in the token or in the
data, was wrong.
BST: Bit Stuffing error. A bit stuffing error was detected anywhere in the PID, data, and/or
CRC.
FVIO: Framing format Violation. A non-standard frame was received (EOP not in the right
place, wrong token sequence, etc.).
The USB software can usually ignore errors, since the USB peripheral and the PC host
manage retransmission in case of errors in a fully transparent way. This interrupt can be
useful during the software development phase, or to monitor the quality of transmission over
the USB bus, to flag possible problems to the user (e.g. loose connector, too noisy
environment, broken conductor in the USB cable and so on). This bit is read/write but only ‘0
can be written and writing ‘1 has no effect.

Bit 12 WKUP: Wakeup

This bit is set to 1 by the hardware when, during suspend mode, activity is detected that
wakes up the USB peripheral. This event asynchronously clears the LP_MODE bit in the
CTLR register and activates the USB_WAKEUP line, which can be used to notify the rest of
the device (e.g. wakeup unit) about the start of the resume process. This bit is read/write but
only ‘0 can be written and writing ‘1 has no effect.

Bit 11 SUSP: Suspend mode request

This bit is set by the hardware when no traffic has been received for 3mS, indicating a
suspend mode request from the USB bus. The suspend condition check is enabled
immediately after any USB reset and it is disabled by the hardware when the suspend mode
is active (FSUSP=1) until the end of resume sequence. This bit is read/write but only ‘0 can
be written and writing ‘1 has no effect.

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 413/598

Bit 10 RESET: USB reset request
Set when the USB peripheral detects an active USB RESET signal at its inputs. The USB
peripheral, in response to a RESET, just resets its internal protocol state machine, generating
an interrupt if RESETM enable bit in the USB_CNTR register is set. Reception and
transmission are disabled until the RESET bit is cleared. All configuration registers do not
reset: the microcontroller must explicitly clear these registers (this is to ensure that the
RESET interrupt can be safely delivered, and any transaction immediately followed by a
RESET can be completed). The function address and endpoint registers are reset by an USB
reset event.
This bit is read/write but only ‘0 can be written and writing ‘1 has no effect.

Bit 9 SOF: Start of frame

This bit signals the beginning of a new USB frame and it is set when a SOF packet arrives
through the USB bus. The interrupt service routine may monitor the SOF events to have a
1mS synchronization event to the USB host and to safely read the USB_FNR register which
is updated at the SOF packet reception (this could be useful for isochronous applications).
This bit is read/write but only ‘0 can be written and writing ‘1 has no effect.

Bit 8 ESOF: Expected start of frame

This bit is set by the hardware when an SOF packet is expected but not received. The host
sends an SOF packet each mS, but if the hub does not receive it properly, the Suspend Timer
issues this interrupt. If three consecutive ESOF interrupts are generated (i.e. three SOF
packets are lost) without any traffic occurring in between, a SUSP interrupt is generated. This
bit is set even when the missing SOF packets occur while the Suspend Timer is not yet
locked. This bit is read/write but only ‘0 can be written and writing ‘1 has no effect.

Bits 7:5 Reserved.

Bit 4 DIR: Direction of transaction

This bit is written by the hardware according to the direction of the successful transaction,
which generated the interrupt request.
If DIR bit=0, CTR_TX bit is set in the USB_EPnR register related to the interrupting endpoint.
The interrupting transaction is of IN type (data transmitted by the USB peripheral to the host
PC).
If DIR bit=1, CTR_RX bit or both CTR_TX/CTR_RX are set in the USB_EPnR register
related to the interrupting endpoint. The interrupting transaction is of OUT type (data
received by the USB peripheral from the host PC) or two pending transactions are waiting to
be processed.
This information can be used by the application software to access the USB_EPnR bits
related to the triggering transaction since it represents the direction having the interrupt
pending. This bit is read-only.

Bits 3:0 EP_ID[3:0]: Endpoint Identifier
These bits are written by the hardware according to the endpoint number, which generated
the interrupt request. If several endpoint transactions are pending, the hardware writes the
endpoint identifier related to the endpoint having the highest priority defined in the following
way: Two endpoint sets are defined, in order of priority: Isochronous and double-buffered bulk
endpoints are considered first and then the other endpoints are examined. If more than one
endpoint from the same set is requesting an interrupt, the EP_ID bits in USB_ISTR register
are assigned according to the lowest requesting endpoint register, EP0R having the highest
priority followed by EP1R and so on. The application software can assign a register to each
endpoint according to this priority scheme, so as to order the concurring endpoint requests in
a suitable way. These bits are read only.

Universal serial bus full-speed device interface (USB) RM0038

414/598 Doc ID 15965 Rev 4

USB frame number register (USB_FNR)

Address offset: 0x48

Reset value: 0x0XXX where X is undefined

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXDP RXDM LCK LSOF[1:0] FN[10:0]

r r r r r r r r r r r r r r r r

Bit 15 RXDP: Receive data + line status
This bit can be used to observe the status of received data plus upstream port data line. It
can be used during end-of-suspend routines to help determining the wakeup event.

Bit 14 RXDM: Receive data - line status

This bit can be used to observe the status of received data minus upstream port data line. It
can be used during end-of-suspend routines to help determining the wakeup event.

Bit 13 LCK: Locked
This bit is set by the hardware when at least two consecutive SOF packets have been
received after the end of an USB reset condition or after the end of an USB resume
sequence. Once locked, the frame timer remains in this state until an USB reset or USB
suspend event occurs.

Bits 12:11 LSOF[1:0]: Lost SOF
These bits are written by the hardware when an ESOF interrupt is generated, counting the
number of consecutive SOF packets lost. At the reception of an SOF packet, these bits are
cleared.

Bits 10:0 FN[10:0]: Frame number

This bit field contains the 11-bits frame number contained in the last received SOF packet.
The frame number is incremented for every frame sent by the host and it is useful for
Isochronous transfers. This bit field is updated on the generation of an SOF interrupt.

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 415/598

USB device address (USB_DADDR)

Address offset: 0x4C

Reset value: 0x0000

Buffer table address (USB_BTABLE)

Address offset: 0x50

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EF ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved

Bit 7 EF: Enable function

This bit is set by the software to enable the USB device. The address of this device is
contained in the following ADD[6:0] bits. If this bit is at ‘0 no transactions are handled,
irrespective of the settings of USB_EPnR registers.

Bits 6:0 ADD[6:0]: Device address

These bits contain the USB function address assigned by the host PC during the
enumeration process. Both this field and the Endpoint Address (EA) field in the associated
USB_EPnR register must match with the information contained in a USB token in order to
handle a transaction to the required endpoint.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BTABLE[15:3]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:3 BTABLE[15:3]: Buffer table

These bits contain the start address of the buffer allocation table inside the dedicated packet
memory. This table describes each endpoint buffer location and size and it must be aligned
to an 8 byte boundary (the 3 least significant bits are always ‘0). At the beginning of every
transaction addressed to this device, the USP peripheral reads the element of this table
related to the addressed endpoint, to get its buffer start location and the buffer size (Refer to
Structure and usage of packet buffers on page 397).

Bits 2:0 Reserved, forced by hardware to 0.

Universal serial bus full-speed device interface (USB) RM0038

416/598 Doc ID 15965 Rev 4

18.5.2 Endpoint-specific registers

The number of these registers varies according to the number of endpoints that the USB
peripheral is designed to handle. The USB peripheral supports up to 8 bidirectional
endpoints. Each USB device must support a control endpoint whose address (EA bits) must
be set to 0. The USB peripheral behaves in an undefined way if multiple endpoints are
enabled having the same endpoint number value. For each endpoint, an USB_EPnR
register is available to store the endpoint specific information.

USB endpoint n register (USB_EPnR), n=[0..7]

Address offset: 0x00 to 0x1C

Reset value: 0x0000

They are also reset when an USB reset is received from the USB bus or forced through bit
FRES in the CTLR register, except the CTR_RX and CTR_TX bits, which are kept
unchanged to avoid missing a correct packet notification immediately followed by an USB
reset event. Each endpoint has its USB_EPnR register where n is the endpoint identifier.

Read-modify-write cycles on these registers should be avoided because between the read
and the write operations some bits could be set by the hardware and the next write would
modify them before the CPU has the time to detect the change. For this purpose, all bits
affected by this problem have an ‘invariant’ value that must be used whenever their
modification is not required. It is recommended to modify these registers with a load
instruction where all the bits, which can be modified only by the hardware, are written with
their ‘invariant’ value.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR_
RX

DTOG
_RX STAT_RX[1:0] SETUP

EP
TYPE[1:0]

EP_
KIND

CTR_
TX

DTOG_
TX STAT_TX[1:0] EA[3:0]

rc_w0 t t t r rw rw rw rc_w0 t t t rw rw rw rw

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 417/598

Bit 15 CTR_RX: Correct Transfer for reception

This bit is set by the hardware when an OUT/SETUP transaction is successfully completed
on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register
is set accordingly, a generic interrupt condition is generated together with the endpoint
related interrupt condition, which is always activated. The type of occurred transaction, OUT
or SETUP, can be determined from the SETUP bit described below.
A transaction ended with a NAK or STALL handshake does not set this bit, since no data is
actually transferred, as in the case of protocol errors or data toggle mismatches.
This bit is read/write but only ‘0 can be written, writing 1 has no effect.

Bit 14 DTOG_RX: Data Toggle, for reception transfers
If the endpoint is not Isochronous, this bit contains the expected value of the data toggle bit
(0=DATA0, 1=DATA1) for the next data packet to be received. Hardware toggles this bit,
when the ACK handshake is sent to the USB host, following a data packet reception having
a matching data PID value; if the endpoint is defined as a control one, hardware clears this
bit at the reception of a SETUP PID addressed to this endpoint.
If the endpoint is using the double-buffering feature this bit is used to support packet buffer
swapping too (Refer to Section 18.4.3: Double-buffered endpoints).
If the endpoint is Isochronous, this bit is used only to support packet buffer swapping since
no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted
(Refer to Section 18.4.4: Isochronous transfers). Hardware toggles this bit just after the end
of data packet reception, since no handshake is used for isochronous transfers.
This bit can also be toggled by the software to initialize its value (mandatory when the
endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the
application software writes ‘0, the value of DTOG_RX remains unchanged, while writing ‘1
makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1.

Bits 13:12 STAT_RX [1:0]: Status bits, for reception transfers
These bits contain information about the endpoint status, which are listed in Table 68:
Reception status encoding on page 419.These bits can be toggled by software to initialize
their value. When the application software writes ‘0, the value remains unchanged, while
writing ‘1 makes the bit value toggle. Hardware sets the STAT_RX bits to NAK when a
correct transfer has occurred (CTR_RX=1) corresponding to a OUT or SETUP (control only)
transaction addressed to this endpoint, so the software has the time to elaborate the
received data before it acknowledge a new transaction
Double-buffered bulk endpoints implement a special transaction flow control, which control
the status based upon buffer availability condition (Refer to Section 18.4.3: Double-buffered
endpoints).
If the endpoint is defined as Isochronous, its status can be only “VALID” or “DISABLED”, so
that the hardware cannot change the status of the endpoint after a successful transaction. If
the software sets the STAT_RX bits to ‘STALL’ or ‘NAK’ for an Isochronous endpoint, the
USB peripheral behavior is not defined. These bits are read/write but they can be only
toggled by writing ‘1.

Bit 11 SETUP: Setup transaction completed

This bit is read-only and it is set by the hardware when the last completed transaction is a
SETUP. This bit changes its value only for control endpoints. It must be examined, in the
case of a successful receive transaction (CTR_RX event), to determine the type of
transaction occurred. To protect the interrupt service routine from the changes in SETUP
bits due to next incoming tokens, this bit is kept frozen while CTR_RX bit is at 1; its state
changes when CTR_RX is at 0. This bit is read-only.

Universal serial bus full-speed device interface (USB) RM0038

418/598 Doc ID 15965 Rev 4

Bits 10:9 EP_TYPE[1:0]: Endpoint type
These bits configure the behavior of this endpoint as described in Table 69: Endpoint type
encoding on page 419. Endpoint 0 must always be a control endpoint and each USB
function must have at least one control endpoint which has address 0, but there may be
other control endpoints if required. Only control endpoints handle SETUP transactions,
which are ignored by endpoints of other kinds. SETUP transactions cannot be answered
with NAK or STALL. If a control endpoint is defined as NAK, the USB peripheral will not
answer, simulating a receive error, in the receive direction when a SETUP transaction is
received. If the control endpoint is defined as STALL in the receive direction, then the
SETUP packet will be accepted anyway, transferring data and issuing the CTR interrupt. The
reception of OUT transactions is handled in the normal way, even if the endpoint is a control
one.
Bulk and interrupt endpoints have very similar behavior and they differ only in the special
feature available using the EP_KIND configuration bit.
The usage of Isochronous endpoints is explained in Section 18.4.4: Isochronous transfers

Bit 8 EP_KIND: Endpoint kind

The meaning of this bit depends on the endpoint type configured by the EP_TYPE bits.
Table 70 summarizes the different meanings.
DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk
endpoint. The usage of double-buffered bulk endpoints is explained in Section 18.4.3:
Double-buffered endpoints.
STATUS_OUT: This bit is set by the software to indicate that a status out transaction is
expected: in this case all OUT transactions containing more than zero data bytes are
answered ‘STALL’ instead of ‘ACK’. This bit may be used to improve the robustness of the
application to protocol errors during control transfers and its usage is intended for control
endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of
bytes, as required.

Bit 7 CTR_TX: Correct Transfer for transmission

This bit is set by the hardware when an IN transaction is successfully completed on this
endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is
set accordingly, a generic interrupt condition is generated together with the endpoint related
interrupt condition, which is always activated.
A transaction ended with a NAK or STALL handshake does not set this bit, since no data is
actually transferred, as in the case of protocol errors or data toggle mismatches.
This bit is read/write but only ‘0 can be written.

Bit 6 DTOG_TX: Data Toggle, for transmission transfers
If the endpoint is non-isochronous, this bit contains the required value of the data toggle bit
(0=DATA0, 1=DATA1) for the next data packet to be transmitted. Hardware toggles this bit
when the ACK handshake is received from the USB host, following a data packet
transmission. If the endpoint is defined as a control one, hardware sets this bit to 1 at the
reception of a SETUP PID addressed to this endpoint.
If the endpoint is using the double buffer feature, this bit is used to support packet buffer
swapping too (Refer to Section 18.4.3: Double-buffered endpoints)
If the endpoint is Isochronous, this bit is used to support packet buffer swapping since no
data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (Refer
to Section 18.4.4: Isochronous transfers). Hardware toggles this bit just after the end of data
packet transmission, since no handshake is used for Isochronous transfers.
This bit can also be toggled by the software to initialize its value (mandatory when the
endpoint is not a control one) or to force a specific data toggle/packet buffer usage. When
the application software writes ‘0, the value of DTOG_TX remains unchanged, while writing
‘1 makes the bit value toggle. This bit is read/write but it can only be toggled by writing 1.

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 419/598

Bits 5:4 STAT_TX [1:0]: Status bits, for transmission transfers
These bits contain the information about the endpoint status, listed in Table 71. These bits
can be toggled by the software to initialize their value. When the application software writes
‘0, the value remains unchanged, while writing ‘1 makes the bit value toggle. Hardware sets
the STAT_TX bits to NAK, when a correct transfer has occurred (CTR_TX=1) corresponding
to a IN or SETUP (control only) transaction addressed to this endpoint. It then waits for the
software to prepare the next set of data to be transmitted.
Double-buffered bulk endpoints implement a special transaction flow control, which controls
the status based on buffer availability condition (Refer to Section 18.4.3: Double-buffered
endpoints).
If the endpoint is defined as Isochronous, its status can only be “VALID” or “DISABLED”.
Therefore, the hardware cannot change the status of the endpoint after a successful
transaction. If the software sets the STAT_TX bits to ‘STALL’ or ‘NAK’ for an Isochronous
endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can
be only toggled by writing ‘1.

Bits 3:0 EA[3:0]: Endpoint address

Software must write in this field the 4-bit address used to identify the transactions directed to
this endpoint. A value must be written before enabling the corresponding endpoint.

Table 68. Reception status encoding

STAT_RX[1:0] Meaning

00 DISABLED: all reception requests addressed to this endpoint are ignored.

01
STALL: the endpoint is stalled and all reception requests result in a STALL
handshake.

10 NAK: the endpoint is naked and all reception requests result in a NAK handshake.

11 VALID: this endpoint is enabled for reception.

Table 69. Endpoint type encoding

EP_TYPE[1:0] Meaning

00 BULK

01 CONTROL

10 ISO

11 INTERRUPT

Table 70. Endpoint kind meaning

EP_TYPE[1:0] EP_KIND Meaning

00 BULK DBL_BUF

01 CONTROL STATUS_OUT

10 ISO Not used

11 INTERRUPT Not used

Universal serial bus full-speed device interface (USB) RM0038

420/598 Doc ID 15965 Rev 4

18.5.3 Buffer descriptor table

Although the buffer descriptor table is located inside the packet buffer memory, its entries
can be considered as additional registers used to configure the location and size of the
packet buffers used to exchange data between the USB macro cell and the STM32L15xxx.
Due to the common APB bridge limitation on word addressability, all packet memory
locations are accessed by the APB using 32-bit aligned addresses, instead of the actual
memory location addresses utilized by the USB peripheral for the USB_BTABLE register
and buffer description table locations.

In the following pages two location addresses are reported: the one to be used by
application software while accessing the packet memory, and the local one relative to USB
Peripheral access. To obtain the correct STM32L15xxx memory address value to be used in
the application software while accessing the packet memory, the actual memory location
address must be multiplied by two. The first packet memory location is located at
0x4000 6000. The buffer descriptor table entry associated with the USB_EPnR registers is
described below.

A thorough explanation of packet buffers and the buffer descriptor table usage can be found
in Structure and usage of packet buffers on page 397.

Transmission buffer address n (USB_ADDRn_TX)

Address offset: [USB_BTABLE] + n*16

USB local address: [USB_BTABLE] + n*8

Table 71. Transmission status encoding

STAT_TX[1:0] Meaning

00 DISABLED: all transmission requests addressed to this endpoint are ignored.

01
STALL: the endpoint is stalled and all transmission requests result in a STALL
handshake.

10
NAK: the endpoint is naked and all transmission requests result in a NAK
handshake.

11 VALID: this endpoint is enabled for transmission.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRn_TX[15:1] -

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw -

Bits 15:1 ADDRn_TX[15:1]: Transmission buffer address
These bits point to the starting address of the packet buffer containing data to be transmitted
by the endpoint associated with the USB_EPnR register at the next IN token addressed to it.

Bit 0 Must always be written as ‘0 since packet memory is word-wide and all packet buffers must be
word-aligned.

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 421/598

Transmission byte count n (USB_COUNTn_TX)

Address offset: [USB_BTABLE] + n*16 + 4

USB local Address: [USB_BTABLE] + n*8 + 2

Note: Double-buffered and Isochronous IN Endpoints have two USB_COUNTn_TX
registers: named USB_COUNTn_TX_1 and USB_COUNTn_TX_0 with the
following content.

Reception buffer address n (USB_ADDRn_RX)

Address offset: [USB_BTABLE] + n*16 + 8

USB local Address: [USB_BTABLE] + n*8 + 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
COUNTn_TX[9:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 These bits are not used since packet size is limited by USB specifications to 1023 bytes. Their
value is not considered by the USB peripheral.

Bits 9:0 COUNTn_TX[9:0]: Transmission byte count

These bits contain the number of bytes to be transmitted by the endpoint associated with the
USB_EPnR register at the next IN token addressed to it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
COUNTn_TX_1[9:0]

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
COUNTn_TX_0[9:0]

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRn_RX[15:1] -

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw -

Bits 15:1 ADDRn_RX[15:1]: Reception buffer address

These bits point to the starting address of the packet buffer, which will contain the data
received by the endpoint associated with the USB_EPnR register at the next OUT/SETUP
token addressed to it.

Bit 0 This bit must always be written as ‘0 since packet memory is word-wide and all packet buffers
must be word-aligned.

Universal serial bus full-speed device interface (USB) RM0038

422/598 Doc ID 15965 Rev 4

Reception byte count n (USB_COUNTn_RX)

Address offset: [USB_BTABLE] + n*16 + 12

USB local Address: [USB_BTABLE] + n*8 + 6

This table location is used to store two different values, both required during packet
reception. The most significant bits contains the definition of allocated buffer size, to allow
buffer overflow detection, while the least significant part of this location is written back by the
USB peripheral at the end of reception to give the actual number of received bytes. Due to
the restrictions on the number of available bits, buffer size is represented using the number
of allocated memory blocks, where block size can be selected to choose the trade-off
between fine-granularity/small-buffer and coarse-granularity/large-buffer. The size of
allocated buffer is a part of the endpoint descriptor and it is normally defined during the
enumeration process according to its maxPacketSize parameter value (See “Universal
Serial Bus Specification”).

Note: Double-buffered and Isochronous IN Endpoints have two USB_COUNTn_TX
registers: named USB_COUNTn_TX_1 and USB_COUNTn_TX_0 with the
following content.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLSIZE NUM_BLOCK[4:0] COUNTn_RX[9:0]

rw rw rw rw rw rw r r r r r r r r r r

Bit 15 BL_SIZE: BLock size

This bit selects the size of memory block used to define the allocated buffer area.

– If BL_SIZE=0, the memory block is 2 byte large, which is the minimum block allowed in a
word-wide memory. With this block size the allocated buffer size ranges from 2 to 62 bytes.

– If BL_SIZE=1, the memory block is 32 byte large, which allows to reach the maximum
packet length defined by USB specifications. With this block size the allocated buffer size
ranges from 32 to 1024 bytes, which is the longest packet size allowed by USB standard
specifications.

Bits 14:10 NUM_BLOCK[4:0]: Number of blocks

These bits define the number of memory blocks allocated to this packet buffer. The actual
amount of allocated memory depends on the BL_SIZE value as illustrated in Table 72.

Bits 9:0 COUNTn_RX[9:0]: Reception byte count

These bits contain the number of bytes received by the endpoint associated with the
USB_EPnR register during the last OUT/SETUP transaction addressed to it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BLSIZE
_1 NUM_BLOCK_1[4:0] COUNTn_RX_1[9:0]

rw rw rw rw rw rw r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLSIZE
_0 NUM_BLOCK_0[4:0] COUNTn_RX_0[9:0]

rw rw rw rw rw rw r r r r r r r r r r

RM0038 Universal serial bus full-speed device interface (USB)

Doc ID 15965 Rev 4 423/598

18.5.4 USB register map

The table below provides the USB register map and reset values.

Table 72. Definition of allocated buffer memory

Value of
NUM_BLOCK[4:0]

Memory allocated
when BL_SIZE=0

Memory allocated
when BL_SIZE=1

0 (‘00000) Not allowed 32 bytes

1 (‘00001) 2 bytes 64 bytes

2 (‘00010) 4 bytes 96 bytes

3 (‘00011) 6 bytes 128 bytes

...

15 (‘01111) 30 bytes 512 bytes

16 (‘10000) 32 bytes N/A

17 (‘10001) 34 bytes N/A

18 (‘10010) 36 bytes N/A

...

30 (‘11110) 60 bytes N/A

31 (‘11111) 62 bytes N/A

Table 73. USB register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
USB_EP0R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
USB_EP1R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
USB_EP2R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
USB_EP3R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
USB_EP4R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
USB_EP5R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal serial bus full-speed device interface (USB) RM0038

424/598 Doc ID 15965 Rev 4

Note: Refer to Table 1 on page 32 for the register boundary addresses.

0x18
USB_EP6R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
USB_EP7R

Reserved

C
T

R
_R

X

D
TO

G
_R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
TO

G
_T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x20-
0x3F Reserved

0x40
 USB_CNTR

Reserved

C
T

R
M

P
M

A
O

V
R

M

E
R

R
M

W
K

U
P

M

S
U

S
P

M

R
E

S
E

T
M

S
O

F
M

E
S

O
F

M

Reserved

R
E

S
U

M
E

F
S

U
S

P

LP
M

O
D

E

P
D

W
N

F
R

E
S

Reset value 0 0 0 0 0 0 0 0 0 0 0 1 1

0x44
 USB_ISTR

Reserved C
T

R

P
M

A
O

V
R

E
R

R

W
K

U
P

S
U

S
P

R
E

S
E

T

S
O

F

E
S

O
F

Reserved D
IR EP_ID[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
 USB_FNR

Reserved

R
X

D
P

R
X

D
M

LC
K LSOF

[1:0] FN[10:0]

Reset value 0 0 0 0 0 x x x x x x x x x x x

0x4C
 USB_DADDR

Reserved
EF ADD[6:0]

Reset value 0 0 0 0 0 0 0 0

0x50
 USB_BTABLE

Reserved
BTABLE[15:3]

Reserved

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 73. USB register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0038 CRC calculation unit

Doc ID 15965 Rev 4 425/598

19 CRC calculation unit

This section applies to the whole STM32L15xxx family, unless otherwise specified.

19.1 CRC introduction
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.

19.2 CRC main features
● Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7

– X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +X8 + X7 + X5 + X4 + X2+ X +1

● Single input/output 32-bit data register

● CRC computation done in 4 AHB clock cycles (HCLK)

● General-purpose 8-bit register (can be used for temporary storage)

The block diagram is shown in Figure 158.

Figure 158. CRC calculation unit block diagram

19.3 CRC functional description
The CRC calculation unit mainly consists of a single 32-bit data register, which:

● is used as an input register to enter new data in the CRC calculator (when writing into
the register)

● holds the result of the previous CRC calculation (when reading the register)

AHB bus

32-bit (read access)

Data register (output)

CRC computation (polynomial: 0x4C11DB7)

32-bit (write access)

Data register (input)

ai14968

CRC calculation unit RM0038

426/598 Doc ID 15965 Rev 4

Each write operation into the data register creates a combination of the previous CRC value
and the new one (CRC computation is done on the whole 32-bit data word, and not byte per
byte).

The write operation is stalled until the end of the CRC computation, thus allowing back-to-
back write accesses or consecutive write and read accesses.

The CRC calculator can be reset to FFFF FFFFh with the RESET control bit in the CRC_CR
register. This operation does not affect the contents of the CRC_IDR register.

19.4 CRC registers
The CRC calculation unit contains two data registers and a control register.

19.4.1 Data register (CRC_DR)

Address offset: 0x00

Reset value: 0xFFFF FFFF

19.4.2 Independent data register (CRC_IDR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DR [31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR [15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 Data register bits
Used as an input register when writing new data into the CRC calculator.
Holds the previous CRC calculation result when it is read.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
IDR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved

Bits 7:0 General-purpose 8-bit data register bits
Can be used as a temporary storage location for one byte.
This register is not affected by CRC resets generated by the RESET bit in the CRC_CR
register.

RM0038 CRC calculation unit

Doc ID 15965 Rev 4 427/598

19.4.3 Control register (CRC_CR)

Address offset: 0x08

Reset value: 0x0000 0000

19.4.4 CRC register map

The following table provides the CRC register map and reset values.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RESET

w

Bits 31:1 Reserved

Bit 0 RESET bit
Resets the CRC calculation unit and sets the data register to FFFF FFFFh.
This bit can only be set, it is automatically cleared by hardware.

Table 74. CRC calculation unit register map and reset values

Offset Register 31-24 23-16 15-8 7 6 5 4 3 2 1 0

0x00
CRC_DR
Reset value

Data register
0xFFFF FFFF

0x04
CRC_IDR
Reset value

Reserved
Independent data register

0x00

0x08
CRC_CR
Reset value

Reserved
RESET

0

Real-time clock (RTC) RM0038

428/598 Doc ID 15965 Rev 4

20 Real-time clock (RTC)

20.1 Introduction
The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a time-
of-day clock/calendar, two programmable alarm interrupts, and a periodic programmable
wakeup flag with interrupt capability. The RTC also includes an automatic wakeup unit to
manage low power modes.

Two 32-bit registers contain the seconds, minutes, hours (12- or 24-hour format), day (day of
week), date (day of month), month, and year, expressed in binary coded decimal format
(BCD).

Compensations for 28-, 29- (leap year), 30-, and 31-day months are performed
automatically. Daylight saving time compensation can also be performed.

Additional 32-bit registers contain the programmable alarm seconds, minutes, hours, day,
and date.

After power-on reset, all RTC registers are protected against possible parasitic write
accesses.

As long as the supply voltage remains in the operating range, the RTC never stops,
regardless of the device status (Run mode, low power mode or under reset).

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 429/598

20.2 RTC main features
The RTC unit main features are the following (see Figure 159: RTC block diagram):

● Calendar with seconds, minutes, hours (12 or 24 format), day (day of week), date (day
of month), month, and year.

● Daylight saving compensation programmable by software.

● Two programmable alarms with interrupt function. The alarms can be triggered by any
combination of the calendar fields.

● Automatic wakeup unit generating a periodic flag that triggers an automatic wakeup
interrupt.

● Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.

● Maskable interrupts/events:

– Alarm A

– Alarm B

– Wakeup interrupt

– Time-stamp

– Tamper detection

● Digital calibration circuit (periodic counter correction)

– 5 ppm accuracy

● Time-stamp function for event saving (1 event)

● Tamper detection:

– 1 tamper event on edge detection

● 20 backup registers (80 bytes). The backup registers are reset when a tamper
detection event occurs.

● RTC alternate function outputs (RTC_AFO):

– AFO_CALIB: 512 Hz clock output (with an LSE frequency of 32.768 kHz). It is
routed to the device RTC_AF1 pin.

– AFO_ALARM: Alarm A or Alarm B or wakeup (only one can be selected). It is
routed to the device RTC_AF1 pin.

● RTC alternate function inputs (RTC_AFI):

– AFI_TAMPER: tamper event detection. It is routed to the device RTC_AF1 pin.

– AFI_TIMESTAMP: timestamp event detection. It is routed to the device RTC_AF1
pin.

Note: Refer to Section 5.3.15: Selection of RTC_AF1 alternate functions for more details on how
to select RTC alternate functions (RTC_AF1).

Real-time clock (RTC) RM0038

430/598 Doc ID 15965 Rev 4

Figure 159. RTC block diagram

20.3 RTC functional description

20.3.1 Clock and prescalers

The RTC clock source (RTCCLK) is selected through the clock controller among the LSE
clock, the LSI oscillator clock, and the HSE clock. For more information on the RTC clock
source configuration, refer to Section 4: Reset and clock control (RCC).

A programmable prescaler stage generates a 1 Hz clock which is used to update the
calendar. To minimize power consumption, the prescaler is split into 2 programmable
prescalers (see Figure 159.: RTC block diagram):

● A 7-bit asynchronous prescaler configured through the PREDIV_A bits of the
RTC_PRER register.

● A 13-bit synchronous prescaler configured through the PREDIV_S bits of the
RTC_PRER register.

Note: When both prescalers are used, it is recommended to configure the asynchronous prescaler
to a high value to minimize consumption.

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 431/598

The asynchronous prescaler division factor is set to 128, and the synchronous division
factor to 256, to obtain an internal clock frequency of 1 Hz (ck_spre) with an LSE frequency
of 32.768 kHz.

The minimum division factor is 2 and the maximum division factor is 220.

This corresponds to a maximum input frequency of around 1 MHz.

fck_spre is given by the following formula:

The ck_spre clock can be used either to update the calendar or as timebase for the 16-bit
wakeup auto-reload timer. To obtain short timeout periods, the 16-bit wakeup auto-reload
timer can also run with the RTCCLK divided by the programmable 4-bit asynchronous
prescaler (see Section 20.3.4: Periodic auto-wakeup for details).

20.3.2 Real-time clock and calendar

The RTC calendar time and date registers are accessed through shadow registers which
are synchronized with PCLK1 (APB1 clock):
● RTC_TR for the time

● RTC_DR for the date

Every two RTCCLK periods, the current calendar value is copied into the shadow registers,
and the RSF bit of RTC_ISR register is set (see Section 20.6.4). The copy is not performed
in Stop and Standby mode. When exiting these modes, the shadow registers are updated
after up to 2 RTCCLK periods.

When the application reads the calendar registers, it accesses the content of the shadow
registers.

When reading the RTC_TR or RTC_DR registers, the frequency of the APB clock (fAPB)
must be at least 7 times the frequency of the RTC clock (fRTCCLK).

The shadow registers are reset by system reset.

20.3.3 Programmable alarms

The RTC unit provides two programmable alarms, Alarm A and Alarm B.

The programmable alarm functions are enabled through the ALRAE and ALRBE bits in the
RTC_CR register. The ALRAF and ALRBF flags are set to 1 if the calendar seconds,
minutes, hours, date or day match the values programmed in the alarm registers
RTC_ALRMAR and RTC_ALRMBR, respectively. Each calendar field can be independently
selected through the MSKx bits of the RTC_ALRMAR and RTC_ALRMBR registers. The
alarm interrupts are enabled through the ALRAIE and ALRBE bits in the RTC_CR register.

Alarm A and Alarm B (if enabled by bits OSEL[0:1] in RTC_CR register) can be routed to the
AFO_ALARM output. AFO_ALARM polarity can be configured through bit POL the
RTC_CR register.

Caution: If the seconds field is selected (MSK0 bit reset in RTC_ALRMAR or RTC_ALRMBR), the
synchronous prescaler division factor set in the RTC_PRER register must be at least 3 to
ensure correct behavior.

fCK_SPRE
fRTCCLK

PREDIV_S 1+() PREVID_A 1+()×
--=

Real-time clock (RTC) RM0038

432/598 Doc ID 15965 Rev 4

20.3.4 Periodic auto-wakeup

The periodic wakeup flag is generated by a 16-bit programmable auto-reload down-counter.
The wakeup timer range can be extended to 17 bits.

The wakeup function is enabled through the WUTE bit in the RTC_CR register.

The wakeup timer clock input can be :

● RTC clock (RTCCLK) divided by 2, 4, 8, or 16.

When RTCCLK is LSE(32.768kHz), this allows to configure the wakeup interrupt period
from 122 µs to 32 s, with a resolution down to 61µs .

● ck_spre (usually 1 Hz internal clock)

When ck_spre frequency is 1Hz, this allows to achieve a wakeup time from 1 s to
around 36 hours with one-second resolution. This large programmable time range is
divided in 2 parts:

– from 1s to 18 hours when WUCKSEL [2:1] = 10

– and from around 18h to 36h when WUCKSEL[2:1] = 11. In this last case 216 is
added to the 16-bit counter current value.When the initialization sequence is
complete (see Programming the wakeup timer on page 434), the timer starts
counting down.When the wakeup function is enabled, the down-counting remains
active in low power modes. In addition, when it reaches 0, the WUTF flag is set in
the RTC_ISR register, and the wakeup counter is automatically reloaded with its
reload value (RTC_WUTR register value).

The WUTF flag must then be cleared by software.
When the periodic wakeup interrupt is enabled by setting the WUTIE bit in the RTC_CR2
register, it can exit the device from low power modes.

The periodic wakeup flag can be routed to the AFO_ALARM output provided it has been
enabled through bits OSEL[0:1] of RTC_CR register. AFO_ALARM polarity can be
configured through the POLbit in the RTC_CR register.

System reset, as well as low power modes (Sleep, Stop and Standby) have no influence on
the wakeup timer.

20.3.5 RTC initialization and configuration

RTC register access

The RTC registers are 32-bit registers. The APB interface introduces 2 wait-states in RTC
register accesses .

RTC register write protection

After power-on reset, all the RTC registers are write-protected. Writing to the RTC registers
is enabled by writing a key into the Write Protection register, RTC_WPR.

The following steps are required to unlock the write protection on all the RTC registers
except for RTC_ISR[13:8], RTC_TAFCR, and RTC_BKPxR.

1. Write ‘0xCA’ into the RTC_WPR register.

2. Write ‘0x53’ into the RTC_WPR register.

Writing a wrong key reactivates the write protection.

The protection mechanism is not affected by system reset.

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 433/598

Calendar initialization and configuration

To program the initial time and date calendar values, including the time format and the
prescaler configuration, the following sequence is required:

1. Set INIT bit to 1 in the RTC_ISR register to enter initialization mode. In this mode, the
calendar counter is stopped and its value can be updated.

2. Poll INITF bit of in the RTC_ISR register. The initialization phase mode is entered when
INITF is set to 1. It takes around 2 RTCCLK clock cycles (due to clock synchronization).

3. To generate a 1 Hz clock for the calendar counter, program first the synchronous
prescaler factor in RTC_PRER register, and then program the asynchronous prescaler
factor. Even if only one of the two fields needs to be changed, 2 separate write
accesses must be performed to the TC_PRER register.

4. Load the initial time and date values in the shadow registers (RTC_TR and RTC_DR),
and configure the time format (12 or 24 hours) through the FMT bit in the RTC_CR
register.

5. Exit the initialization mode by clearing the INIT bit. The actual calendar counter value is
then automatically loaded and the counting restarts after 4 RTCCLK clock cycles.

When the initialization sequence is complete, the calendar starts counting.

Note: 1 After a system reset, the application can read the INITS flag in the RTC_ISR register to
check if the calendar has been initialized or not. If this flag equals 0, the calendar has not
been initialized since the year field is set at its power-on reset default value (0x00).

2 To read the calendar after initialization, the software must first check that the RSF flag is set
in the RTC_ISR register.

Daylight saving time

The daylight saving time management is performed through bits SUB1H, ADD1H, and BKP
of the RTC_CR register.

Using SUB1H or ADD1H, the software can subtract or add one hour to the calendar in one
single operation without going through the initialization procedure.

In addition, the software can use the BKP bit to memorize this operation.

Programming the alarm

A similar procedure must be followed to program or update the programmable alarms
(Alarm A or Alarm B):

1. Clear ALRAE or ALRBE in RTC_CR to disable Alarm A or Alarm B.

2. Poll ALRAWF or ALRBWF in RTC_ISR until it is set to make sure the access to alarm
registers is allowed. This takes around 2 RTCCLK clock cycles (due to clock
synchronization).

3. Program the Alarm Aor Alarm B registers (RTC_ALRMAR or /RTC_ALRMBR).

4. Set ALRAE or ALRBE in the RTC_CR register to enable Alarm A or Alarm B again.

Note: Each change of the RTC_CR register is taken into account after around 2 RTCCLK clock
cycles due to clock synchronization.

Real-time clock (RTC) RM0038

434/598 Doc ID 15965 Rev 4

Programming the wakeup timer

The following sequence is required to configure or change the wakeup timer auto-reload
value (WUT[15:0] in RTC_WUTR):

1. Clear WUTE in RTC_CR to disable the wakeup timer.

2. Poll WUTWF until it is set in RTC_ISR to make sure the access to wakeup auto-reload
counter and to WUCKSEL[2:0] bits is allowed. It takes around 2 RTCCLK clock cycles
(due to clock synchronization).

3. Program the wakeup auto-reload value WUT[15:0], and the wakeup clock selection
(WUCKSEL[2:0] bits in RTC_CR).Set WUTE in RTC_CR to enable the timer again.
The wakeup timer restarts down-counting.

20.3.6 Reading the calendar

To read the RTC calendar registers (RTC_TR and RTC_DR) properly, the APB1 clock
frequency (fPCLK1) must be equal to or greater than seven times the fRTCCLK RTC clock
frequency. This ensures a secure behavior of the synchronization mechanism.

If the APB1 clock frequency is less than seven times the RTC clock frequency, the software
must read the calendar time and date registers twice. If the second read of the RTC_TR
gives the same result as the first read, this ensures that the data is correct. Otherwise a third
read access must be done. In any case the APB1 clock frequency must never be lower than
the RTC clock frequency.

The RSF bit is set in RTC_ISR register each time the calendar registers are copied into the
RTC_TR and RTC_DR shadow registers. The copy is performed every two RTCCLK cycles.
To ensure consistency between the 2 values, reading RTC_TR locks the values in the
higher-order calendar shadow registers until RTC_DR is read. In case the software makes
read accesses to the calendar in a time interval smaller than 2 RTCCLK periods: RSF must
be cleared by software after the first calendar read, and then the software must wait until
RSF is set before reading again the RTC_TR and RTC_DR registers.

After waking up from low power mode (Stop or Standby), RSF must be cleared by software.
The software must then wait until it is set again before reading the RTC_TR and RTC_DR
registers.

The RSF bit must be cleared after wakeup and not before entering low power mode.

Note: 1 After a system reset,the software must wait until RSF is set before reading the RTC_TR and
RTC_DR registers. Indeed, a system reset resets the shadow registers to their default
values.

2 After an initialization (refer to Section : Calendar initialization and configuration): the
software must wait until RSF is set before reading the RTC_TR and RTC_DR registers.

20.3.7 Resetting the RTC

The calendar shadow registers (RTC_TR and RTC_DR) and the RTC status register
(RTC_ISR) are reset to their default values by all available system reset sources.

On the contrary, the following registers are reset to their default values by a power-on reset
and are not affected by a system reset: the RTC current calendar registers, the RTC control
register (RTC_CR), the prescaler register (RTC_PRER), the RTC calibration registers
(RTC_CALIBR), the RTC timestamp registers (RTC_TSTR and RTC_TSDR), the RTC
tamper and alternate function configuration register (RTC_TAFCR), the RTC backup

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 435/598

registers (RTC_BKPxR), the wakeup timer register (RTC_WUTR), the Alarm A and Alarm B
registers (RTC_ALRMAR and RTC_ALRMBR).

In addition, the RTC keeps on running under system reset if the reset source is different
from the power-on reset one. When a power-on reset occurs, the RTC is stopped and all the
RTC registers are set to their reset values.

20.3.8 RTC reference clock detection

The reference clock (at 50 Hz or 60 Hz) should have a higher precision than the 32.768 kHz
LSE clock. When the reference clock detection is enabled (REFCKON bit of RTC_CR set to
1), it is used to compensate for the imprecision of the calendar update frequency (1 Hz).

Each 1 Hz clock edge is compared to the nearest reference clock edge (if one is found
within a given time window). In most cases, the two clock edges are properly aligned. When
the 1 Hz clock becomes misaligned due to the imprecision of the LSE clock, the RTC shifts
the 1 Hz clock a bit so that future 1 Hz clock edges are aligned. Thanks to this mechanism,
the calendar becomes as precise as the reference clock.

If the reference clock halts , the calendar is updated continuously based solely on the LSE
clock. The RTC then waits for the reference clock using a detection window centered on the
ck_spre edge.

When the reference clock detection is enabled, PREDIV_A and PREDIV_S must be set to
their default values:

● PREDIV_A = 0x007F

● PREVID_S = 0x00FF

20.3.9 RTC digital calibration

The digital calibration can be used to achieve a 5 ppm accuracy by adding (positive
calibration) or masking (negative calibration) clock cycles at the output of the asynchronous
prescaler (ck_apre).

Positive and negative calibration are selected by setting the DCS bit in RTC_CALIBR
register to ‘0’ and ‘1’, respectively.

When positive calibration is enabled (DCS = ‘0’), 2 ck_apre cycles are added every minute
(around 15360 ck_apre cycles) for 2xDC minutes. This causes the calendar to be updated
sooner, thereby adjusting the effective RTC frequency to be a bit higher.

When negative calibration is enabled (DCS = ‘1’), 1 ck_apre cycle is removed every minute
(around 15360 ck_apre cycles) for 2xDC minutes. This causes the calendar to be updated
later, thereby adjusting the effective RTC frequency to be a bit lower.

DC is configured through bits DC[4:0] of RTC_CALIBR register. This number ranges from 0
to 31 corresponding to a time interval (2xDC) ranging from 0 to 62.

The digital calibration can be configured only in initialization mode, and starts when the INIT
bit is cleared. The full calibration cycle lasts 64 minutes. The first 2xDC minutes of the 64 -
minutecycle are modified as just described.

Negative calibration can be performed with a resolution of about 2 ppm while positive
calibration can be performed with a resolution of about 4 ppm. The maximum calibration
ranges from −63 ppm to 126 ppm.

The calibration can be performed either on the LSE or on the HSE clock.

Real-time clock (RTC) RM0038

436/598 Doc ID 15965 Rev 4

Caution: Digital calibration may not work correctly if PREDIV_A < 6.

Case of RTCCLK=32.768 kHz and PREDIV_A+1=128

The following description assumes that ck_apre frequency is 256 Hz obtained with an LSE
clock nominal frequency of 32.768 kHz, and PREDIV_A set to 127 (default value).

The ck_spre clock frequency is only modified during the first 2xDC minutes of the 64-minute
cycle. For example, when DC equals 1, only the first 2 minutes are modified. This means
that the first 2xDC minutes of each 64-minute cycle have, once per minute, one second
either shortened by 256 or lengthened by 128 RTCCLK cycles, given that each ck_apre
cycle represents 128 RTCCLK cycles (with PREDIV_A+1=128).

Therefore each calibration step has the effect of adding 512 or subtracting 256 oscillator
cycles for every 125829120 RTCCLK cycles (64min x 60 s/min x 32768 cycles/s). This is
equivalent to +4.069 ppm or-2.035 ppm per calibration step. As a result, the calibration
resolution is +10.5 or −5.27 seconds per month, and the total calibration ranges from +5.45
to −2.72 minutes per month.

In order to measure the clock deviation, a 512 Hz clock is output for calibration.Refer to
Section 20.3.12: Calibration clock output.

20.3.10 Time-stamp function

Time-stamp is enabled by setting the TSE bit of RTC_CR register to 1.

The calendar is saved in the time-stamp registers (RTC_TSTR, RTC_TSDR) when a time-
stamp event is detected on the pin to which the TIMESTAMP alternate function is mapped.
When a time-stamp event occurs, the time-stamp flag bit (TSF) in RTC_ISR register is set.

By setting the TSIE bit in the RTC_CR register, an interrupt is generated when a time-stamp
event occurs.

If a new time-stamp event is detected while the time-stamp flag (TSF) is already set, the
TSOVF flag is set and the time-stamp registers (RTC_TSTR and RTC_TSDR) maintain the
results of the previous event.

Note: 1 TSF is set 2 ck_apre cycles after the time-stamp event occurs due to synchronization
process.

2 There is no delay in the setting of TSOVF. This means that if two time-stamp events are
close together, TSOVF can be seen as '1' while TSF is still '0'. As a consequence, it is
recommended to poll TSOVF only after TSF has been set.

Caution: If a time-stamp event occurs immediately after the TSF bit is supposed to be cleared, then
both TSF and TSOVF bits are set. To avoid masking a time-stamp event occurring at the
same moment, the application must not write ‘0’ into TSF bit unless it has already read it to
‘1’.

TIMESTAMP alternate function

The TIMESTAMP alternate function is mapped to RTC_AF1.

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 437/598

20.3.11 Tamper detection

RTC backup registers

The backup registers (RTC_BKPxR) are twenty 32-bit registers for storing 80bytes of user
application data. They are implemented in the VDD domain . They are not reset by system
reset, or when the device wakes up from Standby mode. They are reset by a power-on
reset.

The backup registers are reset when a tamper detection event occurs (see Section 20.6.14:
RTC backup registers (RTC_BKPxR) and Section : Tamper detection initialization.

