50658e9d56be0963307def4af4e2a268454f451c
[fw/openocd] / src / target / xtensa / xtensa.c
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2
3 /***************************************************************************
4  *   Generic Xtensa target API for OpenOCD                                 *
5  *   Copyright (C) 2020-2022 Cadence Design Systems, Inc.                  *
6  *   Copyright (C) 2016-2019 Espressif Systems Ltd.                        *
7  *   Derived from esp108.c                                                 *
8  *   Author: Angus Gratton gus@projectgus.com                              *
9  ***************************************************************************/
10
11 #ifdef HAVE_CONFIG_H
12 #include "config.h"
13 #endif
14
15 #include <stdlib.h>
16 #include <helper/time_support.h>
17 #include <helper/align.h>
18 #include <target/register.h>
19
20 #include "xtensa_chip.h"
21 #include "xtensa.h"
22
23 /* Swap 4-bit Xtensa opcodes and fields */
24 #define XT_NIBSWAP8(V)                                                                  \
25         ((((V) & 0x0F) << 4)                                                            \
26                 | (((V) & 0xF0) >> 4))
27
28 #define XT_NIBSWAP16(V)                                                                 \
29         ((((V) & 0x000F) << 12)                                                         \
30                 | (((V) & 0x00F0) << 4)                                                 \
31                 | (((V) & 0x0F00) >> 4)                                                 \
32                 | (((V) & 0xF000) >> 12))
33
34 #define XT_NIBSWAP24(V)                                                                 \
35         ((((V) & 0x00000F) << 20)                                                       \
36                 | (((V) & 0x0000F0) << 12)                                              \
37                 | (((V) & 0x000F00) << 4)                                               \
38                 | (((V) & 0x00F000) >> 4)                                               \
39                 | (((V) & 0x0F0000) >> 12)                                              \
40                 | (((V) & 0xF00000) >> 20))
41
42 /* _XT_INS_FORMAT_*()
43  * Instruction formatting converted from little-endian inputs
44  * and shifted to the MSB-side of DIR for BE systems.
45  */
46 #define _XT_INS_FORMAT_RSR(X, OPCODE, SR, T)                    \
47         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
48                         | (((T) & 0x0F) << 16)                                          \
49                         | (((SR) & 0xFF) << 8)) << 8                            \
50                 : (OPCODE)                                                                              \
51                 | (((SR) & 0xFF) << 8)                                                  \
52                 | (((T) & 0x0F) << 4))
53
54 #define _XT_INS_FORMAT_RRR(X, OPCODE, ST, R)                    \
55         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
56                         | ((XT_NIBSWAP8((ST) & 0xFF)) << 12)            \
57                         | (((R) & 0x0F) << 8)) << 8                                     \
58                 : (OPCODE)                                                                              \
59                 | (((ST) & 0xFF) << 4)                                                  \
60                 | (((R) & 0x0F) << 12))
61
62 #define _XT_INS_FORMAT_RRRN(X, OPCODE, S, T, IMM4)              \
63         (XT_ISBE(X) ? (XT_NIBSWAP16(OPCODE)                                     \
64                         | (((T) & 0x0F) << 8)                                           \
65                         | (((S) & 0x0F) << 4)                                           \
66                         | ((IMM4) & 0x0F)) << 16                                        \
67                 : (OPCODE)                                                                              \
68                 | (((T) & 0x0F) << 4)                                                   \
69                 | (((S) & 0x0F) << 8)                                                   \
70                 | (((IMM4) & 0x0F) << 12))
71
72 #define _XT_INS_FORMAT_RRI8(X, OPCODE, R, S, T, IMM8)   \
73         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
74                         | (((T) & 0x0F) << 16)                                          \
75                         | (((S) & 0x0F) << 12)                                          \
76                         | (((R) & 0x0F) << 8)                                           \
77                         | ((IMM8) & 0xFF)) << 8                                         \
78                 : (OPCODE)                                                                              \
79                 | (((IMM8) & 0xFF) << 16)                                               \
80                 | (((R) & 0x0F) << 12)                                                  \
81                 | (((S) & 0x0F) << 8)                                                   \
82                 | (((T) & 0x0F) << 4))
83
84 #define _XT_INS_FORMAT_RRI4(X, OPCODE, IMM4, R, S, T)   \
85         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
86                         | (((T) & 0x0F) << 16)                                          \
87                         | (((S) & 0x0F) << 12)                                          \
88                         | (((R) & 0x0F) << 8)) << 8                                     \
89                 | ((IMM4) & 0x0F)                                                               \
90                 : (OPCODE)                                                                              \
91                 | (((IMM4) & 0x0F) << 20)                                               \
92                 | (((R) & 0x0F) << 12)                                                  \
93                 | (((S) & 0x0F) << 8)                                                   \
94                 | (((T) & 0x0F) << 4))
95
96 /* Xtensa processor instruction opcodes
97 */
98 /* "Return From Debug Operation" to Normal */
99 #define XT_INS_RFDO(X) (XT_ISBE(X) ? 0x000e1f << 8 : 0xf1e000)
100 /* "Return From Debug and Dispatch" - allow sw debugging stuff to take over */
101 #define XT_INS_RFDD(X) (XT_ISBE(X) ? 0x010e1f << 8 : 0xf1e010)
102
103 /* Load to DDR register, increase addr register */
104 #define XT_INS_LDDR32P(X, S) (XT_ISBE(X) ? (0x0E0700 | ((S) << 12)) << 8 : (0x0070E0 | ((S) << 8)))
105 /* Store from DDR register, increase addr register */
106 #define XT_INS_SDDR32P(X, S) (XT_ISBE(X) ? (0x0F0700 | ((S) << 12)) << 8 : (0x0070F0 | ((S) << 8)))
107
108 /* Load 32-bit Indirect from A(S)+4*IMM8 to A(T) */
109 #define XT_INS_L32I(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x002002, 0, S, T, IMM8)
110 /* Load 16-bit Unsigned from A(S)+2*IMM8 to A(T) */
111 #define XT_INS_L16UI(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x001002, 0, S, T, IMM8)
112 /* Load 8-bit Unsigned from A(S)+IMM8 to A(T) */
113 #define XT_INS_L8UI(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x000002, 0, S, T, IMM8)
114
115 /* Store 32-bit Indirect to A(S)+4*IMM8 from A(T) */
116 #define XT_INS_S32I(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x006002, 0, S, T, IMM8)
117 /* Store 16-bit to A(S)+2*IMM8 from A(T) */
118 #define XT_INS_S16I(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x005002, 0, S, T, IMM8)
119 /* Store 8-bit to A(S)+IMM8 from A(T) */
120 #define XT_INS_S8I(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x004002, 0, S, T, IMM8)
121
122 /* Cache Instructions */
123 #define XT_INS_IHI(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x0070E2, 0, S, 0, IMM8)
124 #define XT_INS_DHWBI(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x007052, 0, S, 0, IMM8)
125 #define XT_INS_DHWB(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x007042, 0, S, 0, IMM8)
126 #define XT_INS_ISYNC(X) (XT_ISBE(X) ? 0x000200 << 8 : 0x002000)
127
128 /* Control Instructions */
129 #define XT_INS_JX(X, S) (XT_ISBE(X) ? (0x050000 | ((S) << 12)) : (0x0000a0 | ((S) << 8)))
130 #define XT_INS_CALL0(X, IMM18) (XT_ISBE(X) ? (0x500000 | ((IMM18) & 0x3ffff)) : (0x000005 | (((IMM18) & 0x3ffff) << 6)))
131
132 /* Read Special Register */
133 #define XT_INS_RSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x030000, SR, T)
134 /* Write Special Register */
135 #define XT_INS_WSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x130000, SR, T)
136 /* Swap Special Register */
137 #define XT_INS_XSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x610000, SR, T)
138
139 /* Rotate Window by (-8..7) */
140 #define XT_INS_ROTW(X, N) (XT_ISBE(X) ? ((0x000804) | (((N) & 15) << 16)) << 8 : ((0x408000) | (((N) & 15) << 4)))
141
142 /* Read User Register */
143 #define XT_INS_RUR(X, UR, T) _XT_INS_FORMAT_RRR(X, 0xE30000, UR, T)
144 /* Write User Register */
145 #define XT_INS_WUR(X, UR, T) _XT_INS_FORMAT_RSR(X, 0xF30000, UR, T)
146
147 /* Read Floating-Point Register */
148 #define XT_INS_RFR(X, FR, T) _XT_INS_FORMAT_RRR(X, 0xFA0000, ((FR << 4) | 0x4), T)
149 /* Write Floating-Point Register */
150 #define XT_INS_WFR(X, FR, T) _XT_INS_FORMAT_RRR(X, 0xFA0000, ((T << 4) | 0x5), FR)
151
152 #define XT_INS_L32E(X, R, S, T) _XT_INS_FORMAT_RRI4(X, 0x090000, 0, R, S, T)
153 #define XT_INS_S32E(X, R, S, T) _XT_INS_FORMAT_RRI4(X, 0x490000, 0, R, S, T)
154 #define XT_INS_L32E_S32E_MASK(X)   (XT_ISBE(X) ? 0xF000FF << 8 : 0xFF000F)
155
156 #define XT_INS_RFWO(X) (XT_ISBE(X) ? 0x004300 << 8 : 0x003400)
157 #define XT_INS_RFWU(X) (XT_ISBE(X) ? 0x005300 << 8 : 0x003500)
158 #define XT_INS_RFWO_RFWU_MASK(X)   (XT_ISBE(X) ? 0xFFFFFF << 8 : 0xFFFFFF)
159
160 #define XT_WATCHPOINTS_NUM_MAX  2
161
162 /* Special register number macro for DDR, PS, WB, A3, A4 registers.
163  * These get used a lot so making a shortcut is useful.
164  */
165 #define XT_SR_DDR         (xtensa_regs[XT_REG_IDX_DDR].reg_num)
166 #define XT_SR_PS          (xtensa_regs[XT_REG_IDX_PS].reg_num)
167 #define XT_SR_WB          (xtensa_regs[XT_REG_IDX_WINDOWBASE].reg_num)
168 #define XT_REG_A3         (xtensa_regs[XT_REG_IDX_AR3].reg_num)
169 #define XT_REG_A4         (xtensa_regs[XT_REG_IDX_AR4].reg_num)
170
171 #define XT_PS_REG_NUM_BASE          (0xc0U)     /* (EPS2 - 2), for adding DBGLEVEL */
172 #define XT_PC_REG_NUM_BASE          (0xb0U)     /* (EPC1 - 1), for adding DBGLEVEL */
173 #define XT_PC_REG_NUM_VIRTUAL       (0xffU)     /* Marker for computing PC (EPC[DBGLEVEL) */
174 #define XT_PC_DBREG_NUM_BASE        (0x20U)     /* External (i.e., GDB) access */
175
176 #define XT_SW_BREAKPOINTS_MAX_NUM       32
177 #define XT_HW_IBREAK_MAX_NUM            2
178 #define XT_HW_DBREAK_MAX_NUM            2
179
180 struct xtensa_reg_desc xtensa_regs[XT_NUM_REGS] = {
181         XT_MK_REG_DESC("pc", XT_PC_REG_NUM_VIRTUAL, XT_REG_SPECIAL, 0),
182         XT_MK_REG_DESC("ar0", 0x00, XT_REG_GENERAL, 0),
183         XT_MK_REG_DESC("ar1", 0x01, XT_REG_GENERAL, 0),
184         XT_MK_REG_DESC("ar2", 0x02, XT_REG_GENERAL, 0),
185         XT_MK_REG_DESC("ar3", 0x03, XT_REG_GENERAL, 0),
186         XT_MK_REG_DESC("ar4", 0x04, XT_REG_GENERAL, 0),
187         XT_MK_REG_DESC("ar5", 0x05, XT_REG_GENERAL, 0),
188         XT_MK_REG_DESC("ar6", 0x06, XT_REG_GENERAL, 0),
189         XT_MK_REG_DESC("ar7", 0x07, XT_REG_GENERAL, 0),
190         XT_MK_REG_DESC("ar8", 0x08, XT_REG_GENERAL, 0),
191         XT_MK_REG_DESC("ar9", 0x09, XT_REG_GENERAL, 0),
192         XT_MK_REG_DESC("ar10", 0x0A, XT_REG_GENERAL, 0),
193         XT_MK_REG_DESC("ar11", 0x0B, XT_REG_GENERAL, 0),
194         XT_MK_REG_DESC("ar12", 0x0C, XT_REG_GENERAL, 0),
195         XT_MK_REG_DESC("ar13", 0x0D, XT_REG_GENERAL, 0),
196         XT_MK_REG_DESC("ar14", 0x0E, XT_REG_GENERAL, 0),
197         XT_MK_REG_DESC("ar15", 0x0F, XT_REG_GENERAL, 0),
198         XT_MK_REG_DESC("ar16", 0x10, XT_REG_GENERAL, 0),
199         XT_MK_REG_DESC("ar17", 0x11, XT_REG_GENERAL, 0),
200         XT_MK_REG_DESC("ar18", 0x12, XT_REG_GENERAL, 0),
201         XT_MK_REG_DESC("ar19", 0x13, XT_REG_GENERAL, 0),
202         XT_MK_REG_DESC("ar20", 0x14, XT_REG_GENERAL, 0),
203         XT_MK_REG_DESC("ar21", 0x15, XT_REG_GENERAL, 0),
204         XT_MK_REG_DESC("ar22", 0x16, XT_REG_GENERAL, 0),
205         XT_MK_REG_DESC("ar23", 0x17, XT_REG_GENERAL, 0),
206         XT_MK_REG_DESC("ar24", 0x18, XT_REG_GENERAL, 0),
207         XT_MK_REG_DESC("ar25", 0x19, XT_REG_GENERAL, 0),
208         XT_MK_REG_DESC("ar26", 0x1A, XT_REG_GENERAL, 0),
209         XT_MK_REG_DESC("ar27", 0x1B, XT_REG_GENERAL, 0),
210         XT_MK_REG_DESC("ar28", 0x1C, XT_REG_GENERAL, 0),
211         XT_MK_REG_DESC("ar29", 0x1D, XT_REG_GENERAL, 0),
212         XT_MK_REG_DESC("ar30", 0x1E, XT_REG_GENERAL, 0),
213         XT_MK_REG_DESC("ar31", 0x1F, XT_REG_GENERAL, 0),
214         XT_MK_REG_DESC("ar32", 0x20, XT_REG_GENERAL, 0),
215         XT_MK_REG_DESC("ar33", 0x21, XT_REG_GENERAL, 0),
216         XT_MK_REG_DESC("ar34", 0x22, XT_REG_GENERAL, 0),
217         XT_MK_REG_DESC("ar35", 0x23, XT_REG_GENERAL, 0),
218         XT_MK_REG_DESC("ar36", 0x24, XT_REG_GENERAL, 0),
219         XT_MK_REG_DESC("ar37", 0x25, XT_REG_GENERAL, 0),
220         XT_MK_REG_DESC("ar38", 0x26, XT_REG_GENERAL, 0),
221         XT_MK_REG_DESC("ar39", 0x27, XT_REG_GENERAL, 0),
222         XT_MK_REG_DESC("ar40", 0x28, XT_REG_GENERAL, 0),
223         XT_MK_REG_DESC("ar41", 0x29, XT_REG_GENERAL, 0),
224         XT_MK_REG_DESC("ar42", 0x2A, XT_REG_GENERAL, 0),
225         XT_MK_REG_DESC("ar43", 0x2B, XT_REG_GENERAL, 0),
226         XT_MK_REG_DESC("ar44", 0x2C, XT_REG_GENERAL, 0),
227         XT_MK_REG_DESC("ar45", 0x2D, XT_REG_GENERAL, 0),
228         XT_MK_REG_DESC("ar46", 0x2E, XT_REG_GENERAL, 0),
229         XT_MK_REG_DESC("ar47", 0x2F, XT_REG_GENERAL, 0),
230         XT_MK_REG_DESC("ar48", 0x30, XT_REG_GENERAL, 0),
231         XT_MK_REG_DESC("ar49", 0x31, XT_REG_GENERAL, 0),
232         XT_MK_REG_DESC("ar50", 0x32, XT_REG_GENERAL, 0),
233         XT_MK_REG_DESC("ar51", 0x33, XT_REG_GENERAL, 0),
234         XT_MK_REG_DESC("ar52", 0x34, XT_REG_GENERAL, 0),
235         XT_MK_REG_DESC("ar53", 0x35, XT_REG_GENERAL, 0),
236         XT_MK_REG_DESC("ar54", 0x36, XT_REG_GENERAL, 0),
237         XT_MK_REG_DESC("ar55", 0x37, XT_REG_GENERAL, 0),
238         XT_MK_REG_DESC("ar56", 0x38, XT_REG_GENERAL, 0),
239         XT_MK_REG_DESC("ar57", 0x39, XT_REG_GENERAL, 0),
240         XT_MK_REG_DESC("ar58", 0x3A, XT_REG_GENERAL, 0),
241         XT_MK_REG_DESC("ar59", 0x3B, XT_REG_GENERAL, 0),
242         XT_MK_REG_DESC("ar60", 0x3C, XT_REG_GENERAL, 0),
243         XT_MK_REG_DESC("ar61", 0x3D, XT_REG_GENERAL, 0),
244         XT_MK_REG_DESC("ar62", 0x3E, XT_REG_GENERAL, 0),
245         XT_MK_REG_DESC("ar63", 0x3F, XT_REG_GENERAL, 0),
246         XT_MK_REG_DESC("windowbase", 0x48, XT_REG_SPECIAL, 0),
247         XT_MK_REG_DESC("windowstart", 0x49, XT_REG_SPECIAL, 0),
248         XT_MK_REG_DESC("ps", 0xE6, XT_REG_SPECIAL, 0),  /* PS (not mapped through EPS[]) */
249         XT_MK_REG_DESC("ibreakenable", 0x60, XT_REG_SPECIAL, 0),
250         XT_MK_REG_DESC("ddr", 0x68, XT_REG_DEBUG, XT_REGF_NOREAD),
251         XT_MK_REG_DESC("ibreaka0", 0x80, XT_REG_SPECIAL, 0),
252         XT_MK_REG_DESC("ibreaka1", 0x81, XT_REG_SPECIAL, 0),
253         XT_MK_REG_DESC("dbreaka0", 0x90, XT_REG_SPECIAL, 0),
254         XT_MK_REG_DESC("dbreaka1", 0x91, XT_REG_SPECIAL, 0),
255         XT_MK_REG_DESC("dbreakc0", 0xA0, XT_REG_SPECIAL, 0),
256         XT_MK_REG_DESC("dbreakc1", 0xA1, XT_REG_SPECIAL, 0),
257         XT_MK_REG_DESC("cpenable", 0xE0, XT_REG_SPECIAL, 0),
258         XT_MK_REG_DESC("exccause", 0xE8, XT_REG_SPECIAL, 0),
259         XT_MK_REG_DESC("debugcause", 0xE9, XT_REG_SPECIAL, 0),
260         XT_MK_REG_DESC("icount", 0xEC, XT_REG_SPECIAL, 0),
261         XT_MK_REG_DESC("icountlevel", 0xED, XT_REG_SPECIAL, 0),
262
263         /* WARNING: For these registers, regnum points to the
264          * index of the corresponding ARx registers, NOT to
265          * the processor register number! */
266         XT_MK_REG_DESC("a0", XT_REG_IDX_AR0, XT_REG_RELGEN, 0),
267         XT_MK_REG_DESC("a1", XT_REG_IDX_AR1, XT_REG_RELGEN, 0),
268         XT_MK_REG_DESC("a2", XT_REG_IDX_AR2, XT_REG_RELGEN, 0),
269         XT_MK_REG_DESC("a3", XT_REG_IDX_AR3, XT_REG_RELGEN, 0),
270         XT_MK_REG_DESC("a4", XT_REG_IDX_AR4, XT_REG_RELGEN, 0),
271         XT_MK_REG_DESC("a5", XT_REG_IDX_AR5, XT_REG_RELGEN, 0),
272         XT_MK_REG_DESC("a6", XT_REG_IDX_AR6, XT_REG_RELGEN, 0),
273         XT_MK_REG_DESC("a7", XT_REG_IDX_AR7, XT_REG_RELGEN, 0),
274         XT_MK_REG_DESC("a8", XT_REG_IDX_AR8, XT_REG_RELGEN, 0),
275         XT_MK_REG_DESC("a9", XT_REG_IDX_AR9, XT_REG_RELGEN, 0),
276         XT_MK_REG_DESC("a10", XT_REG_IDX_AR10, XT_REG_RELGEN, 0),
277         XT_MK_REG_DESC("a11", XT_REG_IDX_AR11, XT_REG_RELGEN, 0),
278         XT_MK_REG_DESC("a12", XT_REG_IDX_AR12, XT_REG_RELGEN, 0),
279         XT_MK_REG_DESC("a13", XT_REG_IDX_AR13, XT_REG_RELGEN, 0),
280         XT_MK_REG_DESC("a14", XT_REG_IDX_AR14, XT_REG_RELGEN, 0),
281         XT_MK_REG_DESC("a15", XT_REG_IDX_AR15, XT_REG_RELGEN, 0),
282 };
283
284 /**
285  * Types of memory used at xtensa target
286  */
287 enum xtensa_mem_region_type {
288         XTENSA_MEM_REG_IROM = 0x0,
289         XTENSA_MEM_REG_IRAM,
290         XTENSA_MEM_REG_DROM,
291         XTENSA_MEM_REG_DRAM,
292         XTENSA_MEM_REG_SRAM,
293         XTENSA_MEM_REG_SROM,
294         XTENSA_MEM_REGS_NUM
295 };
296
297 /* Register definition as union for list allocation */
298 union xtensa_reg_val_u {
299         xtensa_reg_val_t val;
300         uint8_t buf[4];
301 };
302
303 static const struct xtensa_keyval_info_s xt_qerr[XT_QERR_NUM] = {
304         { .chrval = "E00", .intval = ERROR_FAIL },
305         { .chrval = "E01", .intval = ERROR_FAIL },
306         { .chrval = "E02", .intval = ERROR_COMMAND_ARGUMENT_INVALID },
307         { .chrval = "E03", .intval = ERROR_FAIL },
308 };
309
310 /* Set to true for extra debug logging */
311 static const bool xtensa_extra_debug_log;
312
313 /**
314  * Gets a config for the specific mem type
315  */
316 static inline const struct xtensa_local_mem_config *xtensa_get_mem_config(
317         struct xtensa *xtensa,
318         enum xtensa_mem_region_type type)
319 {
320         switch (type) {
321         case XTENSA_MEM_REG_IROM:
322                 return &xtensa->core_config->irom;
323         case XTENSA_MEM_REG_IRAM:
324                 return &xtensa->core_config->iram;
325         case XTENSA_MEM_REG_DROM:
326                 return &xtensa->core_config->drom;
327         case XTENSA_MEM_REG_DRAM:
328                 return &xtensa->core_config->dram;
329         case XTENSA_MEM_REG_SRAM:
330                 return &xtensa->core_config->sram;
331         case XTENSA_MEM_REG_SROM:
332                 return &xtensa->core_config->srom;
333         default:
334                 return NULL;
335         }
336 }
337
338 /**
339  * Extracts an exact xtensa_local_mem_region_config from xtensa_local_mem_config
340  * for a given address
341  * Returns NULL if nothing found
342  */
343 static inline const struct xtensa_local_mem_region_config *xtensa_memory_region_find(
344         const struct xtensa_local_mem_config *mem,
345         target_addr_t address)
346 {
347         for (unsigned int i = 0; i < mem->count; i++) {
348                 const struct xtensa_local_mem_region_config *region = &mem->regions[i];
349                 if (address >= region->base && address < (region->base + region->size))
350                         return region;
351         }
352         return NULL;
353 }
354
355 /**
356  * Returns a corresponding xtensa_local_mem_region_config from the xtensa target
357  * for a given address
358  * Returns NULL if nothing found
359  */
360 static inline const struct xtensa_local_mem_region_config *xtensa_target_memory_region_find(
361         struct xtensa *xtensa,
362         target_addr_t address)
363 {
364         const struct xtensa_local_mem_region_config *result;
365         const struct xtensa_local_mem_config *mcgf;
366         for (unsigned int mtype = 0; mtype < XTENSA_MEM_REGS_NUM; mtype++) {
367                 mcgf = xtensa_get_mem_config(xtensa, mtype);
368                 result = xtensa_memory_region_find(mcgf, address);
369                 if (result)
370                         return result;
371         }
372         return NULL;
373 }
374
375 static inline bool xtensa_is_cacheable(const struct xtensa_cache_config *cache,
376         const struct xtensa_local_mem_config *mem,
377         target_addr_t address)
378 {
379         if (!cache->size)
380                 return false;
381         return xtensa_memory_region_find(mem, address);
382 }
383
384 static inline bool xtensa_is_icacheable(struct xtensa *xtensa, target_addr_t address)
385 {
386         return xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->iram, address) ||
387                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->irom, address) ||
388                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->sram, address) ||
389                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->srom, address);
390 }
391
392 static inline bool xtensa_is_dcacheable(struct xtensa *xtensa, target_addr_t address)
393 {
394         return xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->dram, address) ||
395                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->drom, address) ||
396                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->sram, address) ||
397                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->srom, address);
398 }
399
400 static int xtensa_core_reg_get(struct reg *reg)
401 {
402         /* We don't need this because we read all registers on halt anyway. */
403         struct xtensa *xtensa = (struct xtensa *)reg->arch_info;
404         struct target *target = xtensa->target;
405
406         if (target->state != TARGET_HALTED)
407                 return ERROR_TARGET_NOT_HALTED;
408         if (!reg->exist) {
409                 if (strncmp(reg->name, "?0x", 3) == 0) {
410                         unsigned int regnum = strtoul(reg->name + 1, 0, 0);
411                         LOG_WARNING("Read unknown register 0x%04x ignored", regnum);
412                         return ERROR_OK;
413                 }
414                 return ERROR_COMMAND_ARGUMENT_INVALID;
415         }
416         return ERROR_OK;
417 }
418
419 static int xtensa_core_reg_set(struct reg *reg, uint8_t *buf)
420 {
421         struct xtensa *xtensa = (struct xtensa *)reg->arch_info;
422         struct target *target = xtensa->target;
423
424         assert(reg->size <= 64 && "up to 64-bit regs are supported only!");
425         if (target->state != TARGET_HALTED)
426                 return ERROR_TARGET_NOT_HALTED;
427
428         if (!reg->exist) {
429                 if (strncmp(reg->name, "?0x", 3) == 0) {
430                         unsigned int regnum = strtoul(reg->name + 1, 0, 0);
431                         LOG_WARNING("Write unknown register 0x%04x ignored", regnum);
432                         return ERROR_OK;
433                 }
434                 return ERROR_COMMAND_ARGUMENT_INVALID;
435         }
436
437         buf_cpy(buf, reg->value, reg->size);
438
439         if (xtensa->core_config->windowed) {
440                 /* If the user updates a potential scratch register, track for conflicts */
441                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++) {
442                         if (strcmp(reg->name, xtensa->scratch_ars[s].chrval) == 0) {
443                                 LOG_DEBUG("Scratch reg %s [0x%08" PRIx32 "] set from gdb", reg->name,
444                                         buf_get_u32(reg->value, 0, 32));
445                                 LOG_DEBUG("scratch_ars mapping: a3/%s, a4/%s",
446                                         xtensa->scratch_ars[XT_AR_SCRATCH_AR3].chrval,
447                                         xtensa->scratch_ars[XT_AR_SCRATCH_AR4].chrval);
448                                 xtensa->scratch_ars[s].intval = true;
449                                 break;
450                         }
451                 }
452         }
453         reg->dirty = true;
454         reg->valid = true;
455
456         return ERROR_OK;
457 }
458
459 static const struct reg_arch_type xtensa_reg_type = {
460         .get = xtensa_core_reg_get,
461         .set = xtensa_core_reg_set,
462 };
463
464 /* Convert a register index that's indexed relative to windowbase, to the real address. */
465 static enum xtensa_reg_id xtensa_windowbase_offset_to_canonical(struct xtensa *xtensa,
466         enum xtensa_reg_id reg_idx,
467         int windowbase)
468 {
469         unsigned int idx;
470         if (reg_idx >= XT_REG_IDX_AR0 && reg_idx <= XT_REG_IDX_ARLAST) {
471                 idx = reg_idx - XT_REG_IDX_AR0;
472         } else if (reg_idx >= XT_REG_IDX_A0 && reg_idx <= XT_REG_IDX_A15) {
473                 idx = reg_idx - XT_REG_IDX_A0;
474         } else {
475                 LOG_ERROR("Error: can't convert register %d to non-windowbased register!", reg_idx);
476                 return -1;
477         }
478         return ((idx + windowbase * 4) & (xtensa->core_config->aregs_num - 1)) + XT_REG_IDX_AR0;
479 }
480
481 static enum xtensa_reg_id xtensa_canonical_to_windowbase_offset(struct xtensa *xtensa,
482         enum xtensa_reg_id reg_idx,
483         int windowbase)
484 {
485         return xtensa_windowbase_offset_to_canonical(xtensa, reg_idx, -windowbase);
486 }
487
488 static void xtensa_mark_register_dirty(struct xtensa *xtensa, enum xtensa_reg_id reg_idx)
489 {
490         struct reg *reg_list = xtensa->core_cache->reg_list;
491         reg_list[reg_idx].dirty = true;
492 }
493
494 static void xtensa_queue_exec_ins(struct xtensa *xtensa, uint32_t ins)
495 {
496         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DIR0EXEC, ins);
497 }
498
499 static void xtensa_queue_exec_ins_wide(struct xtensa *xtensa, uint8_t *ops, uint8_t oplen)
500 {
501         const int max_oplen = 64;       /* 8 DIRx regs: max width 64B */
502         if ((oplen > 0) && (oplen <= max_oplen)) {
503                 uint8_t ops_padded[max_oplen];
504                 memcpy(ops_padded, ops, oplen);
505                 memset(ops_padded + oplen, 0, max_oplen - oplen);
506                 unsigned int oplenw = DIV_ROUND_UP(oplen, sizeof(uint32_t));
507                 for (int32_t i = oplenw - 1; i > 0; i--)
508                         xtensa_queue_dbg_reg_write(xtensa,
509                                 XDMREG_DIR0 + i,
510                                 target_buffer_get_u32(xtensa->target, &ops_padded[sizeof(uint32_t)*i]));
511                 /* Write DIR0EXEC last */
512                 xtensa_queue_dbg_reg_write(xtensa,
513                         XDMREG_DIR0EXEC,
514                         target_buffer_get_u32(xtensa->target, &ops_padded[0]));
515         }
516 }
517
518 static int xtensa_queue_pwr_reg_write(struct xtensa *xtensa, unsigned int reg, uint32_t data)
519 {
520         struct xtensa_debug_module *dm = &xtensa->dbg_mod;
521         return dm->pwr_ops->queue_reg_write(dm, reg, data);
522 }
523
524 /* NOTE: Assumes A3 has already been saved */
525 static int xtensa_window_state_save(struct target *target, uint32_t *woe)
526 {
527         struct xtensa *xtensa = target_to_xtensa(target);
528         int woe_dis;
529         uint8_t woe_buf[4];
530
531         if (xtensa->core_config->windowed) {
532                 /* Save PS (LX) and disable window overflow exceptions prior to AR save */
533                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_PS, XT_REG_A3));
534                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
535                 xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, woe_buf);
536                 int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
537                 if (res != ERROR_OK) {
538                         LOG_ERROR("Failed to read PS (%d)!", res);
539                         return res;
540                 }
541                 xtensa_core_status_check(target);
542                 *woe = buf_get_u32(woe_buf, 0, 32);
543                 woe_dis = *woe & ~XT_PS_WOE_MSK;
544                 LOG_DEBUG("Clearing PS.WOE (0x%08" PRIx32 " -> 0x%08" PRIx32 ")", *woe, woe_dis);
545                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, woe_dis);
546                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
547                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_PS, XT_REG_A3));
548         }
549         return ERROR_OK;
550 }
551
552 /* NOTE: Assumes A3 has already been saved */
553 static void xtensa_window_state_restore(struct target *target, uint32_t woe)
554 {
555         struct xtensa *xtensa = target_to_xtensa(target);
556         if (xtensa->core_config->windowed) {
557                 /* Restore window overflow exception state */
558                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, woe);
559                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
560                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_PS, XT_REG_A3));
561                 LOG_DEBUG("Restored PS.WOE (0x%08" PRIx32 ")", woe);
562         }
563 }
564
565 static bool xtensa_reg_is_readable(int flags, int cpenable)
566 {
567         if (flags & XT_REGF_NOREAD)
568                 return false;
569         if ((flags & XT_REGF_COPROC0) && (cpenable & BIT(0)) == 0)
570                 return false;
571         return true;
572 }
573
574 static bool xtensa_scratch_regs_fixup(struct xtensa *xtensa, struct reg *reg_list, int i, int j, int a_idx, int ar_idx)
575 {
576         int a_name = (a_idx == XT_AR_SCRATCH_A3) ? 3 : 4;
577         if (xtensa->scratch_ars[a_idx].intval && !xtensa->scratch_ars[ar_idx].intval) {
578                 LOG_DEBUG("AR conflict: a%d -> ar%d", a_name, j - XT_REG_IDX_AR0);
579                 memcpy(reg_list[j].value, reg_list[i].value, sizeof(xtensa_reg_val_t));
580         } else {
581                 LOG_DEBUG("AR conflict: ar%d -> a%d", j - XT_REG_IDX_AR0, a_name);
582                 memcpy(reg_list[i].value, reg_list[j].value, sizeof(xtensa_reg_val_t));
583         }
584         return xtensa->scratch_ars[a_idx].intval && xtensa->scratch_ars[ar_idx].intval;
585 }
586
587 static int xtensa_write_dirty_registers(struct target *target)
588 {
589         struct xtensa *xtensa = target_to_xtensa(target);
590         int res;
591         xtensa_reg_val_t regval, windowbase = 0;
592         bool scratch_reg_dirty = false, delay_cpenable = false;
593         struct reg *reg_list = xtensa->core_cache->reg_list;
594         unsigned int reg_list_size = xtensa->core_cache->num_regs;
595         bool preserve_a3 = false;
596         uint8_t a3_buf[4];
597         xtensa_reg_val_t a3 = 0, woe;
598
599         LOG_TARGET_DEBUG(target, "start");
600
601         /* We need to write the dirty registers in the cache list back to the processor.