Tamper detection initialization

The tamper detection input is associated with a flag TAMP1F in the RTC_ISR2 register. The
input can be enabled by setting the TAMP1E bit to 1 in the RTC_TAFCR register.

A tamper detection event resets all backup registers (RTC_BKPxR).

By setting the TAMPIE bit in the RTC_TAFCR register, an interrupt is generated when a
tamper detection event occurs.

Edge detection on tamper inputs:

 TAMPER pins generate tamper detection events when either a rising edge is observed or
an falling edge is observed depending on the corresponding TAMPxTRG bit. The internal
pull-up resistors on the TAMPER inputs are deactivated when edge detection is selected.

Caution: To avoid losing tamper detection events, the signal used for edge detection is logically
ANDed with TAMPxE in order to detect a tamper detection event in case it occurs before the
TAMPERx pin is enabled.

● When TAMPxTRG = 0: if the TAMPERx alternate function is already high before tamper
detection is enabled (TAMPxE bit set to 1), a tamper event is detected as soon as
TAMPERx is enabled, even if there was no rising edge on TAMPERx after TAMPxE was
set.

● When TAMPxTRG = 1: if the TAMPERx alternate function is already low before tamper
detection is enabled, a tamper event is detected as soon as TAMPERx is enabled (even
if there was no falling edge on TAMPERx after TAMPxE was set.

After a tamper event has been detected and cleared, the TAMPERx alternate function
should be disabled and then re-enabled (TAMPxE set to 1) before re-programming the
backup registers (RTC_BKPxR). This prevents the application from writing to the backup
registers while the TAMPERx value still indicates a tamper detection. This is equivalent to a
level detection on the TAMPERx alternate function.

Note: Tamper detection is still active when VDD power is switched off. To avoid unwanted resetting
of the backup registers, the pin to which the TAMPER alternate function is mapped should
be externally tied to the correct level.

 TAMPER alternate function detection

The TAMPER1 alternate function is mapped to the RTC_AF1 pin.

Real-time clock (RTC) RM0038

438/598 Doc ID 15965 Rev 4

20.3.12 Calibration clock output

When the COE bit is set to 1 in the RTC_CR register, a reference clock is provided on the
RTC_CALIB device output. If PREDIV_A = 0x7F, the RTC_CALIB frequency is fRTCCLK/64.
This corresponds to a calibration output at 512 Hz for an RTCCLK frequency at 32.768 kHz.

The RTC_CALIB output is not impacted by the calibration value programmed in
RTC_CALIBR register. The RTC_CALIB duty cycle is irregular: there is a light jitter on falling
edges. It is therefore recommended to use rising edges.

Calibration alternate function output

When the COE bit in the RTC_CR register is set to 1, the calibration alternate function
(AFO_CALIB) is enabled on RTC_AF1.

20.3.13 Alarm output

Three functions can be selected on Alarm output: ALRAF, ALRBF and WUTF. These
functions reflect the contents of the corresponding flags in the RTC_ISR register.

The OSEL[1:0] control bits in the RTC_CR register are used to activate the alarm alternate
function output (AFO_ALARM) in RTC_AF1, and to select the function which is output on
AFO_ALARM.

The polarity of the output is determined by the POL control bit in RTC_CR so that the
opposite of the selected flag bit is output when POL is set to 1.

Alarm alternate function output

AFO_ALARM can be configured in output open drain or output push-pull using the control
bit ALARMOUTTYPE in the RTC_TAFCR regsister.

Note: 1 the AFO_CALIB should be disabled (COE bit must be kept cleared).

2 When AFO_CALIB or AFO_ALARM is selected, RTC_AF1 is automatically configured in
output alternate function.

20.4 RTC and low power modes

Table 75. Effect of low power modes on RTC

Mode Description

Sleep
No effect
RTC interrupts cause the device to exit the Sleep mode.

Stop
The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC
tamper event, RTC time stamp event, and RTC Wakeup cause the device to exit the Stop
mode.

Standby
The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC
tamper event, RTC time stamp event, and RTC Wakeup cause the device to exit the
Standby mode.

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 439/598

20.5 RTC interrupts
All RTC interrupts are connected to the EXTI controller.

To enable the RTC Alarm interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 17 in interrupt mode and select the rising edge
sensitivity.

2. Configure and enable the RTC_Alarm IRQ channel in the NVIC.

3. Configure the RTC to generate RTC alarms (Alarm A or Alarm B).

To enable the RTC Wakeup interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 20 in interrupt mode and select the rising edge
sensitivity.

2. Configure and enable the RTC_WKUP IRQ channel in the NVIC.

3. Configure the RTC to generate the RTC wakeup timer event.

To enable the RTC Tamper interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 19 in interrupt mode and select the rising edge
sensitivity.

2. Configure and Enable the TAMP_STAMP IRQ channel in the NVIC.

3. Configure the RTC to detect the RTC tamper event.

To enable the RTC TimeStamp interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 19 in interrupt mode and select the rising edge
sensitivity.

2. Configure and Enable the TAMP_STAMP IRQ channel in the NVIC.

3. Configure the RTC to detect the RTC time-stamp event.

Table 76. Interrupt control bits

Interrupt event Event flag
Enable
control

bit

Exit the
Sleep
mode

Exit the
Stop
mode

Exit the
Standby

mode

Alarm A ALRAF ALRAIE yes yes(1)

1. Wakeup from STOP and Standby modes is possible only when the RTC clock source is LSE or LSI.

yes(1)

Alarm B ALRBF ALRBIE yes yes(1) yes(1)

Wakeup WUTF WUTIE yes yes(1) yes(1)

TimeStamp TSF TSIE yes yes(1) yes(1)

Tamper1 detection TAMP1F TAMPIE yes yes(1) yes(1)

Real-time clock (RTC) RM0038

440/598 Doc ID 15965 Rev 4

20.6 RTC registers
Refer to Section 1.1 of the reference manual for a list of abbreviations used in register
descriptions.

The peripheral registers can be accessed by words (32-bit).

20.6.1 RTC time register (RTC_TR)

The RTC_TR is the calendar time shadow register. This register must be written in
intialization mode only. Refer to Calendar initialization and configuration on page 433 and
Reading the calendar on page 434.

Address offset: 0x00

Power-on reset value: 0x0000 0000

Note: This register is write protected. The write access procedure is described in RTC register
write protection on page 432.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserv
ed

MNT[2:0] MNU[3:0] Reserv
ed

ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31-24 Reserved

Bit 23 Reserved, always read as 0.

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format

Bit 16:16 HU[3:0]: Hour units in BCD format

Bit 15 Reserved, always read as 0.

Bits 14:12 MNT[2:0]: Minute tens in BCD format

Bit 11:8 MNU[3:0]: Minute units in BCD format

Bit 7 Reserved, always read as 0.

Bits 6:4 ST[2:0]: Second tens in BCD format

Bit 3:0 SU[3:0]: Second units in BCD format

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 441/598

20.6.2 RTC date register (RTC_DR)

The RTC_DR is the calendar date shadow register. This register must be written in
intialization mode only. Refer to Calendar initialization and configuration on page 433 and
Reading the calendar on page 434.

Address offset: 0x04

Power-on reset value: 0x0000 2101

Note: This register is write protected. The write access procedure is described in RTC register
write protection on page 432.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
YT[3:0] YU[3:0]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDU[2:0] MT MU[3:0]
Reserved

DT[1:0] DU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31-24 Reserved

Bits 23:20 YT[3:0]: Year tens in BCD format

Bits 19:16 YU[3:0]: Year units in BCD format

Bits 15:13 WDU[2:0]: Week day units

000: forbidden
001: Monday
...
111: Sunday

Bit 12 MT: Month tens in BCD format

Bits 11:8 MU: Month units in BCD format

Bits 7:6 Reserved, always read as 0.

Bits 5:4 DT[1:0]: Date tens in BCD format

Bits 3:0 DU[3:0]: Date units in BCD format

Real-time clock (RTC) RM0038

442/598 Doc ID 15965 Rev 4

20.6.3 RTC control register (RTC_CR)

Address offset: 0x08

Power-on value: 0x0000 0000

Reset value: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
COE OSEL[1:0] POL Reserv-

ed

BKP SUB1H ADD1H

rw rw rw rw rw w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSIE WUTIE ALRBIE ALRAIE TSE WUTE ALRBE ALRAE DCE FMT Reser
ved

REFCKON TSEDGE WUCKSEL[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, always read as 0.

Bit 23 COE: Calibration output enable
This bit enables the AFO_CALIB RTC output
0: Calibration output disabled
1: Calibration output enabled

Bits 22:21 OSEL[1:0]: Output selection

These bits are used to select the flag to be routed to AFO_ALARM RTC output
00: Output disabled
01: Alarm A output enabled
10: Alarm B output enabled
11: Wakeup output enabled

Bit 20 POL: Output polarity

This bit is used to configure the polarity of AFO_ALARM RTC output
0: The pin is high when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0])
1: The pin is low when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]).

Bit 19 Reserved, always read as 0.

Bit 18 BKP: Backup
This bit can be written by the user to memorize whether the daylight saving time change has
been performed or not.

Bit 17 SUB1H: Subtract 1 hour (winter time change)

When this bit is set outside initialization mode, 1 hour is subtracted to the calendar time if the
current hour is not 0. This bit is always read as 0.
Setting this bit has no effect when current hour is 0.
0: No effect
1: Subtracts 1 hour to the current time. This can be used for winter time change.

Bit 16 ADD1H: Add 1 hour (summer time change)
When this bit is set outside initialization mode, 1 hour is added to the calendar time. This bit
is always read as 0.
0: No effect
1: Adds 1 hour to the current time. This can be used for summer time change

Bit 15 TSIE: Time-stamp interrupt enable

0: Time-stamp Interrupt disable
1: Time-stamp Interrupt enable

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 443/598

Bit 14 WUTIE: Wakeup timer interrupt enable
0: Wakeup timer interrupt disabled
1: Wakeup timer interrupt enabled

Bit 13 ALRBIE: Alarm B interrupt enable

0: Alarm B Interrupt disable
1: Alarm B Interrupt enable

Bit 12 ALRAIE: Alarm A interrupt enable

0: Alarm A interrupt disabled
1: Alarm A interrupt enabled

Bit 11 TSE: Time stamp enable
0: Time stamp disable
1: Time stamp enable

Bit 10 WUTE: Wakeup timer enable

0: Wakeup timer disabled
1: Wakeup timer enabled

Bit 9 ALRBE: Alarm B enable
0: Alarm B disabled
1: Alarm B enabled

Bit 8 ALRAE: Alarm A enable

0: Alarm A disabled
1: Alarm A enabled

Bit 7 DCE: Digital calibration enable

0: Digital calibration disabled
1: Digital calibration enabled
PREDIV_A must be 6 or greater

Bit 6 FMT: Hour format
0: 24 hour/day format
1: AM/PM hour format

Bit 5 Reserved, always read as 0.

Bit 4 REFCKON: Reference clock detection enable (50 or 60 Hz)

0: Reference clock detection disabled
1: Reference clock detection enabled

Note: PREDIV_S must be 0x00FF.

Bit 3 TSEDGE: Time-stamp event active edge

0: TIMESTAMP rising edge generates a time-stamp event
1: TIMESTAMP falling edge generates a time-stamp event
TSE must be reset when TSEDGE is changed to avoid unwanted TSF setting.

Bits 2:0 WUCKSEL[2:0]: Wakeup clock selection
000: RTC/16 clock is selected
001: RTC/8 clock is selected
010: RTC/4 clock is selected
011: RTC/2 clock is selected
10x: ck_spre (usually 1 Hz) clock is selected
11x: ck_spre (usually 1 Hz) clock is selected and 216 is added to the WUT counter value
(see note below)

Real-time clock (RTC) RM0038

444/598 Doc ID 15965 Rev 4

Note: 1 WUT = Wakeup unit counter value. WUT = (0x0000 to 0xFFFF) + 0x10000 added when
WUCKSEL[2:1 = 11].

2 Bits 7, 6 and 4 of this register can be written in initialization mode only (RTC_ISR/INITF = 1).

3 Bits 2 to 0 of this register can be written only when RTC_CR WUTE bit = 0 and RTC_ISR
WUTWF bit = 1.

4 It is recommended not to change the hour during the calendar hour increment as it could
mask the incrementation of the calendar hour.

5 ADD1H and SUB1H changes are effective in the next second.

6 This register is write protected. The write access procedure is described in RTC register
write protection on page 432.

20.6.4 RTC initialization and status register (RTC_ISR)

Address offset: 0x0C

Reset value: 0x0000 0007

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. TAMP1
F TSOVF TSF WUTF ALRBF ALRAF INIT INITF RSF INITS Res. WUTW

F
ALRB
WF

ALRAW
F

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rw r rc_w0 r r r r

Bits 31:14 Reserved

Bit 13 TAMP1F: Tamper detection flag

This flag is set by hardware when a tamper detection event is detected.
It is cleared by software writing 0.

Bit 12 TSOVF: Time-stamp overflow flag

This flag is set by hardware when a time-stamp event occurs while TSF is already set.
This flag is cleared by software by writing 0. It is recommended to check and then clear
TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a time-
stamp event occurs immediately before the TSF bit is cleared.

Bit 11 TSF: Time-stamp flag

This flag is set by hardware when a time-stamp event occurs.
This flag is cleared by software by writing 0.

Bit 10 WUTF: Wakeup timer flag

This flag is set by hardware when the wakeup auto-reload counter reaches 0.
This flag is cleared by software by writing 0.
This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1
again.

Bit 9 ALRBF: Alarm B flag

This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm B register (RTC_ALRMBR).
This flag is cleared by software by writing 0.

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 445/598

Note: 1 The ALRAF, ALRBF, WUTF and TSF bits are cleared 2 APB clock cycles after programming
them to 0.

2 This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure
is described in RTC register write protection on page 432.

Bit 8 ALRAF: Alarm A flag
This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm A register (RTC_ALRMAR).
This flag is cleared by software by writing 0.

Bit 7 INIT: Initialization mode

0: Free running mode
1: Initialization mode used to program time and date register (RTC_TR and RTC_DR), and
prescaler register (RTC_PRER). Counters are stopped and start counting from the new
value when INIT is reset.

Bit 6 INITF: Initialization flag

When this bit is set to 1, the RTC is in initialization state, and the time, date and prescaler
registers can be updated.
0: Calendar registers update is not allowed
1: Calendar registers update is allowed.

Bit 5 RSF: Registers synchronization flag
This bit is set by hardware each time the calendar registers are copied into the shadow
registers (RTC_TRx,and RTC_DRx).
It is cleared either by software or by hardware in initialization mode.
0: Calendar shadow registers not yet synchronized
1: Calendar shadow registers synchronized

Bit 4 INITS: Initialization status flag
This bit is set by hardware when the calendar year field is different from 0 (power-on reset
state).
0: Calendar has not been initialized
1: Calendar has been initialized

Bit 3 Reserved, always read as 0.

Bit 2 WUTWF: Wakeup timer write flag
This bit is set by hardware when the wakeup timer values can be changed, after the WUTE
bit has been set to 0 in RTC_CR.
0: Wakeup timer configuration update not allowed
1: Wakeup timer configuration update allowed

Bit 1 ALRBWF: Alarm B write flag

This bit is set by hardware when Alarm B values can be changed, after the ALRBE bit has
been set to 0 in RTC_CR.
It is cleared by hardware in initialization mode.
0: Alarm B update not allowed
1: Alarm B update allowed.

Bit 0 ALRAWF: Alarm A write flag
This bit is set by hardware when Alarm A values can be changed, after the ALRAE bit has
been set to 0 in RTC_CR.
It is cleared by hardware in initialization mode.
0: Alarm A update not allowed
1: Alarm A update allowed

Real-time clock (RTC) RM0038

446/598 Doc ID 15965 Rev 4

20.6.5 RTC prescaler register (RTC_PRER)

Address offset: 0x10

Power-on reset value: 0x007F 00FF

System reset: not affected

Note: 1 This register must be written in initialization mode only. The initialization must be performed
in two separate write accesses. Refer to Calendar initialization and configuration on
page 433

2 This register is write protected. The write access procedure is described in RTC register
write protection on page 432.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PREDIV_A[6:0]

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PREDIV_S[12:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved

Bit 23 Reserved, always read as 0.

Bits 22:16 PREDIV_A[6:0]: Asynchronous prescaler factor

This is the asynchronous division factor:
ck_apre frequency = RTCCLK frequency/(PREDIV_A+1)

Note: PREDIV_A [6:0]= 000000 is forbidden.

Bits 15:13 Reserved, always read as 0.

Bits 12:0 PREDIV_S[12:0]: Synchronous prescaler factor

This is the synchronous division factor:
ck_spre frequency = ck_apre frequency/(PREDIV_S+1)

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 447/598

20.6.6 RTC wakeup timer register (RTC_WUTR)

Address offset: 0x14

Power-on reset value: 0x0000 FFFF

System reset: not affected

Note: 1 This register can be written only when WUTWF is set to 1 in RTC_ISR.

2 This register is write protected. The write access procedure is described in Section : RTC
register write protection.

20.6.7 RTC calibration register (RTC_CALIBR)

Address offset: 0x18

Power-on reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 WUT[15:0]: Wakeup auto-reload value bits

When the wakeup timer is enabled (WUTE set to 1), the WUTF flag is set every (WUT[15:0]
+ 1) ck_wut cycles. The ck_wut period is selected through WUCKSEL[2:0] bits of the
RTC_CR register
When WUCKSEL[2] = 1, the wakeup timer becomes 17-bits and WUCKSEL[1] effectively
becomes WUT[16] the most-significant bit to be reloaded into the timer.

Note: The first assertion of WUTF occurs (WUT+1) ck_wut cycles after WUTE is set. Setting
WUT[15:0] to 0x0000 with WUCKSEL[2:0] =011 (RTCCLK/2) is forbidden.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DCS

Reserved
DC[4:0]

rw rw rw rw rw rw

Bits 31:8 Reserved

Bit 7 DCS: Digital calibration sign

0: Positive calibration: calendar update frequency is increased
1: Negative calibration: calendar update frequency is decreased

Bits 6:5 Reserved, always read as 0.

Real-time clock (RTC) RM0038

448/598 Doc ID 15965 Rev 4

Note: 1 This register can be written in initialization mode only (RTC_ISR/INITF = ‘1’).

2 This register is write protected. The write access procedure is described in RTC register
write protection on page 432.

20.6.8 RTC alarm A register (RTC_ALRMAR)

Address offset: 0x1C

Power-on reset value: 0x0000 0000

System reset: not affected

Bits 4:0 DC[4:0]: Digital calibration
DCS = 0 (positive calibration)

00000: + 0 ppm
00001: + 4 ppm
00010: + 8 ppm
..
11111: + 126 ppm

DCS = 1 (negative calibration)

00000: −0 ppm
00001: −2 ppm
00010: −4 ppm
..
11111: −63 ppm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSK4 WDSEL DT[1:0] DU[3:0] MSK3 PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSK2 MNT[2:0] MNU[3:0] MSK1 ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 MSK4: Alarm A date mask

0: Alarm A set if the date/day match
1: Date/day don’t care in Alarm A comparison

Bit 30 WDSEL: Week day selection

0: DU[3:0] represents the date units
1: DU[3:0] represents the week day. DT[1:0] is don’t care.

Bits 29:28 DT[1:0]: Date tens in BCD format.

Bits 27:24 DU[3:0]: Date units or day in BCD format.

Bit 23 MSK3: Alarm A hours mask

0: Alarm A set if the hours match
1: Hours don’t care in Alarm A comparison

Bit 22 PM: AM/PM notation
0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format.

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 449/598

Note: 1 This register can be written only when ALRAWF is set to 1 in RTC_ISR, or in initialization
mode.

2 This register is write protected. The write access procedure is described in RTC register
write protection on page 432.

20.6.9 RTC alarm B register (RTC_ALRMBR)

Address offset: 0x20

Power-on reset value: 0x0000 0000

System reset: not affected

Bits 19:16 HU[3:0]: Hour units in BCD format.

Bit 15 MSK2: Alarm A minutes mask

0: Alarm A set if the minutes match
1: Minutes don’t care in Alarm A comparison

Bits 14:12 MNT[2:0]: Minute tens in BCD format.

Bits 11:8 MNU[3:0]: Minute units in BCD format.

Bit 7 MSK1: Alarm A seconds mask

0: Alarm A set if the seconds match
1: Seconds don’t care in Alarm A comparison

Bits 6:4 ST[2:0]: Second tens in BCD format.

Bits 3:0 SU[3:0]: Second units in BCD format.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSK4 WDSEL DT[1:0] DU[3:0] MSK3 PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSK2 MNT[2:0] MNU[3:0] MSK1 ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 MSK4: Alarm B date mask

0: Alarm B set if the date and day match
1: Date and day don’t care in Alarm B comparison

Bit 30 WDSEL: Week day selection
0: DU[3:0] represents the date units
1: DU[3:0] represents the week day. DT[1:0] is don’t care.

Bits 29:28 DT[1:0]: Date tens in BCD format

Bits 27:24 DU[3:0]: Date units or day in BCD format

Bit 23 MSK3: Alarm A hours mask
0: Alarm B set if the hours match
1: Hours don’t care in Alarm A comparison

Real-time clock (RTC) RM0038

450/598 Doc ID 15965 Rev 4

Note: 1 This register can be written only when ALRBWF is set to 1 in RTC_ISR, or in initialization
mode.

2 This register is write protected. The write access procedure is described in RTC register
write protection on page 432.

20.6.10 RTC write protection register (RTC_WPR)

Address offset: 0x24

Reset value: 0x0000 0000

Bit 22 PM: AM/PM notation
0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format

Bits 19:16 HU[3:0]: Hour units in BCD format

Bit 15 MSK2: Alarm B minutes mask
0: Alarm B set if the minutes match
1: Minutes don’t care in Alarm B comparison

Bits 14:12 MNT[2:0]: Minute tens in BCD format

Bits 11:8 MNU[3:0]: Minute units in BCD format

Bit 7 MSK1: Alarm B seconds mask
0: Alarm B set if the seconds match
1: Seconds don’t care in Alarm B comparison

Bits 6:4 ST[2:0]: Second tens in BCD format

Bits 3:0 SU[3:0]: Second units in BCD format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
KEY

w w w w w w w w

Bits 31:8 Reserved, always read as 0.

Bits 7:0 KEY: Write protection key

This byte is written by software.
Reading this byte always returns 0x00.
Refer to Section : RTC register write protection for a description of how to unlock RTC
register write protection.

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 451/598

20.6.11 RTC time stamp time register (RTC_TSTR)

Address offset: 0x30

Power-on value: 0x0000 0000

System reset: not affected

Note: The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when
TSF bit is reset.

20.6.12 RTC time stamp date register (RTC_TSDR)

Address offset: 0x34

Power-on value: 0x0000 0000

System reset: not affected

Note: The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when
TSF bit is reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
 PM HT[1:0] HU[3:0]

r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserv-
ed

MNT[2:0] MNU[3:0] Reserv-
ed

ST[2:0] SU[3:0]

r r r r r r r r r r r r r r

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDU[1:0] MT MU[3:0]
Reserved

DT[1:0] DU[3:0]

r r r r r r r r r r r r r r

Bits 31:16 Reserved, always read as 0.

Bits 15:13 WDU[1:0]: Week day units

Bit 12 MT: Month tens in BCD format

Bits 11:8 MU[3:0]: Month units in BCD format

Bits 7:6 Reserved, always read as 0.

Bits 5:4 DT[1:0]: Date tens in BCD format

Bit 3:0 DU[3:0]: Date units in BCD format

Real-time clock (RTC) RM0038

452/598 Doc ID 15965 Rev 4

20.6.13 RTC tamper and alternate function configuration register
(RTC_TAFCR)

Address offset: 0x40

Power-on value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

ALARMOUT
TYPE Reserved

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TAMPIE TAMP1

TRG
TAMP1

E

rw rw rw

Bit 31:19 Reserved. Always read as 0.

Bit 18 ALARMOUTTYPE: AFO_ALARM output type

0: RTC_AF1 is an open-drain output
1: RTC_AF1 is a push-pull output

Bit 17:3 Reserved. Always read as 0.

Bit 2 TAMPIE: Tamper interrupt enable
0: Tamper interrupt disabled
1: Tamper interrupt enabled

Bit 1 TAMP1TRG: Active level for tamper 1
0: TAMPER1 rising edge triggers a tamper detection event.
1: TAMPER1 falling edge triggers a tamper detection event.

Bit 0 TAMP1E: Tamper 1 detection enable
0: Tamper 1 detection disabled
1: Tamper 1 detection enabled

RM0038 Real-time clock (RTC)

Doc ID 15965 Rev 4 453/598

20.6.14 RTC backup registers (RTC_BKPxR)

Address offset: 0x50 to 0x9C

Power-on value: 0x0000 0000

System reset: not affected

20.6.15 Register map

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BKP[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BKP[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw w rw rw

Bits 31:0 BKP[31:0]
The application can write or read data to and from these registers. They are not powered-on
when VDD is switched off. They are not reset by System reset and their contents remain valid
when the device operates in low power mode. This register is reset on a tamper detection
event, or when the Flash readout protection is disabled.

Table 77. RTC register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
RTC_TR

Reserved P
M HT

[1:0]
HU[3:0]

R
es

er
ve

d

MNT[2:0] MNU[3:0]

R
es

er
ve

d

ST[2:0] SU[3:0]

Reset value 0

0x04
RTC_DR

Reserved
YT[3:0] YU[3:0] WDU[2:0] M

T MU[3:0]
R

es
er

ve
d DT

[1:0]
DU[3:0]

Reset value 0 0 1 0 0 0 0 1 0 0 0 0 0 1

0x08
RTC_CR

Reserved C
O

E OSEL
[1:0] P

O
L

R
es

er
ve

d

B
K

P

S
U

B
1H

A
D

D
1H

T
S

IE

W
U

T
IE

A
LR

B
IE

A
LR

A
IE

T
S

E

W
U

T
E

A
LR

B
E

A
LR

A
E

D
C

E

F
M

T

R
es

er
ve

d

R
E

F
C

K
O

N

T
S

E
D

G
E

WCKSEL
[2:0]

Reset value 0

0x0C
RTC_ISR

Reserved

TA
M

P
1F

T
S

O
V

F

T
S

F

W
U

T
F

A
LR

B
F

A
LR

A
F

IN
IT

IN
IT

F

R
S

F

IN
IT

S

R
es

er
ve

d

W
U

T
W

F

A
LR

B
W

F

A
LR

A
W

F

Reset value 0 0 0 0 0 0 0 0 0 0 1 1 1

0x10
RTC_PRER

Reserved
PREDIV_A[6:0]

Reserved
PREDIV_S[12:0]

Reset value 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

0x14
RTC_WUTR

Reserved
WUT[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x18
RTC_CALIBR

Reserved D
C

S

R
es

er
ve

d

DC[4:0]

Reset value 0 0 0 0 0 0

0x1C
RTC_ALRMAR

M
S

K
4

W
D

S
E

L

DT
[1:0]

DU[3:0]

M
S

K
3

P
M HT

[1:0]
HU[3:0]

M
S

K
2

MNT[2:0] MNU[3:0]

M
S

K
1

ST[2:0] SU[3:0]

Reset value 0

Real-time clock (RTC) RM0038

454/598 Doc ID 15965 Rev 4

Refer to Table 1 on page 32 for the register boundary addresses.

0x20
RTC_ALRMBR

M
S

K
4

W
D

S
E

L

DT
[1:0]

DU[3:0]

M
S

K
3

P
M HT

[1:0]
HU[3:0]

M
S

K
2

MNT[2:0] MNU[3:0]

M
S

K
2

ST[2:0] SU[3:0]

Reset value 0

0x24
RTC_WPR

Reserved
KEY[7:0]

Reset value 0 0 0 0 0 0 0 0

0x30
RTC_TSTR

Reserved P
M

H
T

[1
:0

]

HU[3:0]

R
es

er
ve

d

M
N

T
[2

:0
]

MNU[3:0]

R
es

er
ve

d

ST[2:0] SU[3:0]

Reset value 0

0x34
RTC_TSDR

Reserved
WDU[2:0] M

T MU[3:0]

R
es

er
ve

d DT
[1:0]

DU[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
RTC_TAFCR

Reserved

A
LA

R
M

O
U

T
T

Y
P

E

Reserved

TA
M

P
IE

TA
M

P
1T

R
G

TA
M

P
1E

Reset value 0 0 0 0

0x50
to 0x9C

RTC_BK0R BKP[31:0]

Reset value 0

to RTC_BK19R BKP[31:0]

Reset value 0

Table 77. RTC register map and reset values (continued)
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 455/598

21 Inter-integrated circuit (I2C) interface

21.1 I2C introduction
I2C (inter-integrated circuit) bus Interface serves as an interface between the microcontroller
and the serial I2C bus. It provides multimaster capability, and controls all I2C bus-specific
sequencing, protocol, arbitration and timing. It supports standard and fast speed modes. It is
also SMBus 2.0 compatible.

It may be used for a variety of purposes, including CRC generation and verification, SMBus
(system management bus) and PMBus (power management bus).

Depending on specific device implementation DMA capability can be available for reduced
CPU overload.

21.2 I2C main features
● Parallel-bus/I2C protocol converter

● Multimaster capability: the same interface can act as Master or Slave

● I2C Master features:

– Clock generation

– Start and Stop generation

● I2C Slave features:

– Programmable I2C Address detection

– Dual Addressing Capability to acknowledge 2 slave addresses

– Stop bit detection

● Generation and detection of 7-bit/10-bit addressing and General Call

● Supports different communication speeds:

– Standard Speed (up to 100 kHz),

– Fast Speed (up to 400 kHz)

● Status flags:

– Transmitter/Receiver mode flag

– End-of-Byte transmission flag

– I2C busy flag

● Error flags:

– Arbitration lost condition for master mode

– Acknowledgement failure after address/ data transmission

– Detection of misplaced start or stop condition

– Overrun/Underrun if clock stretching is disabled

● 2 Interrupt vectors:

– 1 Interrupt for successful address/ data communication

– 1 Interrupt for error condition

● Optional clock stretching

● 1-byte buffer with DMA capability

Inter-integrated circuit (I2C) interface RM0038

456/598 Doc ID 15965 Rev 4

● Configurable PEC (packet error checking) generation or verification:

– PEC value can be transmitted as last byte in Tx mode

– PEC error checking for last received byte

● SMBus 2.0 Compatibility:

– 25 ms clock low timeout delay

– 10 ms master cumulative clock low extend time

– 25 ms slave cumulative clock low extend time

– Hardware PEC generation/verification with ACK control

– Address Resolution Protocol (ARP) supported

● PMBus Compatibility

Note: Some of the above features may not be available in certain products. The user should refer
to the product data sheet, to identify the specific features supported by the I2C interface
implementation.

21.3 I2C functional description
In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz) or fast (up to 400 kHz) I2C bus.

21.3.1 Mode selection

The interface can operate in one of the four following modes:

● Slave transmitter

● Slave receiver

● Master transmitter

● Master receiver

By default, it operates in slave mode. The interface automatically switches from slave to
master, after it generates a START condition and from master to slave, if an arbitration loss
or a Stop generation occurs, allowing multimaster capability.

Communication flow

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a start condition and ends with a stop condition. Both
start and stop conditions are generated in master mode by software.

In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the General Call address. The General Call address detection may be enabled or disabled
by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to Figure 160.

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 457/598

Figure 160. I2C bus protocol

Acknowledge may be enabled or disabled by software. The I2C interface addresses (dual
addressing 7-bit/ 10-bit and/or general call address) can be selected by software.

The block diagram of the I2C interface is shown in Figure 161.

Figure 161. I2C block diagram

1. SMBA is an optional signal in SMBus mode. This signal is not applicable if SMBus is disabled.

SCL

SDA

1 2 8 9

MSB ACK

Stop Start
conditioncondition

Data shift register

Comparator

Own address register

Clock control

Status registers

Control registers

Control

Clock
control

Data
control

SCL

logic

Dual address register

Data register

PEC register

Interrupts

PEC calculation

SMBA

SDA

Register (CCR)

(SR1&SR2)

(CR1&CR2)

DMA requests & ACK

ai17189

Inter-integrated circuit (I2C) interface RM0038

458/598 Doc ID 15965 Rev 4

21.3.2 I2C slave mode

By default the I2C interface operates in Slave mode. To switch from default Slave mode to
Master mode a Start condition generation is needed.

The peripheral input clock must be programmed in the I2C_CR2 register in order to
generate correct timings. The peripheral input clock frequency must be at least:

● 2 MHz in Standard mode

● 4 MHz in Fast mode

As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register. Then it is compared with the address of the interface (OAR1) and with
OAR2 (if ENDUAL=1) or the General Call address (if ENGC = 1).

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0),
where xx denotes the two most significant bits of the address.

Header or address not matched: the interface ignores it and waits for another Start
condition.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the
ACK bit is set and waits for the 8-bit slave address.

Address matched: the interface generates in sequence:

● An acknowledge pulse if the ACK bit is set

● The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit is
set.

● If ENDUAL=1, the software has to read the DUALF bit to check which slave address
has been acknowledged.

In 10-bit mode, after receiving the address sequence the slave is always in Receiver mode.
It will enter Transmitter mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

The TRA bit indicates whether the slave is in Receiver or Transmitter mode.

Slave transmitter

Following the address reception and after clearing ADDR, the slave sends bytes from the
DR register to the SDA line via the internal shift register.

The slave stretches SCL low until ADDR is cleared and DR filled with the data to be sent
(see Figure 162 Transfer sequencing EV1 EV3).

When the acknowledge pulse is received:

● The TxE bit is set by hardware with an interrupt if the ITEVFEN and the ITBUFEN bits
are set.

If TxE is set and some data were not written in the I2C_DR register before the end of the
next data transmission, the BTF bit is set and the interface waits until BTF is cleared by a
read to I2C_SR1 followed by a write to the I2C_DR register, stretching SCL low.

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 459/598

Figure 162. Transfer sequence diagram for slave transmitter

1. The EV1 and EV3_1 events stretch SCL low until the end of the corresponding software sequence.

2. The EV3 event stretches SCL low if the software sequence is not completed before the end of the next byte
transmission.

Slave receiver

Following the address reception and after clearing ADDR, the slave receives bytes from the
SDA line into the DR register via the internal shift register. After each byte the interface
generates in sequence:

● An acknowledge pulse if the ACK bit is set

● The RxNE bit is set by hardware and an interrupt is generated if the ITEVFEN and
ITBUFEN bit is set.

If RxNE is set and the data in the DR register is not read before the end of the next data
reception, the BTF bit is set and the interface waits until BTF is cleared by a read from the
I2C_DR register, stretching SCL low (see Figure 163 Transfer sequencing).

7-bit slave transmitter

10-bit slave transmitter

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVFEN=1)

EV1: ADDR=1, cleared by reading SR1 followed by reading SR2
EV3-1: TxE=1, shift register empty, data register empty, write Data1 in DR.
EV3: TxE=1, shift register not empty, data register empty, cleared by writing DR
EV3-2: AF=1; AF is cleared by writing ‘0’ in AF bit of SR1 register.

S Address A Data1 A Data2 A
.....

DataN NA P

EV1 EV3-1 EV3 EV3 EV3 EV3-2

S Header A Address A

EV1

Sr Header A Data1 A DataN NA P

EV1 EV3_1 EV3 EV3 EV3-2

ai18209

Inter-integrated circuit (I2C) interface RM0038

460/598 Doc ID 15965 Rev 4

Figure 163. Transfer sequence diagram for slave receiver

1. The EV1 event stretches SCL low until the end of the corresponding software sequence.

2. The EV2 event stretches SCL low if the software sequence is not completed before the end of the next byte
reception.

3. After checking the SR1 register content, the user should perform the complete clearing sequence for each
flag found set.
Thus, for ADDR and STOPF flags, the following sequence is required inside the I2C interrupt routine:
READ SR1
if (ADDR == 1) {READ SR1; READ SR2}
if (STOPF == 1) {READ SR1; WRITE CR1}

The purpose is to make sure that both ADDR and STOPF flags are cleared if both are found set.

Closing slave communication

After the last data byte is transferred a Stop Condition is generated by the master. The
interface detects this condition:

● The STOPF bit is set and generates an interrupt if the ITEVFEN bit is set.

The STOPF is cleared by a read of the SR1 register followed by a write to the CR1 register
(see Figure 163 Transfer sequencing EV4).

21.3.3 I2C master mode

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a Start condition and ends with a Stop condition.
Master mode is selected as soon as the Start condition is generated on the bus with a
START bit.

The following is the required sequence in master mode.

● Program the peripheral input clock in I2C_CR2 Register in order to generate correct
timings

● Configure the clock control registers

● Configure the rise time register

● Program the I2C_CR1 register to enable the peripheral

● Set the START bit in the I2C_CR1 register to generate a Start condition

7-bit slave receiver

10-bit slave receiver

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge,
EVx= Event (with interrupt if ITEVFEN=1)

EV1: ADDR=1, cleared by reading SR1 followed by reading SR2
EV2: RxNE=1 cleared by reading DR register.
EV4: STOPF=1, cleared by reading SR1 register followed by writing to the CR1 register

S Address A Data1 A Data2 A
.....

DataN A P

EV1 EV2 EV2 EV2 EV4

S Header A Address A Data1 A
.....

DataN A P

EV1 EV2 EV2 EV4

ai18208

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 461/598

The peripheral input clock frequency must be at least:

● 2 MHz in Standard mode

● 4 MHz in Fast mode

Inter-integrated circuit (I2C) interface RM0038

462/598 Doc ID 15965 Rev 4

Start condition

Setting the START bit causes the interface to generate a Start condition and to switch to
Master mode (M/SL bit set) when the BUSY bit is cleared.

Note: In master mode, setting the START bit causes the interface to generate a ReStart condition
at the end of the current byte transfer.

Once the Start condition is sent:

● The SB bit is set by hardware and an interrupt is generated if the ITEVFEN bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register
with the Slave address (see Figure 164 & Figure 165 Transfer sequencing EV5).

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

● In 10-bit addressing mode, sending the header sequence causes the following event:

– The ADD10 bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a write in the DR
register with the second address byte (see Figure 164 & Figure 165 Transfer
sequencing).

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 164 & Figure 165 Transfer sequencing).

● In 7-bit addressing mode, one address byte is sent.

As soon as the address byte is sent,

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 164 & Figure 165 Transfer sequencing).

The master can decide to enter Transmitter or Receiver mode depending on the LSB of the
slave address sent.

● In 7-bit addressing mode,

– To enter Transmitter mode, a master sends the slave address with LSB reset.

– To enter Receiver mode, a master sends the slave address with LSB set.

● In 10-bit addressing mode,

– To enter Transmitter mode, a master sends the header (11110xx0) and then the
slave address, (where xx denotes the two most significant bits of the address).

– To enter Receiver mode, a master sends the header (11110xx0) and then the
slave address. Then it should send a repeated Start condition followed by the
header (11110xx1), (where xx denotes the two most significant bits of the
address).

The TRA bit indicates whether the master is in Receiver or Transmitter mode.

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 463/598

Master transmitter

Following the address transmission and after clearing ADDR, the master sends bytes from
the DR register to the SDA line via the internal shift register.

The master waits until the first data byte is written into I2C_DR (see Figure 164 Transfer
sequencing EV8_1).

When the acknowledge pulse is received:

● The TxE bit is set by hardware and an interrupt is generated if the ITEVFEN and
ITBUFEN bits are set.

If TxE is set and a data byte was not written in the DR register before the end of the last data
transmission, BTF is set and the interface waits until BTF is cleared by a write to I2C_DR,
stretching SCL low.

Closing the communication

After the last byte is written to the DR register, the STOP bit is set by software to generate a
Stop condition (see Figure 164 Transfer sequencing EV8_2). The interface automatically
goes back to slave mode (M/SL bit cleared).

Note: Stop condition should be programmed during EV8_2 event, when either TxE or BTF is set.

Figure 164. Transfer sequence diagram for master transmitter

1. The EV5, EV6, EV9, EV8_1 and EV8_2 events stretch SCL low until the end of the corresponding software
sequence.

2. The EV8 event stretches SCL low if the software sequence is not complete before the end of the next byte
transmission..

7-bit master transmitter

10-bit master transmitter

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge,
EVx= Event (with interrupt if ITEVFEN = 1)

EV5: SB=1, cleared by reading SR1 register followed by writing DR register with Address.
EV6: ADDR=1, cleared by reading SR1 register followed by reading SR2.
EV8_1: TxE=1, shift register empty, data register empty, write Data1 in DR.
EV8: TxE=1, shift register not empty, data register empty, cleared by writing DR register.
EV8_2: TxE=1, BTF = 1, Program Stop request. TxE and BTF are cleared by hardware by the Stop condition
EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.

S Address A Data1 A Data2 A
.....

DataN A P

EV5 EV6 EV8_1 EV8 EV8 EV8 EV8_2

S Header A Address A Data1 A
.....

DataN A P

EV5 EV9 EV6 EV8_1 EV8 EV8 EV8_2

ai18210

Inter-integrated circuit (I2C) interface RM0038

464/598 Doc ID 15965 Rev 4

Master receiver

Following the address transmission and after clearing ADDR, the I2C interface enters
Master Receiver mode. In this mode the interface receives bytes from the SDA line into the
DR register via the internal shift register. After each byte the interface generates in
sequence:

1. An acknowledge pulse if the ACK bit is set

2. The RxNE bit is set and an interrupt is generated if the ITEVFEN and ITBUFEN bits are
set (see Figure 165 Transfer sequencing EV7).

If the RxNE bit is set and the data in the DR register is not read before the end of the last
data reception, the BTF bit is set by hardware and the interface waits until BTF is cleared by
a read in the DR register, stretching SCL low.

Closing the communication

The master sends a NACK for the last byte received from the slave. After receiving this
NACK, the slave releases the control of the SCL and SDA lines. Then the master can send
a Stop/Restart condition.

1. To generate the nonacknowledge pulse after the last received data byte, the ACK bit
must be cleared just after reading the second last data byte (after second last RxNE
event).

2. In order to generate the Stop/Restart condition, software must set the STOP/START bit
after reading the second last data byte (after the second last RxNE event).

3. In case a single byte has to be received, the Acknowledge disable is made during EV6
(before ADDR flag is cleared) and the STOP condition generation is made after EV6.

After the Stop condition generation, the interface goes automatically back to slave mode
(M/SL bit cleared).

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 465/598

Figure 165. Transfer sequence diagram for master receiver

1. If a single byte is received, it is NA.

2. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

3. The EV7 event stretches SCL low if the software sequence is not completed before the end of the next byte
reception.

4. The EV7_1 software sequence must be completed before the ACK pulse of the current byte transfer.

 The procedures described below are recommended if the EV7-1 software sequence is not
completed before the ACK pulse of the current byte transfer.

These procedures must be followed to make sure:

● The ACK bit is set low on time before the end of the last data reception

● The STOP bit is set high after the last data reception without reception of
supplementary data.

For 2-byte reception:

● Wait until ADDR = 1 (SCL stretched low until the ADDR flag is cleared)

● Set ACK low, set POS high

● Clear ADDR flag

● Wait until BTF = 1 (Data 1 in DR, Data2 in shift register, SCL stretched low until a data
1 is read)

● Set STOP high

● Read datas 1 & 2

For N >2 -byte reception, from N-2 data reception

● Wait until BTF = 1 (data N-2 in DR, data N-1 in shift register, SCL stretched low until
data N-2 is read)

● Set ACK low

● Read data N-2

● Wait until BTF = 1 (data N-1 in DR, data N in shift register, SCL stretched low until a
data N-1 is read)

● Set STOP high

● Read datas N-1 & N

7-bit master receiver

10-bit master receiver

Legend: S= Start, Sr = Repeated Start, P= Stop, A= Acknowledge, NA= Non-acknowledge,
EVx= Event (with interrupt if ITEVFEN=1)
EV5: SB=1, cleared by reading SR1 register followed by writing DR register.
EV6: ADDR=1, cleared by reading SR1 register followed by reading SR2. In 10-bit master receiver mode, this se-
quence should be followed by writing CR2 with START = 1.

EV7: RxNE=1 cleared by reading DR register.
EV7_1: RxNE=1 cleared by reading DR register, program ACK=0 and STOP request
EV9: ADD10=1, cleared by reading SR1 register followed by writing DR register.

S Address A Data1 A(1) Data2 A
.....

DataN NA P

EV5 EV6 EV7 EV7 EV7_1 EV7

S Header A Address A

EV5 EV9 EV6

Sr Header A Data1 A(1)

.....
EV5 EV6 EV7

Data2 A

EV7

DataN NA P

EV7_1 EV7

ai17540c

In case of the reception of 1 byte, the Acknowledge disable must be performed during EV6 event, i.e. before clearing ADDR flag.

Inter-integrated circuit (I2C) interface RM0038

466/598 Doc ID 15965 Rev 4

21.3.4 Error conditions

The following are the error conditions which may cause communication to fail.

Bus error (BERR)

This error occurs when the I2C interface detects an external Stop or Start condition during
an address or a data transfer. In this case:

● the BERR bit is set and an interrupt is generated if the ITERREN bit is set

● in Slave mode: data are discarded and the lines are released by hardware:

– in case of a misplaced Start, the slave considers it is a restart and waits for an
address, or a Stop condition

– in case of a misplaced Stop, the slave behaves like for a Stop condition and the
lines are released by hardware

● In Master mode: the lines are not released and the state of the current transmission is
not affected. It is up to the software to abort or not the current transmission

Acknowledge failure (AF)

This error occurs when the interface detects a nonacknowledge bit. In this case:

● the AF bit is set and an interrupt is generated if the ITERREN bit is set

● a transmitter which receives a NACK must reset the communication:

– If Slave: lines are released by hardware

– If Master: a Stop or repeated Start condition must be generated by software

Arbitration lost (ARLO)

This error occurs when the I2C interface detects an arbitration lost condition. In this case,

● the ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is
set)

● the I2C Interface goes automatically back to slave mode (the M/SL bit is cleared). When
the I2C loses the arbitration, it is not able to acknowledge its slave address in the same
transfer, but it can acknowledge it after a repeated Start from the winning master.

● lines are released by hardware

Overrun/underrun error (OVR)

An overrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is receiving data. The interface has received a byte (RxNE=1) and the data in DR
has not been read, before the next byte is received by the interface. In this case,

● The last received byte is lost.

● In case of Overrun error, software should clear the RxNE bit and the transmitter should
re-transmit the last received byte.

Underrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is transmitting data. The interface has not updated the DR with the next byte
(TxE=1), before the clock comes for the next byte. In this case,

● The same byte in the DR register will be sent again

● The user should make sure that data received on the receiver side during an underrun
error are discarded and that the next bytes are written within the clock low time
specified in the I2C bus standard.

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 467/598

For the first byte to be transmitted, the DR must be written after ADDR is cleared and before
the first SCL rising edge. If not possible, the receiver must discard the first data.

21.3.5 SDA/SCL line control

● If clock stretching is enabled:

– Transmitter mode: If TxE=1 and BTF=1: the interface holds the clock line low
before transmission to wait for the microcontroller to write the byte in the Data
Register (both buffer and shift register are empty).