602          * Start by writing the SFR/user registers. */
603         for (unsigned int i = 0; i < reg_list_size; i++) {
604                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
605                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
606                 if (reg_list[i].dirty) {
607                         if (rlist[ridx].type == XT_REG_SPECIAL ||
608                                 rlist[ridx].type == XT_REG_USER ||
609                                 rlist[ridx].type == XT_REG_FR) {
610                                 scratch_reg_dirty = true;
611                                 if (i == XT_REG_IDX_CPENABLE) {
612                                         delay_cpenable = true;
613                                         continue;
614                                 }
615                                 regval = xtensa_reg_get(target, i);
616                                 LOG_TARGET_DEBUG(target, "Writing back reg %s (%d) val %08" PRIX32,
617                                         reg_list[i].name,
618                                         rlist[ridx].reg_num,
619                                         regval);
620                                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, regval);
621                                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
622                                 if (reg_list[i].exist) {
623                                         unsigned int reg_num = rlist[ridx].reg_num;
624                                         if (rlist[ridx].type == XT_REG_USER) {
625                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WUR(xtensa, reg_num, XT_REG_A3));
626                                         } else if (rlist[ridx].type == XT_REG_FR) {
627                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WFR(xtensa, reg_num, XT_REG_A3));
628                                         } else {/*SFR */
629                                                 if (reg_num == XT_PC_REG_NUM_VIRTUAL)
630                                                         /* reg number of PC for debug interrupt depends on NDEBUGLEVEL
631                                                          **/
632                                                         reg_num =
633                                                                 (XT_PC_REG_NUM_BASE +
634                                                                 xtensa->core_config->debug.irq_level);
635                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, reg_num, XT_REG_A3));
636                                         }
637                                 }
638                                 reg_list[i].dirty = false;
639                         }
640                 }
641         }
642         if (scratch_reg_dirty)
643                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
644         if (delay_cpenable) {
645                 regval = xtensa_reg_get(target, XT_REG_IDX_CPENABLE);
646                 LOG_TARGET_DEBUG(target, "Writing back reg cpenable (224) val %08" PRIX32, regval);
647                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, regval);
648                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
649                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa,
650                                 xtensa_regs[XT_REG_IDX_CPENABLE].reg_num,
651                                 XT_REG_A3));
652                 reg_list[XT_REG_IDX_CPENABLE].dirty = false;
653         }
654
655         preserve_a3 = (xtensa->core_config->windowed);
656         if (preserve_a3) {
657                 /* Save (windowed) A3 for scratch use */
658                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
659                 xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, a3_buf);
660                 res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
661                 if (res != ERROR_OK)
662                         return res;
663                 xtensa_core_status_check(target);
664                 a3 = buf_get_u32(a3_buf, 0, 32);
665         }
666
667         if (xtensa->core_config->windowed) {
668                 res = xtensa_window_state_save(target, &woe);
669                 if (res != ERROR_OK)
670                         return res;
671                 /* Grab the windowbase, we need it. */
672                 windowbase = xtensa_reg_get(target, XT_REG_IDX_WINDOWBASE);
673                 /* Check if there are mismatches between the ARx and corresponding Ax registers.
674                  * When the user sets a register on a windowed config, xt-gdb may set the ARx
675                  * register directly.  Thus we take ARx as priority over Ax if both are dirty
676                  * and it's unclear if the user set one over the other explicitly.
677                  */
678                 for (unsigned int i = XT_REG_IDX_A0; i <= XT_REG_IDX_A15; i++) {
679                         unsigned int j = xtensa_windowbase_offset_to_canonical(xtensa, i, windowbase);
680                         if (reg_list[i].dirty && reg_list[j].dirty) {
681                                 if (memcmp(reg_list[i].value, reg_list[j].value, sizeof(xtensa_reg_val_t)) != 0) {
682                                         bool show_warning = true;
683                                         if (i == XT_REG_IDX_A3)
684                                                 show_warning = xtensa_scratch_regs_fixup(xtensa,
685                                                         reg_list, i, j, XT_AR_SCRATCH_A3, XT_AR_SCRATCH_AR3);
686                                         else if (i == XT_REG_IDX_A4)
687                                                 show_warning = xtensa_scratch_regs_fixup(xtensa,
688                                                         reg_list, i, j, XT_AR_SCRATCH_A4, XT_AR_SCRATCH_AR4);
689                                         if (show_warning)
690                                                 LOG_WARNING(
691                                                         "Warning: Both A%d [0x%08" PRIx32
692                                                         "] as well as its underlying physical register "
693                                                         "(AR%d) [0x%08" PRIx32 "] are dirty and differ in value",
694                                                         i - XT_REG_IDX_A0,
695                                                         buf_get_u32(reg_list[i].value, 0, 32),
696                                                         j - XT_REG_IDX_AR0,
697                                                         buf_get_u32(reg_list[j].value, 0, 32));
698                                 }
699                         }
700                 }
701         }
702
703         /* Write A0-A16. */
704         for (unsigned int i = 0; i < 16; i++) {
705                 if (reg_list[XT_REG_IDX_A0 + i].dirty) {
706                         regval = xtensa_reg_get(target, XT_REG_IDX_A0 + i);
707                         LOG_TARGET_DEBUG(target, "Writing back reg %s value %08" PRIX32 ", num =%i",
708                                 xtensa_regs[XT_REG_IDX_A0 + i].name,
709                                 regval,
710                                 xtensa_regs[XT_REG_IDX_A0 + i].reg_num);
711                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, regval);
712                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, i));
713                         reg_list[XT_REG_IDX_A0 + i].dirty = false;
714                         if (i == 3) {
715                                 /* Avoid stomping A3 during restore at end of function */
716                                 a3 = regval;
717                         }
718                 }
719         }
720
721         if (xtensa->core_config->windowed) {
722                 /* Now write AR registers */
723                 for (unsigned int j = 0; j < XT_REG_IDX_ARLAST; j += 16) {
724                         /* Write the 16 registers we can see */
725                         for (unsigned int i = 0; i < 16; i++) {
726                                 if (i + j < xtensa->core_config->aregs_num) {
727                                         enum xtensa_reg_id realadr =
728                                                 xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_AR0 + i + j,
729                                                 windowbase);
730                                         /* Write back any dirty un-windowed registers */
731                                         if (reg_list[realadr].dirty) {
732                                                 regval = xtensa_reg_get(target, realadr);
733                                                 LOG_TARGET_DEBUG(
734                                                         target,
735                                                         "Writing back reg %s value %08" PRIX32 ", num =%i",
736                                                         xtensa_regs[realadr].name,
737                                                         regval,
738                                                         xtensa_regs[realadr].reg_num);
739                                                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, regval);
740                                                 xtensa_queue_exec_ins(xtensa,
741                                                         XT_INS_RSR(xtensa, XT_SR_DDR,
742                                                                 xtensa_regs[XT_REG_IDX_AR0 + i].reg_num));
743                                                 reg_list[realadr].dirty = false;
744                                                 if ((i + j) == 3)
745                                                         /* Avoid stomping AR during A3 restore at end of function */
746                                                         a3 = regval;
747                                         }
748                                 }
749                         }
750                         /*Now rotate the window so we'll see the next 16 registers. The final rotate
751                          * will wraparound, */
752                         /*leaving us in the state we were. */
753                         xtensa_queue_exec_ins(xtensa, XT_INS_ROTW(xtensa, 4));
754                 }
755
756                 xtensa_window_state_restore(target, woe);
757
758                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
759                         xtensa->scratch_ars[s].intval = false;
760         }
761
762         if (preserve_a3) {
763                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, a3);
764                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
765         }
766
767         res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
768         xtensa_core_status_check(target);
769
770         return res;
771 }
772
773 static inline bool xtensa_is_stopped(struct target *target)
774 {
775         struct xtensa *xtensa = target_to_xtensa(target);
776         return xtensa->dbg_mod.core_status.dsr & OCDDSR_STOPPED;
777 }
778
779 int xtensa_examine(struct target *target)
780 {
781         struct xtensa *xtensa = target_to_xtensa(target);
782         unsigned int cmd = PWRCTL_DEBUGWAKEUP(xtensa) | PWRCTL_MEMWAKEUP(xtensa) | PWRCTL_COREWAKEUP(xtensa);
783
784         LOG_DEBUG("coreid = %d", target->coreid);
785
786         if (xtensa->core_config->core_type == XT_UNDEF) {
787                 LOG_ERROR("XTensa core not configured; is xtensa-core-openocd.cfg missing?");
788                 return ERROR_FAIL;
789         }
790
791         xtensa_queue_pwr_reg_write(xtensa, XDMREG_PWRCTL, cmd);
792         xtensa_queue_pwr_reg_write(xtensa, XDMREG_PWRCTL, cmd | PWRCTL_JTAGDEBUGUSE(xtensa));
793         xtensa_dm_queue_enable(&xtensa->dbg_mod);
794         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
795         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
796         if (res != ERROR_OK)
797                 return res;
798         if (!xtensa_dm_is_online(&xtensa->dbg_mod)) {
799                 LOG_ERROR("Unexpected OCD_ID = %08" PRIx32, xtensa->dbg_mod.device_id);
800                 return ERROR_TARGET_FAILURE;
801         }
802         LOG_DEBUG("OCD_ID = %08" PRIx32, xtensa->dbg_mod.device_id);
803         if (!target_was_examined(target))
804                 target_set_examined(target);
805         xtensa_smpbreak_write(xtensa, xtensa->smp_break);
806         return ERROR_OK;
807 }
808
809 int xtensa_wakeup(struct target *target)
810 {
811         struct xtensa *xtensa = target_to_xtensa(target);
812         unsigned int cmd = PWRCTL_DEBUGWAKEUP(xtensa) | PWRCTL_MEMWAKEUP(xtensa) | PWRCTL_COREWAKEUP(xtensa);
813
814         if (xtensa->reset_asserted)
815                 cmd |= PWRCTL_CORERESET(xtensa);
816         xtensa_queue_pwr_reg_write(xtensa, XDMREG_PWRCTL, cmd);
817         /* TODO: can we join this with the write above? */
818         xtensa_queue_pwr_reg_write(xtensa, XDMREG_PWRCTL, cmd | PWRCTL_JTAGDEBUGUSE(xtensa));
819         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
820         return xtensa_dm_queue_execute(&xtensa->dbg_mod);
821 }
822
823 int xtensa_smpbreak_write(struct xtensa *xtensa, uint32_t set)
824 {
825         uint32_t dsr_data = 0x00110000;
826         uint32_t clear = (set | OCDDCR_ENABLEOCD) ^
827                 (OCDDCR_BREAKINEN | OCDDCR_BREAKOUTEN | OCDDCR_RUNSTALLINEN |
828                 OCDDCR_DEBUGMODEOUTEN | OCDDCR_ENABLEOCD);
829
830         LOG_TARGET_DEBUG(xtensa->target, "write smpbreak set=0x%" PRIx32 " clear=0x%" PRIx32, set, clear);
831         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DCRSET, set | OCDDCR_ENABLEOCD);
832         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DCRCLR, clear);
833         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DSR, dsr_data);
834         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
835         return xtensa_dm_queue_execute(&xtensa->dbg_mod);
836 }
837
838 int xtensa_smpbreak_set(struct target *target, uint32_t set)
839 {
840         struct xtensa *xtensa = target_to_xtensa(target);
841         int res = ERROR_OK;
842
843         xtensa->smp_break = set;
844         if (target_was_examined(target))
845                 res = xtensa_smpbreak_write(xtensa, xtensa->smp_break);
846         LOG_TARGET_DEBUG(target, "set smpbreak=%" PRIx32 ", state=%i", set, target->state);
847         return res;
848 }
849
850 int xtensa_smpbreak_read(struct xtensa *xtensa, uint32_t *val)
851 {
852         uint8_t dcr_buf[sizeof(uint32_t)];
853
854         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DCRSET, dcr_buf);
855         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
856         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
857         *val = buf_get_u32(dcr_buf, 0, 32);
858
859         return res;
860 }
861
862 int xtensa_smpbreak_get(struct target *target, uint32_t *val)
863 {
864         struct xtensa *xtensa = target_to_xtensa(target);
865         *val = xtensa->smp_break;
866         return ERROR_OK;
867 }
868
869 static inline xtensa_reg_val_t xtensa_reg_get_value(struct reg *reg)
870 {
871         return buf_get_u32(reg->value, 0, 32);
872 }
873
874 static inline void xtensa_reg_set_value(struct reg *reg, xtensa_reg_val_t value)
875 {
876         buf_set_u32(reg->value, 0, 32, value);
877         reg->dirty = true;
878 }
879
880 int xtensa_core_status_check(struct target *target)
881 {
882         struct xtensa *xtensa = target_to_xtensa(target);
883         int res, needclear = 0;
884
885         xtensa_dm_core_status_read(&xtensa->dbg_mod);
886         xtensa_dsr_t dsr = xtensa_dm_core_status_get(&xtensa->dbg_mod);
887         LOG_TARGET_DEBUG(target, "DSR (%08" PRIX32 ")", dsr);
888         if (dsr & OCDDSR_EXECBUSY) {
889                 if (!xtensa->suppress_dsr_errors)
890                         LOG_TARGET_ERROR(target, "DSR (%08" PRIX32 ") indicates target still busy!", dsr);
891                 needclear = 1;
892         }
893         if (dsr & OCDDSR_EXECEXCEPTION) {
894                 if (!xtensa->suppress_dsr_errors)
895                         LOG_TARGET_ERROR(target,
896                                 "DSR (%08" PRIX32 ") indicates DIR instruction generated an exception!",
897                                 dsr);
898                 needclear = 1;
899         }
900         if (dsr & OCDDSR_EXECOVERRUN) {
901                 if (!xtensa->suppress_dsr_errors)
902                         LOG_TARGET_ERROR(target,
903                                 "DSR (%08" PRIX32 ") indicates DIR instruction generated an overrun!",
904                                 dsr);
905                 needclear = 1;
906         }
907         if (needclear) {
908                 res = xtensa_dm_core_status_clear(&xtensa->dbg_mod,
909                         OCDDSR_EXECEXCEPTION | OCDDSR_EXECOVERRUN);
910                 if (res != ERROR_OK && !xtensa->suppress_dsr_errors)
911                         LOG_TARGET_ERROR(target, "clearing DSR failed!");
912                 return ERROR_FAIL;
913         }
914         return ERROR_OK;
915 }
916
917 xtensa_reg_val_t xtensa_reg_get(struct target *target, enum xtensa_reg_id reg_id)
918 {
919         struct xtensa *xtensa = target_to_xtensa(target);
920         struct reg *reg = &xtensa->core_cache->reg_list[reg_id];
921         return xtensa_reg_get_value(reg);
922 }
923
924 void xtensa_reg_set(struct target *target, enum xtensa_reg_id reg_id, xtensa_reg_val_t value)
925 {
926         struct xtensa *xtensa = target_to_xtensa(target);
927         struct reg *reg = &xtensa->core_cache->reg_list[reg_id];
928         if (xtensa_reg_get_value(reg) == value)
929                 return;
930         xtensa_reg_set_value(reg, value);
931 }
932
933 /* Set Ax (XT_REG_RELGEN) register along with its underlying ARx (XT_REG_GENERAL) */
934 void xtensa_reg_set_deep_relgen(struct target *target, enum xtensa_reg_id a_idx, xtensa_reg_val_t value)
935 {
936         struct xtensa *xtensa = target_to_xtensa(target);
937         uint32_t windowbase = (xtensa->core_config->windowed ?
938                 xtensa_reg_get(target, XT_REG_IDX_WINDOWBASE) : 0);
939         int ar_idx = xtensa_windowbase_offset_to_canonical(xtensa, a_idx, windowbase);
940         xtensa_reg_set(target, a_idx, value);
941         xtensa_reg_set(target, ar_idx, value);
942 }
943
944 /* Read cause for entering halted state; return bitmask in DEBUGCAUSE_* format */
945 uint32_t xtensa_cause_get(struct target *target)
946 {
947         return xtensa_reg_get(target, XT_REG_IDX_DEBUGCAUSE);
948 }
949
950 void xtensa_cause_clear(struct target *target)
951 {
952         struct xtensa *xtensa = target_to_xtensa(target);
953         xtensa_reg_set(target, XT_REG_IDX_DEBUGCAUSE, 0);
954         xtensa->core_cache->reg_list[XT_REG_IDX_DEBUGCAUSE].dirty = false;
955 }
956
957 int xtensa_assert_reset(struct target *target)
958 {
959         struct xtensa *xtensa = target_to_xtensa(target);
960
961         LOG_TARGET_DEBUG(target, "target_number=%i, begin", target->target_number);
962         target->state = TARGET_RESET;
963         xtensa_queue_pwr_reg_write(xtensa,
964                 XDMREG_PWRCTL,
965                 PWRCTL_JTAGDEBUGUSE(xtensa) | PWRCTL_DEBUGWAKEUP(xtensa) | PWRCTL_MEMWAKEUP(xtensa) |
966                 PWRCTL_COREWAKEUP(xtensa) | PWRCTL_CORERESET(xtensa));
967         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
968         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
969         if (res != ERROR_OK)
970                 return res;
971         xtensa->reset_asserted = true;
972         return res;
973 }
974
975 int xtensa_deassert_reset(struct target *target)
976 {
977         struct xtensa *xtensa = target_to_xtensa(target);
978
979         LOG_TARGET_DEBUG(target, "halt=%d", target->reset_halt);
980         if (target->reset_halt)
981                 xtensa_queue_dbg_reg_write(xtensa,
982                         XDMREG_DCRSET,
983                         OCDDCR_ENABLEOCD | OCDDCR_DEBUGINTERRUPT);
984         xtensa_queue_pwr_reg_write(xtensa,
985                 XDMREG_PWRCTL,
986                 PWRCTL_JTAGDEBUGUSE(xtensa) | PWRCTL_DEBUGWAKEUP(xtensa) | PWRCTL_MEMWAKEUP(xtensa) |
987                 PWRCTL_COREWAKEUP(xtensa));
988         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
989         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
990         if (res != ERROR_OK)
991                 return res;
992         target->state = TARGET_RUNNING;
993         xtensa->reset_asserted = false;
994         return res;
995 }
996
997 int xtensa_soft_reset_halt(struct target *target)
998 {
999         LOG_TARGET_DEBUG(target, "begin");
1000         return xtensa_assert_reset(target);
1001 }
1002
1003 int xtensa_fetch_all_regs(struct target *target)
1004 {
1005         struct xtensa *xtensa = target_to_xtensa(target);
1006         struct reg *reg_list = xtensa->core_cache->reg_list;
1007         unsigned int reg_list_size = xtensa->core_cache->num_regs;
1008         xtensa_reg_val_t cpenable = 0, windowbase = 0, a3;
1009         uint32_t woe;
1010         uint8_t a3_buf[4];
1011         bool debug_dsrs = !xtensa->regs_fetched || LOG_LEVEL_IS(LOG_LVL_DEBUG);
1012
1013         union xtensa_reg_val_u *regvals = calloc(reg_list_size, sizeof(*regvals));
1014         if (!regvals) {
1015                 LOG_TARGET_ERROR(target, "unable to allocate memory for regvals!");
1016                 return ERROR_FAIL;
1017         }
1018         union xtensa_reg_val_u *dsrs = calloc(reg_list_size, sizeof(*dsrs));
1019         if (!dsrs) {
1020                 LOG_TARGET_ERROR(target, "unable to allocate memory for dsrs!");
1021                 free(regvals);
1022                 return ERROR_FAIL;
1023         }
1024
1025         LOG_TARGET_DEBUG(target, "start");
1026
1027         /* Save (windowed) A3 so cache matches physical AR3; A3 usable as scratch */
1028         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1029         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, a3_buf);
1030         int res = xtensa_window_state_save(target, &woe);
1031         if (res != ERROR_OK)
1032                 goto xtensa_fetch_all_regs_done;
1033
1034         /* Assume the CPU has just halted. We now want to fill the register cache with all the
1035          * register contents GDB needs. For speed, we pipeline all the read operations, execute them
1036          * in one go, then sort everything out from the regvals variable. */
1037
1038         /* Start out with AREGS; we can reach those immediately. Grab them per 16 registers. */
1039         for (unsigned int j = 0; j < XT_AREGS_NUM_MAX; j += 16) {
1040                 /*Grab the 16 registers we can see */
1041                 for (unsigned int i = 0; i < 16; i++) {
1042                         if (i + j < xtensa->core_config->aregs_num) {
1043                                 xtensa_queue_exec_ins(xtensa,
1044                                         XT_INS_WSR(xtensa, XT_SR_DDR, xtensa_regs[XT_REG_IDX_AR0 + i].reg_num));
1045                                 xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR,
1046                                         regvals[XT_REG_IDX_AR0 + i + j].buf);
1047                                 if (debug_dsrs)
1048                                         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DSR,
1049                                                 dsrs[XT_REG_IDX_AR0 + i + j].buf);
1050                         }
1051                 }
1052                 if (xtensa->core_config->windowed)
1053                         /* Now rotate the window so we'll see the next 16 registers. The final rotate
1054                          * will wraparound, */
1055                         /* leaving us in the state we were. */
1056                         xtensa_queue_exec_ins(xtensa, XT_INS_ROTW(xtensa, 4));
1057         }
1058         xtensa_window_state_restore(target, woe);
1059
1060         if (xtensa->core_config->coproc) {
1061                 /* As the very first thing after AREGS, go grab CPENABLE */
1062                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
1063                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1064                 xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, regvals[XT_REG_IDX_CPENABLE].buf);
1065         }
1066         res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1067         if (res != ERROR_OK) {
1068                 LOG_ERROR("Failed to read ARs (%d)!", res);
1069                 goto xtensa_fetch_all_regs_done;
1070         }
1071         xtensa_core_status_check(target);
1072
1073         a3 = buf_get_u32(a3_buf, 0, 32);
1074
1075         if (xtensa->core_config->coproc) {
1076                 cpenable = buf_get_u32(regvals[XT_REG_IDX_CPENABLE].buf, 0, 32);
1077
1078                 /* Enable all coprocessors (by setting all bits in CPENABLE) so we can read FP and user registers. */
1079                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, 0xffffffff);
1080                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1081                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
1082
1083                 /* Save CPENABLE; flag dirty later (when regcache updated) so original value is always restored */
1084                 LOG_TARGET_DEBUG(target, "CPENABLE: was 0x%" PRIx32 ", all enabled", cpenable);
1085                 xtensa_reg_set(target, XT_REG_IDX_CPENABLE, cpenable);
1086         }
1087         /* We're now free to use any of A0-A15 as scratch registers
1088          * Grab the SFRs and user registers first. We use A3 as a scratch register. */
1089         for (unsigned int i = 0; i < reg_list_size; i++) {
1090                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1091                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1092                 if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist) {
1093                         bool reg_fetched = true;
1094                         unsigned int reg_num = rlist[ridx].reg_num;
1095                         switch (rlist[ridx].type) {
1096                         case XT_REG_USER:
1097                                 xtensa_queue_exec_ins(xtensa, XT_INS_RUR(xtensa, reg_num, XT_REG_A3));
1098                                 break;
1099                         case XT_REG_FR:
1100                                 xtensa_queue_exec_ins(xtensa, XT_INS_RFR(xtensa, reg_num, XT_REG_A3));
1101                                 break;
1102                         case XT_REG_SPECIAL:
1103                                 if (reg_num == XT_PC_REG_NUM_VIRTUAL) {
1104                                         /* reg number of PC for debug interrupt depends on NDEBUGLEVEL */
1105                                         reg_num = (XT_PC_REG_NUM_BASE + xtensa->core_config->debug.irq_level);
1106                                 } else if (reg_num == xtensa_regs[XT_REG_IDX_PS].reg_num) {
1107                                         /* reg number of PS for debug interrupt depends on NDEBUGLEVEL */
1108                                         reg_num = (XT_PS_REG_NUM_BASE + xtensa->core_config->debug.irq_level);
1109                                 } else if (reg_num == xtensa_regs[XT_REG_IDX_CPENABLE].reg_num) {
1110                                         /* CPENABLE already read/updated; don't re-read */
1111                                         reg_fetched = false;
1112                                         break;
1113                                 }
1114                                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, reg_num, XT_REG_A3));
1115                                 break;
1116                         default:
1117                                 reg_fetched = false;
1118                         }
1119                         if (reg_fetched) {
1120                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1121                                 xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, regvals[i].buf);
1122                                 if (debug_dsrs)
1123                                         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DSR, dsrs[i].buf);
1124                         }
1125                 }
1126         }
1127         /* Ok, send the whole mess to the CPU. */
1128         res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1129         if (res != ERROR_OK) {
1130                 LOG_ERROR("Failed to fetch AR regs!");
1131                 goto xtensa_fetch_all_regs_done;
1132         }
1133         xtensa_core_status_check(target);
1134
1135         if (debug_dsrs) {
1136                 /* DSR checking: follows order in which registers are requested. */
1137                 for (unsigned int i = 0; i < reg_list_size; i++) {
1138                         struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1139                         unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1140                         if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist &&
1141                                 (rlist[ridx].type != XT_REG_DEBUG) &&
1142                                 (rlist[ridx].type != XT_REG_RELGEN) &&
1143                                 (rlist[ridx].type != XT_REG_TIE) &&
1144                                 (rlist[ridx].type != XT_REG_OTHER)) {
1145                                 if (buf_get_u32(dsrs[i].buf, 0, 32) & OCDDSR_EXECEXCEPTION) {
1146                                         LOG_ERROR("Exception reading %s!", reg_list[i].name);
1147                                         res = ERROR_FAIL;
1148                                         goto xtensa_fetch_all_regs_done;
1149                                 }
1150                         }
1151                 }
1152         }
1153
1154         if (xtensa->core_config->windowed)
1155                 /* We need the windowbase to decode the general addresses. */
1156                 windowbase = buf_get_u32(regvals[XT_REG_IDX_WINDOWBASE].buf, 0, 32);
1157         /* Decode the result and update the cache. */
1158         for (unsigned int i = 0; i < reg_list_size; i++) {
1159                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1160                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1161                 if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist) {
1162                         if ((xtensa->core_config->windowed) && (rlist[ridx].type == XT_REG_GENERAL)) {
1163                                 /* The 64-value general register set is read from (windowbase) on down.