– Receiver mode: If RxNE=1 and BTF=1: the interface holds the clock line low after
reception to wait for the microcontroller to read the byte in the Data Register (both
buffer and shift register are full).

● If clock stretching is disabled in Slave mode:

– Overrun Error in case of RxNE=1 and no read of DR has been done before the
next byte is received. The last received byte is lost.

– Underrun Error in case TxE=1 and no write into DR has been done before the next
byte must be transmitted. The same byte will be sent again.

– Write Collision not managed.

21.3.6 SMBus

Introduction

The System Management Bus (SMBus) is a two-wire interface through which various
devices can communicate with each other and with the rest of the system. It is based on I2C
principles of operation. SMBus provides a control bus for system and power management
related tasks. A system may use SMBus to pass messages to and from devices instead of
toggling individual control lines.

The System Management Bus Specification refers to three types of devices. A slave is a
device that is receiving or responding to a command. A master is a device that issues
commands, generates the clocks, and terminates the transfer. A host is a specialized master
that provides the main interface to the system's CPU. A host must be a master-slave and
must support the SMBus host notify protocol. Only one host is allowed in a system.

Similarities between SMBus and I2C

● 2 wire bus protocol (1 Clk, 1 Data) + SMBus Alert line optional

● Master-slave communication, Master provides clock

● Multi master capability

● SMBus data format similar to I2C 7-bit addressing format (Figure 160).

Differences between SMBus and I2C

The following table describes the differences between SMBus and I2C.

Table 78. SMBus vs. I2C

SMBus I2C

Max. speed 100 kHz Max. speed 400 kHz

Min. clock speed 10 kHz No minimum clock speed

Inter-integrated circuit (I2C) interface RM0038

468/598 Doc ID 15965 Rev 4

SMBus application usage

With System Management Bus, a device can provide manufacturer information, tell the
system what its model/part number is, save its state for a suspend event, report different
types of errors, accept control parameters, and return its status. SMBus provides a control
bus for system and power management related tasks.

Device identification

Any device that exists on the System Management Bus as a slave has a unique address
called the Slave Address. For the list of reserved slave addresses, refer to the SMBus
specification ver. 2.0 (http://smbus.org/specs/).

Bus protocols

The SMBus specification supports up to 9 bus protocols. For more details of these protocols
and SMBus address types, refer to SMBus specification ver. 2.0 (http://smbus.org/specs/).
These protocols should be implemented by the user software.

Address resolution protocol (ARP)

SMBus slave address conflicts can be resolved by dynamically assigning a new unique
address to each slave device. The Address Resolution Protocol (ARP) has the following
attributes:

● Address assignment uses the standard SMBus physical layer arbitration mechanism

● Assigned addresses remain constant while device power is applied; address retention
through device power loss is also allowed

● No additional SMBus packet overhead is incurred after address assignment. (i.e.
subsequent accesses to assigned slave addresses have the same overhead as
accesses to fixed address devices.)

● Any SMBus master can enumerate the bus

Unique device identifier (UDID)

In order to provide a mechanism to isolate each device for the purpose of address
assignment, each device must implement a unique device identifier (UDID).

For the details on 128 bit UDID and more information on ARP, refer to SMBus specification
ver. 2.0 (http://smbus.org/specs/).

SMBus alert mode

SMBus Alert is an optional signal with an interrupt line for devices that want to trade their
ability to master for a pin. SMBA is a wired-AND signal just as the SCL and SDA signals are.

35 ms clock low timeout No timeout

Logic levels are fixed Logic levels are VDD dependent

Different address types (reserved, dynamic etc.) 7-bit, 10-bit and general call slave address types

Different bus protocols (quick command, process
call etc.)

No bus protocols

Table 78. SMBus vs. I2C (continued)

SMBus I2C

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 469/598

SMBA is used in conjunction with the SMBus General Call Address. Messages invoked with
the SMBus are 2 bytes long.

A slave-only device can signal the host through SMBA that it wants to talk by setting ALERT
bit in I2C_CR1 register. The host processes the interrupt and simultaneously accesses all
SMBA devices through the Alert Response Address (known as ARA having a value 0001
100X). Only the device(s) which pulled SMBA low will acknowledge the Alert Response
Address. This status is identified using SMBALERT Status flag in I2C_SR1 register. The
host performs a modified Receive Byte operation. The 7 bit device address provided by the
slave transmit device is placed in the 7 most significant bits of the byte. The eighth bit can be
a zero or one.

If more than one device pulls SMBA low, the highest priority (lowest address) device will win
communication rights via standard arbitration during the slave address transfer. After
acknowledging the slave address the device must disengage its SMBA pull-down. If the host
still sees SMBA low when the message transfer is complete, it knows to read the ARA
again.
A host which does not implement the SMBA signal may periodically access the ARA.

For more details on SMBus Alert mode, refer to SMBus specification ver. 2.0
(http://smbus.org/specs/).

Timeout error

There are differences in the timing specifications between I2C and SMBus.
SMBus defines a clock low timeout, TIMEOUT of 35 ms. Also SMBus specifies TLOW:
SEXT as the cumulative clock low extend time for a slave device. SMBus specifies TLOW:
MEXT as the cumulative clock low extend time for a master device. For more details on
these timeouts, refer to SMBus specification ver. 2.0 (http://smbus.org/specs/).

The status flag Timeout or Tlow Error in I2C_SR1 shows the status of this feature.

How to use the interface in SMBus mode

To switch from I2C mode to SMBus mode, the following sequence should be performed.

● Set the SMBus bit in the I2C_CR1 register

● Configure the SMBTYPE and ENARP bits in the I2C_CR1 register as required for the
application

If you want to configure the device as a master, follow the Start condition generation
procedure in Section 21.3.3: I2C master mode. Otherwise, follow the sequence in
Section 21.3.2: I2C slave mode.

The application has to control the various SMBus protocols by software.

● SMB Device Default Address acknowledged if ENARP=1 and SMBTYPE=0

● SMB Host Header acknowledged if ENARP=1 and SMBTYPE=1

● SMB Alert Response Address acknowledged if SMBALERT=1

21.3.7 DMA requests

DMA requests (when enabled) are generated only for data transfer. DMA requests are
generated by Data Register becoming empty in transmission and Data Register becoming
full in reception. The DMA request must be served before the end of the current byte
transfer. When the number of data transfers which has been programmed for the

Inter-integrated circuit (I2C) interface RM0038

470/598 Doc ID 15965 Rev 4

corresponding DMA channel is reached, the DMA controller sends an End of Transfer EOT
signal to the I2C interface and generates a Transfer Complete interrupt if enabled:

● Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
requests then wait for a BTF event before programming the Stop condition.

● Master receiver:

– when the number of bytes to be received is equal to or greater than two, the DMA
controller sends a hardware signal, EOT_1, corresponding to the last but one data
byte (number_of_bytes – 1). If, in the I2C_CR2 register, the LAST bit is set, I2C
automatically sends a NACK after the next byte following EOT_1. The user can
generate a Stop condition in the DMA Transfer Complete interrupt routine if
enabled.

– when a single byte must be received : the NACK must be programmed during EV6
event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag. Then the
user can program the STOP condition either after clearing ADDR flag, or in the
DMA Transfer Complete interrupt routine.

Transmission using DMA

DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2
register. Data will be loaded from a Memory area configured using the DMA peripheral (refer
to the DMA specification) to the I2C_DR register whenever the TxE bit is set. To map a DMA
channel for I2C transmission, perform the following sequence. Here x is the channel number.

1. Set the I2C_DR register address in the DMA_CPARx register. The data will be moved
to this address from the memory after each TxE event.

2. Set the memory address in the DMA_CMARx register. The data will be loaded into
I2C_DR from this memory after each TxE event.

3. Configure the total number of bytes to be transferred in the DMA_CNDTRx register.
After each TxE event, this value will be decremented.

4. Configure the channel priority using the PL[0:1] bits in the DMA_CCRx register

5. Set the DIR bit and, in the DMA_CCRx register, configure interrupts after half transfer
or full transfer depending on application requirements.

6. Activate the channel by setting the EN bit in the DMA_CCRx register.

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and the DMA generates an interrupt, if enabled, on the DMA channel interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for transmission.

Reception using DMA

DMA mode can be enabled for reception by setting the DMAEN bit in the I2C_CR2 register.
Data will be loaded from the I2C_DR register to a Memory area configured using the DMA
peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA
channel for I2C reception, perform the following sequence. Here x is the channel number.

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 471/598

1. Set the I2C_DR register address in DMA_CPARx register. The data will be moved from
this address to the memory after each RxNE event.

2. Set the memory address in the DMA_CMARx register. The data will be loaded from the
I2C_DR register to this memory area after each RxNE event.

3. Configure the total number of bytes to be transferred in the DMA_CNDTRx register.
After each RxNE event, this value will be decremented.

4. Configure the channel priority using the PL[0:1] bits in the DMA_CCRx register

5. Reset the DIR bit and configure interrupts in the DMA_CCRx register after half transfer
or full transfer depending on application requirements.

6. Activate the channel by setting the EN bit in the DMA_CCRx register.

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and DMA generates an interrupt, if enabled, on the DMA channel interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for reception.

21.3.8 Packet error checking

A PEC calculator has been implemented to improve the reliability of communication. The
PEC is calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial serially on each bit.

● PEC calculation is enabled by setting the ENPEC bit in the I2C_CR1 register. PEC is a
CRC-8 calculated on all message bytes including addresses and R/W bits.

– In transmission: set the PEC transfer bit in the I2C_CR1 register after the TxE
event corresponding to the last byte. The PEC will be transferred after the last
transmitted byte.

– In reception: set the PEC bit in the I2C_CR1 register after the RxNE event
corresponding to the last byte so that the receiver sends a NACK if the next
received byte is not equal to the internally calculated PEC. In case of Master-
Receiver, a NACK must follow the PEC whatever the check result. The PEC must
be set before the ACK of the CRC reception in slave mode. It must be set when
the ACK is set low in master mode.

● A PECERR error flag/interrupt is also available in the I2C_SR1 register.

● If DMA and PEC calculation are both enabled:-

– In transmission: when the I2C interface receives an EOT signal from the DMA
controller, it automatically sends a PEC after the last byte.

– In reception: when the I2C interface receives an EOT_1 signal from the DMA
controller, it will automatically consider the next byte as a PEC and will check it. A
DMA request is generated after PEC reception.

● To allow intermediate PEC transfers, a control bit is available in the I2C_CR2 register
(LAST bit) to determine if it is really the last DMA transfer or not. If it is the last DMA
request for a master receiver, a NACK is automatically sent after the last received byte.

● PEC calculation is corrupted by an arbitration loss.

21.4 I2C interrupts
The table below gives the list of I2C interrupt requests.

Inter-integrated circuit (I2C) interface RM0038

472/598 Doc ID 15965 Rev 4

Note: 1 SB, ADDR, ADD10, STOPF, BTF, RxNE and TxE are logically ORed on the same interrupt
channel.

2 BERR, ARLO, AF, OVR, PECERR, TIMEOUT and SMBALERT are logically ORed on the
same interrupt channel.

Figure 166. I2C interrupt mapping diagram

Table 79. I2C Interrupt requests

Interrupt event Event flag Enable control bit

Start bit sent (Master) SB

ITEVFEN

Address sent (Master) or Address matched (Slave) ADDR

10-bit header sent (Master) ADD10

Stop received (Slave) STOPF

Data byte transfer finished BTF

Receive buffer not empty RxNE
ITEVFEN and ITBUFEN

Transmit buffer empty TxE

Bus error BERR

ITERREN

Arbitration loss (Master) ARLO

Acknowledge failure AF

Overrun/Underrun OVR

PEC error PECERR

Timeout/Tlow error TIMEOUT

SMBus Alert SMBALERT

ADDR

SB

ADD10

RxNE

TxE

BTF

it_event

ARLO

BERR

AF

OVR

PECERR

TIMEOUT

SMBALERT

ITERREN

it_error

ITEVFEN

ITBUFEN

STOPF

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 473/598

21.5 I2C debug mode
When the microcontroller enters the debug mode (Cortex-M3 core halted), the SMBUS
timeout either continues to work normally or stops, depending on the
DBG_I2Cx_SMBUS_TIMEOUT configuration bits in the DBG module. For more details,
refer to Section 24.16.2: Debug support for timers, watchdog and I2C on page 580.

21.6 I2C registers
Refer to for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

21.6.1 Control register 1 (I2C_CR1)

Address offset: 0x00
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWRST
Res.

ALERT PEC POS ACK STOP START NO
STRETCH ENGC ENPEC ENARP SMB

TYPE Res.
SMBUS PE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 SWRST: Software reset

When set, the I2C is under reset state. Before resetting this bit, make sure the I2C lines are
released and the bus is free.
0: I2C Peripheral not under reset
1: I2C Peripheral under reset state

Note: This bit can be used in case the BUSY bit is set to ‘1 when no stop condition has been
detected on the bus.

Bit 14 Reserved, forced by hardware to 0.

Bit 13 ALERT: SMBus alert
This bit is set and cleared by software, and cleared by hardware when PE=0.
0: Releases SMBA pin high. Alert Response Address Header followed by NACK.
1: Drives SMBA pin low. Alert Response Address Header followed by ACK.

Bit 12 PEC: Packet error checking

This bit is set and cleared by software, and cleared by hardware when PEC is transferred or
by a START or Stop condition or when PE=0.
0: No PEC transfer
1: PEC transfer (in Tx or Rx mode)

Note: PEC calculation is corrupted by an arbitration loss.

Bit 11 POS: Acknowledge/PEC Position (for data reception)

This bit is set and cleared by software and cleared by hardware when PE=0.

0: ACK bit controls the (N)ACK of the current byte being received in the shift register. The
PEC bit indicates that current byte in shift register is a PEC.
1: ACK bit controls the (N)ACK of the next byte which will be received in the shift register.
The PEC bit indicates that the next byte in the shift register is a PEC

Note: The POS bit must be used only in 2-byte reception configuration in master mode. It
must be configured before data reception starts, as described in the 2-byte reception
procedure recommended in Section : Master receiver on page 464.

Inter-integrated circuit (I2C) interface RM0038

474/598 Doc ID 15965 Rev 4

Bit 10 ACK: Acknowledge enable

This bit is set and cleared by software and cleared by hardware when PE=0.
0: No acknowledge returned
1: Acknowledge returned after a byte is received (matched address or data)

Bit 9 STOP: Stop generation

The bit is set and cleared by software, cleared by hardware when a Stop condition is
detected, set by hardware when a timeout error is detected.
In Master Mode:
0: No Stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is sent.
In Slave mode:
0: No Stop generation.
1: Release the SCL and SDA lines after the current byte transfer.

Note: When the STOP, START or PEC bit is set, the software must not perform any write
access to I2C_CR1 before this bit is cleared by hardware. Otherwise there is a risk of
setting a second STOP, START or PEC request.

Bit 8 START: Start generation

This bit is set and cleared by software and cleared by hardware when start is sent or PE=0.
In Master Mode:
0: No Start generation
1: Repeated start generation
In Slave mode:
0: No Start generation
1: Start generation when the bus is free

Bit 7 NOSTRETCH: Clock stretching disable (Slave mode)

This bit is used to disable clock stretching in slave mode when ADDR or BTF flag is set, until
it is reset by software.
0: Clock stretching enabled
1: Clock stretching disabled

Bit 6 ENGC: General call enable
0: General call disabled. Address 00h is NACKed.
1: General call enabled. Address 00h is ACKed.

Bit 5 ENPEC: PEC enable

0: PEC calculation disabled
1: PEC calculation enabled

Bit 4 ENARP: ARP enable

0: ARP disable
1: ARP enable
SMBus Device default address recognized if SMBTYPE=0
SMBus Host address recognized if SMBTYPE=1

Bit 3 SMBTYPE: SMBus type

0: SMBus Device
1: SMBus Host

Bit 2 Reserved, forced by hardware to 0.

Bit 1 SMBUS: SMBus mode

0: I2C mode
1: SMBus mode

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 475/598

21.6.2 Control register 2 (I2C_CR2)

Address offset: 0x04
Reset value: 0x0000

Bit 0 PE: Peripheral enable
0: Peripheral disable
1: Peripheral enable: the corresponding IOs are selected as alternate functions depending
on SMBus bit.

Note: If this bit is reset while a communication is on going, the peripheral is disabled at the
end of the current communication, when back to IDLE state.
All bit resets due to PE=0 occur at the end of the communication.

In master mode, this bit must not be reset before the end of the communication.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
LAST DMA

EN
ITBUF

EN
ITEVT

EN
ITERR

EN Reserved
FREQ[5:0]

rw rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, forced by hardware to 0.

Bit 12 LAST: DMA last transfer

0: Next DMA EOT is not the last transfer
1: Next DMA EOT is the last transfer

Note: This bit is used in master receiver mode to permit the generation of a NACK on the last
received data.

Bit 11 DMAEN: DMA requests enable

0: DMA requests disabled
1: DMA request enabled when TxE=1 or RxNE =1

Bit 10 ITBUFEN: Buffer interrupt enable

0: TxE = 1 or RxNE = 1 does not generate any interrupt.
1:TxE = 1 or RxNE = 1 generates Event Interrupt (whatever the state of DMAEN)

Bit 9 ITEVTEN: Event interrupt enable

0: Event interrupt disabled
1: Event interrupt enabled

This interrupt is generated when:

–SB = 1 (Master)

–ADDR = 1 (Master/Slave)
–ADD10= 1 (Master)

–STOPF = 1 (Slave)

–BTF = 1 with no TxE or RxNE event
–TxE event to 1 if ITBUFEN = 1

–RxNE event to 1if ITBUFEN = 1

Inter-integrated circuit (I2C) interface RM0038

476/598 Doc ID 15965 Rev 4

21.6.3 Own address register 1 (I2C_OAR1)

Address offset: 0x08
Reset value: 0x0000

Bit 8 ITERREN: Error interrupt enable

0: Error interrupt disabled
1: Error interrupt enabled

This interrupt is generated when:
– BERR = 1

– ARLO = 1

– AF = 1
– OVR = 1

– PECERR = 1

– TIMEOUT = 1
– SMBALERT = 1

Bits 7:6 Reserved, forced by hardware to 0.

Bits 5:0 FREQ[5:0]: Peripheral clock frequency

The peripheral clock frequency must be configured using the input APB clock frequency (I2C
peripheral connected to APB1). The minimum allowed frequency is 2 MHz, the maximum
frequency is limited by the maximum APB1 frequency (32 MHz) and an intrinsic limitation of
46 MHz.
0b000000: Not allowed
0b000001: Not allowed
0b000010: 2 MHz
...
0b100000: 32 MHz
Higher than 0b100000: Not allowed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD
MODE Reserved

ADD[9:8] ADD[7:1] ADD0

rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ADDMODE Addressing mode (slave mode)
0: 7-bit slave address (10-bit address not acknowledged)
1: 10-bit slave address (7-bit address not acknowledged)

Bit 14 Should always be kept at 1 by software.

Bits 13:10 Reserved, forced by hardware to 0.

Bits 9:8 ADD[9:8]: Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bits9:8 of address

Bits 7:1 ADD[7:1]: Interface address

bits 7:1 of address

Bit 0 ADD0: Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bit 0 of address

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 477/598

21.6.4 Own address register 2 (I2C_OAR2)

Address offset: 0x0C
Reset value: 0x0000

21.6.5 Data register (I2C_DR)

Address offset: 0x10
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ADD2[7:1] ENDUAL

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, forced by hardware to 0.

Bits 7:1 ADD2[7:1]: Interface address

bits 7:1 of address in dual addressing mode

Bit 0 ENDUAL: Dual addressing mode enable

0: Only OAR1 is recognized in 7-bit addressing mode
1: Both OAR1 and OAR2 are recognized in 7-bit addressing mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DR[7:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, forced by hardware to 0.

Bits 7:0 DR[7:0] 8-bit data register

Byte received or to be transmitted to the bus.
–Transmitter mode: Byte transmission starts automatically when a byte is written in the DR

register. A continuous transmit stream can be maintained if the next data to be transmitted
is put in DR once the transmission is started (TxE=1)

–Receiver mode: Received byte is copied into DR (RxNE=1). A continuous transmit stream
can be maintained if DR is read before the next data byte is received (RxNE=1).

Note: In slave mode, the address is not copied into DR.
Note: Write collision is not managed (DR can be written if TxE=0).

Note: If an ARLO event occurs on ACK pulse, the received byte is not copied into DR and so
cannot be read.

Inter-integrated circuit (I2C) interface RM0038

478/598 Doc ID 15965 Rev 4

21.6.6 Status register 1 (I2C_SR1)

Address offset: 0x14
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMB
ALERT

TIME
OUT Res.

PEC
ERR OVR AF ARLO BERR TxE RxNE

Res.
STOPF ADD10 BTF ADDR SB

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 r r r r r r r

Bit 15 SMBALERT: SMBus alert

In SMBus host mode:
0: no SMBALERT
1: SMBALERT event occurred on pin
In SMBus slave mode:
0: no SMBALERT response address header
1: SMBALERT response address header to SMBALERT LOW received

– Cleared by software writing 0, or by hardware when PE=0.

Bit 14 TIMEOUT: Timeout or Tlow error

0: No timeout error
1: SCL remained LOW for 25 ms (Timeout)
or
Master cumulative clock low extend time more than 10 ms (Tlow:mext)
or
Slave cumulative clock low extend time more than 25 ms (Tlow:sext)

– When set in slave mode: slave resets the communication and lines are released by hardware
– When set in master mode: Stop condition sent by hardware

– Cleared by software writing 0, or by hardware when PE=0.

Note: This functionality is available only in SMBus mode.

Bit 13 Reserved, forced by hardware to 0.

Bit 12 PECERR: PEC Error in reception

0: no PEC error: receiver returns ACK after PEC reception (if ACK=1)

1: PEC error: receiver returns NACK after PEC reception (whatever ACK)

–Cleared by software writing 0, or by hardware when PE=0.
Note: When the received CRC is wrong, PECERR is not set in slave mode if the PEC control
bit is not set before the end of the CRC reception. Nevertheless, reading the PEC value
determines whether the received CRC is right or wrong.

Bit 11 OVR: Overrun/Underrun

0: No overrun/underrun
1: Overrun or underrun

–Set by hardware in slave mode when NOSTRETCH=1 and:
–In reception when a new byte is received (including ACK pulse) and the DR register has not

been read yet. New received byte is lost.
–In transmission when a new byte should be sent and the DR register has not been written

yet. The same byte is sent twice.
–Cleared by software writing 0, or by hardware when PE=0.

Note: If the DR write occurs very close to SCL rising edge, the sent data is unspecified and a
hold timing error occurs

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 479/598

Bit 10 AF: Acknowledge failure

0: No acknowledge failure
1: Acknowledge failure

–Set by hardware when no acknowledge is returned.

–Cleared by software writing 0, or by hardware when PE=0.

Bit 9 ARLO: Arbitration lost (master mode)

0: No Arbitration Lost detected
1: Arbitration Lost detected

Set by hardware when the interface loses the arbitration of the bus to another master

–Cleared by software writing 0, or by hardware when PE=0.

After an ARLO event the interface switches back automatically to Slave mode (M/SL=0).

Note: In SMBUS, the arbitration on the data in slave mode occurs only during the data phase,
or the acknowledge transmission (not on the address acknowledge).

Bit 8 BERR: Bus error

0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

–Set by hardware when the interface detects an SDA rising or falling edge while SCL is high,
occuring in a non-valid position during a byte transfer.

–Cleared by software writing 0, or by hardware when PE=0.

Bit 7 TxE: Data register empty (transmitters)

0: Data register not empty
1: Data register empty

–Set when DR is empty in transmission. TxE is not set during address phase.
–Cleared by software writing to the DR register or by hardware after a start or a stop

condition or when PE=0.
TxE is not set if either a NACK is received, or if next byte to be transmitted is PEC (PEC=1)

Note: TxE is not cleared by writing the first data being transmitted, or by writing data when
BTF is set, as in both cases the data register is still empty.

Bit 6 RxNE: Data register not empty (receivers)

0: Data register empty
1: Data register not empty

–Set when data register is not empty in receiver mode. RxNE is not set during address
phase.

–Cleared by software reading or writing the DR register or by hardware when PE=0.

RxNE is not set in case of ARLO event.
Note: RxNE is not cleared by reading data when BTF is set, as the data register is still full.

Bit 5 Reserved, forced by hardware to 0.

Bit 4 STOPF: Stop detection (slave mode)

0: No Stop condition detected
1: Stop condition detected
–Set by hardware when a Stop condition is detected on the bus by the slave after an

acknowledge (if ACK=1).
–Cleared by software reading the SR1 register followed by a write in the CR1 register, or by

hardware when PE=0
Note: The STOPF bit is not set after a NACK reception.

It is recommended to perform the complete clearing sequence (READ SR1 then
WRITE CR1) after the STOPF is set. Refer to Figure 163: Transfer sequence diagram
for slave receiver on page 460.

Inter-integrated circuit (I2C) interface RM0038

480/598 Doc ID 15965 Rev 4

Bit 3 ADD10: 10-bit header sent (Master mode)

0: No ADD10 event occurred.
1: Master has sent first address byte (header).

–Set by hardware when the master has sent the first byte in 10-bit address mode.

–Cleared by software reading the SR1 register followed by a write in the DR register of the
second address byte, or by hardware when PE=0.

Note: ADD10 bit is not set after a NACK reception

Bit 2 BTF: Byte transfer finished

0: Data byte transfer not done
1: Data byte transfer succeeded
–Set by hardware when NOSTRETCH=0 and:

–In reception when a new byte is received (including ACK pulse) and DR has not been
read yet (RxNE=1).

–In transmission when a new byte should be sent and DR has not been written yet
(TxE=1).

–Cleared by software by either a read or write in the DR register or by hardware after a
start or a stop condition in transmission or when PE=0.

Note: The BTF bit is not set after a NACK reception

The BTF bit is not set if next byte to be transmitted is the PEC (TRA=1 in I2C_SR2
register and PEC=1 in I2C_CR1 register)

Bit 1 ADDR: Address sent (master mode)/matched (slave mode)

This bit is cleared by software reading SR1 register followed reading SR2, or by hardware
when PE=0.

Address matched (Slave)

0: Address mismatched or not received.
1: Received address matched.

–Set by hardware as soon as the received slave address matched with the OAR registers
content or a general call or a SMBus Device Default Address or SMBus Host or SMBus
Alert is recognized. (when enabled depending on configuration).

Note: In slave mode, it is recommended to perform the complete clearing sequence (READ
SR1 then READ SR2) after ADDR is set. Refer to Figure 163: Transfer sequence
diagram for slave receiver on page 460.

Address sent (Master)

0: No end of address transmission
1: End of address transmission

–For 10-bit addressing, the bit is set after the ACK of the 2nd byte.
–For 7-bit addressing, the bit is set after the ACK of the byte.

Note: ADDR is not set after a NACK reception

Bit 0 SB: Start bit (Master mode)

0: No Start condition
1: Start condition generated.

–Set when a Start condition generated.
–Cleared by software by reading the SR1 register followed by writing the DR register, or by

hardware when PE=0

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 481/598

21.6.7 Status register 2 (I2C_SR2)

Address offset: 0x18
Reset value: 0x0000

Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was
set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found
set in I2C_SR1 or when the STOPF bit is cleared.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEC[7:0] DUALF SMB
HOST

SMBDE
FAULT

GEN
CALL Res.

TRA BUSY MSL

r r r r r r r r r r r r r r r

Bits 15:8 PEC[7:0] Packet error checking register

This register contains the internal PEC when ENPEC=1.

Bit 7 DUALF: Dual flag (Slave mode)

0: Received address matched with OAR1
1: Received address matched with OAR2

–Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 6 SMBHOST: SMBus host header (Slave mode)

0: No SMBus Host address
1: SMBus Host address received when SMBTYPE=1 and ENARP=1.

–Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 5 SMBDEFAULT: SMBus device default address (Slave mode)

0: No SMBus Device Default address
1: SMBus Device Default address received when ENARP=1
–Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 4 GENCALL: General call address (Slave mode)

0: No General Call
1: General Call Address received when ENGC=1

–Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 3 Reserved, forced by hardware to 0.

Bit 2 TRA: Transmitter/receiver

0: Data bytes received
1: Data bytes transmitted

This bit is set depending on the R/W bit of the address byte, at the end of total address
phase.

It is also cleared by hardware after detection of Stop condition (STOPF=1), repeated Start
condition, loss of bus arbitration (ARLO=1), or when PE=0.

Inter-integrated circuit (I2C) interface RM0038

482/598 Doc ID 15965 Rev 4

21.6.8 Clock control register (I2C_CCR)

Address offset: 0x1C
Reset value: 0x0000

Note: 1 To use the I2C at 400 KHz (in fast mode), the PCLK1 frequency (I2C peripheral input clock)
must be a multiple of 10 MHz.

2 The CCR register must be configured only when the I2C is disabled (PE = 0).

Bit 1 BUSY: Bus busy

0: No communication on the bus
1: Communication ongoing on the bus

–Set by hardware on detection of SDA or SCL low

–cleared by hardware on detection of a Stop condition.

It indicates a communication in progress on the bus. This information is still updated when
the interface is disabled (PE=0).

Bit 0 MSL: Master/slave

0: Slave Mode
1: Master Mode

–Set by hardware as soon as the interface is in Master mode (SB=1).

–Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration
(ARLO=1), or by hardware when PE=0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F/S DUTY
Reserved

CCR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 F/S: I2C master mode selection

0: Standard Mode I2C
1: Fast Mode I2C

Bit 14 DUTY: Fast mode duty cycle

0: Fast Mode tlow/thigh = 2
1: Fast Mode tlow/thigh = 16/9 (see CCR)

Bits 13:12 Reserved, forced by hardware to 0.

RM0038 Inter-integrated circuit (I2C) interface

Doc ID 15965 Rev 4 483/598

21.6.9 TRISE register (I2C_TRISE)

Address offset: 0x20
Reset value: 0x0002

Bits 11:0 CCR[11:0]: Clock control register in Fast/Standard mode (Master mode)

Controls the SCL clock in master mode.

Standard mode or SMBus:

Thigh = CCR * TPCLK1

Tlow = CCR * TPCLK1

Fast mode:

If DUTY = 0:
Thigh = CCR * TPCLK1
Tlow = 2 * CCR * TPCLK1

If DUTY = 1: (to reach 400 kHz)
Thigh = 9 * CCR * TPCLK1
Tlow = 16 * CCR * TPCLK1

For instance: in standard mode, to generate a 100 kHz SCL frequency:

If FREQR = 08, TPCLK1 = 125 ns so CCR must be programmed with 0x28
(0x28 <=> 40d x 125 ns = 5000 ns.)

Note: 1. The minimum allowed value is 0x04, except in FAST DUTY mode where the
minimum allowed value is 0x01
2. thigh includes the SCLH rising edge
3. tlow includes the SCLH falling edge
4. These timings are without filters.
5. The CCR register must be configured only when the I2C is disabled (PE = 0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TRISE[5:0]

rw rw rw rw rw rw

Bits 15:6 Reserved, forced by hardware to 0.

Bits 5:0 TRISE[5:0]: Maximum rise time in Fast/Standard mode (Master mode)

These bits must be programmed with the maximum SCL rise time given in the I2C bus
specification, incremented by 1.

For instance: in standard mode, the maximum allowed SCL rise time is 1000 ns.

If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to 0x08 and TPCLK1 = 125 ns
therefore the TRISE[5:0] bits must be programmed with 09h.

(1000 ns / 125 ns = 8 + 1)

The filter value can also be added to TRISE[5:0].

If the result is not an integer, TRISE[5:0] must be programmed with the integer part, in order
to respect the tHIGH parameter.

Note: TRISE[5:0] must be configured only when the I2C is disabled (PE = 0).

Inter-integrated circuit (I2C) interface RM0038

484/598 Doc ID 15965 Rev 4

21.6.10 I2C register map

The table below provides the I2C register map and reset values.

Refer to Table 1 on page 32 for the register boundary addresses table.

Table 80. I2C register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
I2C_CR1

Reserved

S
W

R
S

T

R
es

er
ve

d

A
LE

R
T

P
E

C

P
O

S

A
C

K

S
TO

P

S
TA

R
T

N
O

S
T

R
E

T
C

H

E
N

G
C

E
N

P
E

C

E
N

A
R

P

S
M

B
T

Y
P

E

R
es

er
ve

d

S
M

B
U

S

P
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
I2C_CR2

Reserved LA
S

T

D
M

A
E

N

IT
B

U
F

E
N

IT
E

V
T

E
N

IT
E

R
R

E
N

R
es

er
ve

d

FREQ[5:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x08
I2C_OAR1

Reserved

A
D

D
M

O
D

E

Reserved
ADD[9:8] ADD[7:1]

A
D

D
0

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x0C
I2C_OAR2

Reserved
ADD2[7:1]

E
N

D
U

A
L

Reset value 0 0 0 0 0 0 0 0

0x10
I2C_DR

Reserved
DR[7:0]

Reset value 0 0 0 0 0 0 0 0

0x14
I2C_SR1

Reserved

S
M

B
A

LE
R

T

T
IM

E
O

U
T

R
es

er
ve

d

P
E

C
E

R
R

O
V

R

A
F

A
R

LO

B
E

R
R

T
xE

R
xN

E

R
es

er
ve

d

S
TO

P
F

A
D

D
10

B
T

F

A
D

D
R

S
B

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
I2C_SR2

Reserved
PEC[7:0]

D
U

A
LF

S
M

B
H

O
S

T

S
M

B
D

E
FA

U
LT

G
E

N
C

A
LL

R
es

er
ve

d

T
R

A

B
U

S
Y

M
S

L

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
I2C_CCR

Reserved F
/S

D
U

T
Y

R
es

er
ve

d

CCR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
I2C_TRISE

Reserved
TRISE[5:0]

Reset value 0 0 0 0 1 0

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 485/598

22 Serial peripheral interface (SPI)

22.1 SPI introduction
The serial peripheral interface (SPI) allows half/ full-duplex, synchronous, serial
communication with external devices. The interface can be configured as the master and in
this case it provides the communication clock (SCK) to the external slave device. The
interface is also capable of operating in multimaster configuration.

It may be used for a variety of purposes, including Simplex synchronous transfers on two
lines with a possible bidirectional data line or reliable communication using CRC checking.

Warning: Since some SPI1 pins may be mapped onto some pins used
by the JTAG interface (SPI1_NSS onto JTDI, SPI1_SCK onto
JTDO and SPI1_MISO onto NJTRST), you may either:
– map SPI1 onto other pins
– disable the JTAG and use the SWD interface prior to
configuring the pins listed as SPI IOs (when debugging the
application) or
– disable both JTAG/SWD interfaces (for standalone
applications).
For more information on the configuration of the JTAG/SWD
interface pins, please refer to Section 5.3.2: I/O pin
multiplexer and mapping.

Serial peripheral interface (SPI) RM0038

486/598 Doc ID 15965 Rev 4

22.2 SPI main features

22.2.1 SPI features

● Full-duplex synchronous transfers on three lines

● Simplex synchronous transfers on two lines with or without a bidirectional data line

● 8- or 16-bit transfer frame format selection

● Master or slave operation

● Multimaster mode capability

● 8 master mode baud rate prescalers (fPCLK/2 max.)

● Slave mode frequency (fPCLK/2 max)

● Faster communication for both master and slave

● NSS management by hardware or software for both master and slave: dynamic change
of master/slave operations

● Programmable clock polarity and phase

● Programmable data order with MSB-first or LSB-first shifting

● Dedicated transmission and reception flags with interrupt capability

● SPI bus busy status flag

● Hardware CRC feature for reliable communication:

– CRC value can be transmitted as last byte in Tx mode

– Automatic CRC error checking for last received byte

● Master mode fault, overrun and CRC error flags with interrupt capability

● 1-byte transmission and reception buffer with DMA capability: Tx and Rx requests

22.3 SPI functional description

22.3.1 General description

The block diagram of the SPI is shown in Figure 167.

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 487/598

Figure 167. SPI block diagram

Usually, the SPI is connected to external devices through 4 pins:

● MISO: Master In / Slave Out data. This pin can be used to transmit data in slave mode
and receive data in master mode.

● MOSI: Master Out / Slave In data. This pin can be used to transmit data in master
mode and receive data in slave mode.

● SCK: Serial Clock output for SPI masters and input for SPI slaves.

● NSS: Slave select. This is an optional pin to select a slave device. This pin acts as a
‘chip select’ to let the SPI master communicate with slaves individually and to avoid
contention on the data lines. Slave NSS inputs can be driven by standard IO ports on
the master device. The NSS pin may also be used as an output if enabled (SSOE bit)
and driven low if the SPI is in master configuration. In this manner, all NSS pins from
devices connected to the Master NSS pin see a low level and become slaves when
they are configured in NSS hardware mode. When configured in master mode with
NSS configured as an input (MSTR=1 and SSOE=0) and if NSS is pulled low, the SPI
enters the master mode fault state: the MSTR bit is automatically cleared and the
device is configured in slave mode (refer to Section 22.3.10: Error flags on page 505).

A basic example of interconnections between a single master and a single slave is
illustrated in Figure 168.

MOSI

MISO

Baud rate generator
SCK

Master control logic

Communication
control

SPE BR2 BR1 BR0 MSTR CPOL CPHA

BR[2:0]

RXNE

LSB

BIDI
MODE

BIDI
OE SSM SSI

BSY OVR
MOD RXNETXE

ERRTXE

0 0

DFF

0 SSOE

CRC
EN

0

RX
ONLY

CRC
Next

CRC
ERR

0

1

NSS

IE

F

FIRST

SPI_CR1

SPI_CR2

SPI_SR

TXDM
AEN

RXDM
AENIEIE

Address and data bus

Read

Rx buffer

Shift register

LSB first

Tx buffer

Write

ai14744

Serial peripheral interface (SPI) RM0038

488/598 Doc ID 15965 Rev 4

Figure 168. Single master/ single slave application

1. Here, the NSS pin is configured as an input.

The MOSI pins are connected together and the MISO pins are connected together. In this
way data is transferred serially between master and slave (most significant bit first).

The communication is always initiated by the master. When the master device transmits
data to a slave device via the MOSI pin, the slave device responds via the MISO pin. This
implies full-duplex communication with both data out and data in synchronized with the
same clock signal (which is provided by the master device via the SCK pin).

Slave select (NSS) pin management

There are two NSS modes:

● Software NSS mode: this mode is enabled by setting the SSM bit in the SPI_CR1
register (see Figure 169). In this mode, the external NSS pin is free for other
application uses and the internal NSS signal level is driven by writing to the SSI bit in
the SPI_CR1 register.

● Hardware NSS mode: there are two cases:

– NSS output is enabled: when the STM32L15xxx are operates as a Master and the
NSS output is enabled through the SSOE bit in the SPI_CR2 register, the NSS pin
is driven low and all the NSS pins of devices connected to the Master NSS pin see
a low level and become slaves when they are configured in NSS hardware mode.
When an SPI wants to broadcast a message, it has to pull NSS low to inform all
others that there is now a master for the bus. If it fails to pull NSS low, this means
that there is another master communicating, and a Hard Fault error occurs.

– NSS output is disabled: the multimaster capability is allowed.

Figure 169. Hardware/software slave select management

8-bit shift register

SPI clock
generator

8-bit shift register
MISO

MOSI MOSI

MISO

SCK SCK

SlaveMaster

NSS(1) NSS(1)
VDD

MSBit LSBit MSBit LSBit

Not used if NSS is managed
 by software

ai14745

1

0

NSS Internal

SSM bit

SSI bit

 NSS external pin

ai14746

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 489/598

Clock phase and clock polarity

Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits in the SPI_CR1 register. The CPOL (clock polarity) bit controls the steady state value of
the clock when no data is being transferred. This bit affects both master and slave modes. If
CPOL is reset, the SCK pin has a low-level idle state. If CPOL is set, the SCK pin has a
high-level idle state.

If the CPHA (clock phase) bit is set, the second edge on the SCK pin (falling edge if the
CPOL bit is reset, rising edge if the CPOL bit is set) is the MSBit capture strobe. Data are
latched on the occurrence of the second clock transition. If the CPHA bit is reset, the first
edge on the SCK pin (falling edge if CPOL bit is set, rising edge if CPOL bit is reset) is the
MSBit capture strobe. Data are latched on the occurrence of the first clock transition.

The combination of the CPOL (clock polarity) and CPHA (clock phase) bits selects the data
capture clock edge.

Figure 170, shows an SPI transfer with the four combinations of the CPHA and CPOL bits.
The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the
MISO pin, the MOSI pin are directly connected between the master and the slave device.

Note: 1 Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit.

2 Master and slave must be programmed with the same timing mode.

3 The idle state of SCK must correspond to the polarity selected in the SPI_CR1 register (by
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

4 The Data Frame Format (8- or 16-bit) is selected through the DFF bit in SPI_CR1 register,
and determines the data length during transmission/reception.

Serial peripheral interface (SPI) RM0038

490/598 Doc ID 15965 Rev 4

Figure 170. Data clock timing diagram

1. These timings are shown with the LSBFIRST bit reset in the SPI_CR1 register.

Data frame format

Data can be shifted out either MSB-first or LSB-first depending on the value of the
LSBFIRST bit in the SPI_CR1 Register.

Each data frame is 8 or 16 bits long depending on the size of the data programmed using
the DFF bit in the SPI_CR1 register. The selected data frame format is applicable for
transmission and/or reception.

22.3.2 Configuring the SPI in slave mode

In the slave configuration, the serial clock is received on the SCK pin from the master
device. The value set in the BR[2:0] bits in the SPI_CR1 register, does not affect the data
transfer rate.

Note: It is recommended to enable the SPI slave before the master sends the clock. If not,
undesired data transmission might occur. The data register of the slave needs to be ready
before the first edge of the communication clock or before the end of the ongoing
communication. It is mandatory to have the polarity of the communication clock set to the
steady state value before the slave and the master are enabled.

Follow the procedure below to configure the SPI in slave mode:

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 491/598

Procedure

1. Set the DFF bit to define 8- or 16-bit data frame format

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 170). For correct data transfer, the CPOL
and CPHA bits must be configured in the same way in the slave device and the master
device.

3. The frame format (MSB-first or LSB-first depending on the value of the LSBFIRST bit in
the SPI_CR1 register) must be the same as the master device.

4. In Hardware mode (refer to Slave select (NSS) pin management on page 488), the
NSS pin must be connected to a low level signal during the complete byte transmit
sequence. In NSS software mode, set the SSM bit and clear the SSI bit in the SPI_CR1
register.

5. Clear the MSTR bit and set the SPE bit (both in the SPI_CR1 register) to assign the
pins to alternate functions.

In this configuration the MOSI pin is a data input and the MISO pin is a data output.

Transmit sequence

The data byte is parallel-loaded into the Tx buffer during a write cycle.

The transmit sequence begins when the slave device receives the clock signal and the most
significant bit of the data on its MOSI pin. The remaining bits (the 7 bits in 8-bit data frame
format, and the 15 bits in 16-bit data frame format) are loaded into the shift-register. The
TXE flag in the SPI_SR register is set on the transfer of data from the Tx Buffer to the shift
register and an interrupt is generated if the TXEIE bit in the SPI_CR2 register is set.

Receive sequence

For the receiver, when data transfer is complete:

● The Data in shift register is transferred to Rx Buffer and the RXNE flag (SPI_SR
register) is set

● An Interrupt is generated if the RXNEIE bit is set in the SPI_CR2 register.

After the last sampling clock edge the RXNE bit is set, a copy of the data byte received in
the shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing of the RXNE bit is performed by reading the SPI_DR register.

Serial peripheral interface (SPI) RM0038

492/598 Doc ID 15965 Rev 4

22.3.3 Configuring the SPI in master mode

In the master configuration, the serial clock is generated on the SCK pin.

Procedure

1. Select the BR[2:0] bits to define the serial clock baud rate (see SPI_CR1 register).

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 170).

3. Set the DFF bit to define 8- or 16-bit data frame format

4. Configure the LSBFIRST bit in the SPI_CR1 register to define the frame format.

5. If the NSS pin is required in input mode, in hardware mode, connect the NSS pin to a
high-level signal during the complete byte transmit sequence. In NSS software mode,
set the SSM and SSI bits in the SPI_CR1 register. If the NSS pin is required in output
mode, the SSOE bit only should be set.

6. The MSTR and SPE bits must be set (they remain set only if the NSS pin is connected
to a high-level signal).

In this configuration the MOSI pin is a data output and the MISO pin is a data input.

Transmit sequence

The transmit sequence begins when a byte is written in the Tx Buffer.

The data byte is parallel-loaded into the shift register (from the internal bus) during the first
bit transmission and then shifted out serially to the MOSI pin MSB first or LSB first
depending on the LSBFIRST bit in the SPI_CR1 register. The TXE flag is set on the transfer
of data from the Tx Buffer to the shift register and an interrupt is generated if the TXEIE bit in
the SPI_CR2 register is set.

Receive sequence

For the receiver, when data transfer is complete:

● The data in the shift register is transferred to the RX Buffer and the RXNE flag is set

● An interrupt is generated if the RXNEIE bit is set in the SPI_CR2 register

At the last sampling clock edge the RXNE bit is set, a copy of the data byte received in the
shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing the RXNE bit is performed by reading the SPI_DR register.

A continuous transmit stream can be maintained if the next data to be transmitted is put in
the Tx buffer once the transmission is started. Note that TXE flag should be ‘1 before any
attempt to write the Tx buffer is made.

Note: In the NSS hardware mode, the slave's NSS input is controlled by the NSS pin or another
GPIO pin that has to be controlled by software.

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 493/598

22.3.4 Configuring the SPI for Simplex communication

The SPI is capable of operating in simplex mode in 2 configurations.

● 1 clock and 1 bidirectional data wire

● 1 clock and 1 data wire (receive-only or transmit-only)

1 clock and 1 bidirectional data wire (BIDIMODE=1)

This mode is enabled by setting the BIDIMODE bit in the SPI_CR1 register. In this mode
SCK is used for the clock and MOSI in master or MISO in slave mode is used for data
communication. The transfer direction (Input/Output) is selected by the BIDIOE bit in the
SPI_CR1 register. When this bit is 1, the data line is output otherwise it is input.

1 clock and 1 unidirectional data wire (BIDIMODE=0)

In this mode, the application can use the SPI either in transmit-only mode or in receive-only
mode.

● Transmit-only mode is similar to full-duplex mode (BIDIMODE=0, RXONLY=0): the data
are transmitted on the transmit pin (MOSI in master mode or MISO in slave mode) and
the receive pin (MISO in master mode or MOSI in slave mode) can be used as a
general-purpose IO. In this case, the application just needs to ignore the Rx buffer (if
the data register is read, it does not contain the received value).

● In receive-only mode, the application can disable the SPI output function by setting the
RXONLY bit in the SPI_CR2 register. In this case, it frees the transmit IO pin (MOSI in
master mode or MISO in slave mode), so it can be used for other purposes.