1164                                  * We need to get the real register address by subtracting windowbase and
1165                                  * wrapping around. */
1166                                 enum xtensa_reg_id realadr = xtensa_canonical_to_windowbase_offset(xtensa, i,
1167                                         windowbase);
1168                                 buf_cpy(regvals[realadr].buf, reg_list[i].value, reg_list[i].size);
1169                         } else if (rlist[ridx].type == XT_REG_RELGEN) {
1170                                 buf_cpy(regvals[rlist[ridx].reg_num].buf, reg_list[i].value, reg_list[i].size);
1171                                 if (xtensa_extra_debug_log) {
1172                                         xtensa_reg_val_t regval = buf_get_u32(regvals[rlist[ridx].reg_num].buf, 0, 32);
1173                                         LOG_DEBUG("%s = 0x%x", rlist[ridx].name, regval);
1174                                 }
1175                         } else {
1176                                 xtensa_reg_val_t regval = buf_get_u32(regvals[i].buf, 0, 32);
1177                                 bool is_dirty = (i == XT_REG_IDX_CPENABLE);
1178                                 if (xtensa_extra_debug_log)
1179                                         LOG_INFO("Register %s: 0x%X", reg_list[i].name, regval);
1180                                 xtensa_reg_set(target, i, regval);
1181                                 reg_list[i].dirty = is_dirty;   /*always do this _after_ xtensa_reg_set! */
1182                         }
1183                         reg_list[i].valid = true;
1184                 } else {
1185                         if ((rlist[ridx].flags & XT_REGF_MASK) == XT_REGF_NOREAD) {
1186                                 /* Report read-only registers all-zero but valid */
1187                                 reg_list[i].valid = true;
1188                                 xtensa_reg_set(target, i, 0);
1189                         } else {
1190                                 reg_list[i].valid = false;
1191                         }
1192                 }
1193         }
1194
1195         if (xtensa->core_config->windowed) {
1196                 /* We have used A3 as a scratch register.
1197                  * Windowed configs: restore A3's AR (XT_REG_GENERAL) and and flag for write-back.
1198                  */
1199                 enum xtensa_reg_id ar3_idx = xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_A3, windowbase);
1200                 xtensa_reg_set(target, ar3_idx, a3);
1201                 xtensa_mark_register_dirty(xtensa, ar3_idx);
1202
1203                 /* Reset scratch_ars[] on fetch.  .chrval tracks AR mapping and changes w/ window */
1204                 sprintf(xtensa->scratch_ars[XT_AR_SCRATCH_AR3].chrval, "ar%d", ar3_idx - XT_REG_IDX_AR0);
1205                 enum xtensa_reg_id ar4_idx = xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_A4, windowbase);
1206                 sprintf(xtensa->scratch_ars[XT_AR_SCRATCH_AR4].chrval, "ar%d", ar4_idx - XT_REG_IDX_AR0);
1207                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
1208                         xtensa->scratch_ars[s].intval = false;
1209         }
1210
1211         /* We have used A3 (XT_REG_RELGEN) as a scratch register.  Restore and flag for write-back. */
1212         xtensa_reg_set(target, XT_REG_IDX_A3, a3);
1213         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1214         xtensa->regs_fetched = true;
1215 xtensa_fetch_all_regs_done:
1216         free(regvals);
1217         free(dsrs);
1218         return res;
1219 }
1220
1221 int xtensa_get_gdb_reg_list(struct target *target,
1222         struct reg **reg_list[],
1223         int *reg_list_size,
1224         enum target_register_class reg_class)
1225 {
1226         struct xtensa *xtensa = target_to_xtensa(target);
1227         unsigned int num_regs;
1228
1229         if (reg_class == REG_CLASS_GENERAL) {
1230                 if ((xtensa->genpkt_regs_num == 0) || !xtensa->contiguous_regs_list) {
1231                         LOG_ERROR("reg_class %d unhandled; 'xtgregs' not found", reg_class);
1232                         return ERROR_FAIL;
1233                 }
1234                 num_regs = xtensa->genpkt_regs_num;
1235         } else {
1236                 /* Determine whether to return a contiguous or sparse register map */
1237                 num_regs = xtensa->regmap_contiguous ? xtensa->total_regs_num : xtensa->dbregs_num;
1238         }
1239
1240         LOG_DEBUG("reg_class=%i, num_regs=%d", (int)reg_class, num_regs);
1241
1242         *reg_list = calloc(num_regs, sizeof(struct reg *));
1243         if (!*reg_list)
1244                 return ERROR_FAIL;
1245
1246         *reg_list_size = num_regs;
1247         if (xtensa->regmap_contiguous) {
1248                 assert((num_regs <= xtensa->total_regs_num) && "contiguous regmap size internal error!");
1249                 for (unsigned int i = 0; i < num_regs; i++)
1250                         (*reg_list)[i] = xtensa->contiguous_regs_list[i];
1251                 return ERROR_OK;
1252         }
1253
1254         for (unsigned int i = 0; i < num_regs; i++)
1255                 (*reg_list)[i] = (struct reg *)&xtensa->empty_regs[i];
1256         unsigned int k = 0;
1257         for (unsigned int i = 0; i < xtensa->core_cache->num_regs && k < num_regs; i++) {
1258                 if (xtensa->core_cache->reg_list[i].exist) {
1259                         struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1260                         unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1261                         int sparse_idx = rlist[ridx].dbreg_num;
1262                         if (i == XT_REG_IDX_PS) {
1263                                 if (xtensa->eps_dbglevel_idx == 0) {
1264                                         LOG_ERROR("eps_dbglevel_idx not set\n");
1265                                         return ERROR_FAIL;
1266                                 }
1267                                 (*reg_list)[sparse_idx] = &xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx];
1268                                 if (xtensa_extra_debug_log)
1269                                         LOG_DEBUG("SPARSE GDB reg 0x%x getting EPS%d 0x%x",
1270                                                 sparse_idx, xtensa->core_config->debug.irq_level,
1271                                                 xtensa_reg_get_value((*reg_list)[sparse_idx]));
1272                         } else if (rlist[ridx].type == XT_REG_RELGEN) {
1273                                 (*reg_list)[sparse_idx - XT_REG_IDX_ARFIRST] = &xtensa->core_cache->reg_list[i];
1274                         } else {
1275                                 (*reg_list)[sparse_idx] = &xtensa->core_cache->reg_list[i];
1276                         }
1277                         if (i == XT_REG_IDX_PC)
1278                                 /* Make a duplicate copy of PC for external access */
1279                                 (*reg_list)[XT_PC_DBREG_NUM_BASE] = &xtensa->core_cache->reg_list[i];
1280                         k++;
1281                 }
1282         }
1283
1284         if (k == num_regs)
1285                 LOG_ERROR("SPARSE GDB reg list full (size %d)", k);
1286
1287         return ERROR_OK;
1288 }
1289
1290 int xtensa_mmu_is_enabled(struct target *target, int *enabled)
1291 {
1292         struct xtensa *xtensa = target_to_xtensa(target);
1293         *enabled = xtensa->core_config->mmu.itlb_entries_count > 0 ||
1294                 xtensa->core_config->mmu.dtlb_entries_count > 0;
1295         return ERROR_OK;
1296 }
1297
1298 int xtensa_halt(struct target *target)
1299 {
1300         struct xtensa *xtensa = target_to_xtensa(target);
1301
1302         LOG_TARGET_DEBUG(target, "start");
1303         if (target->state == TARGET_HALTED) {
1304                 LOG_TARGET_DEBUG(target, "target was already halted");
1305                 return ERROR_OK;
1306         }
1307         /* First we have to read dsr and check if the target stopped */
1308         int res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
1309         if (res != ERROR_OK) {
1310                 LOG_TARGET_ERROR(target, "Failed to read core status!");
1311                 return res;
1312         }
1313         LOG_TARGET_DEBUG(target, "Core status 0x%" PRIx32, xtensa_dm_core_status_get(&xtensa->dbg_mod));
1314         if (!xtensa_is_stopped(target)) {
1315                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DCRSET, OCDDCR_ENABLEOCD | OCDDCR_DEBUGINTERRUPT);
1316                 xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
1317                 res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1318                 if (res != ERROR_OK)
1319                         LOG_TARGET_ERROR(target, "Failed to set OCDDCR_DEBUGINTERRUPT. Can't halt.");
1320         }
1321
1322         return res;
1323 }
1324
1325 int xtensa_prepare_resume(struct target *target,
1326         int current,
1327         target_addr_t address,
1328         int handle_breakpoints,
1329         int debug_execution)
1330 {
1331         struct xtensa *xtensa = target_to_xtensa(target);
1332         uint32_t bpena = 0;
1333
1334         LOG_TARGET_DEBUG(target,
1335                 "current=%d address=" TARGET_ADDR_FMT ", handle_breakpoints=%i, debug_execution=%i)",
1336                 current,
1337                 address,
1338                 handle_breakpoints,
1339                 debug_execution);
1340
1341         if (target->state != TARGET_HALTED) {
1342                 LOG_TARGET_WARNING(target, "target not halted");
1343                 return ERROR_TARGET_NOT_HALTED;
1344         }
1345
1346         if (address && !current) {
1347                 xtensa_reg_set(target, XT_REG_IDX_PC, address);
1348         } else {
1349                 uint32_t cause = xtensa_cause_get(target);
1350                 LOG_TARGET_DEBUG(target, "DEBUGCAUSE 0x%x (watchpoint %lu) (break %lu)",
1351                         cause, (cause & DEBUGCAUSE_DB), (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN)));
1352                 if (cause & DEBUGCAUSE_DB)
1353                         /* We stopped due to a watchpoint. We can't just resume executing the
1354                          * instruction again because */
1355                         /* that would trigger the watchpoint again. To fix this, we single-step,
1356                          * which ignores watchpoints. */
1357                         xtensa_do_step(target, current, address, handle_breakpoints);
1358                 if (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN))
1359                         /* We stopped due to a break instruction. We can't just resume executing the
1360                          * instruction again because */
1361                         /* that would trigger the break again. To fix this, we single-step, which
1362                          * ignores break. */
1363                         xtensa_do_step(target, current, address, handle_breakpoints);
1364         }
1365
1366         /* Write back hw breakpoints. Current FreeRTOS SMP code can set a hw breakpoint on an
1367          * exception; we need to clear that and return to the breakpoints gdb has set on resume. */
1368         for (unsigned int slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
1369                 if (xtensa->hw_brps[slot]) {
1370                         /* Write IBREAKA[slot] and set bit #slot in IBREAKENABLE */
1371                         xtensa_reg_set(target, XT_REG_IDX_IBREAKA0 + slot, xtensa->hw_brps[slot]->address);
1372                         bpena |= BIT(slot);
1373                 }
1374         }
1375         xtensa_reg_set(target, XT_REG_IDX_IBREAKENABLE, bpena);
1376
1377         /* Here we write all registers to the targets */
1378         int res = xtensa_write_dirty_registers(target);
1379         if (res != ERROR_OK)
1380                 LOG_TARGET_ERROR(target, "Failed to write back register cache.");
1381         return res;
1382 }
1383
1384 int xtensa_do_resume(struct target *target)
1385 {
1386         struct xtensa *xtensa = target_to_xtensa(target);
1387
1388         LOG_TARGET_DEBUG(target, "start");
1389
1390         xtensa_queue_exec_ins(xtensa, XT_INS_RFDO(xtensa));
1391         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1392         if (res != ERROR_OK) {
1393                 LOG_TARGET_ERROR(target, "Failed to exec RFDO %d!", res);
1394                 return res;
1395         }
1396         xtensa_core_status_check(target);
1397         return ERROR_OK;
1398 }
1399
1400 int xtensa_resume(struct target *target,
1401         int current,
1402         target_addr_t address,
1403         int handle_breakpoints,
1404         int debug_execution)
1405 {
1406         LOG_TARGET_DEBUG(target, "start");
1407         int res = xtensa_prepare_resume(target, current, address, handle_breakpoints, debug_execution);
1408         if (res != ERROR_OK) {
1409                 LOG_TARGET_ERROR(target, "Failed to prepare for resume!");
1410                 return res;
1411         }
1412         res = xtensa_do_resume(target);
1413         if (res != ERROR_OK) {
1414                 LOG_TARGET_ERROR(target, "Failed to resume!");
1415                 return res;
1416         }
1417
1418         target->debug_reason = DBG_REASON_NOTHALTED;
1419         if (!debug_execution)
1420                 target->state = TARGET_RUNNING;
1421         else
1422                 target->state = TARGET_DEBUG_RUNNING;
1423
1424         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1425
1426         return ERROR_OK;
1427 }
1428
1429 static bool xtensa_pc_in_winexc(struct target *target, target_addr_t pc)
1430 {
1431         struct xtensa *xtensa = target_to_xtensa(target);
1432         uint8_t insn_buf[XT_ISNS_SZ_MAX];
1433         int err = xtensa_read_buffer(target, pc, sizeof(insn_buf), insn_buf);
1434         if (err != ERROR_OK)
1435                 return false;
1436
1437         xtensa_insn_t insn = buf_get_u32(insn_buf, 0, 24);
1438         xtensa_insn_t masked = insn & XT_INS_L32E_S32E_MASK(xtensa);
1439         if (masked == XT_INS_L32E(xtensa, 0, 0, 0) || masked == XT_INS_S32E(xtensa, 0, 0, 0))
1440                 return true;
1441
1442         masked = insn & XT_INS_RFWO_RFWU_MASK(xtensa);
1443         if (masked == XT_INS_RFWO(xtensa) || masked == XT_INS_RFWU(xtensa))
1444                 return true;
1445
1446         return false;
1447 }
1448
1449 int xtensa_do_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1450 {
1451         struct xtensa *xtensa = target_to_xtensa(target);
1452         int res;
1453         const uint32_t icount_val = -2; /* ICOUNT value to load for 1 step */
1454         xtensa_reg_val_t dbreakc[XT_WATCHPOINTS_NUM_MAX];
1455         xtensa_reg_val_t icountlvl, cause;
1456         xtensa_reg_val_t oldps, oldpc, cur_pc;
1457         bool ps_lowered = false;
1458
1459         LOG_TARGET_DEBUG(target, "current=%d, address=" TARGET_ADDR_FMT ", handle_breakpoints=%i",
1460                 current, address, handle_breakpoints);
1461
1462         if (target->state != TARGET_HALTED) {
1463                 LOG_TARGET_WARNING(target, "target not halted");
1464                 return ERROR_TARGET_NOT_HALTED;
1465         }
1466
1467         if (xtensa->eps_dbglevel_idx == 0) {
1468                 LOG_ERROR("eps_dbglevel_idx not set\n");
1469                 return ERROR_FAIL;
1470         }
1471
1472         /* Save old ps (EPS[dbglvl] on LX), pc */
1473         oldps = xtensa_reg_get(target, xtensa->eps_dbglevel_idx);
1474         oldpc = xtensa_reg_get(target, XT_REG_IDX_PC);
1475
1476         cause = xtensa_cause_get(target);
1477         LOG_TARGET_DEBUG(target, "oldps=%" PRIx32 ", oldpc=%" PRIx32 " dbg_cause=%" PRIx32 " exc_cause=%" PRIx32,
1478                 oldps,
1479                 oldpc,
1480                 cause,
1481                 xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE));
1482         if (handle_breakpoints && (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN))) {
1483                 /* handle hard-coded SW breakpoints (e.g. syscalls) */
1484                 LOG_TARGET_DEBUG(target, "Increment PC to pass break instruction...");
1485                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1486                 /* pretend that we have stepped */
1487                 if (cause & DEBUGCAUSE_BI)
1488                         xtensa_reg_set(target, XT_REG_IDX_PC, oldpc + 3);       /* PC = PC+3 */
1489                 else
1490                         xtensa_reg_set(target, XT_REG_IDX_PC, oldpc + 2);       /* PC = PC+2 */
1491                 return ERROR_OK;
1492         }
1493
1494         /* Xtensa LX has an ICOUNTLEVEL register which sets the maximum interrupt level
1495          * at which the instructions are to be counted while stepping.
1496          *
1497          * For example, if we need to step by 2 instructions, and an interrupt occurs
1498          * in between, the processor will trigger the interrupt and halt after the 2nd
1499          * instruction within the interrupt vector and/or handler.