To start the communication in receive-only mode, configure and enable the SPI:

● In master mode, the communication starts immediately and stops when the SPE bit is
cleared and the current reception stops. There is no need to read the BSY flag in this
mode. It is always set when an SPI communication is ongoing.

● In slave mode, the SPI continues to receive as long as the NSS is pulled down (or the
SSI bit is cleared in NSS software mode) and the SCK is running.

22.3.5 Data transmission and reception procedures

Rx and Tx buffers

In reception, data are received and then stored into an internal Rx buffer while In
transmission, data are first stored into an internal Tx buffer before being transmitted.

A read access of the SPI_DR register returns the Rx buffered value whereas a write access
to the SPI_DR stores the written data into the Tx buffer.

Serial peripheral interface (SPI) RM0038

494/598 Doc ID 15965 Rev 4

Start sequence in master mode
● In full-duplex (BIDIMODE=0 and RXONLY=0)

– The sequence begins when data are written into the SPI_DR register (Tx buffer).

– The data are then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MOSI pin.

– At the same time, the received data on the MISO pin is shifted in serially to the 8-
bit shift register and then parallel loaded into the SPI_DR register (Rx buffer).

● In unidirectional receive-only mode (BIDIMODE=0 and RXONLY=1)

– The sequence begins as soon as SPE=1

– Only the receiver is activated and the received data on the MISO pin are shifted in
serially to the 8-bit shift register and then parallel loaded into the SPI_DR register
(Rx buffer).

● In bidirectional mode, when transmitting (BIDIMODE=1 and BIDIOE=1)

– The sequence begins when data are written into the SPI_DR register (Tx buffer).

– The data are then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MOSI pin.

– No data are received.

● In bidirectional mode, when receiving (BIDIMODE=1 and BIDIOE=0)

– The sequence begins as soon as SPE=1 and BIDIOE=0.

– The received data on the MOSI pin are shifted in serially to the 8-bit shift register
and then parallel loaded into the SPI_DR register (Rx buffer).

– The transmitter is not activated and no data are shifted out serially to the MOSI
pin.

Start sequence in slave mode

● In full-duplex mode (BIDIMODE=0 and RXONLY=0)

– The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MOSI pin. The 7 remaining bits are loaded into the shift
register.

– At the same time, the data are parallel loaded from the Tx buffer into the 8-bit shift
register during the first bit transmission, and then shifted out serially to the MISO
pin. The software must have written the data to be sent before the SPI master
device initiates the transfer.

● In unidirectional receive-only mode (BIDIMODE=0 and RXONLY=1)

– The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MOSI pin. The 7 remaining bits are loaded into the shift
register.

– The transmitter is not activated and no data are shifted out serially to the MISO
pin.

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 495/598

● In bidirectional mode, when transmitting (BIDIMODE=1 and BIDIOE=1)

– The sequence begins when the slave device receives the clock signal and the first
bit in the Tx buffer is transmitted on the MISO pin.

– The data are then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MISO pin. The
software must have written the data to be sent before the SPI master device
initiates the transfer.

– No data are received.

● In bidirectional mode, when receiving (BIDIMODE=1 and BIDIOE=0)

– The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MISO pin.

– The received data on the MISO pin are shifted in serially to the 8-bit shift register
and then parallel loaded into the SPI_DR register (Rx buffer).

– The transmitter is not activated and no data are shifted out serially to the MISO
pin.

Handling data transmission and reception

The TXE flag (Tx buffer empty) is set when the data are transferred from the Tx buffer to the
shift register. It indicates that the internal Tx buffer is ready to be loaded with the next data.
An interrupt can be generated if the TXEIE bit in the SPI_CR2 register is set. Clearing the
TXE bit is performed by writing to the SPI_DR register.

Note: The software must ensure that the TXE flag is set to 1 before attempting to write to the Tx
buffer. Otherwise, it overwrites the data previously written to the Tx buffer.

The RXNE flag (Rx buffer not empty) is set on the last sampling clock edge, when the data
are transferred from the shift register to the Rx buffer. It indicates that data are ready to be
read from the SPI_DR register. An interrupt can be generated if the RXNEIE bit in the
SPI_CR2 register is set. Clearing the RXNE bit is performed by reading the SPI_DR
register.

For some configurations, the BSY flag can be used during the last data transfer to wait until
the completion of the transfer.

Full-duplex transmit and receive procedure in master or slave mode
(BIDIMODE=0 and RXONLY=0)

The software has to follow this procedure to transmit and receive data (see Figure 171 and
Figure 172):

1. Enable the SPI by setting the SPE bit to 1.

2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE
flag).

3. Wait until TXE=1 and write the second data item to be transmitted. Then wait until
RXNE=1 and read the SPI_DR to get the first received data item (this clears the RXNE
bit). Repeat this operation for each data item to be transmitted/received until the n–1
received data.

4. Wait until RXNE=1 and read the last received data.

5. Wait until TXE=1 and then wait until BSY=0 before disabling the SPI.

This procedure can also be implemented using dedicated interrupt subroutines launched at
each rising edges of the RXNE or TXE flag.

Serial peripheral interface (SPI) RM0038

496/598 Doc ID 15965 Rev 4

Figure 171. TXE/RXNE/BSY behavior in Master / full-duplex mode (BIDIMODE=0 and RXONLY=0)
in the case of continuous transfers

Figure 172. TXE/RXNE/BSY behavior in Slave / full-duplex mode (BIDIMODE=0, RXONLY=0) in the
case of continuous transfers

MISO/MOSI (in)

Tx buffer

DATA1 = 0xA1

 TXE flag

0xF2

BSY flag

0xF3

software
writes 0xF1
into SPI_DR

software waits
until TXE=1 and
writes 0xF2 into

SPI_DR

software waits
until RXNE=1

and reads 0xA1
from SPI_DR

set by hardware
cleared by software

set by hardware
cleared by software set by hardware

set by hardware

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

reset by hardware

Example in Master mode with CPOL=1, CPHA=1

0xF1

 RXNE flag

(write SPI_DR)

Rx buffer

set by hardware

MISO/MOSI (out)
DATA1 = 0xF1 DATA2 = 0xF2 DATA3 = 0xF3

(read SPI_DR)
0xA1 0xA2 0xA3

software waits
until TXE=1 and
writes 0xF3 into

SPI_DR

software waits
until RXNE=1

and reads 0xA2
from SPI_ DR

software waits
until RXNE=1

and reads 0xA3
from SPI_DR

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

cleared by software

ai17343

0xF1

set by cleared by software

MISO/MOSI (in)

Tx buffer

DATA 1 = 0xA1

 TXE flag

0xF2

BSY flag

0xF3

software
writes 0xF1
into SPI_DR

software waits
until TXE=1 and
writes 0xF2 into

SPI_DR

software waits
until RXNE=1

and reads 0xA1
from SPI_DR

set by hardware
cleared by software

set by hardware
cleared by software set by hardware

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

reset by hardware

Example in Slave mode with CPOL=1, CPHA=1

 RXNE flag

(write to SPI_DR)

Rx buffer

set by hardware

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

(read from SPI_DR)
0xA1 0xA2 0xA3

software waits
until TXE=1 and
writes 0xF3 into

SPI_DR

software waits
until RXNE=1

and reads 0xA2
from SPI_ DR

software waits
until RXNE=1

and reads 0xA3
from SPI_DR

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

cleared by software

ai17344

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 497/598

Transmit-only procedure (BIDIMODE=0 RXONLY=0)

In this mode, the procedure can be reduced as described below and the BSY bit can be
used to wait until the completion of the transmission (see Figure 173 and Figure 174).

1. Enable the SPI by setting the SPE bit to 1.

2. Write the first data item to send into the SPI_DR register (this clears the TXE bit).

3. Wait until TXE=1 and write the next data item to be transmitted. Repeat this step for
each data item to be transmitted.

4. After writing the last data item into the SPI_DR register, wait until TXE=1, then wait until
BSY=0, this indicates that the transmission of the last data is complete.

This procedure can be also implemented using dedicated interrupt subroutines launched at
each rising edge of the TXE flag.

Note: 1 During discontinuous communications, there is a 2 APB clock period delay between the
write operation to SPI_DR and the BSY bit setting. As a consequence, in transmit-only
mode, it is mandatory to wait first until TXE is set and then until BSY is cleared after writing
the last data.

2 After transmitting two data items in transmit-only mode, the OVR flag is set in the SPI_SR
register since the received data are never read.

Figure 173. TXE/BSY behavior in Master transmit-only mode (BIDIMODE=0 and RXONLY=0) in the
case of continuous transfers

0xF1Tx buffer

 TXE flag

0xF2

 BSY flag

0xF3

software writes
0xF1 into
SPI_DR

software waits
until TXE=1 and
writes 0xF2 into

SPI_DR

set by hardware
cleared by software

set by hardware
cleared by software set by hardware

set by hardware

SCK

reset by hardware

Example in Master mode with CPOL=1, CPHA=1

(write to SPI_DR)

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

software waits
until TXE=1 and
writes 0xF3 into

SPI_DR

software waits until BSY=0software waits until TXE=1

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

ai17345

Serial peripheral interface (SPI) RM0038

498/598 Doc ID 15965 Rev 4

Figure 174. TXE/BSY in Slave transmit-only mode (BIDIMODE=0 and RXONLY=0) in the case of
continuous transfers

Bidirectional transmit procedure (BIDIMODE=1 and BIDIOE=1)

In this mode, the procedure is similar to the procedure in Transmit-only mode except that the
BIDIMODE and BIDIOE bits both have to be set in the SPI_CR2 register before enabling the
SPI.

Unidirectional receive-only procedure (BIDIMODE=0 and RXONLY=1)

In this mode, the procedure can be reduced as described below (see Figure 175):

1. Set the RXONLY bit in the SPI_CR2 register.

2. Enable the SPI by setting the SPE bit to 1:

a) In master mode, this immediately activates the generation of the SCK clock, and
data are serially received until the SPI is disabled (SPE=0).

b) In slave mode, data are received when the SPI master device drives NSS low and
generates the SCK clock.

3. Wait until RXNE=1 and read the SPI_DR register to get the received data (this clears
the RXNE bit). Repeat this operation for each data item to be received.

This procedure can also be implemented using dedicated interrupt subroutines launched at
each rising edge of the RXNE flag.

Note: If it is required to disable the SPI after the last transfer, follow the recommendation described
in Section 22.3.8: Disabling the SPI on page 503.

0xF1Tx buffer

 TXE flag

0xF2

 BSY flag

0xF3

software writes
0xF1 into
SPI_DR

software waits
until TXE=1 and
writes 0xF2 into

SPI_DR

set by hardware
cleared by software

set by hardware
cleared by software set by hardware

set by hardware

SCK

reset by hardware

Example in slave mode with CPOL=1, CPHA=1

(write to SPI_DR)

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

software waits
until TXE=1 and
writes 0xF3 into

SPI_DR

software waits until BSY=0software waits until TXE=1

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

ai17346

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 499/598

Figure 175. RXNE behavior in receive-only mode (BIDIRMODE=0 and RXONLY=1) in the case of
continuous transfers

Bidirectional receive procedure (BIDIMODE=1 and BIDIOE=0)

In this mode, the procedure is similar to the Receive-only mode procedure except that the
BIDIMODE bit has to be set and the BIDIOE bit cleared in the SPI_CR2 register before
enabling the SPI.

Continuous and discontinuous transfers

When transmitting data in master mode, if the software is fast enough to detect each rising
edge of TXE (or TXE interrupt) and to immediately write to the SPI_DR register before the
ongoing data transfer is complete, the communication is said to be continuous. In this case,
there is no discontinuity in the generation of the SPI clock between each data item and the
BSY bit is never cleared between each data transfer.

On the contrary, if the software is not fast enough, this can lead to some discontinuities in
the communication. In this case, the BSY bit is cleared between each data transmission
(see Figure 176).

In Master receive-only mode (RXONLY=1), the communication is always continuous and the
BSY flag is always read at 1.

In slave mode, the continuity of the communication is decided by the SPI master device. In
any case, even if the communication is continuous, the BSY flag goes low between each
transfer for a minimum duration of one SPI clock cycle (see Figure 174).

MISO/MOSI (in)
DATA 1 = 0xA1

software waits until RXNE=1
and reads 0xA1 from SPI_DR

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

Example with CPOL=1, CPHA=1, RXONLY=1

 RXNE flag

Rx buffer

set by hardware

(read from SPI_DR)
0xA1 0xA2 0xA3

software waits until RXNE=1
and reads 0xA2 from SPI_DR

software waits until RXNE=1
and reads 0xA3 from SPI_DR

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

cleared by software

ai17347

Serial peripheral interface (SPI) RM0038

500/598 Doc ID 15965 Rev 4

Figure 176. TXE/BSY behavior when transmitting (BIDIRMODE=0 and RXONLY=0) in the case of
discontinuous transfers

22.3.6 CRC calculation

A CRC calculator has been implemented for communication reliability. Separate CRC
calculators are implemented for transmitted data and received data. The CRC is calculated
using a programmable polynomial serially on each bit. It is calculated on the sampling clock
edge defined by the CPHA and CPOL bits in the SPI_CR1 register.

Note: This SPI offers two kinds of CRC calculation standard which depend directly on the data
frame format selected for the transmission and/or reception: 8-bit data (CR8) and 16-bit data
(CRC16).

CRC calculation is enabled by setting the CRCEN bit in the SPI_CR1 register. This action
resets the CRC registers (SPI_RXCRCR and SPI_TXCRCR). In full duplex or transmitter
only mode, when the transfers are managed by the software (CPU mode), it is necessary to
write the bit CRCNEXT immediately after the last data to be transferred is written to the
SPI_DR. At the end of this last data transfer, the SPI_TXCRCR value is transmitted.

In receive only mode and when the transfers are managed by software (CPU mode), it is
necessary to write the CRCNEXT bit after the second last data has been received. The
CRC is received just after the last data reception and the CRC check is then performed.

At the end of data and CRC transfers, the CRCERR flag in the SPI_SR register is set if
corruption occurs during the transfer.

If data are present in the TX buffer, the CRC value is transmitted only after the transmission
of the data byte. During CRC transmission, the CRC calculator is switched off and the
register value remains unchanged.

Note: Please refer to the product specifications for availability of this feature.

MOSI (out)

Tx buffer

DATA 1 = 0xF1

 TXE flag

0xF1

 BSY flag

0xF2

software writes 0xF1
into SPI_DR

software waits until TXE=1 but is
late to write 0xF2 into SPI_DR

software waits until TXE=1 but
is late to write 0xF3 into

SPI_DR

SCK

3Fx0 = 3 ATAD2Fx0 = 2 ATAD

Example with CPOL=1, CPHA=1

0xF3

software waits
until TXE=1

software waits until BSY=0

(write to SPI_DR)

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

ai17348

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 501/598

SPI communication using CRC is possible through the following procedure:

● Program the CPOL, CPHA, LSBFirst, BR, SSM, SSI and MSTR values

● Program the polynomial in the SPI_CRCPR register

● Enable the CRC calculation by setting the CRCEN bit in the SPI_CR1 register. This
also clears the SPI_RXCRCR and SPI_TXCRCR registers

● Enable the SPI by setting the SPE bit in the SPI_CR1 register

● Start the communication and sustain the communication until all but one byte or half-
word have been transmitted or received.

● In full duplex or transmitter-only mode, when the transfers are managed by software, on
writing the last byte or half word to the TX buffer, set the CRCNEXT bit in the SPI_CR1
register to indicate that after the transmission of the last byte, the CRC, is to be
transmitted. In receiver only mode, set the CRCNEXT bit just after the reception of the
second last data in order to prepare the SPI to enter the CRC phase at the end of the
reception of the last data. CRC calculation is frozen during the CRC transfer.

● After the transfer of the last byte or half word, the SPI enters the CRC transfer and
check phase. In full duplex mode or receiver-only mode, the received CRC is compared
to the SPI_RXCRCR value. If the value does not match, the CRCERR flag in SPI_SR is
set and an interrupt can be generated when the ERRIE bit in the SPI_CR2 register is
set.

Note: When the SPI is in slave mode, be careful to enable CRC calculation only when the clock is
stable, that is, when the clock is in the steady state. If not, a wrong CRC calculation may be
done. In fact, the CRC is sensitive to the SCK slave input clock as soon as CRCEN is set,
and this, whatever the value of the SPE bit.

With high bitrate frequencies, be careful when transmitting the CRC. As the number of used
CPU cycles has to be as low as possible in the CRC transfer phase, it is forbidden to call
software functions in the CRC transmission sequence to avoid errors in the last data and
CRC reception. In fact, CRCNEXT bit has to be written before the end of the
transmission/reception of the last data.

For high bit rate frequencies, it is advised to use the DMA mode to avoid the degradation of
the SPI speed performance due to CPU accesses impacting the SPI bandwidth.

When the STM32L15xxx areis configured as slaves and the NSS hardware mode is used,
the NSS pin needs to be kept low between the data phase and the CRC phase.

When the SPI is configured in slave mode with the CRC feature enabled, CRC calculation
takes place even if a high level is applied on the NSS pin. This may happen for example in
case of a multislave environment where the communication master addresses slaves
alternately.

Between a slave deselection (high level on NSS) and a new slave selection (low level on
NSS), the CRC value should be cleared on both master and slave sides in order to
resynchronize the master and slave for their respective CRC calculation.

To clear the CRC, follow the procedure below:

1. Disable SPI (SPE = 0)

2. Clear the CRCEN bit

3. Set the CRCEN bit

4. Enable the SPI (SPE = 1)

Serial peripheral interface (SPI) RM0038

502/598 Doc ID 15965 Rev 4

22.3.7 Status flags

Three status flags are provided for the application to completely monitor the state of the SPI
bus.

Tx buffer empty flag (TXE)

When it is set, this flag indicates that the Tx buffer is empty and the next data to be
transmitted can be loaded into the buffer. The TXE flag is cleared when writing to the
SPI_DR register.

Rx buffer not empty (RXNE)

When set, this flag indicates that there are valid received data in the Rx buffer. It is cleared
when SPI_DR is read.

BUSY flag

This BSY flag is set and cleared by hardware (writing to this flag has no effect). The BSY
flag indicates the state of the communication layer of the SPI.

When BSY is set, it indicates that the SPI is busy communicating. There is one exception in
master mode / bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0) where the
BSY flag is kept low during reception.

The BSY flag is useful to detect the end of a transfer if the software wants to disable the SPI
and enter Halt mode (or disable the peripheral clock). This avoids corrupting the last
transfer. For this, the procedure described below must be strictly respected.

The BSY flag is also useful to avoid write collisions in a multimaster system.

The BSY flag is set when a transfer starts, with the exception of master mode / bidirectional
receive mode (MSTR=1 and BDM=1 and BDOE=0).

It is cleared:

● when a transfer is finished (except in master mode if the communication is continuous)

● when the SPI is disabled

● when a master mode fault occurs (MODF=1)

When communication is not continuous, the BSY flag is low between each communication.

When communication is continuous:

● in master mode, the BSY flag is kept high during all the transfers

● in slave mode, the BSY flag goes low for one SPI clock cycle between each transfer

Note: Do not use the BSY flag to handle each data transmission or reception. It is better to use the
TXE and RXNE flags instead.

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 503/598

22.3.8 Disabling the SPI

When a transfer is terminated, the application can stop the communication by disabling the
SPI peripheral. This is done by clearing the SPE bit.

For some configurations, disabling the SPI and entering the Halt mode while a transfer is
ongoing can cause the current transfer to be corrupted and/or the BSY flag might become
unreliable.

To avoid any of those effects, it is recommended to respect the following procedure when
disabling the SPI:

In master or slave full-duplex mode (BIDIMODE=0, RXONLY=0)

1. Wait until RXNE=1 to receive the last data

2. Wait until TXE=1

3. Then wait until BSY=0

4. Disable the SPI (SPE=0) and, eventually, enter the Halt mode (or disable the peripheral
clock)

In master or slave unidirectional transmit-only mode (BIDIMODE=0,
RXONLY=0) or bidirectional transmit mode (BIDIMODE=1, BIDIOE=1)

After the last data is written into the SPI_DR register:

1. Wait until TXE=1

2. Then wait until BSY=0

3. Disable the SPI (SPE=0) and, eventually, enter the Halt mode (or disable the peripheral
clock)

In master unidirectional receive-only mode (MSTR=1, BIDIMODE=0,
RXONLY=1) or bidirectional receive mode (MSTR=1, BIDIMODE=1, BIDIOE=0)

This case must be managed in a particular way to ensure that the SPI does not initiate a
new transfer:

1. Wait for the second to last occurrence of RXNE=1 (n–1)

2. Then wait for one SPI clock cycle (using a software loop) before disabling the SPI
(SPE=0)

3. Then wait for the last RXNE=1 before entering the Halt mode (or disabling the
peripheral clock)

Note: In master bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0), the BSY flag is
kept low during transfers.

In slave receive-only mode (MSTR=0, BIDIMODE=0, RXONLY=1) or
bidirectional receive mode (MSTR=0, BIDIMODE=1, BIDOE=0)

1. You can disable the SPI (write SPE=1) at any time: the current transfer will complete
before the SPI is effectively disabled

2. Then, if you want to enter the Halt mode, you must first wait until BSY = 0 before
entering the Halt mode (or disabling the peripheral clock)

Serial peripheral interface (SPI) RM0038

504/598 Doc ID 15965 Rev 4

22.3.9 SPI communication using DMA (direct memory addressing)

To operate at its maximum speed, the SPI needs to be fed with the data for transmission and
the data received on the Rx buffer should be read to avoid overrun. To facilitate the transfers,
the SPI features a DMA capability implementing a simple request/acknowledge protocol.

A DMA access is requested when the enable bit in the SPI_CR2 register is enabled.
Separate requests must be issued to the Tx and Rx buffers (see Figure 177 and
Figure 178):

● In transmission, a DMA request is issued each time TXE is set to 1. The DMA then
writes to the SPI_DR register (this clears the TXE flag).

● In reception, a DMA request is issued each time RXNE is set to 1. The DMA then reads
the SPI_DR register (this clears the RXNE flag).

When the SPI is used only to transmit data, it is possible to enable only the SPI Tx DMA
channel. In this case, the OVR flag is set because the data received are not read.

When the SPI is used only to receive data, it is possible to enable only the SPI Rx DMA
channel.

In transmission mode, when the DMA has written all the data to be transmitted (flag TCIF is
set in the DMA_ISR register), the BSY flag can be monitored to ensure that the SPI
communication is complete. This is required to avoid corrupting the last transmission before
disabling the SPI or entering the Stop mode. The software must first wait until TXE=1 and
then until BSY=0.

Note: During discontinuous communications, there is a 2 APB clock period delay between the
write operation to SPI_DR and the BSY bit setting. As a consequence, it is mandatory to
wait first until TXE=1 and then until BSY=0 after writing the last data.

Figure 177. Transmission using DMA

0xF1Tx buffer

TXE flag

0xF2

BSY flag

0xF3

set by hardware
clear by DMA write

set by hardware
cleared by DMA write set by hardware

set by hardware

SCK

reset

Example with CPOL=1, CPHA=1

(write to SPI_DR)

MISO/MOSI (out)
DATA 1 = 0xF1 DATA 2 = 0xF2 DATA 3 = 0xF3

software configures the
DMA SPI Tx channel
to send 3 data items
and enables the SPI

DMA writes to SPI_DR

DMA request ignored by the DMA because

DMA TCIF flag set by hardware clear by software

DMA writes
DATA1 into

SPI_DR

by hardware

DMA writes
DATA2 into

SPI_DR

DMA writes
DATA3 into

SPI_DR

software waits until BSY=0

(DMA transfer complete)

DMA transfer is
complete (TCIF=1 in

DMA_ISR)

software waits
until TXE=1

DMA transfer is complete

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

ai17349

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 505/598

Figure 178. Reception using DMA

DMA capability with CRC

When SPI communication is enabled with CRC communication and DMA mode,the
transmission and reception of the CRC at the end of communication are automatic i.e.
without using the bit CRCNEXT. After the CRC reception, the CRC must be read in the
SPI_DR register in order to clear the RXNE flag.

At the end of data and CRC transfers, the CRCERR flag in SPI_SR is set if corruption
occurs during the transfer.

22.3.10 Error flags

Master mode fault (MODF)

Master mode fault occurs when the master device has its NSS pin pulled low (in NSS
hardware mode) or SSI bit low (in NSS software mode), this automatically sets the MODF
bit. Master mode fault affects the SPI peripheral in the following ways:

● The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set.

● The SPE bit is cleared. This blocks all output from the device and disables the SPI
interface.

● The MSTR bit is cleared, thus forcing the device into slave mode.

Use the following software sequence to clear the MODF bit:

1. Make a read or write access to the SPI_SR register while the MODF bit is set.

2. Then write to the SPI_CR1 register.

To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin
must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can
be restored to their original state after this clearing sequence.

MISO/MOSI (in)
DATA 1 = 0xA1

software configures the
DMA SPI Rx channel
to receive 3 data items
and enables the SPI

SCK

DATA 2 = 0xA2 DATA 3 = 0xA3

Example with CPOL=1, CPHA=1

RXNE flag

Rx buffer

set by hardware

(read from SPI_DR) 0xA1 0xA2 0xA3

DMA request

DMA reads
DATA3 from

SPI_DR

flag DMA TCIF
set by hardware clear

by software

DMA read from SPI_DR

The DMA transfer is
complete (TCIF=1 in

DMA_ISR)

DMA reads
DATA2 from

SPI_DR

DMA reads
DATA1 from

SPI_DR

(DMA transfer complete)

b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7 b0 b1 b2 b3 b4 b5 b6 b7

clear by DMA read

ai17350

Serial peripheral interface (SPI) RM0038

506/598 Doc ID 15965 Rev 4

As a security, hardware does not allow the setting of the SPE and MSTR bits while the
MODF bit is set.

In a slave device the MODF bit cannot be set. However, in a multimaster configuration, the
device can be in slave mode with this MODF bit set. In this case, the MODF bit indicates that
there might have been a multimaster conflict for system control. An interrupt routine can be
used to recover cleanly from this state by performing a reset or returning to a default state.

Overrun condition

An overrun condition occurs when the master device has sent data bytes and the slave
device has not cleared the RXNE bit resulting from the previous data byte transmitted.
When an overrun condition occurs:

● the OVR bit is set and an interrupt is generated if the ERRIE bit is set.

In this case, the receiver buffer contents will not be updated with the newly received data
from the master device. A read from the SPI_DR register returns this byte. All other
subsequently transmitted bytes are lost.

Clearing the OVR bit is done by a read from the SPI_DR register followed by a read access
to the SPI_SR register.

CRC error

This flag is used to verify the validity of the value received when the CRCEN bit in the
SPI_CR1 register is set. The CRCERR flag in the SPI_SR register is set if the value
received in the shift register does not match the receiver SPI_RXCRCR value.

22.3.11 SPI interrupts

is 32-bit wide

tions.

1.

2.

Table 81. SPI interrupt requests

Interrupt event Event flag Enable Control bit

Transmit buffer empty flag TXE TXEIE

Receive buffer not empty flag RXNE RXNEIE

Master Mode fault event MODF

ERRIEOverrun error OVR

CRC error flag CRCERR

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 507/598

22.4 SPI registers
Refer to for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

22.4.1 SPI control register 1 (SPI_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BIDI
MODE

BIDI
OE

CRC
EN

CRC
NEXT DFF RX

ONLY SSM SSI LSB
FIRST SPE BR [2:0] MSTR CPOL CPHA

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 BIDIMODE: Bidirectional data mode enable

0: 2-line unidirectional data mode selected
1: 1-line bidirectional data mode selected

Bit 14 BIDIOE: Output enable in bidirectional mode
This bit combined with the BIDImode bit selects the direction of transfer in bidirectional mode
0: Output disabled (receive-only mode)
1: Output enabled (transmit-only mode)

Note: In master mode, the MOSI pin is used and in slave mode, the MISO pin is used.

Bit 13 CRCEN: Hardware CRC calculation enable

0: CRC calculation disabled
1: CRC calculation Enabled

Note: This bit should be written only when SPI is disabled (SPE = ‘0) for correct operation

Bit 12 CRCNEXT: CRC transfer next

0: Data phase (no CRC phase)
1: Next transfer is CRC (CRC phase)

Note: This bit has to be written as soon as the last data is written to the SPI_DR register.
when the SPI is configured in full duplex or transmitter only modes. It has to be set after
the second last data reception when it is configured in receiver only mode. This bit
should be kept cleared when the transfers are managed by DMA.

Bit 11 DFF: Data frame format
0: 8-bit data frame format is selected for transmission/reception
1: 16-bit data frame format is selected for transmission/reception

Note: This bit should be written only when SPI is disabled (SPE = ‘0) for correct operation

Bit 10 RXONLY: Receive only

This bit combined with the BIDImode bit selects the direction of transfer in 2-line
unidirectional mode. This bit is also useful in a multislave system in which this particular
slave is not accessed, the output from the accessed slave is not corrupted.
0: Full duplex (Transmit and receive)
1: Output disabled (Receive-only mode)

Bit 9 SSM: Software slave management

When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit.
0: Software slave management disabled
1: Software slave management enabled

Serial peripheral interface (SPI) RM0038

508/598 Doc ID 15965 Rev 4

Bit 8 SSI: Internal slave select
This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the
NSS pin and the IO value of the NSS pin is ignored.

Bit 7 LSBFIRST: Frame format

0: MSB transmitted first
1: LSB transmitted first

Note: This bit should not be changed when communication is ongoing.

Bit 6 SPE: SPI enable
0: Peripheral disabled
1: Peripheral enabled

Note: When disabling the SPI, follow the procedure described in Section 22.3.8: Disabling the
SPI.

Bits 5:3 BR[2:0]: Baud rate control
000: fPCLK/2
001: fPCLK/4
010: fPCLK/8
011: fPCLK/16
100: fPCLK/32
101: fPCLK/64
110: fPCLK/128
111: fPCLK/256

Note: These bits should not be changed when communication is ongoing.

Bit 2 MSTR: Master selection
0: Slave configuration
1: Master configuration

Note: This bit should not be changed when communication is ongoing.

Bit1 CPOL: Clock polarity

0: CK to 0 when idle
1: CK to 1 when idle

Note: This bit should not be changed when communication is ongoing.

Bit 0 CPHA: Clock phase

0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Note: This bit should not be changed when communication is ongoing.

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 509/598

22.4.2 SPI control register 2 (SPI_CR2)

Address offset: 0x04

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TXEIE RXNEIE ERRIE Res. Res. SSOE TXDMAEN RXDMAEN

rw rw rw rw rw rw

Bits 15:8 Reserved. Forced to 0 by hardware.

Bit 7 TXEIE: Tx buffer empty interrupt enable
0: TXE interrupt masked
1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set.

Bit 6 RXNEIE: RX buffer not empty interrupt enable
0: RXNE interrupt masked
1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is
set.

Bit 5 ERRIE: Error interrupt enable

This bit controls the generation of an interrupt when an error condition occurs (CRCERR,
OVR, MODF in SPI mode).
0: Error interrupt is masked
1: Error interrupt is enabled

Bits 4:3 Reserved. Forced to 0 by hardware.

Bit 2 SSOE: SS output enable

0: SS output is disabled in master mode and the cell can work in multimaster configuration
1: SS output is enabled in master mode and when the cell is enabled. The cell cannot work
in a multimaster environment.

Bit 1 TXDMAEN: Tx buffer DMA enable

When this bit is set, the DMA request is made whenever the TXE flag is set.
0: Tx buffer DMA disabled
1: Tx buffer DMA enabled

Bit 0 RXDMAEN: Rx buffer DMA enable

When this bit is set, the DMA request is made whenever the RXNE flag is set.
0: Rx buffer DMA disabled
1: Rx buffer DMA enabled

Serial peripheral interface (SPI) RM0038

510/598 Doc ID 15965 Rev 4

22.4.3 SPI status register (SPI_SR)

Address offset: 0x08

Reset value: 0x0002

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
BSY OVR MODF CRC

ERR Reserved
TXE RXNE

r r r rc_w0 r r

Bits 15:8 Reserved. Forced to 0 by hardware.

Bit 7 BSY: Busy flag
0: SPInot busy
1: SPIis busy in communication or Tx buffer is not empty
This flag is set and cleared by hardware.

Note: BSY flag must be used with caution: refer to Section 22.3.7: Status flags and
Section 22.3.8: Disabling the SPI.

Bit 6 OVR: Overrun flag

0: No overrun occurred
1: Overrun occurred
This flag is set by hardware and reset by a software sequence.

Bit 5 MODF: Mode fault

0: No mode fault occurred
1: Mode fault occurred
This flag is set by hardware and reset by a software sequence. Refer to Section 22.3.10 on
page 505 for the software sequence.

Bit 4 CRCERR: CRC error flag
0: CRC value received matches the SPI_RXCRCR value
1: CRC value received does not match the SPI_RXCRCR value
This flag is set by hardware and cleared by software writing 0.

Bits 3:2 Reserved

Bit 1 TXE: Transmit buffer empty

0: Tx buffer not empty
1: Tx buffer empty

Bit 0 RXNE: Receive buffer not empty

0: Rx buffer empty
1: Rx buffer not empty

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 511/598

22.4.4 SPI data register (SPI_DR)

Address offset: 0x0C

Reset value: 0x0000

22.4.5 SPI CRC polynomial register (SPI_CRCPR)

Address offset: 0x10

Reset value: 0x0007

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DR[15:0]: Data register

Data received or to be transmitted.

The data register is split into 2 buffers - one for writing (Transmit Buffer) and another one for
reading (Receive buffer). A write to the data register will write into the Tx buffer and a read
from the data register will return the value held in the Rx buffer.

Notes for the SPI mode:
Depending on the data frame format selection bit (DFF in SPI_CR1 register), the data
sent or received is either 8-bit or 16-bit. This selection has to be made before enabling
the SPI to ensure correct operation.

For an 8-bit data frame, the buffers are 8-bit and only the LSB of the register
(SPI_DR[7:0]) is used for transmission/reception. When in reception mode, the MSB of
the register (SPI_DR[15:8]) is forced to 0.
For a 16-bit data frame, the buffers are 16-bit and the entire register, SPI_DR[15:0] is
used for transmission/reception.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRCPOLY[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CRCPOLY[15:0]: CRC polynomial register

This register contains the polynomial for the CRC calculation.
The CRC polynomial (0007h) is the reset value of this register. Another polynomial can be
configured as required.

Serial peripheral interface (SPI) RM0038

512/598 Doc ID 15965 Rev 4

22.4.6 SPI RX CRC register (SPI_RXCRCR)

Address offset: 0x14

Reset value: 0x0000

22.4.7 SPI TX CRC register (SPI_TXCRCR)

Address offset: 0x18

Reset value: 0x0000

22.4.8 SPI register map

The table provides shows the SPI register map and reset values.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXCRC[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 RXCRC[15:0]: Rx CRC register
When CRC calculation is enabled, the RxCRC[15:0] bits contain the computed CRC value of
the subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR1
register is written to 1. The CRC is calculated serially using the polynomial programmed in
the SPI_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF
bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16
standard.

Note: A read to this register when the BSY Flag is set could return an incorrect value.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TXCRC[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 TXCRC[15:0]: Tx CRC register
When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of
the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR1
is written to 1. The CRC is calculated serially using the polynomial programmed in the
SPI_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF
bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16
standard.

Note: A read to this register when the BSY flag is set could return an incorrect value.

RM0038 Serial peripheral interface (SPI)

Doc ID 15965 Rev 4 513/598

Refer to Table 1 on page 32 for the register boundary addresses.

Table 82. SPI register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
SPI_CR1

Reserved

B
ID

IM
O

D
E

B
ID

IO
E

C
R

C
E

N

C
R

C
N

E
X

T

D
F

F

R
X

O
N

LY

S
S

M

S
S

I

LS
B

F
IR

S
T

S
P

E BR [2:0]

M
S

T
R

C
P

O
L

C
P

H
A

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
SPI_CR2

Reserved

T
X

E
IE

R
X

N
E

IE

E
R

R
IE

R
es

er
ve

d

S
S

O
E

T
X

D
M

A
E

N

R
X

D
M

A
E

N

Reset value 0 0 0 0 0 0

0x08
SPI_SR

Reserved B
S

Y

O
V

R

M
O

D
F

C
R

C
E

R
R

R
es

er
ve

d

T
X

E

R
X

N
E

Reset value 0 0 0 0 1 0

0x0C
SPI_DR

Reserved
DR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
SPI_CRCPR

Reserved
CRCPOLY[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0x14
SPI_RXCRCR

Reserved
RxCRC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
SPI_TXCRCR

Reserved
TxCRC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal synchronous asynchronous receiver transmitter (USART) RM0038

514/598 Doc ID 15965 Rev 4

23 Universal synchronous asynchronous receiver
transmitter (USART)

23.1 USART introduction
The universal synchronous asynchronous receiver transmitter (USART) offers a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format. The USART offers a very wide range of baud rates
using a fractional baud rate generator.

It supports synchronous one-way communication and half-duplex single wire
communication. It also supports the LIN (local interconnection network), Smartcard Protocol
and IrDA (infrared data association) SIR ENDEC specifications, and modem operations
(CTS/RTS). It allows multiprocessor communication.

High speed data communication is possible by using the DMA for multibuffer configuration.

23.2 USART main features
● Full duplex, asynchronous communications

● NRZ standard format (Mark/Space)

● Configurable oversampling method by 16 or by 8 to give flexibility between speed and
clock tolerance

● Fractional baud rate generator systems

– A common programmable transmit and receive baud rate of up to 4 Mbit/s when
the APB frequency is 32 MHz and oversampling is by 8

● Programmable data word length (8 or 9 bits)

● Configurable stop bits - support for 1 or 2 stop bits

● LIN Master Synchronous Break send capability and LIN slave break detection
capability

– 13-bit break generation and 10/11 bit break detection when USART is hardware
configured for LIN

● Transmitter clock output for synchronous transmission

● IrDA SIR encoder decoder

– Support for 3/16 bit duration for normal mode

● Smartcard emulation capability

– The Smartcard interface supports the asynchronous protocol Smartcards as
defined in the ISO 7816-3 standards

– 0.5, 1.5 stop bits for Smartcard operation

● Single-wire half-duplex communication

● Configurable multibuffer communication using DMA (direct memory access)

– Buffering of received/transmitted bytes in reserved SRAM using centralized DMA

● Separate enable bits for transmitter and receiver

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 515/598

● Transfer detection flags:

– Receive buffer full

– Transmit buffer empty

– End of transmission flags

● Parity control:

– Transmits parity bit

– Checks parity of received data byte

● Four error detection flags:

– Overrun error

– Noise detection

– Frame error

– Parity error

● Ten interrupt sources with flags:

– CTS changes

– LIN break detection

– Transmit data register empty

– Transmission complete

– Receive data register full

– Idle line received

– Overrun error

– Framing error

– Noise error

– Parity error

● Multiprocessor communication - enter into mute mode if address match does not occur

● Wake up from mute mode (by idle line detection or address mark detection)

● Two receiver wakeup modes: Address bit (MSB, 9th bit), Idle line

23.3 USART functional description
The interface is externally connected to another device by three pins (see Figure 179). Any
USART bidirectional communication requires a minimum of two pins: Receive Data In (RX)
and Transmit Data Out (TX):

RX: Receive Data Input is the serial data input. Oversampling techniques are used for data
recovery by discriminating between valid incoming data and noise.

TX: Transmit Data Output. When the transmitter is disabled, the output pin returns to its I/O
port configuration. When the transmitter is enabled and nothing is to be transmitted, the TX
pin is at high level. In single-wire and smartcard modes, this I/O is used to transmit and
receive the data (at USART level, data are then received on SW_RX).

Universal synchronous asynchronous receiver transmitter (USART) RM0038

516/598 Doc ID 15965 Rev 4

Through these pins, serial data is transmitted and received in normal USART mode as
frames comprising:

● An Idle Line prior to transmission or reception

● A start bit

● A data word (8 or 9 bits) least significant bit first

● 0.5,1, 1.5, 2 Stop bits indicating that the frame is complete

● This interface uses a fractional baud rate generator - with a 12-bit mantissa and 4-bit
fraction

● A status register (USART_SR)

● Data Register (USART_DR)

● A baud rate register (USART_BRR) - 12-bit mantissa and 4-bit fraction.

● A Guardtime Register (USART_GTPR) in case of Smartcard mode.

Refer to Section 23.6: USART registers on page 551 for the definitions of each bit.

The following pin is required to interface in synchronous mode:

● SCLK: Transmitter clock output. This pin outputs the transmitter data clock for
synchronous transmission corresponding to SPI master mode (no clock pulses on start
bit and stop bit, and a software option to send a clock pulse on the last data bit). In
parallel data can be received synchronously on RX. This can be used to control
peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity
are software programmable. In smartcard mode, SCLK can provide the clock to the
smartcard.

The following pins are required to interface in IrDA mode:

● IrDA_RDI: Receive Data Input is the data input in IrDA mode.

● IrDA_TDO: Transmit Data Output in IrDA mode.

the following pins are required in Hardware flow control mode:

● nCTS: Clear To Send blocks the data transmission at the end of the current transfer
when high

● nRTS: Request to send indicates that the USART is ready to receive a data (when
low).

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 517/598

Figure 179. USART block diagram

Wakeup
unit

Receiver
control

SR

Transmit
control

TXE TC RXNE IDLE ORE NF FE

USART

control

interrupt

CR1

M WAKE

Receive data register (RDR)

Receive Shift Register

Read

Transmit data register (TDR)

Transmit Shift Register

Write

SW_RX

TX

(Data register) DR

Transmitter
 clock

Receiver
clock

Receiver rate

Transmitter rate

fPCLKx(x=1,2)

 control

control

/ [8 x (2 - OVER8)]

Conventional baud rate generator

SBKRWURETEIDLERXNETCIETXEIE

CR1

UE PCE PS PEIE

PE

PWDATA

IRLPSCEN IRENDMARDMAT

USART Address

CR2

CR3

IrDA
SIR
ENDEC
block

LINE CKEN CPOL CPHA LBCL

SCLK control SCLK

CR2

GT

STOP[1:0]NACK

DIV_Mantissa

15 0

RE

USART_BRR

/USARTDIV

TE

HD

(CPU or DMA)(CPU or DMA)

PRDATA

Hardware
flow
controller

CTS LBD

RX

IRDA_OUT

IRDA_IN

nRTS

nCTS

GTPR
PSC

IE IE

DIV_Fraction

4

USARTDIV = DIV_Mantissa + (DIV_Fraction / 8 × (2 – OVER8))

SAMPLING

CR1
OVER8

DIVIDER

ai16099

Universal synchronous asynchronous receiver transmitter (USART) RM0038

518/598 Doc ID 15965 Rev 4

23.3.1 USART character description

Word length may be selected as being either 8 or 9 bits by programming the M bit in the
USART_CR1 register (see Figure 180).

The TX pin is in low state during the start bit. It is in high state during the stop bit.

An Idle character is interpreted as an entire frame of “1”s followed by the start bit of the next
frame which contains data (The number of “1” ‘s will include the number of stop bits).

A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame the transmitter inserts either 1 or 2 stop bits (logic “1” bit) to acknowledge the
start bit.

Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.

The details of each block is given below.

Figure 180. Word length programming

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8
Start
bit Stop

bit

Next
Start
bit

Idle frame

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
bit

Next
start
bit

Idle frame
Start
bit

9-bit word length (M bit is set), 1 stop bit

8-bit word length (M bit is reset), 1 stop bit

Possible
parity

bit

Possible
Parity

Bit

Break frame Start
bit

Stop
bit

Data frame

Break frame Start
bit

Stop
bit

Data frame

Next data frame

Next data frame

Start
bit

** LBCL bit controls last data clock pulse

Clock

Clock

** LBCL bit controls last data clock pulse

**

**

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 519/598

23.3.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status.
When the transmit enable bit (TE) is set, the data in the transmit shift register is output on
the TX pin and the corresponding clock pulses are output on the SCLK pin.

Character transmission

During an USART transmission, data shifts out least significant bit first on the TX pin. In this
mode, the USART_DR register consists of a buffer (TDR) between the internal bus and the
transmit shift register (see Figure 179).

Every character is preceded by a start bit which is a logic level low for one bit period. The
character is terminated by a configurable number of stop bits.

The following stop bits are supported by USART: 0.5, 1, 1.5 and 2 stop bits.

Note: 1 The TE bit should not be reset during transmission of data. Resetting the TE bit during the
transmission will corrupt the data on the TX pin as the baud rate counters will get frozen.
The current data being transmitted will be lost.

2 An idle frame will be sent after the TE bit is enabled.

Configurable stop bits

The number of stop bits to be transmitted with every character can be programmed in
Control register 2, bits 13,12.

1. 1 stop bit: This is the default value of number of stop bits.

2. 2 Stop bits: This will be supported by normal USART, single-wire and modem modes.

3. 0.5 stop bit: To be used when receiving data in Smartcard mode.

4. 1.5 stop bits: To be used when transmitting and receiving data in Smartcard mode.

An idle frame transmission will include the stop bits.

A break transmission will be 10 low bits followed by the configured number of stop bits
(when m = 0) and 11 low bits followed by the configured number of stop bits (when m = 1). It
is not possible to transmit long breaks (break of length greater than 10/11 low bits).

Universal synchronous asynchronous receiver transmitter (USART) RM0038

520/598 Doc ID 15965 Rev 4

Figure 181. Configurable stop bits

Procedure:

1. Enable the USART by writing the UE bit in USART_CR1 register to 1.

2. Program the M bit in USART_CR1 to define the word length.

3. Program the number of stop bits in USART_CR2.

4. Select DMA enable (DMAT) in USART_CR3 if Multi buffer Communication is to take
place. Configure the DMA register as explained in multibuffer communication.

5. Select the desired baud rate using the USART_BRR register.

6. Set the TE bit in USART_CR1 to send an idle frame as first transmission.

7. Write the data to send in the USART_DR register (this clears the TXE bit). Repeat this
for each data to be transmitted in case of single buffer.

8. After writing the last data into the USART_DR register, wait until TC=1. This indicates
that the transmission of the last frame is complete. This is required for instance when
the USART is disabled or enters the Halt mode to avoid corrupting the last
transmission.

Single byte communication

Clearing the TXE bit is always performed by a write to the data register.

The TXE bit is set by hardware and it indicates:

● The data has been moved from TDR to the shift register and the data transmission has
started.

● The TDR register is empty.

● The next data can be written in the USART_DR register without overwriting the
previous data.

This flag generates an interrupt if the TXEIE bit is set.

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
bit

Next
start
bit

8-bit Word length (M bit is reset)
Possible

parity
bit

Data frame
Next data frame

** LBCL bit controls last data clock pulse

CLOCK
**

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

2 Stop
Bits

Next
Start
Bit

Possible
parity

bit
Data frame

Next data frame

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Next
start
bit

Possible
Parity

Bit
Data frame

Next data frame

1/2 stop bit

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Next
start
bit

Possible
Parity

Bit
Data frame

Next data frame

1 1/2 stop bits

a) 1 Stop Bit

b) 1 1/2 stop Bits

c) 2 Stop Bits

d) 1/2 Stop Bit

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 521/598

When a transmission is taking place, a write instruction to the USART_DR register stores
the data in the TDR register and which is copied in the shift register at the end of the current
transmission.

When no transmission is taking place, a write instruction to the USART_DR register places
the data directly in the shift register, the data transmission starts, and the TXE bit is
immediately set.

If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An
interrupt is generated if the TCIE bit is set in the USART_CR1 register.

After writing the last data into the USART_DR register, it is mandatory to wait for TC=1
before disabling the USART or causing the microcontroller to enter the low power mode (see
Figure 182: TC/TXE behavior when transmitting).

The TC bit is cleared by the following software sequence:

1. A read from the USART_SR register

2. A write to the USART_DR register

Note: The TC bit can also be cleared by writing a ‘0 to it. This clearing sequence is recommended
only for Multibuffer communication.

Figure 182. TC/TXE behavior when transmitting

Break characters

Setting the SBK bit transmits a break character. The break frame length depends on the M
bit (see Figure 180).

If the SBK bit is set to ‘1 a break character is sent on the TX line after completing the current
character transmission. This bit is reset by hardware when the break character is completed
(during the stop bit of the break character). The USART inserts a logic 1 bit at the end of the
last break frame to guarantee the recognition of the start bit of the next frame.

Note: If the software resets the SBK bit before the commencement of break transmission, the
break character will not be transmitted. For two consecutive breaks, the SBK bit should be
set after the stop bit of the previous break.

Idle characters

Setting the TE bit drives the USART to send an idle frame before the first data frame.

TX line

USART_DR

Frame 1

TXE flag

F2

TC flag

F3

Frame 2

software waits until TXE=1
and writes F2 into DR

software waits until TXE=1
and writes F3 into DR

TC is not set
because TXE=0

software waits until TC=1

Frame 3

TC is set because
TXE=1

set by hardware
cleared by software

set by hardware
cleared by software set by hardware

set

Idle preamble

by hardware

F1

software
enables the

USART

TC is not set
because TXE=0

software waits until TXE=1
and writes F1 into DR

ai17121b

Universal synchronous asynchronous receiver transmitter (USART) RM0038

522/598 Doc ID 15965 Rev 4

23.3.3 Receiver

The USART can receive data words of either 8 or 9 bits depending on the M bit in the
USART_CR1 register.

Start bit detection

The start bit detection sequence is the same when oversampling by 16 or by 8.

In the USART, the start bit is detected when a specific sequence of samples is recognized.
This sequence is: 1 1 1 0 X 0 X 0 X 0 0 0 0.

Figure 183. Start bit detection when oversampling by 16 or 8

Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to the
idle state (no flag is set) where it waits for a falling edge.

The start bit is confirmed (RXNE flag set, interrupt generated if RXNEIE=1) if the 3 sampled
bits are at 0 (first sampling on the 3rd, 5th and 7th bits finds the 3 bits at 0 and second
sampling on the 8th, 9th and 10th bits also finds the 3 bits at 0).

The start bit is validated (RXNE flag set, interrupt generated if RXNEIE=1) but the NE noise
flag is set if, for both samplings, at least 2 out of the 3 sampled bits are at 0 (sampling on the
3rd, 5th and 7th bits and sampling on the 8th, 9th and 10th bits). If this condition is not met,
the start detection aborts and the receiver returns to the idle state (no flag is set).

If, for one of the samplings (sampling on the 3rd, 5th and 7th bits or sampling on the 8th, 9th
and 10th bits), 2 out of the 3 bits are found at 0, the start bit is validated but the NE noise
flag bit is set.

Character reception

During an USART reception, data shifts in least significant bit first through the RX pin. In this
mode, the USART_DR register consists of a buffer (RDR) between the internal bus and the
received shift register.

RX line

sampled values

Idle Start bitRX state

Real
sample
clock

Ideal
sample
clock

01 0 X 0 X 0 0 0 0 X X X X X X
Conditions
to validate
the start bit

At least 2 bits
out of 3 at 0

At least 2 bits
out of 3 at 0

Falling edge
detection

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X X X X X X X X 9 10 11 12 13 14 15 16

6/16

7/16

One-bit time

7/16

X

ai15471

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 523/598

Procedure:

1. Enable the USART by writing the UE bit in USART_CR1 register to 1.

2. Program the M bit in USART_CR1 to define the word length.

3. Program the number of stop bits in USART_CR2.

4. Select DMA enable (DMAR) in USART_CR3 if multibuffer communication is to take
place. Configure the DMA register as explained in multibuffer communication. STEP 3

5. Select the desired baud rate using the baud rate register USART_BRR

6. Set the RE bit USART_CR1. This enables the receiver which begins searching for a
start bit.

When a character is received

● The RXNE bit is set. It indicates that the content of the shift register is transferred to the
RDR. In other words, data has been received and can be read (as well as its
associated error flags).

● An interrupt is generated if the RXNEIE bit is set.

● The error flags can be set if a frame error, noise or an overrun error has been detected
during reception.

● In multibuffer, RXNE is set after every byte received and is cleared by the DMA read to
the Data Register.

● In single buffer mode, clearing the RXNE bit is performed by a software read to the
USART_DR register. The RXNE flag can also be cleared by writing a zero to it. The
RXNE bit must be cleared before the end of the reception of the next character to avoid
an overrun error.

Note: The RE bit should not be reset while receiving data. If the RE bit is disabled during
reception, the reception of the current byte will be aborted.

Break character

When a break character is received, the USART handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as a data received character
plus an interrupt if the IDLEIE bit is set.

Overrun error

An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.

The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set
when the next data is received or the previous DMA request has not been serviced. When
an overrun error occurs:

● The ORE bit is set.

● The RDR content will not be lost. The previous data is available when a read to
USART_DR is performed.

● The shift register will be overwritten. After that point, any data received during overrun
is lost.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

524/598 Doc ID 15965 Rev 4

● An interrupt is generated if either the RXNEIE bit is set or both the EIE and DMAR bits
are set.

● The ORE bit is reset by a read to the USART_SR register followed by a USART_DR
register read operation.

Note: The ORE bit, when set, indicates that at least 1 data has been lost. There are two
possibilities:

● if RXNE=1, then the last valid data is stored in the receive register RDR and can be
read,

● if RXNE=0, then it means that the last valid data has already been read and thus there
is nothing to be read in the RDR. This case can occur when the last valid data is read in
the RDR at the same time as the new (and lost) data is received. It may also occur
when the new data is received during the reading sequence (between the USART_SR
register read access and the USART_DR read access).

Selecting the proper oversampling method

The receiver implements different user-configurable oversampling techniques (except in
synchronous mode) for data recovery by discriminating between valid incoming data and
noise.

The oversampling method can be selected by programming the OVER8 bit in the
USART_CR1 register and can be either 16 or 8 times the baud rate clock (Figure 184 and
Figure 185).

Depending on the application:

● select oversampling by 8 (OVER8=1) to achieve higher speed (up to fPCLK/8). In this
case the maximum receiver tolerance to clock deviation is reduced (refer to
Section 23.3.5: USART receiver’s tolerance to clock deviation on page 533)

● select oversampling by 16 (OVER8=0) to increase the tolerance of the receiver to clock
deviations. In this case, the maximum speed is limited to maximum fPCLK/16

Programming the ONEBIT bit in the USART_CR3 register selects the method used to
evaluate the logic level. There are two options:

● the majority vote of the three samples in the center of the received bit. In this case,
when the 3 samples used for the majority vote are not equal, the NF bit is set

● a single sample in the center of the received bit

Depending on the application:

– select the three samples’ majority vote method (ONEBITE=0) when operating in a
noisy environment and reject the data when a noise is detected (refer to Figure 83)
because this indicates that a glitch occurred during the sampling.

– select the single sample method (ONEBITE=1) when the line is noise-free to
increase the receiver’s tolerance to clock deviations (see Section 23.3.5: USART
receiver’s tolerance to clock deviation on page 533). In this case the NF bit will
never be set.

When noise is detected in a frame:

● The NF bit is set at the rising edge of the RXNE bit.

● The invalid data is transferred from the Shift register to the USART_DR register.

● No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USART_CR3 register.

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 525/598

The NF bit is reset by a USART_SR register read operation followed by a USART_DR
register read operation.

Note: Oversampling by 8 is not available in the Smartcard , IrDA and LIN modes. In those modes,
the OVER8 bit is forced to ‘0 by hardware.

Figure 184. Data sampling when oversampling by 16

Figure 185. Data sampling when oversampling by 8

Framing error

A framing error is detected when:

The stop bit is not recognized on reception at the expected time, following either a de-
synchronization or excessive noise.

Table 83. Noise detection from sampled data

Sampled value NE status Received bit value

000 0 0

001 1 0

010 1 0

011 1 1

100 1 0

101 1 1

110 1 1

111 0 1

RX LINE

Sample
 clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

sampled values

One bit time

6/16

7/16 7/16

RX LINE

One bit time

3/8 3/8

1 2 3 4 5 6 7 8

2/8

Sample
 clock(x8)

sampled values

Universal synchronous asynchronous receiver transmitter (USART) RM0038

526/598 Doc ID 15965 Rev 4

When the framing error is detected:

● The FE bit is set by hardware

● The invalid data is transferred from the Shift register to the USART_DR register.

● No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USART_CR3 register.

The FE bit is reset by a USART_SR register read operation followed by a USART_DR
register read operation.

Configurable stop bits during reception

The number of stop bits to be received can be configured through the control bits of Control
Register 2 - it can be either 1 or 2 in normal mode and 0.5 or 1.5 in Smartcard mode.

1. 0.5 stop bit (reception in Smartcard mode): No sampling is done for 0.5 stop bit. As
a consequence, no framing error and no break frame can be detected when 0.5 stop bit
is selected.

2. 1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.

3. 1.5 stop bits (Smartcard mode): When transmitting in smartcard mode, the device
must check that the data is correctly sent. Thus the receiver block must be enabled (RE
=1 in the USART_CR1 register) and the stop bit is checked to test if the smartcard has
detected a parity error. In the event of a parity error, the smartcard forces the data
signal low during the sampling - NACK signal-, which is flagged as a framing error.
Then, the FE flag is set with the RXNE at the end of the 1.5 stop bit. Sampling for 1.5
stop bits is done on the 16th, 17th and 18th samples (1 baud clock period after the
beginning of the stop bit). The 1.5 stop bit can be decomposed into 2 parts: one 0.5
baud clock period during which nothing happens, followed by 1 normal stop bit period
during which sampling occurs halfway through. Refer to Section 23.3.11: Smartcard on
page 542 for more details.

4. 2 stop bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the
first stop bit. If a framing error is detected during the first stop bit the framing error flag
will be set. The second stop bit is not checked for framing error. The RXNE flag will be
set at the end of the first stop bit.

23.3.4 Fractional baud rate generation

The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the Mantissa and Fraction values of USARTDIV.

Equation 1: Baud rate for standard USART (SPI mode included)

Equation 2: Baud rate in Smartcard, LIN and IrDA modes

Tx/Rx baud
fCK

8 2 OVER8–() USARTDIV××
---=

Tx/Rx baud
fCK

16 USARTDIV×
---=

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 527/598

USARTDIV is an unsigned fixed point number that is coded on the USART_BRR register.

● When OVER8=0, the fractional part is coded on 4 bits and programmed by the
DIV_fraction[3:0] bits in the USART_BRR register

● When OVER8=1, the fractional part is coded on 3 bits and programmed by the
DIV_fraction[2:0] bits in the USART_BRR register, and bit DIV_fraction[3] must be kept
cleared.

Note: The baud counters are updated to the new value in the baud registers after a write operation
to USART_BRR. Hence the baud rate register value should not be changed during
communication.

How to derive USARTDIV from USART_BRR register values when OVER8=0

Example 1:

If DIV_Mantissa = 0d27 and DIV_Fraction = 0d12 (USART_BRR = 0x1BC), then

Mantissa (USARTDIV) = 0d27

Fraction (USARTDIV) = 12/16 = 0d0.75

Therefore USARTDIV = 0d27.75

Example 2:

To program USARTDIV = 0d25.62

This leads to:

DIV_Fraction = 16*0d0.62 = 0d9.92

The nearest real number is 0d10 = 0xA

DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19

Then, USART_BRR = 0x19A hence USARTDIV = 0d25.625

Example 3:

To program USARTDIV = 0d50.99

This leads to:

DIV_Fraction = 16*0d0.99 = 0d15.84

The nearest real number is 0d16 = 0x10 => overflow of DIV_frac[3:0] => carry must be
added up to the mantissa

DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33

Then, USART_BRR = 0x330 hence USARTDIV = 0d51.000

How to derive USARTDIV from USART_BRR register values when OVER8=1

Example 1:

If DIV_Mantissa = 0x27 and DIV_Fraction[2:0]= 0d6 (USART_BRR = 0x1B6), then

Mantissa (USARTDIV) = 0d27

Fraction (USARTDIV) = 6/8 = 0d0.75

Universal synchronous asynchronous receiver transmitter (USART) RM0038

528/598 Doc ID 15965 Rev 4

Therefore USARTDIV = 0d27.75

Example 2:

To program USARTDIV = 0d25.62

This leads to:

DIV_Fraction = 8*0d0.62 = 0d4.96

The nearest real number is 0d5 = 0x5

DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19

Then, USART_BRR = 0x195 => USARTDIV = 0d25.625

Example 3:

To program USARTDIV = 0d50.99

This leads to:

DIV_Fraction = 8*0d0.99 = 0d7.92

The nearest real number is 0d8 = 0x8 => overflow of the DIV_frac[2:0] => carry must be
added up to the mantissa

DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33

Then, USART_BRR = 0x0330 => USARTDIV = 0d51.000

Table 84. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz),
oversampling by 16(1)

Oversampling by 16 (OVER8=0)

Baud rate fPCLK = 8 MHz fPCLK = 12 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 416.6875 0 1.2 KBps 625 0

2 2.4 KBps 2.4 KBps 208.3125 0.01 2.4 KBps 312.5 0

3 9.6 KBps 9.604 KBps 52.0625 0.04 9.6 KBps 78.125 0

4 19.2 KBps 19.185 KBps 26.0625 0.08 19.2 KBps 39.0625 0

5 38.4 KBps 38.462 KBps 13 0.16 38.339 KBps 19.5625 0.16

6 57.6 KBps 57.554 KBps 8.6875 0.08 57.692 KBps 13 0.16

7 115.2 KBps 115.942 KBps 4.3125 0.64 115.385 KBps 6.5 0.16

8 230.4 KBps 228.571 KBps 2.1875 0.79 230.769 KBps 3.25 0.16

9 460.8 KBps 470.588 KBps 1.0625 2.12 461.538 KBps 1.625 0.16

10 921.6 KBps NA NA NA NA NA NA

11 2 MBps NA NA NA NA NA NA

12 3 MBps NA NA NA NA NA NA

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 529/598

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 85. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK =12 MHz),
oversampling by 8(1)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 8 MHz fPCLK = 12 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)
B.rate /
Desired
B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 833.375 0 1.2 KBps 1250 0

2 2.4 KBps 2.4 KBps 416.625 0.01 2.4 KBps 625 0

3 9.6 KBps 9.604 KBps 104.125 0.04 9.6 KBps 156.25 0

4 19.2 KBps 19.185 KBps 52.125 0.08 19.2 KBps 78.125 0

5 38.4 KBps 38.462 KBps 26 0.16 38.339 KBps 39.125 0.16

6 57.6 KBps 57.554 KBps 17.375 0.08 57.692 KBps 26 0.16

7 115.2 KBps 115.942 KBps 8.625 0.64 115.385 KBps 13 0.16

8 230.4 KBps 228.571 KBps 4.375 0.79 230.769 KBps 6.5 0.16

9 460.8 KBps 470.588 KBps 2.125 2.12 461.538 KBps 3.25 0.16

10 921.6 KBps 888.889 KBps 1.125 3.55 923.077 KBps 1.625 0.16

11 2 MBps NA NA NA NA NA NA

12 3 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 86. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz),
oversampling by 16(1)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 16 MHz fPCLK = 24 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 833.3125 0 1.2 1250 0

2 2.4 KBps 2.4 KBps 416.6875 0 2.4 625 0

3 9.6 KBps 9.598 KBps 104.1875 0.02 9.6 156.25 0

4 19.2 KBps 19.208 KBps 52.0625 0.04 19.2 78.125 0

Universal synchronous asynchronous receiver transmitter (USART) RM0038

530/598 Doc ID 15965 Rev 4

5 38.4 KBps 38.369 KBps 26.0625 0.08 38.4 39.0625 0

6 57.6 KBps 57.554 KBps 17.375 0.08 57.554 26.0625 0.08

7 115.2 KBps 115.108 KBps 8.6875 0.08 115.385 13 0.16

8 230.4 KBps 231.884 KBps 4.3125 0.64 230.769 6.5 0.16

9 460.8 KBps 457.143 KBps 2.1875 0.79 461.538 3.25 0.16

10 921.6 KBps 941.176 KBps 1.0625 2.12 923.077 1.625 0.16

11 2 MBps NA NA NA NA NA NA

12 3 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 86. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz),
oversampling by 16(1) (continued)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 16 MHz fPCLK = 24 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

Table 87. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz),
oversampling by 8(1)

Oversampling by 8 (OVER8=1)

Baud rate fPCLK = 16 MHz fPCLK = 24 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 1666.625 0 1.2 KBps 2500 0

2 2.4 KBps 2.4 KBps 833.375 0 2.4 KBps 1250 0

3 9.6 KBps 9.598 KBps 208.375 0.02 9.6 KBps 312.5 0

4 19.2 KBps 19.208 KBps 104.125 0.04 19.2 KBps 156.25 0

5 38.4 KBps 38.369 KBps 52.125 0.08 38.4 KBps 78.125 0

6 57.6 KBps 57.554 KBps 34.75 0.08 57.554 KBps 52.125 0.08

7 115.2 KBps 115.108 KBps 17.375 0.08 115.385 KBps 26 0.16

8 230.4 KBps 231.884 KBps 8.625 0.64 230.769 KBps 13 0.16

9 460.8 KBps 457.143 KBps 4.375 0.79 461.538 KBps 6.5 0.16

10 921.6 KBps 941.176 KBps 2.125 2.12 923.077 KBps 3.25 0.16

11 2 MBps 2000 KBps 1 0 2000 KBps 1.5 0

12 3 MBps NA NA NA 3000 KBps 1 0

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 531/598

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 88. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),
oversampling by 16(1)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 1 MHz fPCLK = 8 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 1.2 KBps 1.2 KBps 52.0625 0.04 1.2 KBps 416.6875 0

2 2.4 KBps 2.398 KBps 26.0625 0.08 2.4 KBps 208.3125 0.01

3 9.6 KBps 9.615 KBps 6.5 0.16 9.604 KBps 52.0625 0.04

4 19.2 KBps 19.231 KBps 3.25 0.16 19.185 KBps 26.0625 0.08

5 38.4 KBps 38.462 KBps 1.625 0.16 38.462 KBps 13 0.16

6 57.6 KBps 58.824 KBps 1.0625 2.12 57.554 KBps 8.6875 0.08

7 115.2 KBps NA NA NA 115.942 KBps 4.3125 0.64

8 230.4 KBps NA NA NA 228.571 KBps 2.1875 0.79

9 460.8 KBps NA NA NA 470.588 KBps 1.0625 2.12

10 921.6 KBps NA NA NA NA NA NA

11 2 MBps NA NA NA NA NA NA

12 4 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 89. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),
oversampling by 8(1)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 1 MHz fPCLK = 8 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 1.2 KBps 1.2 KBps 104.125 0.04 1.2 KBps 833.375 0

2 2.4 KBps 2.398 KBps 52.125 0.08 2.4 KBps 416.625 0.01

3 9.6 KBps 9.615 KBps 13 -0.16 9.604 KBps 104.125 0.04

4 19.2 KBps 19.231 KBps 6.5 0.16 19.185 KBps 52.125 0.08

5 38.4 KBps 38.462 KBps 3.25 0.16 38.462 KBps 26 0.16

Universal synchronous asynchronous receiver transmitter (USART) RM0038

532/598 Doc ID 15965 Rev 4

6 57.6 KBps 58.824 KBps 2.125 2.12 57.554 KBps 17.375 0.08

7 115.2 KBps 111.111 KBps 1.125 3.55 115.942 KBps 8.625 0.64

8 230.4 KBps NA NA NA 228.571 KBps 4.375 0.79

9 460.8 KBps NA NA NA 470.588 KBps 2.125 2.12

10 921.6 KBps NA NA NA 888.889 KBps 1.125 3.55

11 2 MBps NA NA NA NA NA NA

12 4 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 89. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),
oversampling by 8(1) (continued)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 1 MHz fPCLK = 8 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

Table 90. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),
oversampling by 16(1)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 16 MHz fPCLK = 32 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 833.3125 0 1.2 KBps 1666.6875 0

2 2.4 KBps 2.4 KBps 416.6875 0 2.4 KBps 833.3125 0

3 9.6 KBps 9.598 KBps 104.1875 0.02 9.601 KBps 208.3125 0.01

4 19.2 KBps 19.208 KBps 52.0625 0.04 19.196 KBps 104.1875 0.02

5 38.4 KBps 38.369 KBps 26.0625 0.08 38.415 KBps 52.0625 0.04

6 57.6 KBps 57.554 KBps 17.375 0.08 57.554 KBps 34.75 0.08

7 115.2 KBps 115.108 KBps 8.6875 0.08 115.108 KBps 17.375 0.08

8 230.4 KBps 231.884 KBps 4.3125 0.64 230.216 KBps 8.6875 0.08

9 460.8 KBps 457.143 KBps 2.1875 0.79 463.768 KBps 4.3125 0.64

10 921.6 KBps 941.176 KBps 1.0625 2.12 914.286 KBps 2.1875 0.79

11 2 MBps NA NA NA 2000 KBps 1 0

12 4 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 533/598

23.3.5 USART receiver’s tolerance to clock deviation

The USART’s asynchronous receiver works correctly only if the total clock system deviation
is smaller than the USART receiver’s tolerance. The causes which contribute to the total
deviation are:

● DTRA: Deviation due to the transmitter error (which also includes the deviation of the
transmitter’s local oscillator)

● DQUANT: Error due to the baud rate quantization of the receiver

● DREC: Deviation of the receiver’s local oscillator

● DTCL: Deviation due to the transmission line (generally due to the transceivers which
can introduce an asymmetry between the low-to-high transition timing and the high-to-
low transition timing)

DTRA + DQUANT + DREC + DTCL < USART receiver’s tolerance

Table 91. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),
oversampling by 8(1)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 16 MHz fPCLK = 32 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 1.2 KBps 1.2 KBps 1666.625 0 1.2 KBps 3333.375 0

2 2.4 KBps 2.4 KBps 833.375 0 2.4 KBps 1666.625 0

3 9.6 KBps 9.598 KBps 208.375 0.02 9.601 KBps 416.625 0.01

4 19.2 KBps 19.208 KBps 104.125 0.04 19.196 KBps 208.375 0.02

5 38.4 KBps 38.369 KBps 52.125 0.08 38.415 KBps 104.125 0.04

6 57.6 KBps 57.554 KBps 34.75 0.08 57.554 KBps 69.5 0.08

7 115.2 KBps 115.108 KBps 17.375 0.08 115.108 KBps 34.75 0.08

8 230.4 KBps 231.884 KBps 8.625 0.64 230.216 KBps 17.375 0.08

9 460.8 KBps 457.143 KBps 4.375 0.79 463.768 KBps 8.625 0.64

10 921.6 KBps 941.176 KBps 2.125 2.12 914.286 KBps 4.375 0.79

11 2 MBps 2000 KBps 1 0 2000 KBps 2 0

12 4 MBps NA NA NA 4000 KBps 1 0

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

534/598 Doc ID 15965 Rev 4

The USART receiver’s tolerance to properly receive data is equal to the maximum tolerated
deviation and depends on the following choices:

● 10- or 11-bit character length defined by the M bit in the USART_CR1 register

● oversampling by 8 or 16 defined by the OVER8 bit in the USART_CR1 register

● use of fractional baud rate or not

● use of 1 bit or 3 bits to sample the data, depending on the value of the ONEBITE bit in
the USART_CR3 register

Table 93. USART receiver’s tolerance when DIV_Fraction is different from 0

Note: The figures specified in Table and Table 93 may slighly differ in the special case when the
received frames contain some Idle frames of exactly 10-bit times when M=0 (11-bit times
when M=1).

23.3.6 Multiprocessor communication

There is a possibility of performing multiprocessor communication with the USART (several
USARTs connected in a network). For instance one of the USARTs can be the master, its
TX output is connected to the RX input of the other USART. The others are slaves, their
respective TX outputs are logically ANDed together and connected to the RX input of the
master.

In multiprocessor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant USART
service overhead for all non addressed receivers.

The non addressed devices may be placed in mute mode by means of the muting function.
In mute mode:

● None of the reception status bits can be set.

● All the receive interrupts are inhibited.

● The RWU bit in USART_CR1 register is set to 1. RWU can be controlled automatically
by hardware or written by the software under certain conditions.

The USART can enter or exit from mute mode using one of two methods, depending on the
WAKE bit in the USART_CR1 register:

● Idle Line detection if the WAKE bit is reset,

● Address Mark detection if the WAKE bit is set.

Table 92. USART receiver’s tolerance when DIV fraction is 0

M bit
OVER8 bit = 0 OVER8 bit = 1

ONEBITE=0 ONEBITE=1 ONEBITE=0 ONEBITE=1

0 3.75% 4.375% 2.50% 3.75%

1 3.41% 3.97% 2.27% 3.41%

M bit
OVER8 bit = 0 OVER8 bit = 1

ONEBITE=0 ONEBITE=1 ONEBITE=0 ONEBITE=1

0 3.33% 3.88% 2% 3%

1 3.03% 3.53% 1.82% 2.73%

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 535/598

Idle line detection (WAKE=0)

The USART enters mute mode when the RWU bit is written to 1.

It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the USART_SR register. RWU can also be written to 0 by software.

An example of mute mode behavior using Idle line detection is given in Figure 186.

Figure 186. Mute mode using Idle line detection

Address mark detection (WAKE=1)

In this mode, bytes are recognized as addresses if their MSB is a ‘1 else they are
considered as data. In an address byte, the address of the targeted receiver is put on the 4
LSB. This 4-bit word is compared by the receiver with its own address which is programmed
in the ADD bits in the USART_CR2 register.

The USART enters mute mode when an address character is received which does not
match its programmed address. In this case, the RWU bit is set by hardware. The RXNE flag
is not set for this address byte and no interrupt nor DMA request is issued as the USART
would have entered mute mode.

It exits from mute mode when an address character is received which matches the
programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been cleared.

The RWU bit can be written to as 0 or 1 when the receiver buffer contains no data (RXNE=0
in the USART_SR register). Otherwise the write attempt is ignored.

An example of mute mode behavior using address mark detection is given in Figure 187.

Figure 187. Mute mode using address mark detection

RWU written to 1

Data 1 IDLERX Data 2 Data 3 Data 4 Data 6Data 5

RWU Mute Mode Normal Mode

Idle frame detected

RXNE RXNE

RWU written to 1

IDLERX Addr=0

RWU Mute Mode Normal Mode

Matching address

RXNE RXNE

(RXNE was cleared)

Data 2 Data 3 Data 4 Data 5Data 1 IDLE Addr=1 Addr=2

Mute Mode

In this example, the current address of the receiver is 1
(programmed in the USART_CR2 register)

nonmatching address nonmatching address

Universal synchronous asynchronous receiver transmitter (USART) RM0038

536/598 Doc ID 15965 Rev 4

23.3.7 Parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCE bit in the USART_CR1 register. Depending on the frame
length defined by the M bit, the possible USART frame formats are as listed in Table 94.

Table 94. Frame formats

Even parity

The parity bit is calculated to obtain an even number of “1s” inside the frame made of the 7
or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

E.g.: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit in
USART_CR1 = 0).

Odd parity

The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 7 or
8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

E.g.: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit in
USART_CR1 = 1).

Parity checking in reception

If the parity check fails, the PE flag is set in the USART_SR register and an interrupt is
generated if PEIE is set in the USART_CR1 register. The PE flag is cleared by a software
sequence (a read from the status register followed by a read or write access to the
USART_DR data register).

Note: In case of wakeup by an address mark: the MSB bit of the data is taken into account to
identify an address but not the parity bit. And the receiver does not check the parity of the
address data (PE is not set in case of a parity error).

Parity generation in transmission

If the PCE bit is set in USART_CR1, then the MSB bit of the data written in the data register
is transmitted but is changed by the parity bit (even number of “1s” if even parity is selected
(PS=0) or an odd number of “1s” if odd parity is selected (PS=1)).

Note: The software routine that manages the transmission can activate the software sequence
which clears the PE flag (a read from the status register followed by a read or write access
to the data register). When operating in half-duplex mode, depending on the software, this
can cause the PE flag to be unexpectedly cleared.

M bit PCE bit USART frame(1)

1. Legends: SB: start bit, STB: stop bit, PB: parity bit.

0 0 | SB | 8 bit data | STB |

0 1 | SB | 7-bit data | PB | STB |

1 0 | SB | 9-bit data | STB |

1 1 | SB | 8-bit data PB | STB |

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 537/598

23.3.8 LIN (local interconnection network) mode

The LIN mode is selected by setting the LINEN bit in the USART_CR2 register. In LIN mode,
the following bits must be kept cleared:

● CLKEN in the USART_CR2 register,

● STOP[1:0], SCEN, HDSEL and IREN in the USART_CR3 register.

LIN transmission

The same procedure explained in Section 23.3.2 has to be applied for LIN Master
transmission than for normal USART transmission with the following differences:

● Clear the M bit to configure 8-bit word length.

● Set the LINEN bit to enter LIN mode. In this case, setting the SBK bit sends 13 ‘0 bits
as a break character. Then a bit of value ‘1 is sent to allow the next start detection.

LIN reception

A break detection circuit is implemented on the USART interface. The detection is totally
independent from the normal USART receiver. A break can be detected whenever it occurs,
during Idle state or during a frame.

When the receiver is enabled (RE=1 in USART_CR1), the circuit looks at the RX input for a
start signal. The method for detecting start bits is the same when searching break
characters or data. After a start bit has been detected, the circuit samples the next bits
exactly like for the data (on the 8th, 9th and 10th samples). If 10 (when the LBDL = 0 in
USART_CR2) or 11 (when LBDL=1 in USART_CR2) consecutive bits are detected as ‘0,
and are followed by a delimiter character, the LBD flag is set in USART_SR. If the LBDIE
bit=1, an interrupt is generated. Before validating the break, the delimiter is checked for as it
signifies that the RX line has returned to a high level.

If a ‘1 is sampled before the 10 or 11 have occurred, the break detection circuit cancels the
current detection and searches for a start bit again.

If the LIN mode is disabled (LINEN=0), the receiver continues working as normal USART,
without taking into account the break detection.

If the LIN mode is enabled (LINEN=1), as soon as a framing error occurs (i.e. stop bit
detected at ‘0, which will be the case for any break frame), the receiver stops until the break
detection circuit receives either a ‘1, if the break word was not complete, or a delimiter
character if a break has been detected.

The behavior of the break detector state machine and the break flag is shown on the
Figure 188: Break detection in LIN mode (11-bit break length - LBDL bit is set) on page 538.

Examples of break frames are given on Figure 189: Break detection in LIN mode vs.
Framing error detection on page 539.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

538/598 Doc ID 15965 Rev 4

Figure 188. Break detection in LIN mode (11-bit break length - LBDL bit is set)

Case 1: break signal not long enough => break discarded, LBD is not set

Break FrameRX line

Break State machine

Capture Strobe

0

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9Idle Idle

Read Samples

Bit0

0 0 0 0 0 0 0 0 0 1

Bit10

Break FrameRX line

Break State machine

Capture Strobe

0

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9Idle Idle

Read Samples

Bit0

0 0 0 0 0 0 0 0 0 0

B10

Case 2: break signal just long enough => break detected, LBD is set

LBD

Break FrameRX line

Break State machine

Capture Strobe

0

Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Bit8 Bit9Idle Idle

Read Samples

Bit0

0 0 0 0 0 0 0 0 0 0

Bit10

Case 3: break signal long enough => break detected, LBD is set

wait delimiter

LBD

delimiter is immediate

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 539/598

Figure 189. Break detection in LIN mode vs. Framing error detection

23.3.9 USART synchronous mode

The synchronous mode is selected by writing the CLKEN bit in the USART_CR2 register to
1. In synchronous mode, the following bits must be kept cleared:

● LINEN bit in the USART_CR2 register,

● SCEN, HDSEL and IREN bits in the USART_CR3 register.

The USART allows the user to control a bidirectional synchronous serial communications in
master mode. The SCLK pin is the output of the USART transmitter clock. No clock pulses
are sent to the SCLK pin during start bit and stop bit. Depending on the state of the LBCL bit
in the USART_CR2 register clock pulses will or will not be generated during the last valid
data bit (address mark). The CPOL bit in the USART_CR2 register allows the user to select
the clock polarity, and the CPHA bit in the USART_CR2 register allows the user to select the
phase of the external clock (see Figure 190, Figure 191 & Figure 192).

During the Idle state, preamble and send break, the external SCLK clock is not activated.

In synchronous mode the USART transmitter works exactly like in asynchronous mode. But
as SCLK is synchronized with TX (according to CPOL and CPHA), the data on TX is
synchronous.

In this mode the USART receiver works in a different manner compared to the
asynchronous mode. If RE=1, the data is sampled on SCLK (rising or falling edge,
depending on CPOL and CPHA), without any oversampling. A setup and a hold time must
be respected (which depends on the baud rate: 1/16 bit time).

Note: 1 The SCLK pin works in conjunction with the TX pin. Thus, the clock is provided only if the
transmitter is enabled (TE=1) and a data is being transmitted (the data register USART_DR
has been written). This means that it is not possible to receive a synchronous data without
transmitting data.

2 The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the
receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. These
bits should not be changed while the transmitter or the receiver is enabled.

Case 1: break occurring after an Idle

IDLE data2 (0x55)data 1 data 3 (header)

In these examples, we suppose that LBDL=1 (11-bit break length), M=0 (8-bit data)

RX line

RXNE / FE

LBD

1 data time 1 data time

Case 1: break occurring while a data is being received

data 2 data2 (0x55)data 1 data 3 (header)RX line

RXNE / FE

LBD

1 data time 1 data time

BREAK

BREAK

Universal synchronous asynchronous receiver transmitter (USART) RM0038

540/598 Doc ID 15965 Rev 4

3 It is advised that TE and RE are set in the same instruction in order to minimize the setup
and the hold time of the receiver.

4 The USART supports master mode only: it cannot receive or send data related to an input
clock (SCLK is always an output).

Figure 190. USART example of synchronous transmission

Figure 191. USART data clock timing diagram (M=0)

RX
TX

SCLK

USART

Data out
Data in

Synchronous device

Clock

(e.g. slave SPI)

M=0 (8 data bits)

Clock (CPOL=0, CPHA=1)

Clock (CPOL=1, CPHA=0)

Clock (CPOL=1, CPHA=1)

Start LSB MSB Stop

* LBCL bit controls last data clock pulse

Start
Idle or preceding
transmission

Data on TX

Stop

Clock (CPOL=0, CPHA=0)

0 1 2 3 4 5 6 7

*

*

*

*

Idle or next
transmission

*
Capture Strobe

LSB MSB

Data on RX 0 1 2 3 4 5 6 7

(from master)

(from slave)

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 541/598

Figure 192. USART data clock timing diagram (M=1)

Figure 193. RX data setup/hold time

Note: The function of SCLK is different in Smartcard mode. Refer to the Smartcard mode chapter
for more details.

23.3.10 Single-wire half-duplex communication

The single-wire half-duplex mode is selected by setting the HDSEL bit in the USART_CR3
register. In this mode, the following bits must be kept cleared:

● LINEN and CLKEN bits in the USART_CR2 register,

● SCEN and IREN bits in the USART_CR3 register.

The USART can be configured to follow a single-wire half-duplex protocol where the TX and
RX lines are internally connected. The selection between half- and full-duplex
communication is made with a control bit ‘HALF DUPLEX SEL’ (HDSEL in USART_CR3).

As soon as HDSEL is written to 1:

● the TX and RX lines are internally connected

● the RX pin is no longer used

● the TX pin is always released when no data is transmitted. Thus, it acts as a standard
I/O in idle or in reception. It means that the I/O must be configured so that TX is
configured as floating input (or output high open-drain) when not driven by the USART.

Idle or nextM=1 (9 data bits)

Clock (CPOL=0, CPHA=1)

Clock (CPOL=1, CPHA=0)

Clock (CPOL=1, CPHA=1)

Start LSB MSB Stop

* LBCL bit controls last data clock pulse

Start
Idle or preceding
transmission

Data on TX

Stop

Clock (CPOL=0, CPHA=0)

0 1 2 3 4 5 6 7

*

*

*

*

8

transmission

Capture Strobe

LSB MSB

Data on RX 0 1 2 3 4 5 6 7
(from slave)

(from master)

*

8

valid DATA bit

tSETUP tHOLD

SCLK (capture strobe on SCLK
rising edge in this example)

Data on RX
(from slave)

tSETUP = tHOLD 1/16 bit time

Universal synchronous asynchronous receiver transmitter (USART) RM0038

542/598 Doc ID 15965 Rev 4

Apart from this, the communications are similar to what is done in normal USART mode.
The conflicts on the line must be managed by the software (by the use of a centralized
arbiter, for instance). In particular, the transmission is never blocked by hardware and
continue to occur as soon as a data is written in the data register while the TE bit is set.

23.3.11 Smartcard

The Smartcard mode is selected by setting the SCEN bit in the USART_CR3 register. In
smartcard mode, the following bits must be kept cleared:

● LINEN bit in the USART_CR2 register,

● HDSEL and IREN bits in the USART_CR3 register.

Moreover, the CLKEN bit may be set in order to provide a clock to the smartcard.

The Smartcard interface is designed to support asynchronous protocol Smartcards as
defined in the ISO 7816-3 standard. The USART should be configured as:

● 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register

● 1.5 stop bits when transmitting and receiving : where STOP=11 in the USART_CR2
register.

Note: It is also possible to choose 0.5 stop bit for receiving but it is recommended to use 1.5 stop
bits for both transmitting and receiving to avoid switching between the two configurations.

Figure 194 shows examples of what can be seen on the data line with and without parity
error.

Figure 194. ISO 7816-3 asynchronous protocol

When connected to a smartcard, the TX output of the USART drives a bidirectional line that
the smartcard also drives into. To do so, SW_RX must be connected on the same I/O than
TX at product level. The Transmitter output enable TX_EN is asserted during the
transmission of the start bit and the data byte, and is deasserted during the stop bit (weak
pull up), so that the receive can drive the line in case of a parity error. If TX_EN is not used,
TX is driven at high level during the stop bit: Thus the receiver can drive the line as long as
TX is configured in open-drain.

Smartcard is a single wire half duplex communication protocol.

● Transmission of data from the transmit shift register is guaranteed to be delayed by a
minimum of 1/2 baud clock. In normal operation a full transmit shift register will start
shifting on the next baud clock edge. In Smartcard mode this transmission is further
delayed by a guaranteed 1/2 baud clock.

S 0 1 2 3 54 6 7 P

Start
bit

Guard time

S 0 1 2 3 54 6 7 P

Start
bit

Line pulled low
by receiver during stop in
case of parity error

Guard time

Without Parity error

With Parity error

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 543/598

● If a parity error is detected during reception of a frame programmed with a 0.5 or 1.5
stop bit period, the transmit line is pulled low for a baud clock period after the
completion of the receive frame. This is to indicate to the Smartcard that the data
transmitted to USART has not been correctly received. This NACK signal (pulling
transmit line low for 1 baud clock) will cause a framing error on the transmitter side
(configured with 1.5 stop bits). The application can handle re-sending of data according
to the protocol. A parity error is ‘NACK’ed by the receiver if the NACK control bit is set,
otherwise a NACK is not transmitted.

● The assertion of the TC flag can be delayed by programming the Guard Time register.
In normal operation, TC is asserted when the transmit shift register is empty and no
further transmit requests are outstanding. In Smartcard mode an empty transmit shift
register triggers the guard time counter to count up to the programmed value in the
Guard Time register. TC is forced low during this time. When the guard time counter
reaches the programmed value TC is asserted high.

● The de-assertion of TC flag is unaffected by Smartcard mode.

● If a framing error is detected on the transmitter end (due to a NACK from the receiver),
the NACK will not be detected as a start bit by the receive block of the transmitter.
According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud
clock periods.

● On the receiver side, if a parity error is detected and a NACK is transmitted the receiver
will not detect the NACK as a start bit.

Note: 1 A break character is not significant in Smartcard mode. A 0x00 data with a framing error will
be treated as data and not as a break.

2 No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the
other configurations) is not defined by the ISO protocol.

Figure 195 details how the NACK signal is sampled by the USART. In this example the
USART is transmitting a data and is configured with 1.5 stop bits. The receiver part of the
USART is enabled in order to check the integrity of the data and the NACK signal.

Figure 195. Parity error detection using the 1.5 stop bits

The USART can provide a clock to the smartcard through the SCLK output. In smartcard
mode, SCLK is not associated to the communication but is simply derived from the internal
peripheral input clock through a 5-bit prescaler. The division ratio is configured in the

1 bit time 1.5 bit time

0.5 bit time 1 bit time

sampling at
8th, 9th, 10th

sampling at
8th, 9th, 10th

sampling at
8th, 9th, 10th

sampling at
16th, 17th, 18th

Bit 7 Parity Bit 1.5 Stop Bit

Universal synchronous asynchronous receiver transmitter (USART) RM0038

544/598 Doc ID 15965 Rev 4

prescaler register USART_GTPR. SCLK frequency can be programmed from fCK/2 to
fCK/62, where fCK is the peripheral input clock.

23.3.12 IrDA SIR ENDEC block

The IrDA mode is selected by setting the IREN bit in the USART_CR3 register. In IrDA
mode, the following bits must be kept cleared:

● LINEN, STOP and CLKEN bits in the USART_CR2 register,

● SCEN and HDSEL bits in the USART_CR3 register.

The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation
scheme that represents logic 0 as an infrared light pulse (see Figure 196).

The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream
output from USART. The output pulse stream is transmitted to an external output driver and
infrared LED. USART supports only bit rates up to 115.2Kbps for the SIR ENDEC. In normal
mode the transmitted pulse width is specified as 3/16 of a bit period.

The SIR receive decoder demodulates the return-to-zero bit stream from the infrared
detector and outputs the received NRZ serial bit stream to USART. The decoder input is
normally HIGH (marking state) in the Idle state. The transmit encoder output has the
opposite polarity to the decoder input. A start bit is detected when the decoder input is low.

● IrDA is a half duplex communication protocol. If the Transmitter is busy (i.e. the USART
is sending data to the IrDA encoder), any data on the IrDA receive line will be ignored
by the IrDA decoder and if the Receiver is busy (USART is receiving decoded data from
the USART), data on the TX from the USART to IrDA will not be encoded by IrDA.
While receiving data, transmission should be avoided as the data to be transmitted
could be corrupted.

● A ‘0 is transmitted as a high pulse and a ‘1 is transmitted as a ‘0. The width of the pulse
is specified as 3/16th of the selected bit period in normal mode (see Figure 197).

● The SIR decoder converts the IrDA compliant receive signal into a bit stream for
USART.

● The SIR receive logic interprets a high state as a logic one and low pulses as logic
zeros.

● The transmit encoder output has the opposite polarity to the decoder input. The SIR
output is in low state when Idle.

● The IrDA specification requires the acceptance of pulses greater than 1.41 us. The
acceptable pulse width is programmable. Glitch detection logic on the receiver end
filters out pulses of width less than 2 PSC periods (PSC is the prescaler value
programmed in the IrDA low-power Baud Register, USART_GTPR). Pulses of width
less than 1 PSC period are always rejected, but those of width greater than one and
less than two periods may be accepted or rejected, those greater than 2 periods will be
accepted as a pulse. The IrDA encoder/decoder doesn’t work when PSC=0.

● The receiver can communicate with a low-power transmitter.

● In IrDA mode, the STOP bits in the USART_CR2 register must be configured to “1 stop
bit”.

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 545/598

IrDA low-power mode

Transmitter:

In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the
width of the pulse is 3 times the low-power baud rate which can be a minimum of 1.42 MHz.
Generally this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode
programmable divisor divides the system clock to achieve this value.

Receiver:

Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the
USART should discard pulses of duration shorter than 1/PSC. A valid low is accepted only if
its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in
USART_GTPR).

Note: 1 A pulse of width less than two and greater than one PSC period(s) may or may not be
rejected.

2 The receiver set up time should be managed by software. The IrDA physical layer
specification specifies a minimum of 10 ms delay between transmission and reception (IrDA
is a half duplex protocol).

Figure 196. IrDA SIR ENDEC- block diagram

Figure 197. IrDA data modulation (3/16) -Normal mode

USART

SIR
Transmit
Encoder

SIR
Receive
Decoder

OR USART_TX

IrDA_OUT

IrDA_IN

USART_RX

TX

RX

SIREN

TX

IrDA_OUT

IrDA_IN

RX

Start
bit

0 1 0 1 0 0 1 1 0 1

3/16

stop bit

bit period

0 1 0 1 0 0 1 1 0 1

Universal synchronous asynchronous receiver transmitter (USART) RM0038

546/598 Doc ID 15965 Rev 4

23.3.13 Continuous communication using DMA

The USART is capable of continuous communication using the DMA. The DMA requests for
Rx buffer and Tx buffer are generated independently.

Note: You should refer to product specs for availability of the DMA controller. If DMA is not
available in the product, you should use the USART as explained in Section 23.3.2 or
23.3.3. In the USART_SR register, you can clear the TXE/ RXNE flags to achieve
continuous communication.

Transmission using DMA

DMA mode can be enabled for transmission by setting DMAT bit in the USART_CR3
register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to the
DMA specification) to the USART_DR register whenever the TXE bit is set. To map a DMA
channel for USART transmission, use the following procedure (x denotes the channel
number):

1. Write the USART_DR register address in the DMA control register to configure it as the
destination of the transfer. The data will be moved to this address from memory after
each TXE event.

2. Write the memory address in the DMA control register to configure it as the source of
the transfer. The data will be loaded into the USART_DR register from this memory
area after each TXE event.

3. Configure the total number of bytes to be transferred to the DMA control register.

4. Configure the channel priority in the DMA register

5. Configure DMA interrupt generation after half/ full transfer as required by the
application.

6. Clear the TC bit in the SR register by writing 0 to it.

7. Activate the channel in the DMA register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.

In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag
is set in the DMA_ISR register), the TC flag can be monitored to make sure that the USART
communication is complete. This is required to avoid corrupting the last transmission before
disabling the USART or entering the Stop mode. The software must wait until TC=1. The TC
flag remains cleared during all data transfers and it is set by hardware at the last frame’s end
of transmission.