1500          *
1501          * However, sometimes we don't want the interrupt handlers to be executed at all
1502          * while stepping through the code. In this case (XT_STEPPING_ISR_OFF),
1503          * ICOUNTLEVEL can be lowered to the executing code's (level + 1) to prevent ISR
1504          * code from being counted during stepping.  Note that C exception handlers must
1505          * run at level 0 and hence will be counted and stepped into, should one occur.
1506          *
1507          * TODO: Certain instructions should never be single-stepped and should instead
1508          * be emulated (per DUG): RSIL >= DBGLEVEL, RSR/WSR [ICOUNT|ICOUNTLEVEL], and
1509          * RFI >= DBGLEVEL.
1510          */
1511         if (xtensa->stepping_isr_mode == XT_STEPPING_ISR_OFF) {
1512                 if (!xtensa->core_config->high_irq.enabled) {
1513                         LOG_TARGET_WARNING(
1514                                 target,
1515                                 "disabling IRQs while stepping is not implemented w/o high prio IRQs option!");
1516                         return ERROR_FAIL;
1517                 }
1518                 /* Update ICOUNTLEVEL accordingly */
1519                 icountlvl = MIN((oldps & 0xF) + 1, xtensa->core_config->debug.irq_level);
1520         } else {
1521                 icountlvl = xtensa->core_config->debug.irq_level;
1522         }
1523
1524         if (cause & DEBUGCAUSE_DB) {
1525                 /* We stopped due to a watchpoint. We can't just resume executing the instruction again because
1526                  * that would trigger the watchpoint again. To fix this, we remove watchpoints,single-step and
1527                  * re-enable the watchpoint. */
1528                 LOG_TARGET_DEBUG(
1529                         target,
1530                         "Single-stepping to get past instruction that triggered the watchpoint...");
1531                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1532                 /* Save all DBREAKCx registers and set to 0 to disable watchpoints */
1533                 for (unsigned int slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
1534                         dbreakc[slot] = xtensa_reg_get(target, XT_REG_IDX_DBREAKC0 + slot);
1535                         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, 0);
1536                 }
1537         }
1538
1539         if (!handle_breakpoints && (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN)))
1540                 /* handle normal SW breakpoint */
1541                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1542         if ((oldps & 0xf) >= icountlvl) {
1543                 /* Lower interrupt level to allow stepping, but flag eps[dbglvl] to be restored */
1544                 ps_lowered = true;
1545                 uint32_t newps = (oldps & ~0xf) | (icountlvl - 1);
1546                 xtensa_reg_set(target, xtensa->eps_dbglevel_idx, newps);
1547                 LOG_TARGET_DEBUG(target,
1548                         "Lowering PS.INTLEVEL to allow stepping: %s <- 0x%08" PRIx32 " (was 0x%08" PRIx32 ")",
1549                         xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx].name,
1550                         newps,
1551                         oldps);
1552         }
1553         do {
1554                 xtensa_reg_set(target, XT_REG_IDX_ICOUNTLEVEL, icountlvl);
1555                 xtensa_reg_set(target, XT_REG_IDX_ICOUNT, icount_val);
1556
1557                 /* Now ICOUNT is set, we can resume as if we were going to run */
1558                 res = xtensa_prepare_resume(target, current, address, 0, 0);
1559                 if (res != ERROR_OK) {
1560                         LOG_TARGET_ERROR(target, "Failed to prepare resume for single step");
1561                         return res;
1562                 }
1563                 res = xtensa_do_resume(target);
1564                 if (res != ERROR_OK) {
1565                         LOG_TARGET_ERROR(target, "Failed to resume after setting up single step");
1566                         return res;
1567                 }
1568
1569                 /* Wait for stepping to complete */
1570                 long long start = timeval_ms();
1571                 while (timeval_ms() < start + 500) {
1572                         /* Do not use target_poll here, it also triggers other things... just manually read the DSR
1573                          *until stepping is complete. */
1574                         usleep(1000);
1575                         res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
1576                         if (res != ERROR_OK) {
1577                                 LOG_TARGET_ERROR(target, "Failed to read core status!");
1578                                 return res;
1579                         }
1580                         if (xtensa_is_stopped(target))
1581                                 break;
1582                         usleep(1000);
1583                 }
1584                 LOG_TARGET_DEBUG(target, "Finish stepping. dsr=0x%08" PRIx32,
1585                         xtensa_dm_core_status_get(&xtensa->dbg_mod));
1586                 if (!xtensa_is_stopped(target)) {
1587                         LOG_TARGET_WARNING(
1588                                 target,
1589                                 "Timed out waiting for target to finish stepping. dsr=0x%08" PRIx32,
1590                                 xtensa_dm_core_status_get(&xtensa->dbg_mod));
1591                         target->debug_reason = DBG_REASON_NOTHALTED;
1592                         target->state = TARGET_RUNNING;
1593                         return ERROR_FAIL;
1594                 }
1595
1596                 xtensa_fetch_all_regs(target);
1597                 cur_pc = xtensa_reg_get(target, XT_REG_IDX_PC);
1598
1599                 LOG_TARGET_DEBUG(target,
1600                         "cur_ps=%" PRIx32 ", cur_pc=%" PRIx32 " dbg_cause=%" PRIx32 " exc_cause=%" PRIx32,
1601                         xtensa_reg_get(target, XT_REG_IDX_PS),
1602                         cur_pc,
1603                         xtensa_cause_get(target),
1604                         xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE));
1605
1606                 /* Do not step into WindowOverflow if ISRs are masked.
1607                    If we stop in WindowOverflow at breakpoint with masked ISRs and
1608                    try to do a step it will get us out of that handler */
1609                 if (xtensa->core_config->windowed &&
1610                         xtensa->stepping_isr_mode == XT_STEPPING_ISR_OFF &&
1611                         xtensa_pc_in_winexc(target, cur_pc)) {
1612                         /* isrmask = on, need to step out of the window exception handler */
1613                         LOG_DEBUG("Stepping out of window exception, PC=%" PRIX32, cur_pc);
1614                         oldpc = cur_pc;
1615                         address = oldpc + 3;
1616                         continue;
1617                 }
1618
1619                 if (oldpc == cur_pc)
1620                         LOG_TARGET_WARNING(target, "Stepping doesn't seem to change PC! dsr=0x%08" PRIx32,
1621                                 xtensa_dm_core_status_get(&xtensa->dbg_mod));
1622                 else
1623                         LOG_DEBUG("Stepped from %" PRIX32 " to %" PRIX32, oldpc, cur_pc);
1624                 break;
1625         } while (true);
1626
1627         target->debug_reason = DBG_REASON_SINGLESTEP;
1628         target->state = TARGET_HALTED;
1629         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1630         LOG_DEBUG("Done stepping, PC=%" PRIX32, cur_pc);
1631
1632         if (cause & DEBUGCAUSE_DB) {
1633                 LOG_TARGET_DEBUG(target, "...Done, re-installing watchpoints.");
1634                 /* Restore the DBREAKCx registers */
1635                 for (unsigned int slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++)
1636                         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, dbreakc[slot]);
1637         }
1638
1639         /* Restore int level */
1640         if (ps_lowered) {
1641                 LOG_DEBUG("Restoring %s after stepping: 0x%08" PRIx32,
1642                         xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx].name,
1643                         oldps);
1644                 xtensa_reg_set(target, xtensa->eps_dbglevel_idx, oldps);
1645         }
1646
1647         /* write ICOUNTLEVEL back to zero */
1648         xtensa_reg_set(target, XT_REG_IDX_ICOUNTLEVEL, 0);
1649         /* TODO: can we skip writing dirty registers and re-fetching them? */
1650         res = xtensa_write_dirty_registers(target);
1651         xtensa_fetch_all_regs(target);
1652         return res;
1653 }
1654
1655 int xtensa_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1656 {
1657         return xtensa_do_step(target, current, address, handle_breakpoints);
1658 }
1659
1660 /**
1661  * Returns true if two ranges are overlapping
1662  */
1663 static inline bool xtensa_memory_regions_overlap(target_addr_t r1_start,
1664         target_addr_t r1_end,
1665         target_addr_t r2_start,
1666         target_addr_t r2_end)
1667 {
1668         if ((r2_start >= r1_start) && (r2_start < r1_end))
1669                 return true;    /* r2_start is in r1 region */
1670         if ((r2_end > r1_start) && (r2_end <= r1_end))
1671                 return true;    /* r2_end is in r1 region */
1672         return false;
1673 }
1674
1675 /**
1676  * Returns a size of overlapped region of two ranges.
1677  */
1678 static inline target_addr_t xtensa_get_overlap_size(target_addr_t r1_start,
1679         target_addr_t r1_end,
1680         target_addr_t r2_start,
1681         target_addr_t r2_end)
1682 {
1683         if (xtensa_memory_regions_overlap(r1_start, r1_end, r2_start, r2_end)) {
1684                 target_addr_t ov_start = r1_start < r2_start ? r2_start : r1_start;
1685                 target_addr_t ov_end = r1_end > r2_end ? r2_end : r1_end;
1686                 return ov_end - ov_start;
1687         }
1688         return 0;
1689 }
1690
1691 /**
1692  * Check if the address gets to memory regions, and its access mode
1693  */
1694 static bool xtensa_memory_op_validate_range(struct xtensa *xtensa, target_addr_t address, size_t size, int access)
1695 {
1696         target_addr_t adr_pos = address;        /* address cursor set to the beginning start */
1697         target_addr_t adr_end = address + size; /* region end */
1698         target_addr_t overlap_size;
1699         const struct xtensa_local_mem_region_config *cm;        /* current mem region */
1700
1701         while (adr_pos < adr_end) {
1702                 cm = xtensa_target_memory_region_find(xtensa, adr_pos);
1703                 if (!cm)        /* address is not belong to anything */
1704                         return false;
1705                 if ((cm->access & access) != access)    /* access check */
1706                         return false;
1707                 overlap_size = xtensa_get_overlap_size(cm->base, (cm->base + cm->size), adr_pos, adr_end);
1708                 assert(overlap_size != 0);
1709                 adr_pos += overlap_size;
1710         }
1711         return true;
1712 }
1713
1714 int xtensa_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1715 {
1716         struct xtensa *xtensa = target_to_xtensa(target);
1717         /* We are going to read memory in 32-bit increments. This may not be what the calling
1718          * function expects, so we may need to allocate a temp buffer and read into that first. */
1719         target_addr_t addrstart_al = ALIGN_DOWN(address, 4);
1720         target_addr_t addrend_al = ALIGN_UP(address + size * count, 4);
1721         target_addr_t adr = addrstart_al;
1722         uint8_t *albuff;
1723         bool bswap = xtensa->target->endianness == TARGET_BIG_ENDIAN;
1724
1725         if (target->state != TARGET_HALTED) {
1726                 LOG_TARGET_WARNING(target, "target not halted");
1727                 return ERROR_TARGET_NOT_HALTED;
1728         }
1729
1730         if (!xtensa->permissive_mode) {
1731                 if (!xtensa_memory_op_validate_range(xtensa, address, (size * count),
1732                                 XT_MEM_ACCESS_READ)) {
1733                         LOG_DEBUG("address " TARGET_ADDR_FMT " not readable", address);
1734                         return ERROR_FAIL;
1735                 }
1736         }
1737
1738         if (addrstart_al == address && addrend_al == address + (size * count)) {
1739                 albuff = buffer;
1740         } else {
1741                 albuff = malloc(addrend_al - addrstart_al);
1742                 if (!albuff) {
1743                         LOG_TARGET_ERROR(target, "Out of memory allocating %" TARGET_PRIdADDR " bytes!",
1744                                 addrend_al - addrstart_al);
1745                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1746                 }
1747         }
1748
1749         /* We're going to use A3 here */
1750         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1751         /* Write start address to A3 */
1752         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, addrstart_al);
1753         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1754         /* Now we can safely read data from addrstart_al up to addrend_al into albuff */
1755         if (xtensa->probe_lsddr32p != 0) {
1756                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1757                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t))
1758                         xtensa_queue_dbg_reg_read(xtensa,
1759                                 (adr + sizeof(uint32_t) == addrend_al) ? XDMREG_DDR : XDMREG_DDREXEC,
1760                                 &albuff[i]);
1761         } else {
1762                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A4);
1763                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1764                         xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A4, 0));
1765                         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A4));
1766                         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, &albuff[i]);
1767                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, adr + sizeof(uint32_t));
1768                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1769                 }
1770         }
1771         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1772         if (res == ERROR_OK) {
1773                 bool prev_suppress = xtensa->suppress_dsr_errors;
1774                 xtensa->suppress_dsr_errors = true;
1775                 res = xtensa_core_status_check(target);
1776                 if (xtensa->probe_lsddr32p == -1)
1777                         xtensa->probe_lsddr32p = 1;
1778                 xtensa->suppress_dsr_errors = prev_suppress;
1779         }
1780         if (res != ERROR_OK) {
1781                 if (xtensa->probe_lsddr32p != 0) {
1782                         /* Disable fast memory access instructions and retry before reporting an error */
1783                         LOG_TARGET_INFO(target, "Disabling LDDR32.P/SDDR32.P");
1784                         xtensa->probe_lsddr32p = 0;
1785                         res = xtensa_read_memory(target, address, size, count, buffer);
1786                         bswap = false;
1787                 } else {
1788                         LOG_TARGET_WARNING(target, "Failed reading %d bytes at address "TARGET_ADDR_FMT,
1789                                 count * size, address);
1790                 }
1791         }
1792
1793         if (bswap)
1794                 buf_bswap32(albuff, albuff, addrend_al - addrstart_al);
1795         if (albuff != buffer) {
1796                 memcpy(buffer, albuff + (address & 3), (size * count));
1797                 free(albuff);
1798         }
1799
1800         return res;
1801 }
1802
1803 int xtensa_read_buffer(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
1804 {
1805         /* xtensa_read_memory can also read unaligned stuff. Just pass through to that routine. */
1806         return xtensa_read_memory(target, address, 1, count, buffer);
1807 }
1808
1809 int xtensa_write_memory(struct target *target,
1810         target_addr_t address,
1811         uint32_t size,
1812         uint32_t count,
1813         const uint8_t *buffer)
1814 {
1815         /* This memory write function can get thrown nigh everything into it, from
1816          * aligned uint32 writes to unaligned uint8ths. The Xtensa memory doesn't always
1817          * accept anything but aligned uint32 writes, though. That is why we convert
1818          * everything into that. */
1819         struct xtensa *xtensa = target_to_xtensa(target);
1820         target_addr_t addrstart_al = ALIGN_DOWN(address, 4);
1821         target_addr_t addrend_al = ALIGN_UP(address + size * count, 4);
1822         target_addr_t adr = addrstart_al;
1823         int res;
1824         uint8_t *albuff;
1825         bool fill_head_tail = false;
1826
1827         if (target->state != TARGET_HALTED) {
1828                 LOG_TARGET_WARNING(target, "target not halted");
1829                 return ERROR_TARGET_NOT_HALTED;
1830         }
1831
1832         if (!xtensa->permissive_mode) {
1833                 if (!xtensa_memory_op_validate_range(xtensa, address, (size * count), XT_MEM_ACCESS_WRITE)) {
1834                         LOG_WARNING("address " TARGET_ADDR_FMT " not writable", address);
1835                         return ERROR_FAIL;
1836                 }
1837         }
1838
1839         if (size == 0 || count == 0 || !buffer)
1840                 return ERROR_COMMAND_SYNTAX_ERROR;
1841