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 547/598

Figure 198. Transmission using DMA

Reception using DMA

DMA mode can be enabled for reception by setting the DMAR bit in USART_CR3 register.
Data is loaded from the USART_DR register to a SRAM area configured using the DMA
peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA
channel for USART reception, use the following procedure:

1. Write the USART_DR register address in the DMA control register to configure it as the
source of the transfer. The data will be moved from this address to the memory after
each RXNE event.

2. Write the memory address in the DMA control register to configure it as the destination
of the transfer. The data will be loaded from USART_DR to this memory area after each
RXNE event.

3. Configure the total number of bytes to be transferred in the DMA control register.

4. Configure the channel priority in the DMA control register

5. Configure interrupt generation after half/ full transfer as required by the application.

6. Activate the channel in the DMA control register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector. The DMAR bit should
be cleared by software in the USART_CR3 register during the interrupt subroutine.

Note: If DMA is used for reception, do not enable the RXNEIE bit.

software waits until TC=1
software configures
the DMA to send 3

data and enables the
USART

DMA writes F1
into

USART_DR

DMA writes F2
into

USART_DR

DMA writes F3
into

USART_DR.

The DMA transfer
is complete
(TCIF=1 in
DMA_ISR)

Universal synchronous asynchronous receiver transmitter (USART) RM0038

548/598 Doc ID 15965 Rev 4

Figure 199. Reception using DMA

Error flagging and interrupt generation in multibuffer communication

In case of multibuffer communication if any error occurs during the transaction the error flag
will be asserted after the current byte. An interrupt will be generated if the interrupt enable
flag is set. For framing error, overrun error and noise flag which are asserted with RXNE in
case of single byte reception, there will be separate error flag interrupt enable bit (EIE bit in
the USART_CR3 register), which if set will issue an interrupt after the current byte with
either of these errors.

23.3.14 Hardware flow control

It is possible to control the serial data flow between 2 devices by using the nCTS input and
the nRTS output. The Figure 200 shows how to connect 2 devices in this mode:

Figure 200. Hardware flow control between 2 USARTs

RTS and CTS flow control can be enabled independently by writing respectively RTSE and
CTSE bits to 1 (in the USART_CR3 register).

software configures the
DMA to receive 3 data
blocks and enables
the USART

DMA reads F1
from

USART_DR

DMA reads F2
from

USART_DR

DMA reads F3
from

USART_DR

The DMA transfer
is complete
(TCIF=1 in
DMA_ISR)

USART 1

RX circuit

TX circuit

USART 2

TX circuit

RX circuit

RXTX

TXRX

nCTS nRTS

nRTS nCTS

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 549/598

RTS flow control

If the RTS flow control is enabled (RTSE=1), then nRTS is asserted (tied low) as long as the
USART receiver is ready to receive a new data. When the receive register is full, nRTS is
deasserted, indicating that the transmission is expected to stop at the end of the current
frame. Figure 201 shows an example of communication with RTS flow control enabled.

Figure 201. RTS flow control

CTS flow control

If the CTS flow control is enabled (CTSE=1), then the transmitter checks the nCTS input
before transmitting the next frame. If nCTS is asserted (tied low), then the next data is
transmitted (assuming that a data is to be transmitted, in other words, if TXE=0), else the
transmission does not occur. When nCTS is deasserted during a transmission, the current
transmission is completed before the transmitter stops.

When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the nCTS
input toggles. It indicates when the receiver becomes ready or not ready for communication.
An interrupt is generated if the CTSIE bit in the USART_CR3 register is set. The figure
below shows an example of communication with CTS flow control enabled.

Figure 202. CTS flow control

Note: Special behavior of break frames: when the CTS flow is enabled, the transmitter does not
check the nCTS input state to send a break.

Start
Bit

Stop
BitData 1 IdleStart

Bit
Stop
BitData 2RX

nRTS

RXNE Data 1 read RXNE
Data 2 can now be transmitted

Start
Bit

Stop
BitData 2 Idle Start

Bit Data 3TX

nCTS

CTS

Transmission of Data 3

Data 1 Stop
Bit

is delayed until nCTS = 0

CTS

Data 2 Data 3empty empty

Transmit data register

TDR

Writing data 3 in TDR

Universal synchronous asynchronous receiver transmitter (USART) RM0038

550/598 Doc ID 15965 Rev 4

23.4 USART interrupts

The USART interrupt events are connected to the same interrupt vector (see Figure 203).

● During transmission: Transmission Complete, Clear to Send or Transmit Data Register
empty interrupt.

● While receiving: Idle Line detection, Overrun error, Receive Data register not empty,
Parity error, LIN break detection, Noise Flag (only in multi buffer communication) and
Framing Error (only in multi buffer communication).

These events generate an interrupt if the corresponding Enable Control Bit is set.

Figure 203. USART interrupt mapping diagram

Table 95. USART interrupt requests

Interrupt event Event flag
Enable control

bit

Transmit Data Register Empty TXE TXEIE

CTS flag CTS CTSIE

Transmission Complete TC TCIE

Received Data Ready to be Read RXNE
RXNEIE

Overrun Error Detected ORE

Idle Line Detected IDLE IDLEIE

Parity Error PE PEIE

Break Flag LBD LBDIE

Noise Flag, Overrun error and Framing Error in multibuffer
communication

NF or ORE or FE EIE

TC
TCIE

TXE
TXEIE

IDLE
IDLEIE

RXNEIE
ORE

RXNEIE
RXNE

PE
PEIE

FE
NE

ORE EIE
DMAR

USART

LBD
LBDIE

CTS
CTSIE

interrupt

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 551/598

23.5 USART mode configuration

23.6 USART registers
Refer to Section 1.1 on page 29 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

23.6.1 Status register (USART_SR)

Address offset: 0x00

Reset value: 0x00C0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CTS LBD TXE TC RXNE IDLE ORE NF FE PE

rc_w0 rc_w0 r rc_w0 rc_w0 r r r r r

Bits 31:10 Reserved, forced by hardware to 0.

Bit 9 CTS: CTS flag

This bit is set by hardware when the nCTS input toggles, if the CTSE bit is set. It is cleared
by software (by writing it to 0). An interrupt is generated if CTSIE=1 in the USART_CR3
register.
0: No change occurred on the nCTS status line
1: A change occurred on the nCTS status line

Bit 8 LBD: LIN break detection flag

This bit is set by hardware when the LIN break is detected. It is cleared by software (by
writing it to 0). An interrupt is generated if LBDIE = 1 in the USART_CR2 register.
0: LIN Break not detected
1: LIN break detected

Note: An interrupt is generated when LBD=1 if LBDIE=1

Bit 7 TXE: Transmit data register empty

This bit is set by hardware when the content of the TDR register has been transferred into
the shift register. An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register. It
is cleared by a write to the USART_DR register.
0: Data is not transferred to the shift register
1: Data is transferred to the shift register)

Note: This bit is used during single buffer transmission.

Bit 6 TC: Transmission complete
This bit is set by hardware if the transmission of a frame containing data is complete and if
TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. It is cleared by a
software sequence (a read from the USART_SR register followed by a write to the
USART_DR register). The TC bit can also be cleared by writing a '0' to it. This clearing
sequence is recommended only for multibuffer communication.
0: Transmission is not complete
1: Transmission is complete

Universal synchronous asynchronous receiver transmitter (USART) RM0038

552/598 Doc ID 15965 Rev 4

Bit 5 RXNE: Read data register not empty
This bit is set by hardware when the content of the RDR shift register has been transferred
to the USART_DR register. An interrupt is generated if RXNEIE=1 in the USART_CR1
register. It is cleared by a read to the USART_DR register. The RXNE flag can also be
cleared by writing a zero to it. This clearing sequence is recommended only for multibuffer
communication.
0: Data is not received
1: Received data is ready to be read.

Bit 4 IDLE: IDLE line detected

This bit is set by hardware when an Idle Line is detected. An interrupt is generated if the
IDLEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the
USART_SR register followed by a read to the USART_DR register).
0: No Idle Line is detected
1: Idle Line is detected

Note: The IDLE bit will not be set again until the RXNE bit has been set itself (i.e. a new idle
line occurs).

Bit 3 ORE: Overrun error

This bit is set by hardware when the word currently being received in the shift register is
ready to be transferred into the RDR register while RXNE=1. An interrupt is generated if
RXNEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the
USART_SR register followed by a read to the USART_DR register).
0: No Overrun error
1: Overrun error is detected

Note: When this bit is set, the RDR register content will not be lost but the shift register will be
overwritten. An interrupt is generated on ORE flag in case of Multi Buffer
communication if the EIE bit is set.

Bit 2 NF: Noise detected flag

This bit is set by hardware when noise is detected on a received frame. It is cleared by a
software sequence (an read to the USART_SR register followed by a read to the
USART_DR register).
0: No noise is detected
1: Noise is detected

Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupting interrupt is generated on NF flag in case of Multi
Buffer communication if the EIE bit is set.

Note: When the line is noise-free, the NF flag can be disabled by programming the ONEBITE
bit to 1 to increase the USART tolerance to deviations (Refer to Section 23.3.5: USART
receiver’s tolerance to clock deviation on page 533).

Bit 1 FE: Framing error

This bit is set by hardware when a de-synchronization, excessive noise or a break character
is detected. It is cleared by a software sequence (an read to the USART_SR register
followed by a read to the USART_DR register).
0: No Framing error is detected
1: Framing error or break character is detected

Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupt. If the word currently being transferred causes both
frame error and overrun error, it will be transferred and only the ORE bit will be set.
An interrupt is generated on FE flag in case of Multi Buffer communication if the EIE bit
is set.

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 553/598

23.6.2 Data register (USART_DR)

Address offset: 0x04

Reset value: Undefined

23.6.3 Baud rate register (USART_BRR)

Note: The baud counters stop counting if the TE or RE bits are disabled respectively.

Address offset: 0x08

Reset value: 0x0000

Bit 0 PE: Parity error
This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a
software sequence (a read from the status register followed by a read or write access to the
USART_DR data register). The software must wait for the RXNE flag to be set before
clearing the PE bit.
An interrupt is generated if PEIE = 1 in the USART_CR1 register.
0: No parity error
1: Parity error

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DR[8:0]

rw rw rw rw rw rw rw rw rw

Bits 31:9 Reserved, forced by hardware to 0.

Bits 8:0 DR[8:0]: Data value

Contains the Received or Transmitted data character, depending on whether it is read from
or written to.
The Data register performs a double function (read and write) since it is composed of two
registers, one for transmission (TDR) and one for reception (RDR)
The TDR register provides the parallel interface between the internal bus and the output
shift register (see Figure 1).
The RDR register provides the parallel interface between the input shift register and the
internal bus.
When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the
value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because
it is replaced by the parity.
When receiving with the parity enabled, the value read in the MSB bit is the received parity
bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIV_Mantissa[11:0] DIV_Fraction[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Universal synchronous asynchronous receiver transmitter (USART) RM0038

554/598 Doc ID 15965 Rev 4

23.6.4 Control register 1 (USART_CR1)

Address offset: 0x0C

Reset value: 0x0000

Bits 31:16 Reserved, forced by hardware to 0.

Bits 15:4 DIV_Mantissa[11:0]: mantissa of USARTDIV

These 12 bits define the mantissa of the USART Divider (USARTDIV)

Bits 3:0 DIV_Fraction[3:0]: fraction of USARTDIV

These 4 bits define the fraction of the USART Divider (USARTDIV). When OVER8=1, the
DIV_Fraction3 bit is not considered and must be kept cleared.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OVER8 Reserved UE M WAKE PCE PS PEIE TXEIE TCIE RXNEIE IDLEIE TE RE RWU SBK

rw Res. rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, forced by hardware to 0.

Bit 15 OVER8 : Oversampling mode

0: oversampling by 16
1: oversampling by 8

Note: Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes: when
SCEN=1,IREN=1 or LINEN=1 then OVER8 is forced to ‘0 by hardware.

Bit 14 Reserved, forced by hardware to 0.

Bit 13 UE: USART enable
When this bit is cleared the USART prescalers and outputs are stopped and the end of the
current
byte transfer in order to reduce power consumption. This bit is set and cleared by software.
0: USART prescaler and outputs disabled
1: USART enabled

Bit 12 M: Word length

This bit determines the word length. It is set or cleared by software.
0: 1 Start bit, 8 Data bits, n Stop bit
1: 1 Start bit, 9 Data bits, n Stop bit

Note: The M bit must not be modified during a data transfer (both transmission and reception)

Bit 11 WAKE: Wakeup method
This bit determines the USART wakeup method, it is set or cleared by software.
0: Idle Line
1: Address Mark

Bit 10 PCE: Parity control enable
This bit selects the hardware parity control (generation and detection). When the parity
control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit
if M=0) and parity is checked on the received data. This bit is set and cleared by software.
Once it is set, PCE is active after the current byte (in reception and in transmission).
0: Parity control disabled
1: Parity control enabled

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 555/598

Bit 9 PS: Parity selection
This bit selects the odd or even parity when the parity generation/detection is enabled (PCE
bit set). It is set and cleared by software. The parity will be selected after the current byte.
0: Even parity
1: Odd parity

Bit 8 PEIE: PE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever PE=1 in the USART_SR register

Bit 7 TXEIE: TXE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TXE=1 in the USART_SR register

Bit 6 TCIE: Transmission complete interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TC=1 in the USART_SR register

Bit 5 RXNEIE: RXNE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever ORE=1 or RXNE=1 in the USART_SR
register

Bit 4 IDLEIE: IDLE interrupt enable
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever IDLE=1 in the USART_SR register

Bit 3 TE: Transmitter enable
This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled

Note: 1: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble
(idle line) after the current word, except in smartcard mode.

2: When TE is set there is a 1 bit-time delay before the transmission starts.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

556/598 Doc ID 15965 Rev 4

Bit 2 RE: Receiver enable
This bit enables the receiver. It is set and cleared by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit

Bit 1 RWU: Receiver wakeup
This bit determines if the USART is in mute mode or not. It is set and cleared by software
and can be cleared by hardware when a wakeup sequence is recognized.
0: Receiver in active mode
1: Receiver in mute mode

Note: 1: Before selecting Mute mode (by setting the RWU bit) the USART must first receive a
data byte, otherwise it cannot function in Mute mode with wakeup by Idle line detection.
2: In Address Mark Detection wakeup configuration (WAKE bit=1) the RWU bit cannot
be modified by software while the RXNE bit is set.

Bit 0 SBK: Send break

This bit set is used to send break characters. It can be set and cleared by software. It should
be set by software, and will be reset by hardware during the stop bit of break.
0: No break character is transmitted
1: Break character will be transmitted

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 557/598

23.6.5 Control register 2 (USART_CR2)

Address offset: 0x10

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
LINEN STOP[1:0] CLKEN CPOL CPHA LBCL Res. LBDIE LBDL Res. ADD[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, forced by hardware to 0.

Bit 14 LINEN: LIN mode enable

This bit is set and cleared by software.
0: LIN mode disabled
1: LIN mode enabled
The LIN mode enables the capability to send LIN Synch Breaks (13 low bits) using the SBK bit in
the USART_CR1 register, and to detect LIN Sync breaks.

Bits 13:12 STOP: STOP bits

These bits are used for programming the stop bits.
00: 1 Stop bit
01: 0.5 Stop bit
10: 2 Stop bits
11: 1.5 Stop bit

Bit 11 CLKEN: Clock enable

This bit allows the user to enable the SCLK pin.
0: SCLK pin disabled
1: SCLK pin enabled

Bit 10 CPOL: Clock polarity

This bit allows the user to select the polarity of the clock output on the SCLK pin in synchronous
mode. It works in conjunction with the CPHA bit to produce the desired clock/data relationship
0: Steady low value on SCLK pin outside transmission window
1: Steady high value on SCLK pin outside transmission window

Bit 9 CPHA: Clock phase
This bit allows the user to select the phase of the clock output on the SCLK pin in synchronous
mode. It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see
figures 191 to 192)
0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Bit 8 LBCL: Last bit clock pulse
This bit allows the user to select whether the clock pulse associated with the last data bit
transmitted (MSB) has to be output on the SCLK pin in synchronous mode.
0: The clock pulse of the last data bit is not output to the SCLK pin
1: The clock pulse of the last data bit is output to the SCLK pin

1: The last bit is the 8th or 9th data bit transmitted depending on the 8 or 9 bit format selected
by the M bit in the USART_CR1 register.

Bit 7 Reserved, forced by hardware to 0.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

558/598 Doc ID 15965 Rev 4

Note: These 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled.

23.6.6 Control register 3 (USART_CR3)

Address offset: 0x14

Reset value: 0x0000

Bit 6 LBDIE: LIN break detection interrupt enable
Break interrupt mask (break detection using break delimiter).
0: Interrupt is inhibited
1: An interrupt is generated whenever LBD=1 in the USART_SR register

Bit 5 LBDL: lin break detection length

This bit is for selection between 11 bit or 10 bit break detection.
0: 10-bit break detection
1: 11-bit break detection

Bit 4 Reserved, forced by hardware to 0.

Bits 3:0 ADD[3:0]: Address of the USART node
This bit-field gives the address of the USART node.
This is used in multiprocessor communication during mute mode, for wake up with address mark
detection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ONEBITE CTSIE CTSE RTSE DMAT DMAR SCEN NACK HDSEL IRLP IREN EIE

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, forced by hardware to 0.

Bit 11 ONEBITE: One sample bit method enable

This bit allows the user to select the sample method. When the one sample bit method is
selected the noise detection flag (NF) is disabled.
0: Three sample bit method
1: One sample bit method

Bit 10 CTSIE: CTS interrupt enable

0: Interrupt is inhibited
1: An interrupt is generated whenever CTS=1 in the USART_SR register

Bit 9 CTSE: CTS enable

0: CTS hardware flow control disabled
1: CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0).
If the nCTS input is deasserted while a data is being transmitted, then the transmission is
completed before stopping. If a data is written into the data register while nCTS is asserted,
the transmission is postponed until nCTS is asserted.

Bit 8 RTSE: RTS enable

0: RTS hardware flow control disabled

1: RTS interrupt enabled, data is only requested when there is space in the receive buffer.
The transmission of data is expected to cease after the current character has been
transmitted. The nRTS output is asserted (tied to 0) when a data can be received.

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 559/598

Bit 7 DMAT: DMA enable transmitter
This bit is set/reset by software
1: DMA mode is enabled for transmission
0: DMA mode is disabled for transmission

Bit 6 DMAR: DMA enable receiver

This bit is set/reset by software
1: DMA mode is enabled for reception
0: DMA mode is disabled for reception

Bit 5 SCEN: Smartcard mode enable

This bit is used for enabling Smartcard mode.
0: Smartcard Mode disabled
1: Smartcard Mode enabled

Bit 4 NACK: Smartcard NACK enable
0: NACK transmission in case of parity error is disabled
1: NACK transmission during parity error is enabled

Bit 3 HDSEL: Half-duplex selection

Selection of Single-wire Half-duplex mode
0: Half duplex mode is not selected
1: Half duplex mode is selected

Bit 2 IRLP: IrDA low-power
This bit is used for selecting between normal and low-power IrDA modes
0: Normal mode
1: Low-power mode

Bit 1 IREN: IrDA mode enable

This bit is set and cleared by software.
0: IrDA disabled
1: IrDA enabled

Bit 0 EIE: Error interrupt enable

Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing
error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USART_SR register) in
case of Multi Buffer Communication (DMAR=1 in the USART_CR3 register).
0: Interrupt is inhibited
1: An interrupt is generated whenever DMAR=1 in the USART_CR3 register and FE=1 or
ORE=1 or NF=1 in the USART_SR register.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

560/598 Doc ID 15965 Rev 4

23.6.7 Guard time and prescaler register (USART_GTPR)

Address offset: 0x18

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GT[7:0] PSC[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, forced by hardware to 0.

Bits 15:8 GT[7:0]: Guard time value

This bit-field gives the Guard time value in terms of number of baud clocks.
This is used in Smartcard mode. The Transmission Complete flag is set after this guard time
value.

Bits 7:0 PSC[7:0]: Prescaler value

– In IrDA Low-power mode:
PSC[7:0] = IrDA Low-Power Baud Rate
Used for programming the prescaler for dividing the system clock to achieve the low-power
frequency:
The source clock is divided by the value given in the register (8 significant bits):
00000000: Reserved - do not program this value
00000001: divides the source clock by 1
00000010: divides the source clock by 2
...

– In normal IrDA mode: PSC must be set to 00000001.

– In smartcard mode:
PSC[4:0]: Prescaler value
Used for programming the prescaler for dividing the system clock to provide the smartcard
clock.
The value given in the register (5 significant bits) is multiplied by 2 to give the division factor
of the source clock frequency:
00000: Reserved - do not program this value
00001: divides the source clock by 2
00010: divides the source clock by 4
00011: divides the source clock by 6
...

Note: 1: Bits [7:5] have no effect if Smartcard mode is used.

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

Doc ID 15965 Rev 4 561/598

23.6.8 USART register map

The table below gives the USART register map and reset values.

Refer to Table 1 on page 32 for the register boundary addresses.

Table 96. USART register map and reset values
Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
USART_SR

Reserved C
T

S

LB
D

T
X

E

T
C

R
X

N
E

ID
LE

O
R

E

N
F

F
E

P
E

Reset value 0 0 1 1 0 0 0 0 0 0

0x04
USART_DR

Reserved
DR[8:0]

Reset value 0 0 0 0 0 0 0 0 0

0x08
USART_BRR

Reserved
DIV_Mantissa[15:4] DIV_Fraction

[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
USART_CR1

Reserved

O
V

E
R

8

R
es

er
ve

d

U
E M

W
A

K
E

P
C

E

P
S

P
E

IE

T
X

E
IE

T
C

IE

R
X

N
E

IE

ID
LE

IE

T
E

R
E

R
W

U

S
B

K

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
USART_CR2

Reserved

LI
N

E
N STOP

[1:0]

C
LK

E
N

C
P

O
L

C
P

H
A

LB
C

L

R
es

er
ve

d

LB
D

IE

LB
D

L

R
es

er
ve

d

ADD[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
USART_CR3

Reserved

O
N

E
B

IT
E

C
T

S
IE

C
T

S
E

R
T

S
E

D
M

AT

D
M

A
R

S
C

E
N

N
A

C
K

H
D

S
E

L

IR
LP

IR
E

N

E
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x18
USART_GTPR

Reserved
GT[7:0] PSC[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Debug support (DBG) RM0038

562/598 Doc ID 15965 Rev 4

24 Debug support (DBG)

24.1 Overview
The STM32L15xxx are built around a Cortex-M3 core which contains hardware extensions
for advanced debugging features. The debug extensions allow the core to be stopped either
on a given instruction fetch (breakpoint) or data access (watchpoint). When stopped, the
core’s internal state and the system’s external state may be examined. Once examination is
complete, the core and the system may be restored and program execution resumed.

The debug features are used by the debugger host when connecting to and debugging the
STM32L15xxx MCUs.

Two interfaces for debug are available:

● Serial wire

● JTAG debug port

Figure 204. Block diagram of STM32L15xxx-level and
Cortex-M3-level debug support

Note: The debug features embedded in the Cortex-M3 core are a subset of the ARM CoreSight
Design Kit.

Cortex-M3
Core

SWJ-DP AHB-AP

Bridge

NVIC

DWT

FPB

ITM

ETM

DCode
interface

System
interface

Internal private
peripheral bus (PPB)

External private
peripheral bus (PPB)

Bus matrix

Data

Trace port

DBGMCU

STM32L15xxx debug support

Cortex-M3 debug support

JTMS/

JTDI

JTDO/

NJTRST

JTCK/

SWDIO

SWCLK

TRACESWO
TRACESWO

TRACECK

TRACED[3:0]

TPIU

ai17138

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 563/598

The ARM Cortex-M3 core provides integrated on-chip debug support. It is comprised of:

● SWJ-DP: Serial wire / JTAG debug port

● AHP-AP: AHB access port

● ITM: Instrumentation trace macrocell

● FPB: Flash patch breakpoint

● DWT: Data watchpoint trigger

● TPUI: Trace port unit interface (available on larger packages, where the corresponding
pins are mapped)

● ETM: Embedded Trace Macrocell (available on larger packages, where the
corresponding pins are mapped)

It also includes debug features dedicated to the STM32L15xxx:

● Flexible debug pinout assignment

● MCU debug box (support for low-power modes, control over peripheral clocks, etc.)

Note: For further information on debug functionality supported by the ARM Cortex-M3 core, refer
to the Cortex-M3-r2p0 Technical Reference Manual and to the CoreSight Design Kit-r2p0
TRM (see Section 24.2: Reference ARM documentation).

24.2 Reference ARM documentation
● Cortex™-M3 r2p0 Technical Reference Manual (TRM)

(see Related documents on page 1)

● ARM Debug Interface V5

● ARM CoreSight Design Kit revision r2p0 Technical Reference Manual

24.3 SWJ debug port (serial wire and JTAG)
The STM32L15xxx core integrates the Serial Wire / JTAG Debug Port (SWJ-DP). It is an
ARM standard CoreSight debug port that combines a JTAG-DP (5-pin) interface and a SW-
DP (2-pin) interface.

● The JTAG Debug Port (JTAG-DP) provides a 5-pin standard JTAG interface to the AHP-
AP port.

● The Serial Wire Debug Port (SW-DP) provides a 2-pin (clock + data) interface to the
AHP-AP port.

In the SWJ-DP, the two JTAG pins of the SW-DP are multiplexed with some of the five JTAG
pins of the JTAG-DP.

Debug support (DBG) RM0038

564/598 Doc ID 15965 Rev 4

Figure 205. SWJ debug port

Figure 205 shows that the asynchronous TRACE output (TRACESWO) is multiplexed with
TDO. This means that the asynchronous trace can only be used with SW-DP, not JTAG-DP.

24.3.1 Mechanism to select the JTAG-DP or the SW-DP

By default, the JTAG-Debug Port is active.

If the debugger host wants to switch to the SW-DP, it must provide a dedicated JTAG
sequence on TMS/TCK (respectively mapped to SWDIO and SWCLK) which disables the
JTAG-DP and enables the SW-DP. This way it is possible to activate the SWDP using only
the SWCLK and SWDIO pins.

This sequence is:

1. Send more than 50 TCK cycles with TMS (SWDIO) =1

2. Send the 16-bit sequence on TMS (SWDIO) = 0111100111100111 (MSB transmitted
first)

3. Send more than 50 TCK cycles with TMS (SWDIO) =1

24.4 Pinout and debug port pins
The STM32L15xxx MCUs are available in various packages with different numbers of
available pins. As a result, some functionality (ETM) related to pin availability may differ
between packages.

TRACESWO

JTDO

JTDI

NJTRST nTRST

TDI

TDO

SWJ-DP

TDO

TDI

nTRST

TCK

TMS
nPOTRST

JTAG-DP

nPOTRST

From
power-on
reset

DBGRESETn

DBGDI

DBGDO

DBGDOEN

DBGCLK

SW-DP

SWCLKTCK

SWDOEN

SWDO

SWDITMS

SWD/JTAG
select

JTMS/SWDIO

JTCK/SWCLK

(asynchronous trace)

ai17139

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 565/598

24.4.1 SWJ debug port pins

Five pins are used as outputs from the STM32L15xxx for the SWJ-DP as alternate functions
of general-purpose IOs. These pins are available on all packages.

24.4.2 Flexible SWJ-DP pin assignment

After RESET (SYSRESETn or PORESETn), all five pins used for the SWJ-DP are assigned
as dedicated pins immediately usable by the debugger host (note that the trace outputs are
not assigned except if explicitly programmed by the debugger host).

However, the STM32L15xxx MCU offers the possibility of disabling some or all of the SWJ-
DP ports and so, of releasing the associated pins for general-purpose IO (GPIO) usage. For
more details on how to disable SWJ-DP port pins, please refer to Section 24.4.2: Flexible
SWJ-DP pin assignment.

Note: When the APB bridge write buffer is full, it takes one extra APB cycle when writing the
GPIO_AFR register. This is because the deactivation of the JTAGSW pins is done in two
cycles to guarantee a clean level on the nTRST and TCK input signals of the core.

● Cycle 1: the JTAGSW input signals to the core are tied to 1 or 0 (to 1 for nTRST, TDI
and TMS, to 0 for TCK)

● Cycle 2: the GPIO controller takes the control signals of the SWJTAG IO pins (like
controls of direction, pull-up/down, Schmitt trigger activation, etc.).

Table 97. SWJ debug port pins

SWJ-DP pin name
JTAG debug port SW debug port Pin

assign
mentType Description Type Debug assignment

JTMS/SWDIO I
JTAG Test Mode
Selection

IO
Serial Wire Data
Input/Output

PA13

JTCK/SWCLK I JTAG Test Clock I Serial Wire Clock PA14

JTDI I JTAG Test Data Input - - PA15

JTDO/TRACESWO O JTAG Test Data Output -
TRACESWO if async trace
is enabled

PB3

NJTRST I JTAG Test nReset - - PB4

Table 98. Flexible SWJ-DP pin assignment

Available debug ports

SWJ IO pin assigned

PA13 /
JTMS/
SWDIO

PA14 /
JTCK/

SWCLK

PA15 /
JTDI

PB3 /
JTDO

PB4/
NJTRST

Full SWJ (JTAG-DP + SW-DP) - Reset State X X X X X

Full SWJ (JTAG-DP + SW-DP) but without NJTRST X X X X

JTAG-DP Disabled and SW-DP Enabled X X

JTAG-DP Disabled and SW-DP Disabled Released

Debug support (DBG) RM0038

566/598 Doc ID 15965 Rev 4

24.4.3 Internal pull-up and pull-down on JTAG pins

It is necessary to ensure that the JTAG input pins are not floating since they are directly
connected to flip-flops to control the debug mode features. Special care must be taken with
the SWCLK/TCK pin which is directly connected to the clock of some of these flip-flops.

To avoid any uncontrolled IO levels, the device embeds internal pull-ups and pull-downs on
the JTAG input pins:

● NJTRST: Internal pull-up

● JTDI: Internal pull-up

● JTMS/SWDIO: Internal pull-up

● TCK/SWCLK: Internal pull-down

Once a JTAG IO is released by the user software, the GPIO controller takes control again.
The reset states of the GPIO control registers put the IOs in the equivalent state:

● NJTRST: Input pull-up

● JTDI: Input pull-up

● JTMS/SWDIO: Input pull-up

● JTCK/SWCLK: Input pull-down

● JTDO: Input floating

The software can then use these IOs as standard GPIOs.

Note: The JTAG IEEE standard recommends to add pull-ups on TDI, TMS and nTRST but there is
no special recommendation for TCK. However, for JTCK, the device needs an integrated
pull-down.

Having embedded pull-ups and pull-downs removes the need to add external resistors.

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 567/598

24.4.4 Using serial wire and releasing the unused debug pins as GPIOs

To use the serial wire DP to release some GPIOs, the user software must change the GPIO
(PA15, PB3 and PB4) configuration mode in the GPIO_MODER register. This releases
PA15, PB3 and PB4 which now become available as GPIOs.

When debugging, the host performs the following actions:

● Under system reset, all SWJ pins are assigned (JTAG-DP + SW-DP).

● Under system reset, the debugger host sends the JTAG sequence to switch from the
JTAG-DP to the SW-DP.

● Still under system reset, the debugger sets a breakpoint on vector reset.

● The system reset is released and the Core halts.

● All the debug communications from this point are done using the SW-DP. The other
JTAG pins can then be reassigned as GPIOs by the user software.

Note: For user software designs, note that:

To release the debug pins, remember that they will be first configured either in input-pull-up
(nTRST, TMS, TDI) or pull-down (TCK) or output tristate (TDO) for a certain duration after
reset until the instant when the user software releases the pins.

When debug pins (JTAG or SW or TRACE) are mapped, changing the corresponding IO pin
configuration in the IOPORT controller has no effect.

24.5 STM32L15xxx JTAG TAP connection
The STM32L15xxx MCUs integrate two serially connected JTAG TAPs, the boundary scan
TAP (IR is 5-bit wide) and the Cortex-M3 TAP (IR is 4-bit wide).

To access the TAP of the Cortex-M3 for debug purposes:

1. First, it is necessary to shift the BYPASS instruction of the boundary scan TAP.

2. Then, for each IR shift, the scan chain contains 9 bits (=5+4) and the unused TAP
instruction must be shifted in using the BYPASS instruction.

3. For each data shift, the unused TAP, which is in BYPASS mode, adds 1 extra data bit in
the data scan chain.

Note: Important: Once Serial-Wire is selected using the dedicated ARM JTAG sequence, the
boundary scan TAP is automatically disabled (JTMS forced high).

Debug support (DBG) RM0038

568/598 Doc ID 15965 Rev 4

Figure 206. JTAG TAP connections

24.6 ID codes and locking mechanism
There are several ID codes inside the STM32L15xxx MCUs. ST strongly recommends tools
designers to lock their debuggers using the MCU DEVICE ID code located in the external
PPB memory map at address 0xE0042000.

24.6.1 MCU device ID code

The STM32L15xxx MCUs integrate an MCU ID code. This ID identifies the ST MCU part-
number and the die revision. It is part of the DBG_MCU component and is mapped on the
external PPB bus (see Section 24.16 on page 580). This code is accessible using the JTAG
debug port (4 to 5 pins) or the SW debug port (two pins) or by the user software. It is even
accessible while the MCU is under system reset.

DBGMCU_IDCODE

Address: 0xE0042000

Only 32-bits access supported. Read-only.

Boundary scan
TAP

NJTRST

Cortex-M3 TAP

JTMS

TMS nTRSTTMS nTRST

JTDI

JTDO

TDI TDO TDI TDO

SW-DP

STM32L15xxx

Selected

IR is 5-bit wide IR is 4-bit wide

ai17140

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REV_ID

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DEV_ID

r r r r r r r r r r r r

Bits 31:16 REV_ID(15:0) Revision identifier
This field indicates the revision of the device:

– 0x1000 = Revision A

– 0x1008 = Revision Y

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 569/598

24.6.2 Boundary scan TAP

JTAG ID code

The TAP of the STM32L15xxx BSC (boundary scan) integrates a JTAG ID code equal to
0x06416041 0x4BA00477.

24.6.3 Cortex-M3 TAP

The TAP of the ARM Cortex-M3 integrates a JTAG ID code. This ID code is the ARM default
one and has not been modified. This code is only accessible by the JTAG Debug Port.
This code is 0x4BA00477 (corresponds to Cortex-M3 r2p0, see Section 24.2: Reference
ARM documentation).

Only the DEV_ID(11:0) should be used for identification by the debugger/programmer tools.

24.6.4 Cortex-M3 JEDEC-106 ID code

The ARM Cortex-M3 integrates a JEDEC-106 ID code. It is located in the 4KB ROM table
mapped on the internal PPB bus at address 0xE00FF000_0xE00FFFFF.

This code is accessible by the JTAG Debug Port (4 to 5 pins) or by the SW Debug Port (two
pins) or by the user software.

24.7 JTAG debug port
A standard JTAG state machine is implemented with a 4-bit instruction register (IR) and five
data registers (for full details, refer to the Cortex-M3 r2p0 Technical Reference Manual
(TRM), for references, please see Section 24.2: Reference ARM documentation).

Bits 15:12 Reserved

Bits 11:0 DEV_ID(11:0): Device identifier

This field indicates the device ID.
The device ID is 0x416

Table 99. JTAG debug port data registers

IR(3:0) Data register Details

1111
BYPASS

[1 bit]

1110
IDCODE
[32 bits]

ID CODE
0x4BA00477 (ARM Cortex-M3 r2p0 ID Code)

Debug support (DBG) RM0038

570/598 Doc ID 15965 Rev 4

1010
DPACC

[35 bits]

Debug port access register

This initiates a debug port and allows access to a debug port register.

– When transferring data IN:
Bits 34:3 = DATA[31:0] = 32-bit data to transfer for a write request
Bits 2:1 = A[3:2] = 2-bit address of a debug port register.
Bit 0 = RnW = Read request (1) or write request (0).

– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved

Refer to Table 100 for a description of the A(3:2) bits

1011
APACC

[35 bits]

Access port access register

Initiates an access port and allows access to an access port register.

– When transferring data IN:
Bits 34:3 = DATA[31:0] = 32-bit data to shift in for a write request
Bits 2:1 = A[3:2] = 2-bit address (sub-address AP registers).
Bit 0 = RnW= Read request (1) or write request (0).

– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved

There are many AP Registers (see AHB-AP) addressed as the
combination of:
– The shifted value A[3:2]

– The current value of the DP SELECT register

1000
ABORT
[35 bits]

Abort register

– Bits 31:1 = Reserved

– Bit 0 = DAPABORT: write 1 to generate a DAP abort.

Table 100. 32-bit debug port registers addressed through the shifted value A[3:2]

Address A(3:2) value Description

0x0 00 Reserved

0x4 01

DP CTRL/STAT register. Used to:

– Request a system or debug power-up

– Configure the transfer operation for AP accesses
– Control the pushed compare and pushed verify operations.

– Read some status flags (overrun, power-up acknowledges)

Table 99. JTAG debug port data registers (continued)

IR(3:0) Data register Details

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 571/598

24.8 SW debug port

24.8.1 SW protocol introduction

This synchronous serial protocol uses two pins:

● SWCLK: clock from host to target

● SWDIO: bidirectional

The protocol allows two banks of registers (DPACC registers and APACC registers) to be
read and written to.

Bits are transferred LSB-first on the wire.

For SWDIO bidirectional management, the line must be pulled-up on the board (100 KΩ
recommended by ARM).

Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted
where the line is not driven by the host nor the target. By default, this turnaround time is one
bit time, however this can be adjusted by configuring the SWCLK frequency.

24.8.2 SW protocol sequence

Each sequence consist of three phases:

1. Packet request (8 bits) transmitted by the host

2. Acknowledge response (3 bits) transmitted by the target

3. Data transfer phase (33 bits) transmitted by the host or the target

0x8 10

DP SELECT register: Used to select the current access port and the
active 4-words register window.
– Bits 31:24: APSEL: select the current AP

– Bits 23:8: reserved

– Bits 7:4: APBANKSEL: select the active 4-words register window on the
current AP

– Bits 3:0: reserved

0xC 11
DP RDBUFF register: Used to allow the debugger to get the final result
after a sequence of operations (without requesting new JTAG-DP
operation)

Table 100. 32-bit debug port registers addressed through the shifted value A[3:2]

Address A(3:2) value Description

Table 101. Packet request (8-bits)

Bit Name Description

0 Start Must be “1”

1 APnDP
0: DP Access
1: AP Access

2 RnW
0: Write Request
1: Read Request

Debug support (DBG) RM0038

572/598 Doc ID 15965 Rev 4

Refer to the Cortex-M3 r2p0 TRM for a detailed description of DPACC and APACC registers.

The packet request is always followed by the turnaround time (default 1 bit) where neither
the host nor target drive the line.

The ACK Response must be followed by a turnaround time only if it is a READ transaction or
if a WAIT or FAULT acknowledge has been received.

The DATA transfer must be followed by a turnaround time only if it is a READ transaction.

24.8.3 SW-DP state machine (reset, idle states, ID code)

The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It
follows the JEP-106 standard. This ID code is the default ARM one and is set to
0x4BA00477 (corresponding to Cortex-M3 r2p0).

Note: Note that the SW-DP state machine is inactive until the target reads this ID code.

● The SW-DP state machine is in RESET STATE either after power-on reset, or after the
DP has switched from JTAG to SWD or after the line is high for more than 50 cycles

● The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles after
RESET state.

● After RESET state, it is mandatory to first enter into an IDLE state AND to perform a
READ access of the DP-SW ID CODE register. Otherwise, the target will issue a
FAULT acknowledge response on another transactions.

4:3 A(3:2) Address field of the DP or AP registers (refer to Table 100)

5 Parity Single bit parity of preceding bits

6 Stop 0

7 Park
Not driven by the host. Must be read as “1” by the target
because of the pull-up

Table 102. ACK response (3 bits)

Bit Name Description

0..2 ACK
001: FAULT

010: WAIT

100: OK

Table 103. DATA transfer (33 bits)

Bit Name Description

0..31
WDATA or
RDATA

Write or Read data

32 Parity Single parity of the 32 data bits

Table 101. Packet request (8-bits) (continued)

Bit Name Description

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 573/598

Further details of the SW-DP state machine can be found in the Cortex-M3 r2p0 TRM and
the CoreSight Design Kit r2p0 TRM.

24.8.4 DP and AP read/write accesses

● Read accesses to the DP are not posted: the target response can be immediate (if
ACK=OK) or can be delayed (if ACK=WAIT).

● Read accesses to the AP are posted. This means that the result of the access is
returned on the next transfer. If the next access to be done is NOT an AP access, then
the DP-RDBUFF register must be read to obtain the result.
The READOK flag of the DP-CTRL/STAT register is updated on every AP read access
or RDBUFF read request to know if the AP read access was successful.

● The SW-DP implements a write buffer (for both DP or AP writes), that enables it to
accept a write operation even when other transactions are still outstanding. If the write
buffer is full, the target acknowledge response is “WAIT”. With the exception of
IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write
buffer is full.

● Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK
cycles are needed after a write transaction (after the parity bit) to make the write
effective internally. These cycles should be applied while driving the line low (IDLE
state)
This is particularly important when writing the CTRL/STAT for a power-up request. If the
next transaction (requiring a power-up) occurs immediately, it will fail.

24.8.5 SW-DP registers

Access to these registers are initiated when APnDP=0

Table 104. SW-DP registers

A(3:2) R/W
CTRLSEL bit
of SELECT

register
Register Notes

00 Read IDCODE
The manufacturer code is not set to ST
code. 0x4BA00477 (identifies the SW-DP)

00 Write ABORT

01 Read/Write 0 DP-CTRL/STAT

Purpose is to:

– request a system or debug power-up
– configure the transfer operation for AP

accesses
– control the pushed compare and pushed

verify operations.
– read some status flags (overrun, power-up

acknowledges)

01 Read/Write 1
WIRE
CONTROL

Purpose is to configure the physical serial
port protocol (like the duration of the
turnaround time)

10 Read
READ
RESEND

Enables recovery of the read data from a
corrupted debugger transfer, without
repeating the original AP transfer.

Debug support (DBG) RM0038

574/598 Doc ID 15965 Rev 4

24.8.6 SW-AP registers

Access to these registers are initiated when APnDP=1

There are many AP Registers (see AHB-AP) addressed as the combination of:

● The shifted value A[3:2]

● The current value of the DP SELECT register

24.9 AHB-AP (AHB access port) - valid for both JTAG-DP
and SW-DP

Features:

● System access is independent of the processor status.

● Either SW-DP or JTAG-DP accesses AHB-AP.

● The AHB-AP is an AHB master into the Bus Matrix. Consequently, it can access all the
data buses (Dcode Bus, System Bus, internal and external PPB bus) but the ICode
bus.

● Bitband transactions are supported.

● AHB-AP transactions bypass the FPB.

The address of the 32-bits AHP-AP resisters are 6-bits wide (up to 64 words or 256 bytes)
and consists of:

c) Bits [7:4] = the bits [7:4] APBANKSEL of the DP SELECT register

d) Bits [3:2] = the 2 address bits of A(3:2) of the 35-bit packet request for SW-DP.

10 Write SELECT
The purpose is to select the current access
port and the active 4-words register window

11 Read/Write
READ
BUFFER

This read buffer is useful because AP
accesses are posted (the result of a read AP
request is available on the next AP
transaction).
This read buffer captures data from the AP,
presented as the result of a previous read,
without initiating a new transaction

Table 104. SW-DP registers (continued)

A(3:2) R/W
CTRLSEL bit
of SELECT

register
Register Notes

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 575/598

The AHB-AP of the Cortex-M3 includes 9 x 32-bits registers:

Refer to the Cortex-M3 r2p0 TRM for further details.

24.10 Core debug
Core debug is accessed through the core debug registers. Debug access to these registers
is by means of the Advanced High-performance Bus (AHB-AP) port. The processor can
access these registers directly over the internal Private Peripheral Bus (PPB).

It consists of 4 registers:

Note: Important: these registers are not reset by a system reset. They are only reset by a power-
on reset.

Refer to the Cortex-M3 r2p0 TRM for further details.

Table 105. Cortex-M3 AHB-AP registers

Address
offset

Register name Notes

0x00
AHB-AP Control and Status
Word

Configures and controls transfers through the AHB
interface (size, hprot, status on current transfer, address
increment type

0x04 AHB-AP Transfer Address

0x0C AHB-AP Data Read/Write

0x10 AHB-AP Banked Data 0

Directly maps the 4 aligned data words without rewriting
the Transfer Address Register.

0x14 AHB-AP Banked Data 1

0x18 AHB-AP Banked Data 2

0x1C AHB-AP Banked Data 3

0xF8 AHB-AP Debug ROM Address Base Address of the debug interface

0xFC AHB-AP ID Register

Table 106. Core debug registers

Register Description

DHCSR
The 32-bit Debug Halting Control and Status Register

This provides status information about the state of the processor enable core debug
halt and step the processor

DCRSR
The 17-bit Debug Core Register Selector Register:
This selects the processor register to transfer data to or from.

DCRDR
The 32-bit Debug Core Register Data Register:
This holds data for reading and writing registers to and from the processor selected
by the DCRSR (Selector) register.

DEMCR
The 32-bit Debug Exception and Monitor Control Register:

This provides Vector Catching and Debug Monitor Control. This register contains a
bit named TRCENA which enable the use of a TRACE.

Debug support (DBG) RM0038

576/598 Doc ID 15965 Rev 4

To Halt on reset, it is necessary to:

● enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control
Register

● enable the bit0 (C_DEBUGEN) of the Debug Halting Control and Status Register.

24.11 Capability of the debugger host to connect under system
reset
The STM32L15xxx MCUs’ reset system comprises the following reset sources:

● POR (power-on reset) which asserts a RESET at each power-up.

● Internal watchdog reset

● Software reset

● External reset

The Cortex-M3 differentiates the reset of the debug part (generally PORRESETn) and the
other one (SYSRESETn)

This way, it is possible for the debugger to connect under System Reset, programming the
Core Debug Registers to halt the core when fetching the reset vector. Then the host can
release the system reset and the core will immediately halt without having executed any
instructions. In addition, it is possible to program any debug features under System Reset.

Note: It is highly recommended for the debugger host to connect (set a breakpoint in the reset
vector) under system reset.

24.12 FPB (Flash patch breakpoint)
The FPB unit:

● implements hardware breakpoints

● patches code and data from code space to system space. This feature gives the
possibility to correct software bugs located in the Code Memory Space.

The use of a Software Patch or a Hardware Breakpoint is exclusive.

The FPB consists of:

● 2 literal comparators for matching against literal loads from Code Space and remapping
to a corresponding area in the System Space.

● 6 instruction comparators for matching against instruction fetches from Code Space.
They can be used either to remap to a corresponding area in the System Space or to
generate a Breakpoint Instruction to the core.

24.13 DWT (data watchpoint trigger)
The DWT unit consists of four comparators. They are configurable as:

● a hardware watchpoint or

● a trigger to an ETM or

● a PC sampler or

● a data address sampler

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 577/598

The DWT also provides some means to give some profiling informations. For this, some
counters are accessible to give the number of:

● Clock cycle

● Folded instructions

● Load store unit (LSU) operations

● Sleep cycles

● CPI (clock per instructions)

● Interrupt overhead

24.14 ITM (instrumentation trace macrocell)

24.14.1 General description

The ITM is an application-driven trace source that supports printf style debugging to trace
Operating System (OS) and application events, and emits diagnostic system information.
The ITM emits trace information as packets which can be generated as:

● Software trace. Software can write directly to the ITM stimulus registers to emit
packets.

● Hardware trace. The DWT generates these packets, and the ITM emits them.

● Time stamping. Timestamps are emitted relative to packets. The ITM contains a 21-bit
counter to generate the timestamp. The Cortex-M3 clock or the bit clock rate of the
Serial Wire Viewer (SWV) output clocks the counter.

The packets emitted by the ITM are output to the TPIU (Trace Port Interface Unit). The
formatter of the TPIU adds some extra packets (refer to TPIU) and then output the complete
packets sequence to the debugger host.

The bit TRCEN of the Debug Exception and Monitor Control Register must be enabled
before you program or use the ITM.

The SysTick timer clock is not stopped during the Stop mode debug (DBG_STOP bit set).
The counter keeps on being decremented and can generate interrupts if they are enabled

24.14.2 Time stamp packets, synchronization and overflow packets

Time stamp packets encode time stamp information, generic control and synchronization. It
uses a 21-bit timestamp counter (with possible prescalers) which is reset at each time
stamp packet emission. This counter can be either clocked by the CPU clock or the SWV
clock.

A synchronization packet consists of 6 bytes equal to 0x80_00_00_00_00_00 which is
emitted to the TPIU as 00 00 00 00 00 80 (LSB emitted first).

A synchronization packet is a timestamp packet control. It is emitted at each DWT trigger.

For this, the DWT must be configured to trigger the ITM: the bit CYCCNTENA (bit0) of the
DWT Control Register must be set. In addition, the bit2 (SYNCENA) of the ITM Trace
Control Register must be set.

Note: If the SYNENA bit is not set, the DWT generates Synchronization triggers to the TPIU which
will send only TPIU synchronization packets and not ITM synchronization packets.

An overflow packet consists is a special timestamp packets which indicates that data has
been written but the FIFO was full.

Debug support (DBG) RM0038

578/598 Doc ID 15965 Rev 4

Example of configuration

To output a simple value to the TPIU:

● Configure the TPIU and assign TRACE IOs by configuring the DBGMCU_CR (refer to
Section 24.17.2: TRACE pin assignment and Section 24.16.3: Debug MCU
configuration register)

● Write 0xC5ACCE55 to the ITM Lock Access Register to unlock the write access to the
ITM registers

● Write 0x00010005 to the ITM Trace Control Register to enable the ITM with Sync
enabled and an ATB ID different from 0x00

● Write 0x1 to the ITM Trace Enable Register to enable the Stimulus Port 0

● Write 0x1 to the ITM Trace Privilege Register to unmask stimulus ports 7:0

● Write the value to output in the Stimulus Port Register 0: this can be done by software
(using a printf function)

Table 107. Main ITM registers

Address Register Details

@E0000FB0 ITM lock access
Write 0xC5ACCE55 to unlock Write Access to the other ITM
registers

@E0000E80 ITM trace control

Bits 31-24 = Always 0

Bits 23 = Busy

Bits 22-16 = 7-bits ATB ID which identifies the source of the
trace data.

Bits 15-10 = Always 0

Bits 9:8 = TSPrescale = Time Stamp Prescaler

Bits 7-5 = Reserved

Bit 4 = SWOENA = Enable SWV behavior (to clock the
timestamp counter by the SWV clock).

Bit 3 = DWTENA: Enable the DWT Stimulus

Bit 2 = SYNCENA: this bit must be to 1 to enable the DWT to
generate synchronization triggers so that the TPIU can then
emit the synchronization packets.

Bit 1 = TSENA (Timestamp Enable)

Bit 0 = ITMENA: Global Enable Bit of the ITM

@E0000E40 ITM trace privilege

Bit 3: mask to enable tracing ports31:24

Bit 2: mask to enable tracing ports23:16

Bit 1: mask to enable tracing ports15:8

Bit 0: mask to enable tracing ports7:0

@E0000E00 ITM trace enable
Each bit enables the corresponding Stimulus port to generate
trace.

@E0000000-
E000007C

Stimulus port
registers 0-31

Write the 32-bits data on the selected Stimulus Port (32
available) to be traced out.

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 579/598

24.15 ETM (Embedded trace macrocell)

24.15.1 General description

The ETM enables the reconstruction of program execution. Data are traced using the Data
Watchpoint and Trace (DWT) component or the Instruction Trace Macrocell (ITM) whereas
instructions are traced using the Embedded Trace Macrocell (ETM).

The ETM transmits information as packets and is triggered by embedded resources. These
resources must be programmed independently and the trigger source is selected using the
Trigger Event Register (0xE0041008). An event could be a simple event (address match
from an address comparator) or a logic equation between 2 events. The trigger source is
one of the fourth comparators of the DWT module, The following events can be monitored:

● Clock cycle matching

● Data address matching

For more informations on the trigger resources refer to Section 24.13: DWT (data
watchpoint trigger).

The packets transmitted by the ETM are output to the TPIU (Trace Port Interface Unit). The
formatter of the TPIU adds some extra packets (refer to Section 24.17: TPIU (trace port
interface unit)) and then outputs the complete packet sequence to the debugger host.

24.15.2 Signal protocol, packet types

This part is described in the chapter 7 ETMv3 Signal Protocol of the ARM IHI 0014N
document.

24.15.3 Main ETM registers

For more information on registers refer to the chapter 3 of the ARM IHI 0014N specification.

Table 108. Main ETM registers

Address Register Details

0xE0041FB0 ETM Lock Access
Write 0xC5ACCE55 to unlock the write access to the
other ETM registers.

0xE0041000 ETM Control
This register controls the general operation of the ETM,
for instance how tracing is enabled.

0xE0041010 ETM Status
This register provides information about the current status
of the trace and trigger logic.

0xE0041008 ETM Trigger Event This register defines the event that will control trigger.

0xE004101C ETM Trace Enable Control This register defines which comparator is selected.

0xE0041020 ETM Trace Enable Event This register defines the trace enabling event.

0xE0041024 ETM Trace Start/Stop
This register defines the traces used by the trigger source
to start and stop the trace, respectively.

Debug support (DBG) RM0038

580/598 Doc ID 15965 Rev 4

24.15.4 Configuration example

To output a simple value to the TPIU:

● Configure the TPIU and enable the I/IO_TRACEN to assign TRACE IOs in the XL- and
high-density device’s debug configuration register.

● Write 0xC5ACCE55 to the ETM Lock Access Register to unlock the write access to the
ITM registers

● Write 0x00001D1E to the control register (configure the trace)

● Write 0000406F to the Trigger Event register (define the trigger event)

● Write 0000006F to the Trace Enable Event register (define an event to start/stop)

● Write 00000001 to the Trace Start/stop register (enable the trace)

● Write 0000191E to the ETM Control Register (end of configuration)

24.16 MCU debug component (DBGMCU)
The MCU debug component helps the debugger provide support for:

● Low-power modes

● Clock control for timers, watchdog (WWDG and IWDG) and I2Cs

● Control of the trace pins assignment

24.16.1 Debug support for low-power modes

To enter low-power mode, the instruction WFI or WFE must be executed.

The MCU implements several low-power modes which can either deactivate the CPU clock
or reduce the power of the CPU.

The core does not allow FCLK or HCLK to be turned off during a debug session. As these
are required for the debugger connection, during a debug, they must remain active. The
MCU integrates special means to allow the user to debug software in low-power modes.

For this, the debugger host must first set some debug configuration registers to change the
low-power mode behavior:

● In Sleep mode, DBG_SLEEP bit of DBGMCU_CR register must be previously set by
the debugger. This will feed HCLK with the same clock that is provided to FCLK
(system clock previously configured by the software).

● In Stop mode, the bit DBG_STOP must be previously set by the debugger. This will
enable the internal RC oscillator clock to feed FCLK and HCLK in STOP mode.

24.16.2 Debug support for timers, watchdog and I2C

During a breakpoint, it is necessary to choose how the counter of timers and watchdog
should behave:

● They can continue to count inside a breakpoint. This is usually required when a PWM is
controlling a motor, for example.

● They can stop to count inside a breakpoint. This is required for watchdog purposes.

For the I2C, the user can choose to block the SMBUS timeout during a breakpoint.

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 581/598

24.16.3 Debug MCU configuration register

This register allows the configuration of the MCU under DEBUG. This concerns:

● Low-power mode support: Sleep, Stop and Standby modes

● Trace pin assignment

This DBGMCU_CR is mapped on the External PPB bus at address 0xE0042004

It is asynchronously reset by the PORESET (and not the system reset). It can be written by
the debugger under system reset.

If the debugger host does not support these features, it is still possible for the user software
to write to these registers.

DBGMCU_CR

Address: 0xE004 2004

Only 32-bit access supported

POR Reset: 0x0000 0000 (not reset by system reset)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

TRACE_
MODE [1:0]

TRACE_
IOEN Reserved

DBG_
STANDBY

DBG_
STOP

DBG_
SLEEP

rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept cleared.

Bits 7:5 TRACE_MODE[1:0] and TRACE_IOEN: Trace pin assignment control

– With TRACE_IOEN=0:
TRACE_MODE=xx: TRACE pins not assigned (default state)

– With TRACE_IOEN=1:

– TRACE_MODE=00: TRACE pin assignment for Asynchronous Mode
– TRACE_MODE=01: TRACE pin assignment for Synchronous Mode with a

TRACEDATA size of 1
– TRACE_MODE=10: TRACE pin assignment for Synchronous Mode with a

TRACEDATA size of 2
– TRACE_MODE=11: TRACE pin assignment for Synchronous Mode with a

TRACEDATA size of 4

Bits 4:3 Reserved, must be kept cleared.

Bit 2 DBG_STANDBY: Debug Standby mode

0: (FCLK=Off, HCLK=Off) The whole digital part is unpowered.
From software point of view, exiting from Standby is identical than fetching reset vector
(except a few status bit indicated that the MCU is resuming from Standby)
1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and
HCLK are provided by the internal RC oscillator which remains active. In addition, the MCU
generate a system reset during Standby mode so that exiting from Standby is identical than
fetching from reset

Debug support (DBG) RM0038

582/598 Doc ID 15965 Rev 4

24.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ)

The DBGMCU_APB1_FZ register is used to configure the MCU under DEBUG. It concerns
the APB1 peripherals:

● Timer clock counter freeze

● I2C SMBUS timeout freeze

● Window watchdog and independent watchdog counter freeze support

This DBGMCU_APB1_FZ is mapped on the external PPB bus at address 0xE0042008.

The register is asynchronously reset by the POR (and not the system reset). It can be
written by the debugger under system reset.

Address: 0xE004 2008

Only 32-bit access are supported.

Power on reset (POR): 0x0000 0000 (not reset by system reset)

Bit 1 DBG_STOP: Debug Stop mode
0: (FCLK=Off, HCLK=Off) In STOP mode, the clock controller disables all clocks (including
HCLK and FCLK). When exiting from STOP mode, the clock configuration is identical to the
one after RESET (CPU clocked by the 8 MHz internal RC oscillator (HSI)). Consequently,
the software must reprogram the clock controller to enable the PLL, the Xtal, etc.
1: (FCLK=On, HCLK=On) In this case, when entering STOP mode, FCLK and HCLK are
provided by the internal RC oscillator which remains active in STOP mode. When exiting
STOP mode, the software must reprogram the clock controller to enable the PLL, the Xtal,
etc. (in the same way it would do in case of DBG_STOP=0)

Bit 0 DBG_SLEEP: Debug Sleep mode

0: (FCLK=On, HCLK=Off) In Sleep mode, FCLK is clocked by the system clock as previously
configured by the software while HCLK is disabled.
In Sleep mode, the clock controller configuration is not reset and remains in the previously
programmed state. Consequently, when exiting from Sleep mode, the software does not
need to reconfigure the clock controller.
1: (FCLK=On, HCLK=On) In this case, when entering Sleep mode, HCLK is fed by the same
clock that is provided to FCLK (system clock as previously configured by the software).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

D
B

G
_I

2C
2_

S
M

B
U

S
_T

IM
E

O
U

T

D
B

G
_I

2C
1_

S
M

B
U

S
_T

IM
E

O
U

T

Reserved

rw rw

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 583/598

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

D
B

G
_I

W
D

G
_S

TO
P

D
B

G
_W

W
D

G
_S

TO
P

Reserved

D
B

G
_T

IM
7_

S
TO

P

D
B

G
_T

IM
6_

S
TO

P

R
es

er
ve

d

D
B

G
_T

IM
4_

S
TO

P

D
B

G
_T

IM
3_

S
TO

P

D
B

G
_T

IM
2_

S
TO

P

rw rw rw rw rw rw rw

Bits 31:23 Reserved

Bit 22 DBG_I2C2_SMBUS_TIMEOUT: SMBUS timeout mode stopped when core is halted
0: Same behavior as in normal mode
1: The SMBUS timeout is frozen

Bit 21 DBG_I2C1_SMBUS_TIMEOUT: SMBUS timeout mode stopped when core is halted

0: Same behavior as in normal mode
1: The SMBUS timeout is frozen

Bits 20:13 Reserved

Bit 12 DBG_IWDG_STOP: Debug independent watchdog stopped when core is halted

0: The independent watchdog counter clock continues even if the core is halted
1: The independent watchdog counter clock is stopped when the core is halted

Bit 11 DBG_WWDG_STOP: Debug window watchdog stopped when core is halted

0: The window watchdog counter clock continues even if the core is halted
1: The window watchdog counter clock is stopped when the core is halted

Bits 10:6 Reserved

Bit 5 DBG_TIM7_STOP: TIM7 counter stopped when core is halted

0: The counter clock of TIM7 is fed even if the core is halted
1: The counter clock of TIM7 is stopped when the core is halted

Bit 4 DBG_TIM6_STOP: TIM6 counter stopped when core is halted

0: The counter clock of TIM6 is fed even if the core is halted
1: The counter clock of TIM6 is stopped when the core is halted

Bit 3 Reserved

Bit 2 DBG_TIM4_STOP: TIM4 counter stopped when core is halted

0: The counter clock of TIM4 is fed even if the core is halted
1: The counter clock of TIM4 is stopped when the core is halted

Bit 1 DBG_TIM3_STOP: TIM3 counter stopped when core is halted

0: The counter clock of TIM3 is fed even if the core is halted
1: The counter clock of TIM3 is stopped when the core is halted

Bit 0 DBG_TIM2_STOP: TIM2 counter stopped when core is halted
0: The counter clock of TIM2 is fed even if the core is halted
1: The counter clock of TIM2 is stopped when the core is halted

Debug support (DBG) RM0038

584/598 Doc ID 15965 Rev 4

24.16.5 Debug MCU APB2 freeze register (DBGMCU_APB2_FZ)

The DBGMCU_APB2_FZ register is used to configure the MCU under DEBUG. It concerns
APB2 peripherals:

● Timer clock counter freeze

This register is mapped on the external PPB bus at address 0xE004 200C

It is asynchronously reset by the POR (and not the system reset). It can be written by the
debugger under system reset.

Address: 0xE004 200C

Only 32-bit access is supported.

POR: 0x0000 0000 (not reset by system reset)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

D
B

G
_T

IM
11

_S
TO

P

D
B

G
_T

IM
10

_S
TO

P

D
B

G
_T

IM
9_

S
TO

P

Reserved

rw rw rw

Bits 31:5 Reserved

Bits 4:2 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=9..11)
0: The clock of the involved timer counter is fed even if the core is halted
1: The clock of the involved timer counter is stopped when the core is halted

Bits 1:0 Reserved

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 585/598

24.17 TPIU (trace port interface unit)

24.17.1 Introduction

The TPIU acts as a bridge between the on-chip trace data from the ITM and the ETM.

The output data stream encapsulates the trace source ID, that is then captured by a trace
port analyzer (TPA).

The core embeds a simple TPIU, especially designed for low-cost debug (consisting of a
special version of the CoreSight TPIU).

Figure 207. TPIU block diagram

24.17.2 TRACE pin assignment

● Asynchronous mode

The asynchronous mode requires 1 extra pin and is available on all packages. It is only
available if using Serial Wire mode (not in JTAG mode).

● Synchronous mode

The synchronous mode requires from 2 to 6 extra pins depending on the data trace
size and is only available in the larger packages. In addition it is available in JTAG mode
and in Serial Wire mode and provides better bandwidth output capabilities than
asynchronous trace.

formatter
Trace out
(serializer)

TRACECLKIN

TRACECK

TRACEDATA
[3:0]

TRACESWO

CLK domain TRACECLKIN domain

External PPB bus

TPIU

TPIU

Asynchronous

FIFO

Asynchronous
FIFO

ETM

ITM

ai17114

Table 109. Asynchronous TRACE pin assignment

TPUI pin name
Trace synchronous mode STM32L15xxx pin

assignmentType Description

TRACESWO O TRACE Async Data Output PB3

Debug support (DBG) RM0038

586/598 Doc ID 15965 Rev 4

TPUI TRACE pin assignment

By default, these pins are NOT assigned. They can be assigned by setting the
TRACE_IOEN and TRACE_MODE bits in the MCU Debug component configuration
register. This configuration has to be done by the debugger host.

In addition, the number of pins to assign depends on the trace configuration (asynchronous
or synchronous).

● Asynchronous mode: 1 extra pin is needed

● Synchronous mode: from 2 to 5 extra pins are needed depending on the size of the
data trace port register (1, 2 or 4):

– TRACECK

– TRACED(0) if port size is configured to 1, 2 or 4

– TRACED(1) if port size is configured to 2 or 4

– TRACED(2) if port size is configured to 4

– TRACED(3) if port size is configured to 4

To assign the TRACE pin, the debugger host must program the bits TRACE_IOEN and
TRACE_MODE[1:0] of the Debug MCU configuration Register (DBGMCU_CR). By default
the TRACE pins are not assigned.

This register is mapped on the external PPB and is reset by the PORESET (and not by the
SYSTEM reset). It can be written by the debugger under SYSTEM reset.

Table 110. Synchronous TRACE pin assignment

TPUI pin name
Trace synchronous mode STM32L15xxx pin

assignmentType Description

TRACECK O TRACE Clock PE2

TRACED[3:0] O
TRACE Sync Data Outputs

Can be 1, 2 or 4.
PE[6:3]

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 587/598

Note: By default, the TRACECLKIN input clock of the TPIU is tied to GND. It is assigned to HCLK
two clock cycles after the bit TRACE_IOEN has been set.

The debugger must then program the Trace Mode by writing the PROTOCOL[1:0] bits in the
SPP_R (Selected Pin Protocol) register of the TPIU.

● PROTOCOL=00: Trace Port Mode (synchronous)

● PROTOCOL=01 or 10: Serial Wire (Manchester or NRZ) Mode (asynchronous mode).
Default state is 01

It then also configures the TRACE port size by writing the bits [3:0] in the CPSPS_R
(Current Sync Port Size Register) of the TPIU:

● 0x1 for 1 pin (default state)

● 0x2 for 2 pins

● 0x8 for 4 pins

24.17.3 TPUI formatter

The formatter protocol outputs data in 16-byte frames:

● seven bytes of data

● eight bytes of mixed-use bytes consisting of:

– 1 bit (LSB) to indicate it is a DATA byte (‘0) or an ID byte (‘1).

– 7 bits (MSB) which can be data or change of source ID trace.

● one byte of auxiliary bits where each bit corresponds to one of the eight mixed-use
bytes:

– if the corresponding byte was a data, this bit gives bit0 of the data.

– if the corresponding byte was an ID change, this bit indicates when that ID change
takes effect.

Note: Refer to the ARM CoreSight Architecture Specification v1.0 (ARM IHI 0029B) for further
information

Table 111. Flexible TRACE pin assignment

DBGMCU_CR
register Pins

assigned for:

TRACE IO pin assigned

TRACE_
IOEN

TRACE_
MODE[1:0]

PB3 / JTDO/
TRACESWO

PE2 /
TRACECK

PE3 /
TRACED[0]

PE4 /
TRACED[1]

PE5 /
TRACED[2]

PE6 /
TRACED[3]

0 XX
No Trace

(default state)
Released (1)

1 00
Asynchronous

Trace
TRACESWO

Released
(usable as GPIO)

1 01
Synchronous

Trace 1 bit

Released (1)

TRACECK TRACED[0]

1 10
Synchronous

Trace 2 bit
TRACECK TRACED[0] TRACED[1]

1 11
Synchronous

Trace 4 bit
TRACECK TRACED[0] TRACED[1] TRACED[2] TRACED[3]

1. When Serial Wire mode is used, it is released. But when JTAG is used, it is assigned to JTDO.

Debug support (DBG) RM0038

588/598 Doc ID 15965 Rev 4

24.17.4 TPUI frame synchronization packets

The TPUI can generate two types of synchronization packets:

● The Frame Synchronization packet (or Full Word Synchronization packet)

It consists of the word: 0x7F_FF_FF_FF (LSB emitted first). This sequence can not
occur at any other time provided that the ID source code 0x7F has not been used.

It is output periodically between frames.

In continuous mode, the TPA must discard all these frames once a synchronization
frame has been found.

● The Half-Word Synchronization packet

It consists of the half word: 0x7F_FF (LSB emitted first).

It is output periodically between or within frames.

These packets are only generated in continuous mode and enable the TPA to detect
that the TRACE port is in IDLE mode (no TRACE to be captured). When detected by
the TPA, it must be discarded.

24.17.5 Transmission of the synchronization frame packet

There is no Synchronization Counter register implemented in the TPIU of the core.
Consequently, the synchronization trigger can only be generated by the DWT. Refer to the
registers DWT Control Register (bits SYNCTAP[11:10]) and the DWT Current PC Sampler
Cycle Count Register.

The TPUI Frame synchronization packet (0x7F_FF_FF_FF) is emitted:

● after each TPIU reset release. This reset is synchronously released with the rising
edge of the TRACECLKIN clock. This means that this packet is transmitted when the
TRACE_IOEN bit in the DBGMCU_CFG register is set. In this case, the word
0x7F_FF_FF_FF is not followed by any formatted packet.

● at each DWT trigger (assuming DWT has been previously configured). Two cases
occur:

– If the bit SYNENA of the ITM is reset, only the word 0x7F_FF_FF_FF is emitted
without any formatted stream which follows.

– If the bit SYNENA of the ITM is set, then the ITM synchronization packets will
follow (0x80_00_00_00_00_00), formatted by the TPUI (trace source ID added).

24.17.6 Synchronous mode

The trace data output size can be configured to 4, 2 or 1 pin: TRACED(3:0)

The output clock is output to the debugger (TRACECK)

Here, TRACECLKIN is driven internally and is connected to HCLK only when TRACE is
used.

Note: In this synchronous mode, it is not required to provide a stable clock frequency.

The TRACE IOs (including TRACECK) are driven by the rising edge of TRACLKIN (equal to
HCLK). Consequently, the output frequency of TRACECK is equal to HCLK/2.

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 589/598

24.17.7 Asynchronous mode

This is a low cost alternative to output the trace using only 1 pin: this is the asynchronous
output pin TRACESWO. Obviously there is a limited bandwidth.

TRACESWO is multiplexed with JTDO when using the SW-DP pin. This way, this
functionality is available in all STM32L15xxx packages.

This asynchronous mode requires a constant frequency for TRACECLKIN. For the standard
UART (NRZ) capture mechanism, 5% accuracy is needed. The Manchester encoded
version is tolerant up to 10%.

24.17.8 TRACECLKIN connection inside the STM32L15xxx

In the STM32L15xxx, this TRACECLKIN input is internally connected to HCLK. This means
that when in asynchronous trace mode, the application is restricted to use to time frames
where the CPU frequency is stable.

Note: Important: when using asynchronous trace: it is important to be aware that:

The default clock of the STM32L15xxx MCUs is the internal RC oscillator. Its frequency
under reset is different from the one after reset release. This is because the RC calibration is
the default one under system reset and is updated at each system reset release.

Consequently, the trace port analyzer (TPA) should not enable the trace (with the
TRACE_IOEN bit) under system reset, because a Synchronization Frame Packet will be
issued with a different bit time than trace packets which will be transmitted after reset
release.

Debug support (DBG) RM0038

590/598 Doc ID 15965 Rev 4

24.17.9 TPIU registers

The TPIU APB registers can be read and written only if the bit TRCENA of the Debug
Exception and Monitor Control Register (DEMCR) is set. Otherwise, the registers are read
as zero (the output of this bit enables the PCLK of the TPIU).

Table 112. Important TPIU registers

Address Register Description

0xE0040004 Current port size

Allows the trace port size to be selected:

Bit 0: Port size = 1
Bit 1: Port size = 2
Bit 2: Port size = 3, not supported
Bit 3: Port Size = 4

Only 1 bit must be set. By default, the port size is one bit.
(0x00000001)

0xE00400F0
Selected pin
protocol

Allows the Trace Port Protocol to be selected:

Bit1:0=
00: Sync Trace Port Mode
01: Serial Wire Output - manchester (default value)
10: Serial Wire Output - NRZ
11: reserved

0xE0040304
Formatter and
flush control

Bit 31-9 = always ‘0
Bit 8 = TrigIn = always ‘1 to indicate that triggers are indicated
Bit 7-4 = always 0
Bit 3-2 = always 0
Bit 1 = EnFCont. In Sync Trace mode (Select_Pin_Protocol
register bit1:0=00), this bit is forced to ‘1: the formatter is
automatically enabled in continuous mode. In asynchronous
mode (Select_Pin_Protocol register bit1:0 <> 00), this bit can
be written to activate or not the formatter.
Bit 0 = always 0

The resulting default value is 0x102

Note: In synchronous mode, because the TRACECTL pin is not
mapped outside the chip, the formatter is always enabled in
continuous mode -this way the formatter inserts some control
packets to identify the source of the trace packets).

0xE0040300
Formatter and
flush status

Not used in Cortex-M3, always read as 0x00000008

RM0038 Debug support (DBG)

Doc ID 15965 Rev 4 591/598

24.17.10 Example of configuration

● Set the bit TRCENA in the Debug Exception and Monitor Control Register (DEMCR)

● Write the TPIU Current Port Size Register to the desired value (default is 0x1 for a 1-bit
port size)

● Write TPIU Formatter and Flush Control Register to 0x102 (default value)

● Write the TPIU Select Pin Protocol to select the sync or async mode. Example: 0x2 for
async NRZ mode (UART like)

● Write the DBGMCU control register to 0x20 (bit IO_TRACEN) to assign TRACE IOs for
async mode. A TPIU Sync packet is emitted at this time (FF_FF_FF_7F)

● Configure the ITM and write the ITM Stimulus register to output a value

24.18 DBG register map
The following table summarizes the Debug registers.

Table 113. DBG register map and reset values
Addr. Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xE0042
000

DBGMCU_
IDCODE REV_ID

Reserved
DEV_ID

Reset value(1) X

0xE0042
004

DBGMCU_CR
Reserved

T
R

A
C

E
_M

O
D

E
 [1

:0
]

T
R

A
C

E
_I

O
E

N

R
es

er
ve

d

D
B

G
_

D
B

G
_

D
B

G
_

Reset value 0 0 0 0 0 0

0xE004
2008

DBGMCU_APB
1_FZ Reserved

D
B

G
_I

2C
2_

S
M

B
U

S
_T

IM
E

O
U

T

D
B

G
_I

2C
1_

S
M

B
U

S
_T

IM
E

O
U

T

Reserved

D
B

G
_I

W
D

G
_S

TO
P

D
B

G
_W

W
D

G
_S

TO
P

Reserved

D
B

G
_T

IM
7_

S
TO

P

D
B

G
_T

IM
6_

S
TO

P

R
es

er
ve

d

D
B

G
_T

IM
4_

S
TO

P

D
B

G
_T

IM
3_

S
TO

P

D
B

G
_T

IM
2_

S
TO

P

Reset value 0 0 0 0 0 0 0 0 0

0xE004
200C

DBGMCU_APB
2_FZ Reserved

D
B

G
_T

IM
11

_S
TO

P

D
B

G
_T

IM
10

_S
TO

P

D
B

G
_T

IM
9_

S
TO

P

R
es

er
ve

d

Reset value 0 0 0

1. The reset value is product dependent. For more information, refer to Section 24.6.1: MCU device ID code.

Device electronic signature RM0038

592/598 Doc ID 15965 Rev 4

25 Device electronic signature

This section applies to all STM32L15xxx devices, unless otherwise specified.

The electronic signature is stored in the System memory area in the Flash memory module,
and can be read using the JTAG/SWD or the CPU. It contains factory-programmed
identification data that allow the user firmware or other external devices to automatically
match its interface to the characteristics of the STM32L15xxx microcontroller.

25.1 Memory size register

25.1.1 Flash size register

Base address: 0x1FF8004C

Read only = 0xXXXX where X is factory-programmed

25.2 Unique device ID registers (96 bits)
The unique device identifier is ideally suited:

● for use as serial numbers

● for use as security keys in order to increase the security of code in Flash memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal Flash memory

● to activate secure boot processes, etc.

The 96-bit unique device identifier provides a reference number which is unique for any
device and in any context. These bits can never be altered by the user.

The 96-bit unique device identifier can also be read in single bytes/half-words/words in
different ways and then be concatenated using a custom algorithm.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F_SIZE

r r r r r r r r r r r r r r r r

Bits 15:0 F_SIZE: Flash memory size
This field value indicates the Flash memory size of the device in Kbytes.
Example: 0x0080 = 128 Kbytes.

RM0038 Device electronic signature

Doc ID 15965 Rev 4 593/598

Base address: 0x1FF8 0050

Address offset: 0x00

Read only = 0xXXXX where X is factory-programmed

Address offset: 0x04

Read only = 0xXXXX where X is factory-programmed

Address offset: 0x14

Read only = 0xXXXX XXXX where X is factory-programmed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U_ID(31:16)

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID(15:0)

r r r r r r r r r r r r r r r r

Bits 31:0 U_ID(31:0): 31:0 unique ID bits

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

U_ID(63:48)

r r r r r r r r r r r r r r r r

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

U_ID(47:32)

r r r r r r r r r r r r r r r r

Bits 63:32 U_ID(63:32): 63:32 unique ID bits

95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80

U_ID(95:80)

r r r r r r r r r r r r r r r r

79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64

U_ID(79:64)

r r r r r r r r r r r r r r r r

Bits 95:64 U_ID(95:64): 95:64 unique ID bits

Revision history RM0038

594/598 Doc ID 15965 Rev 4

26 Revision history

Table 114. Document revision history

Date Revision Changes

02-Jul-2010 1 Initial release.

01-Oct-2010 2

Modified note in Section 5.3.2 after Section Table 19.
Updated Figure 9: Clock tree on page 73
Modified Table 15: Standby mode on page 63 (wakeup latency)
Updated Section 9.12: Temperature sensor on page 191

Updated SOF and SOFC bit descriptions in Section 12.5: LCD
registers on page 262

Updated RTC register write protection on page 432
Updated I2C Master receiver on page 464

29-Nov-2010 3

Modified Section 3.3.1: Behavior of clocks in low power modes
(65 kHz instead of 64 KHz)
Modified Section 3.3.9: Waking up the device from Stop and
Standby modes using the RTC and comparators on page 64
Modified sequence orders in RTC auto-wakeup (AWU) from the
Stop mode on page 65 and Section 3.4.1: PWR power control
register (PWR_CR) on page 66
Modified Section 4.2.3: MSI clock on page 75
Modified MSIRANGE bit description in Section 4.3.2: Internal
clock sources calibration register (RCC_ICSCR) on page 84

Modified PLS[2:0] bit description in Section 3.4.1: PWR power
control register (PWR_CR)Modified Section 4.2.6: LSI clock on
page 77
Modified Section 6.4.7: Analog switch mode register
(RI_ASMR1) on page 137 (“SCM” instead of “ST”)
Modified Section 6.5.7: SYSCFG register map on page 147
(“SYSCFG_MEMRMP” instead of “SYSCFG_MEMRM”)
Updated JSQ bit description and added note in Section 9.15.15:
ADC injected sequence register (ADC_JSQR) on page 208

Modified Figure 51: COMP2 interconnections on page 237
odifiedSection 11.4: Comparator 1 (COMP1) on page 236 and
Section 11.9.1: COMP comparator control and status register
(COMP_CSR) on page 240
Modified Section 12.2: LCD main features on page 243

Modified content of Section 20: Real-time clock (RTC) on
page 428 and changed bit and register names, added note on
APB vs RTCCLK frequency in Section 20.3.6 on page 434.

RM0038 Revision history

Doc ID 15965 Rev 4 595/598

29-Nov-2010 3 (continued)

Modified Table 61: Min/max IWDG timeout period at 37 kHz
(LSI) on page 383
Modified Section : LIN reception on page 537
Modified note in Structure and usage of packet buffers on
page 397
Modified Section 24.6.2: Boundary scan TAP on page 569
Modified Figure 53: Comparators in Window mode on page 239
Modified REV_ID(15:0) description in Section 24.6.1: MCU
device ID code on page 568
Added Section 25: Device electronic signature on page 592
Added Section 25.1.1: Flash size register on page 592

24-Feb-2010 4

Modified Table 28: Vector table on page 148 (TIM9 and LCD)
Modified Figure 54: LCD controller block diagram on page 245
Modified PON[2:0], CC[2:0] and PS[3:0] bit description in
Section 12.5.2: LCD frame control register (LCD_FCR) on
page 263
Modified Section 3.3: Low-power modes
Modified Section 5.3.13: Using the OSC32_IN/OSC32_OUT
pins as GPIO PC14/PC15 port pins and Section 5.3.14: Using
the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins
Modified Section 10.1: DAC introduction on page 213
Added note 2 to Section 12.2: LCD main features on page 243
Modified bit descriptions in Section 13.4.17: TIMx DMA control
register (TIMx_DCR) on page 324
Modified DMAB[15:0] bit description in Section 13.4.18: TIMx
DMA address for full transfer (TIMx_DMAR) on page 324
Modified Section 21.3.7: DMA requests on page 469
Added note below Figure 163: Transfer sequence diagram for
slave receiver on page 460
Modified Section : Closing slave communication on page 460
Modified Section 21.6.6: Status register 1 (I2C_SR1) on
page 478
Added note to Section 21.6.7: Status register 2 (I2C_SR2) on
page 481
Modified note in Section 21.6.8: Clock control register
(I2C_CCR) on page 482
Modified Section 22: Serial peripheral interface (SPI) on
page 485
Added note below Figure 163: Transfer sequence diagram for
slave receiver on page 460

Table 114. Document revision history (continued)

Date Revision Changes

RM0038 Index

Doc ID 15965 Rev 4 596/598

Index

A
ADC_CCR .210
ADC_CR1 .196
ADC_CR2 .198
ADC_CSR .209
ADC_DR .209
ADC_HTR .204
ADC_JDRx .208
ADC_JOFRx .204
ADC_JSQR .208
ADC_LTR .204
ADC_SMPR1 .202
ADC_SMPR2 136-137, 202
ADC_SMPR3 .203
ADC_SQR1 .205
ADC_SQR2 .205
ADC_SQR3 .206
ADC_SQR4 .207
ADC_SQR5 .207
ADC_SR .194

C
COMP_CSR .240
CRC_DR .426
CRC_IDR .426

D
DAC_CR .224
DAC_DHR12L1 .228
DAC_DHR12L2 .229
DAC_DHR12LD .230
DAC_DHR12R1 .228
DAC_DHR12R2 .229
DAC_DHR12RD .230
DAC_DHR8R1 .228
DAC_DHR8R2 .229
DAC_DHR8RD .231
DAC_DOR1 .231
DAC_DOR2 .231
DAC_SR .232
DAC_SWTRIGR .227
DBGMCU_APB1_FZ 582
DBGMCU_APB2_FZ 584
DBGMCU_CR .581
DBGMCU_IDCODE .568
DMA_CCRx .168

DMA_CMARx . 170
DMA_CNDTRx . 169
DMA_CPARx . 170
DMA_IFCR . 167
DMA_ISR . 166

E
EXTI_EMR . 154
EXTI_FTSR . 156
EXTI_IMR . 154
EXTI_PR . 157
EXTI_RTSR . 155
EXTI_SWIER . 156

G
GPIOx_AFRH . 124
GPIOx_AFRL . 123
GPIOx_BSRR . 122
GPIOx_IDR . 121
GPIOx_LCKR . 122
GPIOx_MODER . 119
GPIOx_ODR . 121
GPIOx_OSPEEDR . 120
GPIOx_OTYPER . 120
GPIOx_PUPDR . 120

I
I2C_CCR . 482
I2C_CR1 . 473
I2C_CR2 . 475
I2C_DR . 477
I2C_OAR1 . 476
I2C_OAR2 . 477
I2C_SR1 . 478
I2C_SR2 . 481
I2C_TRISE . 483
IWDG_KR . 384
IWDG_PR . 384
IWDG_RLR . 385
IWDG_SR . 385

L
LCD_CLR . 266
LCD_CR . 262
LCD_RAM . 268

Index RM0038

597/598 Doc ID 15965 Rev 4

P
PWR_CR .66
PWR_CSR .68

R
RCC_AHB1RSTR .90
RCC_AHBENR .94, 99
RCC_APB1ENR .97, 101
RCC_APB1RSTR .92
RCC_APB2ENR .95, 100
RCC_APB2RSTR .91
RCC_CFGR .85
RCC_CIR .87
RCC_CR .82
RCC_CSR .103
RI_ASCR1 .134
RI_ASCR2 .135
RI_HYSCR1 .136
RI_ICR .132
RTC_ALRMAR .448
RTC_ALRMBR .449
RTC_BKxR .453
RTC_CALIBR .447
RTC_CR .442
RTC_DR .441
RTC_ISR .444
RTC_PRER .446
RTC_TCR .452
RTC_TR .440
RTC_TSDR .451
RTC_TSTR .451
RTC_WPR .450
RTC_WUTR .447

S
SPI_CR1 .507
SPI_CR2 .509
SPI_CRCPR .511
SPI_DR .511
SPI_RXCRCR .512
SPI_SR .510
SPI_TXCRCR .512
SYSCFG_EXTICR1 .145
SYSCFG_EXTICR2 .145
SYSCFG_EXTICR3 .146
SYSCFG_EXTICR4 .146
SYSCFG_MEMRMP 144

T
TIMx_ARR 321, 366, 380
TIMx_CCER . 319, 364
TIMx_CCMR1 . 315, 361
TIMx_CCMR2 . 318
TIMx_CCR1 322, 366-368
TIMx_CCR2 . 322, 367
TIMx_CCR3 . 323
TIMx_CCR4 . 323
TIMx_CNT 321, 365, 379
TIMx_CR1 306, 353, 377
TIMx_CR2 308, 354, 378
TIMx_DCR . 324
TIMx_DIER 311, 358, 378
TIMx_DMAR . 324
TIMx_EGR 314, 360, 379
TIMx_PSC 321, 365, 380
TIMx_SMCR . 309, 355
TIMx_SR . 312, 358, 379

U
USART_BRR . 553
USART_CR1 . 554
USART_CR2 . 557
USART_CR3 . 558
USART_DR . 553
USART_GTPR . 560
USART_SR . 551
USB_ADDRn_RX . 421
USB_ADDRn_TX . 420
USB_BTABLE . 415
USB_CNTR . 409
USB_COUNTn_RX . 422
USB_COUNTn_TX . 421
USB_DADDR . 415
USB_EPnR . 416
USB_FNR . 414
USB_ISTR . 411

W
WWDG_CFR . 391
WWDG_CR . 390
WWDG_SR . 391

RM0038

598/598 Doc ID 15965 Rev 4

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Documentation conventions
	1.1 List of abbreviations for registers
	1.2 Peripheral availability

	2 Memory and bus architecture
	2.1 System architecture
	Figure 1. System architecture

	2.2 Memory organization
	2.3 Memory map
	Table 1. Register boundary addresses
	2.3.1 Embedded SRAM
	2.3.2 Bit banding
	2.3.3 Embedded Flash memory
	Table 2. Flash module organization
	Table 3. Number of wait states (WS) according to CPU clock (HCLK) frequency
	Table 5. Flash interface register map and reset values

	2.4 Boot configuration
	Table 6. Boot modes
	Table 7. Memory mapping vs. boot mode/physical remap

	3 Power control (PWR)
	3.1 Power supplies
	Figure 2. Power supply overview
	3.1.1 Independent A/D and DAC converter supply and reference voltage
	3.1.2 Independent LCD supply
	3.1.3 RTC and RTC backup registers
	3.1.4 Voltage regulator
	3.1.5 Dynamic voltage scaling management
	Table 8. Performance versus VCORE ranges
	Figure 3. STM32L15xxx performance versus VDD and VCORE range

	3.1.6 Dynamic voltage scaling configuration
	3.1.7 Voltage regulator and clock management when VDD drops below 2.0 V
	3.1.8 Voltage regulator and clock management when modifying the VCORE range

	3.2 Power supply supervisor
	Figure 4. Power supply supervisors
	3.2.1 Power on reset (POR)/power down reset (PDR)
	Figure 5. Power on reset/power down reset waveform

	3.2.2 Brown out reset (BOR)
	Figure 6. BOR thresholds

	3.2.3 Programmable voltage detector (PVD)
	Figure 7. PVD thresholds

	3.2.4 Internal voltage reference (VREFINT)

	3.3 Low-power modes
	Table 9. Summary of low-power modes
	3.3.1 Behavior of clocks in low power modes
	3.3.2 Slowing down system clocks
	3.3.3 Peripheral clock gating
	3.3.4 Low power run mode (LP run)
	3.3.5 Sleep mode
	Table 10. Sleep-now
	Table 11. Sleep-on-exit

	3.3.6 Low power sleep mode (LP sleep)
	Table 12. Sleep-now
	Table 13. Sleep-on-exit

	3.3.7 Stop mode
	Table 14. Stop mode

	3.3.8 Standby mode
	Table 15. Standby mode

	3.3.9 Waking up the device from Stop and Standby modes using the RTC and comparators

	3.4 Power control registers
	3.4.1 PWR power control register (PWR_CR)
	Note: If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, this bit must remain set to 1.
	Note: Refer to the electrical characteristics of the datasheet for more details.

	3.4.2 PWR power control/status register (PWR_CSR)
	Note: This bit is reset by a system reset.
	Note: This bit is reset by a system reset.
	Note: This bit is reset by a system reset.
	Note: The PVD is stopped by Standby mode. For this reason, this bit is equal to 0 after Standby or reset until the PVDE bit is set.
	Note: An additional wakeup event is detected if the WKUP pins are enabled (by setting the EWUPx (x=1, 2, 3) bits) when the WKUP pin levels are already high.

	3.4.3 PWR register map
	Table 16. PWR - register map and reset values

	4 Reset and clock control (RCC)
	4.1 Reset
	4.1.1 System reset
	4.1.2 Power reset
	Figure 8. Simplified diagram of the reset circuit

	4.1.3 RTC and backup registers reset

	4.2 Clocks
	Figure 9. Clock tree
	4.2.1 HSE clock
	Figure 10. HSE/ LSE clock sources

	4.2.2 HSI clock
	4.2.3 MSI clock
	4.2.4 PLL
	4.2.5 LSE clock
	4.2.6 LSI clock
	4.2.7 System clock (SYSCLK) selection
	4.2.8 System clock source frequency versus voltage range
	Figure 11. System clock source frequency

	4.2.9 Clock security system (CSS)
	4.2.10 RTC and LCD clock
	4.2.11 Watchdog clock
	4.2.12 Clock-out capability
	4.2.13 Internal/external clock measurement with TIM9/TIM10/TIM11
	Figure 12. Using the TIM9/TIM10/TIM11 channel 1 input capture to measure frequencies

	4.2.14 Clock-independent system clock sources for TIM9/TIM10/TIM11

	4.3 RCC registers
	4.3.1 Clock control register (RCC_CR)
	Note: Once the MSION bit is cleared, MSIRDY goes low after 6 MSI clock cycles.

	4.3.2 Internal clock sources calibration register (RCC_ICSCR)
	4.3.3 Clock configuration register (RCC_CFGR)
	Note: This clock output may have some truncated cycles at startup or during MCO clock source switching.
	Caution: The PLL VCO clock frequency must not exceed 96 MHz when the product is in Range 1, 48 MHz when the product is in Range 2 and 24 MHz when the product is in Range 3.

	Note: The PLL minimum input clock frequency is 2 MHz.
	Caution: Depending on the device voltage range, the software has to set correctly these bits to ensure that the system frequency does not exceed the maximum allowed frequency (for more details please refer to the Dynamic voltage scaling management se...