1842         /* Allocate a temporary buffer to put the aligned bytes in, if needed. */
1843         if (addrstart_al == address && addrend_al == address + (size * count)) {
1844                 if (xtensa->target->endianness == TARGET_BIG_ENDIAN)
1845                         /* Need a buffer for byte-swapping */
1846                         albuff = malloc(addrend_al - addrstart_al);
1847                 else
1848                         /* We discard the const here because albuff can also be non-const */
1849                         albuff = (uint8_t *)buffer;
1850         } else {
1851                 fill_head_tail = true;
1852                 albuff = malloc(addrend_al - addrstart_al);
1853         }
1854         if (!albuff) {
1855                 LOG_TARGET_ERROR(target, "Out of memory allocating %" TARGET_PRIdADDR " bytes!",
1856                         addrend_al - addrstart_al);
1857                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1858         }
1859
1860         /* We're going to use A3 here */
1861         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1862
1863         /* If we're using a temp aligned buffer, we need to fill the head and/or tail bit of it. */
1864         if (fill_head_tail) {
1865                 /* See if we need to read the first and/or last word. */
1866                 if (address & 3) {
1867                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, addrstart_al);
1868                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1869                         if (xtensa->probe_lsddr32p == 1) {
1870                                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1871                         } else {
1872                                 xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A3, 0));
1873                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1874                         }
1875                         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, &albuff[0]);
1876                 }
1877                 if ((address + (size * count)) & 3) {
1878                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, addrend_al - 4);
1879                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1880                         if (xtensa->probe_lsddr32p == 1) {
1881                                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1882                         } else {
1883                                 xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A3, 0));
1884                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1885                         }
1886                         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR,
1887                                 &albuff[addrend_al - addrstart_al - 4]);
1888                 }
1889                 /* Grab bytes */
1890                 res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1891                 if (res != ERROR_OK) {
1892                         LOG_ERROR("Error issuing unaligned memory write context instruction(s): %d", res);
1893                         if (albuff != buffer)
1894                                 free(albuff);
1895                         return res;
1896                 }
1897                 xtensa_core_status_check(target);
1898                 if (xtensa->target->endianness == TARGET_BIG_ENDIAN) {
1899                         bool swapped_w0 = false;
1900                         if (address & 3) {
1901                                 buf_bswap32(&albuff[0], &albuff[0], 4);
1902                                 swapped_w0 = true;
1903                         }
1904                         if ((address + (size * count)) & 3) {
1905                                 if ((addrend_al - addrstart_al - 4 == 0) && swapped_w0) {
1906                                         /* Don't double-swap if buffer start/end are within the same word */
1907                                 } else {
1908                                         buf_bswap32(&albuff[addrend_al - addrstart_al - 4],
1909                                                 &albuff[addrend_al - addrstart_al - 4], 4);
1910                                 }
1911                         }
1912                 }
1913                 /* Copy data to be written into the aligned buffer (in host-endianness) */
1914                 memcpy(&albuff[address & 3], buffer, size * count);
1915                 /* Now we can write albuff in aligned uint32s. */
1916         }
1917
1918         if (xtensa->target->endianness == TARGET_BIG_ENDIAN)
1919                 buf_bswap32(albuff, fill_head_tail ? albuff : buffer, addrend_al - addrstart_al);
1920
1921         /* Write start address to A3 */
1922         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, addrstart_al);
1923         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1924         /* Write the aligned buffer */
1925         if (xtensa->probe_lsddr32p != 0) {
1926                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1927                         if (i == 0) {
1928                                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, buf_get_u32(&albuff[i], 0, 32));
1929                                 xtensa_queue_exec_ins(xtensa, XT_INS_SDDR32P(xtensa, XT_REG_A3));
1930                         } else {
1931                                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDREXEC, buf_get_u32(&albuff[i], 0, 32));
1932                         }
1933                 }
1934         } else {
1935                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A4);
1936                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1937                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, buf_get_u32(&albuff[i], 0, 32));
1938                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
1939                         xtensa_queue_exec_ins(xtensa, XT_INS_S32I(xtensa, XT_REG_A3, XT_REG_A4, 0));
1940                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, adr + sizeof(uint32_t));
1941                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1942                 }
1943         }
1944
1945         res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1946         if (res == ERROR_OK) {
1947                 bool prev_suppress = xtensa->suppress_dsr_errors;
1948                 xtensa->suppress_dsr_errors = true;
1949                 res = xtensa_core_status_check(target);
1950                 if (xtensa->probe_lsddr32p == -1)
1951                         xtensa->probe_lsddr32p = 1;
1952                 xtensa->suppress_dsr_errors = prev_suppress;
1953         }
1954         if (res != ERROR_OK) {
1955                 if (xtensa->probe_lsddr32p != 0) {
1956                         /* Disable fast memory access instructions and retry before reporting an error */
1957                         LOG_TARGET_INFO(target, "Disabling LDDR32.P/SDDR32.P");
1958                         xtensa->probe_lsddr32p = 0;
1959                         res = xtensa_write_memory(target, address, size, count, buffer);
1960                 } else {
1961                         LOG_TARGET_WARNING(target, "Failed writing %d bytes at address "TARGET_ADDR_FMT,
1962                                 count * size, address);
1963                 }
1964         } else {
1965                 /* Invalidate ICACHE, writeback DCACHE if present */
1966                 uint32_t issue_ihi = xtensa_is_icacheable(xtensa, address);
1967                 uint32_t issue_dhwb = xtensa_is_dcacheable(xtensa, address);
1968                 if (issue_ihi || issue_dhwb) {
1969                         uint32_t ilinesize = issue_ihi ?  xtensa->core_config->icache.line_size : UINT32_MAX;
1970                         uint32_t dlinesize = issue_dhwb ? xtensa->core_config->dcache.line_size : UINT32_MAX;
1971                         uint32_t linesize = MIN(ilinesize, dlinesize);
1972                         uint32_t off = 0;
1973                         adr = addrstart_al;
1974
1975                         while ((adr + off) < addrend_al) {
1976                                 if (off == 0) {
1977                                         /* Write start address to A3 */
1978                                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, adr);
1979                                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1980                                 }
1981                                 if (issue_ihi)
1982                                         xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, off));
1983                                 if (issue_dhwb)
1984                                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, off));
1985                                 off += linesize;
1986                                 if (off > 1020) {
1987                                         /* IHI, DHWB have 8-bit immediate operands (0..1020) */
1988                                         adr += off;
1989                                         off = 0;
1990                                 }
1991                         }
1992
1993                         /* Execute cache WB/INV instructions */
1994                         res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1995                         xtensa_core_status_check(target);
1996                         if (res != ERROR_OK)
1997                                 LOG_TARGET_ERROR(target,
1998                                         "Error issuing cache writeback/invaldate instruction(s): %d",
1999                                         res);
2000                 }
2001         }
2002         if (albuff != buffer)
2003                 free(albuff);
2004
2005         return res;
2006 }
2007
2008 int xtensa_write_buffer(struct target *target, target_addr_t address, uint32_t count, const uint8_t *buffer)
2009 {
2010         /* xtensa_write_memory can handle everything. Just pass on to that. */
2011         return xtensa_write_memory(target, address, 1, count, buffer);
2012 }
2013
2014 int xtensa_checksum_memory(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum)
2015 {
2016         LOG_WARNING("not implemented yet");
2017         return ERROR_FAIL;
2018 }
2019
2020 int xtensa_poll(struct target *target)
2021 {
2022         struct xtensa *xtensa = target_to_xtensa(target);
2023         if (xtensa_dm_poll(&xtensa->dbg_mod) != ERROR_OK) {
2024                 target->state = TARGET_UNKNOWN;
2025                 return ERROR_TARGET_NOT_EXAMINED;
2026         }
2027
2028         int res = xtensa_dm_power_status_read(&xtensa->dbg_mod, PWRSTAT_DEBUGWASRESET(xtensa) |
2029                 PWRSTAT_COREWASRESET(xtensa));
2030         if (xtensa->dbg_mod.power_status.stat != xtensa->dbg_mod.power_status.stath)
2031                 LOG_TARGET_DEBUG(target, "PWRSTAT: read 0x%08" PRIx32 ", clear 0x%08lx, reread 0x%08" PRIx32,
2032                         xtensa->dbg_mod.power_status.stat,
2033                         PWRSTAT_DEBUGWASRESET(xtensa) | PWRSTAT_COREWASRESET(xtensa),
2034                         xtensa->dbg_mod.power_status.stath);
2035         if (res != ERROR_OK)
2036                 return res;
2037
2038         if (xtensa_dm_tap_was_reset(&xtensa->dbg_mod)) {
2039                 LOG_TARGET_INFO(target, "Debug controller was reset.");
2040                 res = xtensa_smpbreak_write(xtensa, xtensa->smp_break);
2041                 if (res != ERROR_OK)
2042                         return res;
2043         }
2044         if (xtensa_dm_core_was_reset(&xtensa->dbg_mod))
2045                 LOG_TARGET_INFO(target, "Core was reset.");
2046         xtensa_dm_power_status_cache(&xtensa->dbg_mod);
2047         /* Enable JTAG, set reset if needed */
2048         res = xtensa_wakeup(target);
2049         if (res != ERROR_OK)
2050                 return res;
2051
2052         uint32_t prev_dsr = xtensa->dbg_mod.core_status.dsr;
2053         res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
2054         if (res != ERROR_OK)
2055                 return res;
2056         if (prev_dsr != xtensa->dbg_mod.core_status.dsr)
2057                 LOG_TARGET_DEBUG(target,
2058                         "DSR has changed: was 0x%08" PRIx32 " now 0x%08" PRIx32,
2059                         prev_dsr,
2060                         xtensa->dbg_mod.core_status.dsr);
2061         if (xtensa->dbg_mod.power_status.stath & PWRSTAT_COREWASRESET(xtensa)) {
2062                 /* if RESET state is persitent  */
2063                 target->state = TARGET_RESET;
2064         } else if (!xtensa_dm_is_powered(&xtensa->dbg_mod)) {
2065                 LOG_TARGET_DEBUG(target, "not powered 0x%" PRIX32 "%ld",
2066                         xtensa->dbg_mod.core_status.dsr,
2067                         xtensa->dbg_mod.core_status.dsr & OCDDSR_STOPPED);
2068                 target->state = TARGET_UNKNOWN;
2069                 if (xtensa->come_online_probes_num == 0)
2070                         target->examined = false;
2071                 else
2072                         xtensa->come_online_probes_num--;
2073         } else if (xtensa_is_stopped(target)) {
2074                 if (target->state != TARGET_HALTED) {
2075                         enum target_state oldstate = target->state;
2076                         target->state = TARGET_HALTED;
2077                         /* Examine why the target has been halted */
2078                         target->debug_reason = DBG_REASON_DBGRQ;
2079                         xtensa_fetch_all_regs(target);
2080                         /* When setting debug reason DEBUGCAUSE events have the following
2081                          * priorities: watchpoint == breakpoint > single step > debug interrupt. */
2082                         /* Watchpoint and breakpoint events at the same time results in special
2083                          * debug reason: DBG_REASON_WPTANDBKPT. */
2084                         uint32_t halt_cause = xtensa_cause_get(target);
2085                         /* TODO: Add handling of DBG_REASON_EXC_CATCH */
2086                         if (halt_cause & DEBUGCAUSE_IC)
2087                                 target->debug_reason = DBG_REASON_SINGLESTEP;
2088                         if (halt_cause & (DEBUGCAUSE_IB | DEBUGCAUSE_BN | DEBUGCAUSE_BI)) {
2089                                 if (halt_cause & DEBUGCAUSE_DB)
2090                                         target->debug_reason = DBG_REASON_WPTANDBKPT;
2091                                 else
2092                                         target->debug_reason = DBG_REASON_BREAKPOINT;
2093                         } else if (halt_cause & DEBUGCAUSE_DB) {
2094                                 target->debug_reason = DBG_REASON_WATCHPOINT;
2095                         }
2096                         LOG_TARGET_DEBUG(target, "Target halted, pc=0x%08" PRIx32
2097                                 ", debug_reason=%08" PRIx32 ", oldstate=%08" PRIx32,
2098                                 xtensa_reg_get(target, XT_REG_IDX_PC),
2099                                 target->debug_reason,
2100                                 oldstate);
2101                         LOG_TARGET_DEBUG(target, "Halt reason=0x%08" PRIX32 ", exc_cause=%" PRId32 ", dsr=0x%08" PRIx32,
2102                                 halt_cause,
2103                                 xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE),
2104                                 xtensa->dbg_mod.core_status.dsr);
2105                         xtensa_dm_core_status_clear(
2106                                 &xtensa->dbg_mod,
2107                                 OCDDSR_DEBUGPENDBREAK | OCDDSR_DEBUGINTBREAK | OCDDSR_DEBUGPENDTRAX |
2108                                 OCDDSR_DEBUGINTTRAX |
2109                                 OCDDSR_DEBUGPENDHOST | OCDDSR_DEBUGINTHOST);
2110                 }
2111         } else {
2112                 target->debug_reason = DBG_REASON_NOTHALTED;
2113                 if (target->state != TARGET_RUNNING && target->state != TARGET_DEBUG_RUNNING) {
2114                         target->state = TARGET_RUNNING;
2115                         target->debug_reason = DBG_REASON_NOTHALTED;
2116                 }
2117         }
2118         if (xtensa->trace_active) {
2119                 /* Detect if tracing was active but has stopped. */
2120                 struct xtensa_trace_status trace_status;
2121                 res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
2122                 if (res == ERROR_OK) {
2123                         if (!(trace_status.stat & TRAXSTAT_TRACT)) {
2124                                 LOG_INFO("Detected end of trace.");
2125                                 if (trace_status.stat & TRAXSTAT_PCMTG)
2126                                         LOG_TARGET_INFO(target, "Trace stop triggered by PC match");
2127                                 if (trace_status.stat & TRAXSTAT_PTITG)
2128                                         LOG_TARGET_INFO(target, "Trace stop triggered by Processor Trigger Input");
2129                                 if (trace_status.stat & TRAXSTAT_CTITG)
2130                                         LOG_TARGET_INFO(target, "Trace stop triggered by Cross-trigger Input");
2131                                 xtensa->trace_active = false;
2132                         }
2133                 }
2134         }
2135         return ERROR_OK;
2136 }
2137
2138 static int xtensa_update_instruction(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2139 {
2140         struct xtensa *xtensa = target_to_xtensa(target);
2141         unsigned int issue_ihi = xtensa_is_icacheable(xtensa, address);
2142         unsigned int issue_dhwbi = xtensa_is_dcacheable(xtensa, address);