	4.3.4 Clock interrupt register (RCC_CIR)
	4.3.5 AHB peripheral reset register (RCC_AHBRSTR)
	4.3.6 APB2 peripheral reset register (RCC_APB2RSTR)
	4.3.7 APB1 peripheral reset register (RCC_APB1RSTR)
	4.3.8 AHB peripheral clock enable register (RCC_AHBENR)
	4.3.9 APB2 peripheral clock enable register (RCC_APB2ENR)
	4.3.10 APB1 peripheral clock enable register (RCC_APB1ENR)
	4.3.11 AHB peripheral clock enable in low power mode register (RCC_AHBLPENR)
	4.3.12 APB2 peripheral clock enable in low power mode register (RCC_APB2LPENR)
	4.3.13 APB1 peripheral clock enable in low power mode register (RCC_APB1LPENR)
	4.3.14 Control/status register (RCC_CSR)
	4.3.15 RCC register map
	Table 17. RCC register map and reset values

	5 General-purpose I/Os (GPIO)
	5.1 GPIO introduction
	5.2 GPIO main features
	5.3 GPIO functional description
	Figure 13. Basic structure of a standard I/O port bit
	Figure 14. Basic structure of a five-volt tolerant I/O port bit
	Table 18. Port bit configuration table
	5.3.1 General-purpose I/O (GPIO)
	5.3.2 I/O pin multiplexer and mapping
	Table 19. Flexible SWJ-DP pin assignment
	Figure 15. Selecting an alternate function

	5.3.3 I/O port control registers
	5.3.4 I/O port data registers
	5.3.5 I/O data bitwise handling
	5.3.6 GPIO locking mechanism
	5.3.7 I/O alternate function input/output
	5.3.8 External interrupt/wakeup lines
	5.3.9 Input configuration
	Figure 16. Input floating/pull up/pull down configurations

	5.3.10 Output configuration
	Figure 17. Output configuration

	5.3.11 Alternate function configuration
	Figure 18. Alternate function configuration

	5.3.12 Analog configuration
	Figure 19. High impedance-analog configuration

	5.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins
	5.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins
	5.3.15 Selection of RTC_AF1 alternate functions
	Table 20. RTC_AF1 pin

	5.4 GPIO registers
	5.4.1 GPIO port mode register (GPIOx_MODER) (x = A..E and H)
	5.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..E and H)
	5.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..E and H)
	5.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..E and H)
	5.4.5 GPIO port input data register (GPIOx_IDR) (x = A..E and H)
	5.4.6 GPIO port output data register (GPIOx_ODR) (x = A..E and H)
	5.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..E and H)
	5.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A..E and H)
	5.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..E and H)
	5.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A..E and H)
	5.4.11 GPIO register map
	Table 21. GPIO register map and reset values

	6 System configuration controller (SYSCFG) and routing interface (RI)
	6.1 SYSCFG and RI introduction
	6.2 RI main features
	Figure 20. Routing interface (RI) block diagram

	6.3 RI functional description
	6.3.1 Special I/O configuration
	Table 22. I/O groups and selection

	6.3.2 Input capture routing
	Table 23. Input capture mapping
	Table 24. Timer selection
	Table 25. Input capture selection

	6.3.3 Reference voltage routing
	Figure 21. Internal reference voltage output

	6.4 RI registers
	6.4.1 RI input capture register (RI_ICR)
	6.4.2 RI analog switches control register (RI_ASCR1)
	6.4.3 RI analog switch control register 2 (RI_ASCR2)
	6.4.4 RI hysteresis control register (RI_HYSCR1)
	6.4.5 RI Hysteresis control register (RI_HYSCR2)
	6.4.6 RI Hysteresis control register (RI_HYSCR3)
	6.4.7 Analog switch mode register (RI_ASMR1)
	6.4.8 Channel mask register (RI_CMR1)
	6.4.9 Channel identification for capture register (RI_CICR1)
	6.4.10 Analog switch mode register (RI_ASMR2)
	6.4.11 Channel mask register (RI_CMR2)
	6.4.12 Channel identification for capture register (RI_CICR2)
	6.4.13 Analog switch mode register (RI_ASMR3)
	6.4.14 Channel mask register (RI_CMR3)
	6.4.15 Channel identification for capture register (RI_CICR3)
	6.4.16 RI register map
	Table 26. RI register map and reset values

	6.5 SYSCFG registers
	6.5.1 SYSCFG memory remap register (SYSCFG_MEMRMP)
	6.5.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC)
	6.5.3 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1)
	6.5.4 SYSCFG external interrupt configuration register 2 (SYSCFG_EXTICR2)
	6.5.5 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3)
	6.5.6 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4)
	6.5.7 SYSCFG register map
	Table 27. SYSCFG register map and reset values

	7 Interrupts and events
	7.1 Nested vectored interrupt controller (NVIC)
	7.1.1 SysTick calibration value register
	7.1.2 Interrupt and exception vectors
	Table 28. Vector table

	7.2 External interrupt/event controller (EXTI)
	7.2.1 Main features
	7.2.2 Block diagram
	Figure 22. External interrupt/event controller block diagram

	7.2.3 Wakeup event management
	7.2.4 Functional description
	7.2.5 External interrupt/event line mapping
	Figure 23. External interrupt/event GPIO mapping

	7.3 EXTI registers
	7.3.1 EXTI interrupt mask register (EXTI_IMR)
	7.3.2 EXTI event mask register (EXTI_EMR)
	7.3.3 EXTI rising edge trigger selection register (EXTI_RTSR)
	7.3.4 Falling edge trigger selection register (EXTI_FTSR)
	7.3.5 EXTI software interrupt event register (EXTI_SWIER)
	7.3.6 EXTI pending register (EXTI_PR)
	7.3.7 EXTI register map
	Table 29. External interrupt/event controller register map and reset values

	8 DMA controller (DMA)
	8.1 DMA introduction
	8.2 DMA main features
	Figure 24. DMA block diagram in STM32L15xxx devices

	8.3 DMA functional description
	8.3.1 DMA transactions
	8.3.2 Arbiter
	8.3.3 DMA channels
	8.3.4 Programmable data width, data alignment and endians
	Table 30. Programmable data width & endian behavior (when bits PINC = MINC = 1)

	8.3.5 Error management
	8.3.6 Interrupts
	Table 31. DMA interrupt requests

	8.3.7 DMA request mapping
	Figure 25. DMA request mapping
	Table 32. Summary of DMA requests for each channel

	8.4 DMA registers
	8.4.1 DMA interrupt status register (DMA_ISR)
	8.4.2 DMA interrupt flag clear register (DMA_IFCR)
	8.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1..7, where x = channel number)
	8.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1..7), where x = channel number)
	8.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1..7), where x = channel number)
	8.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1..7), where x = channel number)
	8.4.7 DMA register map
	Table 33. DMA register map and reset values

	9 Analog-to-digital converter (ADC)
	9.1 ADC introduction
	9.2 ADC main features
	9.3 ADC functional description
	Figure 26. ADC block diagram
	Table 34. ADC pins
	9.3.1 ADC power on-off control
	9.3.2 ADC clock
	9.3.3 Channel selection
	9.3.4 Single conversion mode
	9.3.5 Continuous conversion mode
	9.3.6 Timing diagram
	Figure 27. Timing diagram (normal mode, PDI=0)

	9.3.7 Analog watchdog
	Figure 28. Analog watchdog's guarded area
	Table 35. Analog watchdog channel selection

	9.3.8 Scan mode
	9.3.9 Injected channel management
	Figure 29. Injected conversion latency

	9.3.10 Discontinuous mode

	9.4 Data alignment
	Figure 30. Right alignment of 12-bit data
	Figure 31. Left alignment of 12-bit data
	Figure 32. Left alignment of 6-bit data

	9.5 Channel-wise programmable sampling time
	9.6 Conversion on external trigger
	Table 36. Configuring the trigger edge detection
	Table 37. External trigger for regular channels
	Table 38. External trigger for injected channels

	9.7 Aborting a conversion
	9.7.1 Injected channels
	9.7.2 Regular channels

	9.8 Conversion resolution
	9.9 Hardware freeze and delay insertion modes for slow conversions
	Figure 33. ADC freeze mode
	9.9.1 Inserting a delay after each regular conversion
	Figure 34. Continuous regular conversions with a delay

	9.9.2 Inserting a delay after each sequence of auto-injected conversions
	Figure 35. Continuous conversions with a delay between each conversion

	9.10 Power saving
	Figure 36. Automatic power-down control: example 1
	Figure 37. Automatic power-down control: example 2
	Figure 38. Automatic power-down control: example 3

	9.11 Data management and overrun detection
	9.11.1 Using the DMA
	9.11.2 Managing a sequence of conversions without using the DMA
	9.11.3 Conversions without reading all the data
	9.11.4 Overrun detection

	9.12 Temperature sensor
	Figure 39. Temperature sensor and VREFINT channel block diagram
	9.12.1 How to read the temperature

	9.13 Internal reference voltage (VREFINT) conversion
	9.14 ADC interrupts
	Figure 40. ADC flags and interrupts
	Table 39. ADC interrupts

	9.15 ADC registers
	9.15.1 ADC status register (ADC_SR)
	9.15.2 ADC control register 1 (ADC_CR1)
	Note: This bit must be written only when ADON=0.
	Note: This bit must be written only when ADON=0.
	Note: This bit must be written only when ADON=0.
	Note: This bit must be written only when ADON=0.
	Note: This bit must be written only when ADON=0.
	Note: This bit must be written only when ADON=0.
	Note: This bit must be written only when ADON=0.
	Note: ADC1 analog inputs Channel16, Channel 17 and Channel26 are internally connected to the temperature sensor, to VREFINT and to VCOMP, respectively.

	9.15.3 ADC control register 2 (ADC_CR2)
	Note: This bit must be set only when ADONS=1 and RCNR=0.
	Note: The external trigger must be enabled only when ADONS=1.
	Note: This bit must be set only when ADONS=1 and JCNR=0.
	Note: The external trigger must be enabled only when ADONS=1.
	Note: 1- This bit must be written only when ADON=0.
	2- Due to clock domain crossing, a latency of 2 or 3 ADC clock cycles is added to the delay before a new conversion can start.
	3- The delay required for a given frequency ratio between the APB clock and the ADC clock depends on the activity on the AHB and APB busses. If the ADC is the only peripheral that needs to transfer data, then a minimum delay should be configured: 15 ...
	Note: This bit must be set only when ADONS=0 and cleared only when ADONS=1.

	9.15.4 ADC sample time register 1 (ADC_SMPR1)
	Note: These bits must be written only when ADON=0.

	9.15.5 ADC sample time register 2 (ADC_SMPR2)
	Note: These bits must be written only when ADON=0.

	9.15.6 ADC sample time register 3 (ADC_SMPR3)
	Note: These bits must be written only when ADON=0.

	9.15.7 ADC injected channel data offset register x (ADC_JOFRx)(x=1..4)
	9.15.8 ADC watchdog higher threshold register (ADC_HTR)
	9.15.9 ADC watchdog lower threshold register (ADC_LTR)
	9.15.10 ADC regular sequence register 1 (ADC_SQR1)
	9.15.11 ADC regular sequence register 2 (ADC_SQR2)
	9.15.12 ADC regular sequence register 3 (ADC_SQR3)
	9.15.13 ADC regular sequence register 4 (ADC_SQR4)
	9.15.14 ADC regular sequence register 5 (ADC_SQR5)
	9.15.15 ADC injected sequence register (ADC_JSQR)
	9.15.16 ADC injected data register x (ADC_JDRx) (x= 1..4)
	9.15.17 ADC regular data register (ADC_DR)
	9.15.18 ADC common status register (ADC_CSR)
	9.15.19 ADC common control register (ADC_CCR)
	9.15.20 ADC register map
	Table 40. ADC global register map
	Table 41. ADC register map and reset values
	Table 42. ADC register map and reset values (common registers)

	10 Digital-to-analog converter (DAC)
	10.1 DAC introduction
	10.2 DAC main features
	Figure 41. DAC channel block diagram
	Table 43. DAC pins

	10.3 DAC functional description
	10.3.1 DAC channel enable
	10.3.2 DAC output buffer enable
	10.3.3 DAC data format
	Figure 42. Data registers in single DAC channel mode
	Figure 43. Data registers in dual DAC channel mode

	10.3.4 DAC conversion
	Figure 44. Timing diagram for conversion with trigger disabled TEN = 0

	10.3.5 DAC output voltage
	10.3.6 DAC trigger selection
	Table 44. External triggers

	10.3.7 DMA request
	10.3.8 Noise generation
	Figure 45. DAC LFSR register calculation algorithm
	Figure 46. DAC conversion (SW trigger enabled) with LFSR wave generation

	10.3.9 Triangle-wave generation
	Figure 47. DAC triangle wave generation
	Figure 48. DAC conversion (SW trigger enabled) with triangle wave generation

	10.4 Dual DAC channel conversion
	10.4.1 Independent trigger without wave generation
	10.4.2 Independent trigger with single LFSR generation
	10.4.3 Independent trigger with different LFSR generation
	10.4.4 Independent trigger with single triangle generation
	10.4.5 Independent trigger with different triangle generation
	10.4.6 Simultaneous software start
	10.4.7 Simultaneous trigger without wave generation
	10.4.8 Simultaneous trigger with single LFSR generation
	10.4.9 Simultaneous trigger with different LFSR generation
	10.4.10 Simultaneous trigger with single triangle generation
	10.4.11 Simultaneous trigger with different triangle generation

	10.5 DAC registers
	10.5.1 DAC control register (DAC_CR)
	10.5.2 DAC software trigger register (DAC_SWTRIGR)
	10.5.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1)
	10.5.4 DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1)
	10.5.5 DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1)
	10.5.6 DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2)
	10.5.7 DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2)
	10.5.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2)
	10.5.9 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD)
	10.5.10 DUAL DAC 12-bit left aligned data holding register (DAC_DHR12LD)
	10.5.11 DUAL DAC 8-bit right aligned data holding register (DAC_DHR8RD)
	10.5.12 DAC channel1 data output register (DAC_DOR1)
	10.5.13 DAC channel2 data output register (DAC_DOR2)
	10.5.14 DAC status register (DAC_SR)
	10.5.15 DAC register map
	Table 45. DAC register map

	11 Comparators (COMP)
	11.1 Introduction
	11.2 Main features
	Figure 49. Comparator block diagram

	11.3 COMP clock
	11.4 Comparator 1 (COMP1)
	Figure 50. COMP1 interconnections

	11.5 Comparator 2 (COMP2)
	Figure 51. COMP2 interconnections
	Figure 52. Redirecting the COMP2 output

	11.6 Comparators in Window mode
	Figure 53. Comparators in Window mode

	11.7 Low power modes
	Table 46. Comparator behavior in the low power modes

	11.8 Interrupts
	11.9 COMP registers
	11.9.1 COMP comparator control and status register (COMP_CSR)
	Note: The COMP2 comparator is enabled when the INSEL bit values are different from "000”.

	11.9.2 COMP register map
	Table 47. COMP register map and reset values

	12 LCD controller (LCD)
	12.1 Introduction
	12.2 LCD main features
	12.3 Glossary
	12.4 LCD functional description
	12.4.1 General description
	Figure 54. LCD controller block diagram

	12.4.2 Frequency generator
	Table 48. Example of frame rate calculation

	12.4.3 Common driver
	Figure 55. 1/3 bias, 1/4 duty
	Figure 56. Static duty
	Figure 57. Static duty
	Figure 58. 1/2 duty, 1/2 bias

	12.4.4 Segment driver
	Figure 59. 1/3 duty, 1/3 bias
	Figure 60. 1/4 duty, 1/3 bias
	Figure 61. 1/8 duty, 1/4 bias
	Table 49. Blink frequency

	12.4.5 Voltage generator
	Figure 62. VLCD pin for 1/2 1/3 1/4 bias
	Figure 63. Deadtime

	12.4.6 Double buffer memory
	12.4.7 COM and SEG multiplexing
	Table 50. Remapping capability
	Figure 64. SEG/COM mux feature example

	12.4.8 Flowchart
	Figure 65. Flowchart example

	12.5 LCD registers
	12.5.1 LCD control register (LCD_CR)
	12.5.2 LCD frame control register (LCD_FCR)
	Note: 000: VLCD0 001: VLCD1 010: VLCD2 011: VLCD3 100: VLCD4 101: VLCD5 110 VLCD6 111: VLCD7

	12.5.3 LCD status register (LCD_SR)
	Note: If the device is in STOP mode (PCLK not provided) UDD will not generate an interrupt even if UDDIE = 1.
	If the display is not enabled the UDD interrupt will never occur.
	Note: When the display is disabled, the update is performed for all LCD_DISPLAY locations. When the display is enabled, the update is performed only for locations for which commons are active (depending on DUTY). For example if DUTY = 1/2, only the L...
	Note: Writing 0 on this bit or writing 1 when it is already 1 has no effect. This bit can be cleared by hardware only. It can be cleared only when LCDEN = 1
	Note: The ENS bit is set immediately when the LCDEN bit in the LCD_CR goes from 0 to 1. On deactivation it reflects the real status of LCD so it becomes 0 at the end of the last displayed frame.

	12.5.4 LCD clear register (LCD_CLR)
	12.5.5 LCD display memory (LCD_RAM)
	12.5.6 LCD register map
	Table 51. LCD register map and reset values

	13 General-purpose timers (TIM2 to TIM4)
	13.1 TIM2 to TIM4 introduction
	13.2 TIM2 to TIM4 main features
	Figure 66. General-purpose timer block diagram

	13.3 TIM2 to TIM4 functional description
	13.3.1 Time-base unit
	Figure 67. Counter timing diagram with prescaler division change from 1 to 2
	Figure 68. Counter timing diagram with prescaler division change from 1 to 4

	13.3.2 Counter modes
	Figure 69. Counter timing diagram, internal clock divided by 1
	Figure 70. Counter timing diagram, internal clock divided by 2
	Figure 71. Counter timing diagram, internal clock divided by 4
	Figure 72. Counter timing diagram, internal clock divided by N
	Figure 73. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 74. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded)
	Figure 75. Counter timing diagram, internal clock divided by 1
	Figure 76. Counter timing diagram, internal clock divided by 2
	Figure 77. Counter timing diagram, internal clock divided by 4
	Figure 78. Counter timing diagram, internal clock divided by N
	Figure 79. Counter timing diagram, Update event when repetition counter is not used
	Figure 80. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6
	Figure 81. Counter timing diagram, internal clock divided by 2
	Figure 82. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36
	Figure 83. Counter timing diagram, internal clock divided by N
	Figure 84. Counter timing diagram, Update event with ARPE=1 (counter underflow)
	Figure 85. Counter timing diagram, Update event with ARPE=1 (counter overflow)

	13.3.3 Clock selection
	Figure 86. Control circuit in normal mode, internal clock divided by 1
	Figure 87. TI2 external clock connection example
	Figure 88. Control circuit in external clock mode 1
	Figure 89. External trigger input block
	Figure 90. Control circuit in external clock mode 2

	13.3.4 Capture/compare channels
	Figure 91. Capture/compare channel (example: channel 1 input stage)
	Figure 92. Capture/compare channel 1 main circuit
	Figure 93. Output stage of capture/compare channel (channel 1)

	13.3.5 Input capture mode
	13.3.6 PWM input mode
	Figure 94. PWM input mode timing

	13.3.7 Forced output mode
	13.3.8 Output compare mode
	Figure 95. Output compare mode, toggle on OC1.

	13.3.9 PWM mode
	Figure 96. Edge-aligned PWM waveforms (ARR=8)
	Figure 97. Center-aligned PWM waveforms (ARR=8)

	13.3.10 One-pulse mode
	Figure 98. Example of one-pulse mode.

	13.3.11 Clearing the OCxREF signal on an external event
	Figure 99. Clearing TIMx OCxREF

	13.3.12 Encoder interface mode
	Table 52. Counting direction versus encoder signals
	Figure 100. Example of counter operation in encoder interface mode.
	Figure 101. Example of encoder interface mode with IC1FP1 polarity inverted.

	13.3.13 Timer input XOR function
	13.3.14 Timers and external trigger synchronization
	Figure 102. Control circuit in reset mode
	Figure 103. Control circuit in gated mode
	Figure 104. Control circuit in trigger mode
	Figure 105. Control circuit in external clock mode 2 + trigger mode

	13.3.15 Timer synchronization
	Figure 106. Master/Slave timer example
	Figure 107. Gating TIM2 with OC1REF of TIM3
	Figure 108. Gating TIM2 with Enable of TIM3
	Figure 109. Triggering TIM2 with update of TIM3
	Figure 110. Triggering TIM2 with Enable of TIM3
	Figure 111. Triggering TIM3 and TIM2 with TIM3 TI1 input

	13.3.16 Debug mode

	13.4 TIMx registers
	13.4.1 TIMx control register 1 (TIMx_CR1)
	Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1)
	Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode.
	Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware.

	13.4.2 TIMx control register 2 (TIMx_CR2)
	13.4.3 TIMx slave mode control register (TIMx_SMCR)
	Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition.
	Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal.
	Table 53. TIMx internal trigger connection

	13.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER)
	13.4.5 TIMx status register (TIMx_SR)
	13.4.6 TIMx event generation register (TIMx_EGR)
	13.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)
	Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).
	Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in output).
	2: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from “frozen” mode to “PWM” mode.
	Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in output).
	2: The PWM mode can be used without validating the preload register only in one- pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.
	Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).
	Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).
	Note: In current silicon revision, fDTS is replaced in the formula by CK_INT when ICxF[3:0]= 1, 2 or 3.
	Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

	13.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2)
	Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).
	Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).
	Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).
	Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

	13.4.9 TIMx capture/compare enable register (TIMx_CCER)
	Table 54. Output control bit for standard OCx channels

	13.4.10 TIMx counter (TIMx_CNT)
	13.4.11 TIMx prescaler (TIMx_PSC)
	13.4.12 TIMx auto-reload register (TIMx_ARR)
	13.4.13 TIMx capture/compare register 1 (TIMx_CCR1)
	13.4.14 TIMx capture/compare register 2 (TIMx_CCR2)
	13.4.15 TIMx capture/compare register 3 (TIMx_CCR3)
	13.4.16 TIMx capture/compare register 4 (TIMx_CCR4)
	13.4.17 TIMx DMA control register (TIMx_DCR)
	13.4.18 TIMx DMA address for full transfer (TIMx_DMAR)
	13.4.19 TIMx register map
	Table 55. TIM2 to TIM4 register map and reset values

	14 General-purpose timers (TIM9/10/11)
	14.1 TIM9/10/11 introduction
	14.2 TIM9/10/11 main features
	14.2.1 TIM9 main features
	Figure 112. General-purpose timer block diagram

	14.2.2 TIM10 and TIM11 main features
	Figure 113. General-purpose timer block diagram (TIM10)
	Figure 114. General-purpose timer block diagram (TIM11)

	14.3 TIM9/10/11 functional description
	14.3.1 Time-base unit
	Figure 115. Counter timing diagram with prescaler division change from 1 to 2
	Figure 116. Counter timing diagram with prescaler division change from 1 to 4

	14.3.2 Counter modes
	Figure 117. Counter timing diagram, internal clock divided by 1
	Figure 118. Counter timing diagram, internal clock divided by 2
	Figure 119. Counter timing diagram, internal clock divided by 4
	Figure 120. Counter timing diagram, internal clock divided by N
	Figure 121. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 122. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)

	14.3.3 Clock selection
	Figure 123. Control circuit in normal mode, internal clock divided by 1
	Figure 124. TI2 external clock connection example
	Figure 125. External trigger input block
	Figure 126. Control circuit in external clock mode 2

	14.3.4 Capture/compare channels
	Figure 127. Capture/compare channel (example: channel 1 input stage)
	Figure 128. Capture/compare channel 1 main circuit
	Figure 129. Output stage of capture/compare channel (channel 1)

	14.3.5 Input capture mode
	14.3.6 PWM input mode (available for TIM9 only)
	Figure 130. PWM input mode timing

	14.3.7 Forced output mode
	14.3.8 Output compare mode
	Figure 131. Output compare mode, toggle on OC1

	14.3.9 PWM mode
	Figure 132. Edge-aligned PWM waveforms (ARR=8)

	14.3.10 One-pulse mode (available for TIM9 only)
	Figure 133. Example of one-pulse mode.

	14.3.11 Timers and external trigger synchronization (available for TIM9 only)
	Figure 134. Control circuit in Reset mode
	Figure 135. Control circuit in Gated mode
	Figure 136. Control circuit in Trigger mode

	14.3.12 Timer synchronization (available for TIM9 only)
	Figure 137. Master/Slave timer example
	Figure 138. Gating TIM2 with the OC1REF of TIM9
	Figure 139. Gating TIM2 with the Enable of TIM9
	Figure 140. Triggering TIM2 with the update of TIM9
	Figure 141. Triggering TIM2 with the Enable of TIM9
	Figure 142. Triggering TIM9 and TIM2 with TIM9's TI1 input.

	14.3.13 Debug mode

	14.4 TIM9/10/11 registers
	14.4.1 TIMx control register 1 (TIMx_CR1)
	Note: This bit is not available for the TIM10/11 timers.

	14.4.2 TIMx control register 2 (TIMx_CR2) (available for TIM9 only)
	14.4.3 TIMx slave mode control register (TIMx_SMCR)
	Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=111). 2: It is possible to simultaneously use external clock mode 2 with the following slave modes: Reset mode, Gated mode...
	Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition.
	Note: The Gated mode must not be used if TI1F_ED is selected as the trigger input (TS=100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the Gated mode checks the level of the trigger signal.
	Table 56. TIMx internal trigger connection

	14.4.4 TIMx Interrupt enable register (TIMx_DIER)
	Note: This bit is not available for the TIM10/11 timers.
	Note: This bit is not available for the TIM10/11 timers.

	14.4.5 TIMx status register (TIMx_SR)
	Note: This bit is not available for the TIM10/11 timers.
	Note: This bit is not available for the TIM10/11 timers.
	Note: This bit is not available for the TIM10/11 timers.

	14.4.6 TIMx event generation register (TIMx_EGR)
	Note: This bit is not available for the TIM10/11 timers.
	Note: This bit is not available on the TIM10/TIM11 timers.

	14.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)
	Note: This bit is not available for the TIM10/11 timers.
	Note: OC2M[2:0]: Output compare 2 mode
	Note: This bit is not available for the TIM10/11 timers.
	Note: OC2PE: Output compare 2 preload enable
	Note: This bit is not available for the TIM10/11 timers.
	Note: OC2FE: Output compare 2 fast enable
	Note: This bit is not available for the TIM10/11 timers.
	Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).
	This bit is not available for the TIM10/11 timers.
	Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from “frozen” mode to “PWM” mode.
	Note: The PWM mode can be used without validating the preload register only in one-pulse mode (OPM bit set in the TIMx_CR1 register). Else the behavior is not guaranteed.
	Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).
	Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).
	Note: In the current silicon revision, fDTS is replaced in the formula by CK_INT when ICxF[3:0]= 1, 2 or 3.
	Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

	14.4.8 TIMx capture/compare enable register (TIMx_CCER)
	Note: Refer to the CC1NP description.
	This bit is not available for the TIM10/11 timers.
	Note: Refer to the CC1P description.
	This bit is not available for the TIM10/11 timers.
	Note: Refer to the CC1E description.
	This bit is not available for the TIM10/11 timers.
	Table 57. Output control bit for standard OCx channels

	14.4.9 TIMx counter (TIMx_CNT)
	14.4.10 TIMx prescaler (TIMx_PSC)
	14.4.11 TIMx auto-reload register (TIMx_ARR)
	14.4.12 TIMx capture/compare register 1 (TIMx_CCR1)
	14.4.13 TIMx capture/compare register 2 (TIMx_CCR2) (available only for TIM9)
	14.4.14 TIM9 option register 1 (TIM9_OR)
	14.4.15 TIM10 option register 1 (TIM10_OR)
	14.4.16 TIM11 option register 1 (TIM11_OR)
	14.4.17 TIMx register map
	Table 58. TIM9 register map and reset values
	Table 59. TIM10/11 register map and reset values

	15 Basic timers (TIM6&TIM7)
	15.1 TIM6&TIM7 introduction
	15.2 TIM6&TIM7 main features
	Figure 143. Basic timer block diagram

	15.3 TIM6&TIM7 functional description
	15.3.1 Time-base unit
	Figure 144. Counter timing diagram with prescaler division change from 1 to 2
	Figure 145. Counter timing diagram with prescaler division change from 1 to 4

	15.3.2 Counting mode
	Figure 146. Counter timing diagram, internal clock divided by 1
	Figure 147. Counter timing diagram, internal clock divided by 2
	Figure 148. Counter timing diagram, internal clock divided by 4
	Figure 149. Counter timing diagram, internal clock divided by N
	Figure 150. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not preloaded)
	Figure 151. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)

	15.3.3 Clock source
	Figure 152. Control circuit in normal mode, internal clock divided by 1

	15.3.4 Debug mode

	15.4 TIM6&TIM7 registers
	15.4.1 TIM6&TIM7 control register 1 (TIMx_CR1)
	15.4.2 TIM6&TIM7 control register 2 (TIMx_CR2)
	15.4.3 TIM6&TIM7 DMA/Interrupt enable register (TIMx_DIER)
	15.4.4 TIM6&TIM7 status register (TIMx_SR)
	15.4.5 TIM6&TIM7 event generation register (TIMx_EGR)
	15.4.6 TIM6&TIM7 counter (TIMx_CNT)
	15.4.7 TIM6&TIM7 prescaler (TIMx_PSC)
	15.4.8 TIM6&TIM7 auto-reload register (TIMx_ARR)
	15.4.9 TIM6&TIM7 register map
	Table 60. TIM6&TIM7 register map and reset values

	16 Independent watchdog (IWDG)
	16.1 IWDG introduction
	16.2 IWDG main features
	16.3 IWDG functional description
	16.3.1 Hardware watchdog
	16.3.2 Register access protection
	16.3.3 Debug mode
	Figure 153. Independent watchdog block diagram
	Table 61. Min/max IWDG timeout period at 37 kHz (LSI)

	16.4 IWDG registers
	16.4.1 Key register (IWDG_KR)
	16.4.2 Prescaler register (IWDG_PR)
	Note: Reading this register returns the prescaler value from the VDD voltage domain. This value may not be up to date/valid if a write operation to this register is ongoing. For this reason the value read from this register is valid only when the PVU...

	16.4.3 Reload register (IWDG_RLR)
	Note: Reading this register returns the reload value from the VDD voltage domain. This value may not be up to date/valid if a write operation to this register is ongoing on this register. For this reason the value read from this register is valid onl...

	16.4.4 Status register (IWDG_SR)
	16.4.5 IWDG register map
	Table 62. IWDG register map and reset values

	17 Window watchdog (WWDG)
	17.1 WWDG introduction
	17.2 WWDG main features
	17.3 WWDG functional description
	Figure 154. Watchdog block diagram

	17.4 How to program the watchdog timeout
	Figure 155. Window watchdog timing diagram

	17.5 Debug mode
	17.6 WWDG registers
	17.6.1 Control register (WWDG_CR)
	17.6.2 Configuration register (WWDG_CFR)
	17.6.3 Status register (WWDG_SR)
	17.6.4 WWDG register map
	Table 63. WWDG register map and reset values

	18 Universal serial bus full-speed device interface (USB)
	18.1 USB introduction
	18.2 USB main features
	18.3 USB functional description
	Figure 156. USB peripheral block diagram
	18.3.1 Description of USB blocks

	18.4 Programming considerations
	18.4.1 Generic USB device programming
	18.4.2 System and power-on reset
	Figure 157. Packet buffer areas with examples of buffer description table locations

	18.4.3 Double-buffered endpoints
	Table 64. Double-buffering buffer flag definition
	Table 65. Bulk double-buffering memory buffers usage

	18.4.4 Isochronous transfers
	Table 66. Isochronous memory buffers usage

	18.4.5 Suspend/Resume events
	Table 67. Resume event detection

	18.5 USB registers
	18.5.1 Common registers
	18.5.2 Endpoint-specific registers
	Table 68. Reception status encoding
	Table 69. Endpoint type encoding
	Table 70. Endpoint kind meaning
	Table 71. Transmission status encoding

	18.5.3 Buffer descriptor table
	Table 72. Definition of allocated buffer memory

	18.5.4 USB register map
	Table 73. USB register map and reset values

	19 CRC calculation unit
	19.1 CRC introduction
	19.2 CRC main features
	Figure 158. CRC calculation unit block diagram

	19.3 CRC functional description
	19.4 CRC registers
	19.4.1 Data register (CRC_DR)
	19.4.2 Independent data register (CRC_IDR)
	19.4.3 Control register (CRC_CR)
	19.4.4 CRC register map
	Table 74. CRC calculation unit register map and reset values

	20 Real-time clock (RTC)
	20.1 Introduction
	20.2 RTC main features
	Figure 159. RTC block diagram

	20.3 RTC functional description
	20.3.1 Clock and prescalers
	20.3.2 Real-time clock and calendar
	20.3.3 Programmable alarms
	20.3.4 Periodic auto-wakeup
	20.3.5 RTC initialization and configuration
	20.3.6 Reading the calendar
	20.3.7 Resetting the RTC
	20.3.8 RTC reference clock detection
	20.3.9 RTC digital calibration
	20.3.10 Time-stamp function
	20.3.11 Tamper detection
	20.3.12 Calibration clock output
	20.3.13 Alarm output

	20.4 RTC and low power modes
	Table 75. Effect of low power modes on RTC

	20.5 RTC interrupts
	Table 76. Interrupt control bits

	20.6 RTC registers
	20.6.1 RTC time register (RTC_TR)
	20.6.2 RTC date register (RTC_DR)
	20.6.3 RTC control register (RTC_CR)
	20.6.4 RTC initialization and status register (RTC_ISR)
	20.6.5 RTC prescaler register (RTC_PRER)
	20.6.6 RTC wakeup timer register (RTC_WUTR)
	20.6.7 RTC calibration register (RTC_CALIBR)
	20.6.8 RTC alarm A register (RTC_ALRMAR)
	20.6.9 RTC alarm B register (RTC_ALRMBR)
	20.6.10 RTC write protection register (RTC_WPR)
	20.6.11 RTC time stamp time register (RTC_TSTR)
	20.6.12 RTC time stamp date register (RTC_TSDR)
	20.6.13 RTC tamper and alternate function configuration register (RTC_TAFCR)
	20.6.14 RTC backup registers (RTC_BKPxR)
	20.6.15 Register map
	Table 77. RTC register map and reset values

	21 Inter-integrated circuit (I2C) interface
	21.1 I2C introduction
	21.2 I2C main features
	21.3 I2C functional description
	21.3.1 Mode selection
	Figure 160. I2C bus protocol
	Figure 161. I2C block diagram

	21.3.2 I2C slave mode
	Figure 162. Transfer sequence diagram for slave transmitter
	Figure 163. Transfer sequence diagram for slave receiver

	21.3.3 I2C master mode
	Figure 164. Transfer sequence diagram for master transmitter
	Figure 165. Transfer sequence diagram for master receiver

	21.3.4 Error conditions
	21.3.5 SDA/SCL line control
	21.3.6 SMBus
	Table 78. SMBus vs. I2C

	21.3.7 DMA requests
	21.3.8 Packet error checking

	21.4 I2C interrupts
	Table 79. I2C Interrupt requests
	Figure 166. I2C interrupt mapping diagram

	21.5 I2C debug mode
	21.6 I2C registers
	21.6.1 Control register 1 (I2C_CR1)
	Note: This bit can be used in case the BUSY bit is set to ‘1 when no stop condition has been detected on the bus.
	Note: PEC calculation is corrupted by an arbitration loss.
	Note: The POS bit must be used only in 2-byte reception configuration in master mode. It must be configured before data reception starts, as described in the 2-byte reception procedure recommended in Section : Master receiver on page 464.
	Note: When the STOP, START or PEC bit is set, the software must not perform any write access to I2C_CR1 before this bit is cleared by hardware. Otherwise there is a risk of setting a second STOP, START or PEC request.
	Note: If this bit is reset while a communication is on going, the peripheral is disabled at the end of the current communication, when back to IDLE state. All bit resets due to PE=0 occur at the end of the communication.
	In master mode, this bit must not be reset before the end of the communication.

	21.6.2 Control register 2 (I2C_CR2)
	Note: This bit is used in master receiver mode to permit the generation of a NACK on the last received data.

	21.6.3 Own address register 1 (I2C_OAR1)
	21.6.4 Own address register 2 (I2C_OAR2)
	21.6.5 Data register (I2C_DR)
	Note: In slave mode, the address is not copied into DR.
	Note: Write collision is not managed (DR can be written if TxE=0).
	Note: If an ARLO event occurs on ACK pulse, the received byte is not copied into DR and so cannot be read.

	21.6.6 Status register 1 (I2C_SR1)
	Note: This functionality is available only in SMBus mode.
	Note: If the DR write occurs very close to SCL rising edge, the sent data is unspecified and a hold timing error occurs
	Note: In SMBUS, the arbitration on the data in slave mode occurs only during the data phase, or the acknowledge transmission (not on the address acknowledge).
	Note: TxE is not cleared by writing the first data being transmitted, or by writing data when BTF is set, as in both cases the data register is still empty.
	Note: RxNE is not cleared by reading data when BTF is set, as the data register is still full.
	Note: The STOPF bit is not set after a NACK reception. It is recommended to perform the complete clearing sequence (READ SR1 then WRITE CR1) after the STOPF is set. Refer to Figure 163: Transfer sequence diagram for slave receiver on page 460.
	Note: ADD10 bit is not set after a NACK reception
	Note: The BTF bit is not set after a NACK reception
	The BTF bit is not set if next byte to be transmitted is the PEC (TRA=1 in I2C_SR2 register and PEC=1 in I2C_CR1 register)
	Note: In slave mode, it is recommended to perform the complete clearing sequence (READ SR1 then READ SR2) after ADDR is set. Refer to Figure 163: Transfer sequence diagram for slave receiver on page 460.
	Note: ADDR is not set after a NACK reception

	21.6.7 Status register 2 (I2C_SR2)
	21.6.8 Clock control register (I2C_CCR)
	Note: 1. The minimum allowed value is 0x04, except in FAST DUTY mode where the minimum allowed value is 0x01 2. thigh includes the SCLH rising edge 3. tlow includes the SCLH falling edge 4. These timings are without filters. 5. The CCR register must ...

	21.6.9 TRISE register (I2C_TRISE)
	Note: TRISE[5:0] must be configured only when the I2C is disabled (PE = 0).

	21.6.10 I2C register map
	Table 80. I2C register map and reset values

	22 Serial peripheral interface (SPI)
	22.1 SPI introduction
	22.2 SPI main features
	22.2.1 SPI features

	22.3 SPI functional description
	22.3.1 General description
	Figure 167. SPI block diagram
	Figure 168. Single master/ single slave application
	Figure 169. Hardware/software slave select management
	Figure 170. Data clock timing diagram

	22.3.2 Configuring the SPI in slave mode
	22.3.3 Configuring the SPI in master mode
	22.3.4 Configuring the SPI for Simplex communication
	22.3.5 Data transmission and reception procedures
	Figure 171. TXE/RXNE/BSY behavior in Master / full-duplex mode (BIDIMODE=0 and RXONLY=0) in the case of continuous transfers
	Figure 172. TXE/RXNE/BSY behavior in Slave / full-duplex mode (BIDIMODE=0, RXONLY=0) in the case of continuous transfers
	Figure 173. TXE/BSY behavior in Master transmit-only mode (BIDIMODE=0 and RXONLY=0) in the case of continuous transfers
	Figure 174. TXE/BSY in Slave transmit-only mode (BIDIMODE=0 and RXONLY=0) in the case of continuous transfers
	Figure 175. RXNE behavior in receive-only mode (BIDIRMODE=0 and RXONLY=1) in the case of continuous transfers
	Figure 176. TXE/BSY behavior when transmitting (BIDIRMODE=0 and RXONLY=0) in the case of discontinuous transfers

	22.3.6 CRC calculation
	22.3.7 Status flags
	22.3.8 Disabling the SPI
	22.3.9 SPI communication using DMA (direct memory addressing)
	Figure 177. Transmission using DMA
	Figure 178. Reception using DMA

	22.3.10 Error flags
	22.3.11 SPI interrupts
	Table 81. SPI interrupt requests

	22.4 SPI registers
	22.4.1 SPI control register 1 (SPI_CR1)
	Note: In master mode, the MOSI pin is used and in slave mode, the MISO pin is used.
	Note: This bit should be written only when SPI is disabled (SPE = ‘0) for correct operation
	Note: This bit has to be written as soon as the last data is written to the SPI_DR register. when the SPI is configured in full duplex or transmitter only modes. It has to be set after the second last data reception when it is configured in receiver ...
	Note: This bit should be written only when SPI is disabled (SPE = ‘0) for correct operation
	Note: This bit should not be changed when communication is ongoing.
	Note: When disabling the SPI, follow the procedure described in Section 22.3.8: Disabling the SPI.
	Note: These bits should not be changed when communication is ongoing.
	Note: This bit should not be changed when communication is ongoing.
	Note: This bit should not be changed when communication is ongoing.
	Note: This bit should not be changed when communication is ongoing.

	22.4.2 SPI control register 2 (SPI_CR2)
	22.4.3 SPI status register (SPI_SR)
	Note: BSY flag must be used with caution: refer to Section 22.3.7: Status flags and Section 22.3.8: Disabling the SPI.

	22.4.4 SPI data register (SPI_DR)
	Depending on the data frame format selection bit (DFF in SPI_CR1 register), the data sent or received is either 8-bit or 16-bit. This selection has to be made before enabling the SPI to ensure correct operation.
	For an 8-bit data frame, the buffers are 8-bit and only the LSB of the register (SPI_DR[7:0]) is used for transmission/reception. When in reception mode, the MSB of the register (SPI_DR[15:8]) is forced to 0.
	For a 16-bit data frame, the buffers are 16-bit and the entire register, SPI_DR[15:0] is used for transmission/reception.

	22.4.5 SPI CRC polynomial register (SPI_CRCPR)
	22.4.6 SPI RX CRC register (SPI_RXCRCR)
	Note: A read to this register when the BSY Flag is set could return an incorrect value.

	22.4.7 SPI TX CRC register (SPI_TXCRCR)
	Note: A read to this register when the BSY flag is set could return an incorrect value.

	22.4.8 SPI register map
	Table 82. SPI register map and reset values

	23 Universal synchronous asynchronous receiver transmitter (USART)
	23.1 USART introduction
	23.2 USART main features
	23.3 USART functional description
	Figure 179. USART block diagram
	23.3.1 USART character description
	Figure 180. Word length programming

	23.3.2 Transmitter
	Figure 181. Configurable stop bits
	Figure 182. TC/TXE behavior when transmitting

	23.3.3 Receiver
	Figure 183. Start bit detection when oversampling by 16 or 8
	Figure 184. Data sampling when oversampling by 16
	Figure 185. Data sampling when oversampling by 8
	Table 83. Noise detection from sampled data

	23.3.4 Fractional baud rate generation
	Table 84. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz), oversampling by 16
	Table 85. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK =12 MHz), oversampling by 8
	Table 86. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz), oversampling by 16
	Table 87. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz), oversampling by 8
	Table 88. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz), oversampling by 16
	Table 89. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz), oversampling by 8
	Table 90. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz), oversampling by 16
	Table 91. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz), oversampling by 8

	23.3.5 USART receiver's tolerance to clock deviation
	Table 92. USART receiver's tolerance when DIV fraction is 0
	Table 93. USART receiver's tolerance when DIV_Fraction is different from 0

	23.3.6 Multiprocessor communication
	Figure 186. Mute mode using Idle line detection
	Figure 187. Mute mode using address mark detection

	23.3.7 Parity control
	Table 94. Frame formats

	23.3.8 LIN (local interconnection network) mode
	Figure 188. Break detection in LIN mode (11-bit break length - LBDL bit is set)
	Figure 189. Break detection in LIN mode vs. Framing error detection

	23.3.9 USART synchronous mode
	Figure 190. USART example of synchronous transmission
	Figure 191. USART data clock timing diagram (M=0)
	Figure 192. USART data clock timing diagram (M=1)
	Figure 193. RX data setup/hold time

	23.3.10 Single-wire half-duplex communication
	23.3.11 Smartcard
	Figure 194. ISO 7816-3 asynchronous protocol
	Figure 195. Parity error detection using the 1.5 stop bits

	23.3.12 IrDA SIR ENDEC block
	Figure 196. IrDA SIR ENDEC- block diagram
	Figure 197. IrDA data modulation (3/16) -Normal mode

	23.3.13 Continuous communication using DMA
	Figure 198. Transmission using DMA
	Figure 199. Reception using DMA

	23.3.14 Hardware flow control
	Figure 200. Hardware flow control between 2 USARTs
	Figure 201. RTS flow control
	Figure 202. CTS flow control

	23.4 USART interrupts
	Table 95. USART interrupt requests
	Figure 203. USART interrupt mapping diagram

	23.5 USART mode configuration
	23.6 USART registers
	23.6.1 Status register (USART_SR)
	23.6.2 Data register (USART_DR)
	23.6.3 Baud rate register (USART_BRR)
	23.6.4 Control register 1 (USART_CR1)
	23.6.5 Control register 2 (USART_CR2)
	23.6.6 Control register 3 (USART_CR3)
	23.6.7 Guard time and prescaler register (USART_GTPR)
	23.6.8 USART register map
	Table 96. USART register map and reset values

	24 Debug support (DBG)
	24.1 Overview
	Figure 204. Block diagram of STM32L15xxx-level and Cortex-M3-level debug support

	24.2 Reference ARM documentation
	24.3 SWJ debug port (serial wire and JTAG)
	Figure 205. SWJ debug port
	24.3.1 Mechanism to select the JTAG-DP or the SW-DP

	24.4 Pinout and debug port pins
	24.4.1 SWJ debug port pins
	Table 97. SWJ debug port pins

	24.4.2 Flexible SWJ-DP pin assignment
	Table 98. Flexible SWJ-DP pin assignment

	24.4.3 Internal pull-up and pull-down on JTAG pins
	24.4.4 Using serial wire and releasing the unused debug pins as GPIOs

	24.5 STM32L15xxx JTAG TAP connection
	Figure 206. JTAG TAP connections

	24.6 ID codes and locking mechanism
	24.6.1 MCU device ID code
	24.6.2 Boundary scan TAP
	24.6.3 Cortex-M3 TAP
	24.6.4 Cortex-M3 JEDEC-106 ID code

	24.7 JTAG debug port
	Table 99. JTAG debug port data registers
	Table 100. 32-bit debug port registers addressed through the shifted value A[3:2]

	24.8 SW debug port
	24.8.1 SW protocol introduction
	24.8.2 SW protocol sequence
	Table 101. Packet request (8-bits)
	Table 102. ACK response (3 bits)
	Table 103. DATA transfer (33 bits)

	24.8.3 SW-DP state machine (reset, idle states, ID code)
	24.8.4 DP and AP read/write accesses
	24.8.5 SW-DP registers
	Table 104. SW-DP registers

	24.8.6 SW-AP registers

	24.9 AHB-AP (AHB access port) - valid for both JTAG-DP and SW-DP
	Table 105. Cortex-M3 AHB-AP registers

	24.10 Core debug
	Table 106. Core debug registers

	24.11 Capability of the debugger host to connect under system reset
	24.12 FPB (Flash patch breakpoint)
	24.13 DWT (data watchpoint trigger)
	24.14 ITM (instrumentation trace macrocell)
	24.14.1 General description
	24.14.2 Time stamp packets, synchronization and overflow packets
	Table 107. Main ITM registers

	24.15 ETM (Embedded trace macrocell)
	24.15.1 General description
	24.15.2 Signal protocol, packet types
	24.15.3 Main ETM registers
	Table 108. Main ETM registers

	24.15.4 Configuration example

	24.16 MCU debug component (DBGMCU)
	24.16.1 Debug support for low-power modes
	24.16.2 Debug support for timers, watchdog and I2C
	24.16.3 Debug MCU configuration register
	24.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ)
	24.16.5 Debug MCU APB2 freeze register (DBGMCU_APB2_FZ)

	24.17 TPIU (trace port interface unit)
	24.17.1 Introduction
	Figure 207. TPIU block diagram

	24.17.2 TRACE pin assignment
	Table 109. Asynchronous TRACE pin assignment
	Table 110. Synchronous TRACE pin assignment
	Table 111. Flexible TRACE pin assignment

	24.17.3 TPUI formatter
	24.17.4 TPUI frame synchronization packets
	24.17.5 Transmission of the synchronization frame packet
	24.17.6 Synchronous mode
	24.17.7 Asynchronous mode
	24.17.8 TRACECLKIN connection inside the STM32L15xxx
	24.17.9 TPIU registers
	Table 112. Important TPIU registers

	24.17.10 Example of configuration

	24.18 DBG register map
	Table 113. DBG register map and reset values

	25 Device electronic signature
	25.1 Memory size register
	25.1.1 Flash size register

	25.2 Unique device ID registers (96 bits)

	26 Revision history
	Table 114. Document revision history