2143         uint32_t icache_line_size = issue_ihi ? xtensa->core_config->icache.line_size : UINT32_MAX;
2144         uint32_t dcache_line_size = issue_dhwbi ? xtensa->core_config->dcache.line_size : UINT32_MAX;
2145         unsigned int same_ic_line = ((address & (icache_line_size - 1)) + size) <= icache_line_size;
2146         unsigned int same_dc_line = ((address & (dcache_line_size - 1)) + size) <= dcache_line_size;
2147         int ret;
2148
2149         if (size > icache_line_size)
2150                 return ERROR_FAIL;
2151
2152         if (issue_ihi || issue_dhwbi) {
2153                 /* We're going to use A3 here */
2154                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
2155
2156                 /* Write start address to A3 and invalidate */
2157                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, address);
2158                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
2159                 LOG_TARGET_DEBUG(target, "DHWBI, IHI for address "TARGET_ADDR_FMT, address);
2160                 if (issue_dhwbi) {
2161                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, 0));
2162                         if (!same_dc_line) {
2163                                 LOG_TARGET_DEBUG(target,
2164                                         "DHWBI second dcache line for address "TARGET_ADDR_FMT,
2165                                         address + 4);
2166                                 xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, 4));
2167                         }
2168                 }
2169                 if (issue_ihi) {
2170                         xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, 0));
2171                         if (!same_ic_line) {
2172                                 LOG_TARGET_DEBUG(target,
2173                                         "IHI second icache line for address "TARGET_ADDR_FMT,
2174                                         address + 4);
2175                                 xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, 4));
2176                         }
2177                 }
2178
2179                 /* Execute invalidate instructions */
2180                 ret = xtensa_dm_queue_execute(&xtensa->dbg_mod);
2181                 xtensa_core_status_check(target);
2182                 if (ret != ERROR_OK) {
2183                         LOG_ERROR("Error issuing cache invaldate instruction(s): %d", ret);
2184                         return ret;
2185                 }
2186         }
2187
2188         /* Write new instructions to memory */
2189         ret = target_write_buffer(target, address, size, buffer);
2190         if (ret != ERROR_OK) {
2191                 LOG_TARGET_ERROR(target, "Error writing instruction to memory: %d", ret);
2192                 return ret;
2193         }
2194
2195         if (issue_dhwbi) {
2196                 /* Flush dcache so instruction propagates.  A3 may be corrupted during memory write */
2197                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, address);
2198                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
2199                 xtensa_queue_exec_ins(xtensa, XT_INS_DHWB(xtensa, XT_REG_A3, 0));
2200                 LOG_DEBUG("DHWB dcache line for address "TARGET_ADDR_FMT, address);
2201                 if (!same_dc_line) {
2202                         LOG_TARGET_DEBUG(target, "DHWB second dcache line for address "TARGET_ADDR_FMT, address + 4);
2203                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWB(xtensa, XT_REG_A3, 4));
2204                 }
2205
2206                 /* Execute invalidate instructions */
2207                 ret = xtensa_dm_queue_execute(&xtensa->dbg_mod);
2208                 xtensa_core_status_check(target);
2209         }
2210
2211         /* TODO: Handle L2 cache if present */
2212         return ret;
2213 }
2214
2215 static int xtensa_sw_breakpoint_add(struct target *target,
2216         struct breakpoint *breakpoint,
2217         struct xtensa_sw_breakpoint *sw_bp)
2218 {
2219         struct xtensa *xtensa = target_to_xtensa(target);
2220         int ret = target_read_buffer(target, breakpoint->address, XT_ISNS_SZ_MAX, sw_bp->insn);
2221         if (ret != ERROR_OK) {
2222                 LOG_TARGET_ERROR(target, "Failed to read original instruction (%d)!", ret);
2223                 return ret;
2224         }
2225
2226         sw_bp->insn_sz = MIN(XT_ISNS_SZ_MAX, breakpoint->length);
2227         sw_bp->oocd_bp = breakpoint;
2228
2229         uint32_t break_insn = sw_bp->insn_sz == XT_ISNS_SZ_MAX ? XT_INS_BREAK(xtensa, 0, 0) : XT_INS_BREAKN(xtensa, 0);
2230
2231         /* Underlying memory write will convert instruction endianness, don't do that here */
2232         ret = xtensa_update_instruction(target, breakpoint->address, sw_bp->insn_sz, (uint8_t *)&break_insn);
2233         if (ret != ERROR_OK) {
2234                 LOG_TARGET_ERROR(target, "Failed to write breakpoint instruction (%d)!", ret);
2235                 return ret;
2236         }
2237
2238         return ERROR_OK;
2239 }
2240
2241 static int xtensa_sw_breakpoint_remove(struct target *target, struct xtensa_sw_breakpoint *sw_bp)
2242 {
2243         int ret = xtensa_update_instruction(target, sw_bp->oocd_bp->address, sw_bp->insn_sz, sw_bp->insn);
2244         if (ret != ERROR_OK) {
2245                 LOG_TARGET_ERROR(target, "Failed to write insn (%d)!", ret);
2246                 return ret;
2247         }
2248         sw_bp->oocd_bp = NULL;
2249         return ERROR_OK;
2250 }
2251
2252 int xtensa_breakpoint_add(struct target *target, struct breakpoint *breakpoint)
2253 {
2254         struct xtensa *xtensa = target_to_xtensa(target);
2255         unsigned int slot;
2256
2257         if (breakpoint->type == BKPT_SOFT) {
2258                 for (slot = 0; slot < XT_SW_BREAKPOINTS_MAX_NUM; slot++) {
2259                         if (!xtensa->sw_brps[slot].oocd_bp ||
2260                                 xtensa->sw_brps[slot].oocd_bp == breakpoint)
2261                                 break;
2262                 }
2263                 if (slot == XT_SW_BREAKPOINTS_MAX_NUM) {
2264                         LOG_TARGET_WARNING(target, "No free slots to add SW breakpoint!");
2265                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2266                 }
2267                 int ret = xtensa_sw_breakpoint_add(target, breakpoint, &xtensa->sw_brps[slot]);
2268                 if (ret != ERROR_OK) {
2269                         LOG_TARGET_ERROR(target, "Failed to add SW breakpoint!");
2270                         return ret;
2271                 }
2272                 LOG_TARGET_DEBUG(target, "placed SW breakpoint %u @ " TARGET_ADDR_FMT,
2273                         slot,
2274                         breakpoint->address);
2275                 return ERROR_OK;
2276         }
2277
2278         for (slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
2279                 if (!xtensa->hw_brps[slot] || xtensa->hw_brps[slot] == breakpoint)
2280                         break;
2281         }
2282         if (slot == xtensa->core_config->debug.ibreaks_num) {
2283                 LOG_TARGET_ERROR(target, "No free slots to add HW breakpoint!");
2284                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2285         }
2286
2287         xtensa->hw_brps[slot] = breakpoint;
2288         /* We will actually write the breakpoints when we resume the target. */
2289         LOG_TARGET_DEBUG(target, "placed HW breakpoint %u @ " TARGET_ADDR_FMT,
2290                 slot,
2291                 breakpoint->address);
2292
2293         return ERROR_OK;
2294 }
2295
2296 int xtensa_breakpoint_remove(struct target *target, struct breakpoint *breakpoint)
2297 {
2298         struct xtensa *xtensa = target_to_xtensa(target);
2299         unsigned int slot;
2300
2301         if (breakpoint->type == BKPT_SOFT) {
2302                 for (slot = 0; slot < XT_SW_BREAKPOINTS_MAX_NUM; slot++) {
2303                         if (xtensa->sw_brps[slot].oocd_bp && xtensa->sw_brps[slot].oocd_bp == breakpoint)
2304                                 break;
2305                 }
2306                 if (slot == XT_SW_BREAKPOINTS_MAX_NUM) {
2307                         LOG_TARGET_WARNING(target, "Max SW breakpoints slot reached, slot=%u!", slot);
2308                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2309                 }
2310                 int ret = xtensa_sw_breakpoint_remove(target, &xtensa->sw_brps[slot]);
2311                 if (ret != ERROR_OK) {
2312                         LOG_TARGET_ERROR(target, "Failed to remove SW breakpoint (%d)!", ret);
2313                         return ret;
2314                 }
2315                 LOG_TARGET_DEBUG(target, "cleared SW breakpoint %u @ " TARGET_ADDR_FMT, slot, breakpoint->address);
2316                 return ERROR_OK;
2317         }
2318
2319         for (slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
2320                 if (xtensa->hw_brps[slot] == breakpoint)
2321                         break;
2322         }
2323         if (slot == xtensa->core_config->debug.ibreaks_num) {
2324                 LOG_TARGET_ERROR(target, "HW breakpoint not found!");
2325                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2326         }
2327         xtensa->hw_brps[slot] = NULL;
2328         LOG_TARGET_DEBUG(target, "cleared HW breakpoint %u @ " TARGET_ADDR_FMT, slot, breakpoint->address);
2329         return ERROR_OK;
2330 }
2331
2332 int xtensa_watchpoint_add(struct target *target, struct watchpoint *watchpoint)
2333 {
2334         struct xtensa *xtensa = target_to_xtensa(target);
2335         unsigned int slot;
2336         xtensa_reg_val_t dbreakcval;
2337
2338         if (target->state != TARGET_HALTED) {
2339                 LOG_TARGET_WARNING(target, "target not halted");
2340                 return ERROR_TARGET_NOT_HALTED;
2341         }
2342
2343         if (watchpoint->mask != ~(uint32_t)0) {
2344                 LOG_TARGET_ERROR(target, "watchpoint value masks not supported");
2345                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2346         }
2347
2348         for (slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
2349                 if (!xtensa->hw_wps[slot] || xtensa->hw_wps[slot] == watchpoint)
2350                         break;
2351         }
2352         if (slot == xtensa->core_config->debug.dbreaks_num) {
2353                 LOG_TARGET_WARNING(target, "No free slots to add HW watchpoint!");
2354                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2355         }
2356
2357         /* Figure out value for dbreakc5..0
2358          * It's basically 0x3F with an incremental bit removed from the LSB for each extra length power of 2. */
2359         if (watchpoint->length < 1 || watchpoint->length > 64 ||
2360                 !IS_PWR_OF_2(watchpoint->length) ||
2361                 !IS_ALIGNED(watchpoint->address, watchpoint->length)) {
2362                 LOG_TARGET_WARNING(
2363                         target,
2364                         "Watchpoint with length %d on address " TARGET_ADDR_FMT
2365                         " not supported by hardware.",
2366                         watchpoint->length,
2367                         watchpoint->address);
2368                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2369         }
2370         dbreakcval = ALIGN_DOWN(0x3F, watchpoint->length);
2371
2372         if (watchpoint->rw == WPT_READ)
2373                 dbreakcval |= BIT(30);
2374         if (watchpoint->rw == WPT_WRITE)
2375                 dbreakcval |= BIT(31);
2376         if (watchpoint->rw == WPT_ACCESS)
2377                 dbreakcval |= BIT(30) | BIT(31);
2378
2379         /* Write DBREAKA[slot] and DBCREAKC[slot] */
2380         xtensa_reg_set(target, XT_REG_IDX_DBREAKA0 + slot, watchpoint->address);
2381         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, dbreakcval);
2382         xtensa->hw_wps[slot] = watchpoint;
2383         LOG_TARGET_DEBUG(target, "placed HW watchpoint @ " TARGET_ADDR_FMT,
2384                 watchpoint->address);
2385         return ERROR_OK;
2386 }
2387
2388 int xtensa_watchpoint_remove(struct target *target, struct watchpoint *watchpoint)
2389 {
2390         struct xtensa *xtensa = target_to_xtensa(target);
2391         unsigned int slot;
2392
2393         for (slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
2394                 if (xtensa->hw_wps[slot] == watchpoint)
2395                         break;
2396         }
2397         if (slot == xtensa->core_config->debug.dbreaks_num) {
2398                 LOG_TARGET_WARNING(target, "HW watchpoint " TARGET_ADDR_FMT " not found!", watchpoint->address);
2399                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2400         }
2401         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, 0);
2402         xtensa->hw_wps[slot] = NULL;
2403         LOG_TARGET_DEBUG(target, "cleared HW watchpoint @ " TARGET_ADDR_FMT,
2404                 watchpoint->address);
2405         return ERROR_OK;
2406 }
2407
2408 static int xtensa_build_reg_cache(struct target *target)
2409 {
2410         struct xtensa *xtensa = target_to_xtensa(target);
2411         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
2412         unsigned int last_dbreg_num = 0;
2413
2414         if (xtensa->core_regs_num + xtensa->num_optregs != xtensa->total_regs_num)
2415                 LOG_TARGET_WARNING(target, "Register count MISMATCH: %d core regs, %d extended regs; %d expected",
2416                         xtensa->core_regs_num, xtensa->num_optregs, xtensa->total_regs_num);
2417
2418         struct reg_cache *reg_cache = calloc(1, sizeof(struct reg_cache));
2419
2420         if (!reg_cache) {
2421                 LOG_ERROR("Failed to alloc reg cache!");
2422                 return ERROR_FAIL;
2423         }
2424         reg_cache->name = "Xtensa registers";
2425         reg_cache->next = NULL;
2426         /* Init reglist */
2427         unsigned int reg_list_size = XT_NUM_REGS + xtensa->num_optregs;
2428         struct reg *reg_list = calloc(reg_list_size, sizeof(struct reg));
2429         if (!reg_list) {
2430                 LOG_ERROR("Failed to alloc reg list!");
2431                 goto fail;
2432         }
2433         xtensa->dbregs_num = 0;
2434         unsigned int didx = 0;
2435         for (unsigned int whichlist = 0; whichlist < 2; whichlist++) {
2436                 struct xtensa_reg_desc *rlist = (whichlist == 0) ? xtensa_regs : xtensa->optregs;
2437                 unsigned int listsize = (whichlist == 0) ? XT_NUM_REGS : xtensa->num_optregs;
2438                 for (unsigned int i = 0; i < listsize; i++, didx++) {
2439                         reg_list[didx].exist = rlist[i].exist;
2440                         reg_list[didx].name = rlist[i].name;
2441                         reg_list[didx].size = 32;
2442                         reg_list[didx].value = calloc(1, 4 /*XT_REG_LEN*/);     /* make Clang Static Analyzer happy */
2443                         if (!reg_list[didx].value) {
2444                                 LOG_ERROR("Failed to alloc reg list value!");
2445                                 goto fail;
2446                         }
2447                         reg_list[didx].dirty = false;
2448                         reg_list[didx].valid = false;
2449                         reg_list[didx].type = &xtensa_reg_type;
2450                         reg_list[didx].arch_info = xtensa;
2451                         if (rlist[i].exist && (rlist[i].dbreg_num > last_dbreg_num))
2452                                 last_dbreg_num = rlist[i].dbreg_num;
2453
2454                         if (xtensa_extra_debug_log) {
2455                                 LOG_TARGET_DEBUG(target,
2456                                         "POPULATE %-16s list %d exist %d, idx %d, type %d, dbreg_num 0x%04x",
2457                                         reg_list[didx].name,
2458                                         whichlist,
2459                                         reg_list[didx].exist,
2460                                         didx,
2461                                         rlist[i].type,
2462                                         rlist[i].dbreg_num);
2463                         }
2464                 }
2465         }
2466
2467         xtensa->dbregs_num = last_dbreg_num + 1;
2468         reg_cache->reg_list = reg_list;
2469         reg_cache->num_regs = reg_list_size;
2470
2471         LOG_TARGET_DEBUG(target, "xtensa->total_regs_num %d reg_list_size %d xtensa->dbregs_num %d",
2472                 xtensa->total_regs_num, reg_list_size, xtensa->dbregs_num);
2473
2474         /* Construct empty-register list for handling unknown register requests */
2475         xtensa->empty_regs = calloc(xtensa->dbregs_num, sizeof(struct reg));
2476         if (!xtensa->empty_regs) {
2477                 LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2478                 goto fail;
2479         }
2480         for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2481                 xtensa->empty_regs[i].name = calloc(8, sizeof(char));
2482                 if (!xtensa->empty_regs[i].name) {
2483                         LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2484                         goto fail;
2485                 }
2486                 sprintf((char *)xtensa->empty_regs[i].name, "?0x%04x", i & 0x0000FFFF);
2487                 xtensa->empty_regs[i].size = 32;
2488                 xtensa->empty_regs[i].type = &xtensa_reg_type;
2489                 xtensa->empty_regs[i].value = calloc(1, 4 /*XT_REG_LEN*/);      /* make Clang Static Analyzer happy */
2490                 if (!xtensa->empty_regs[i].value) {
2491                         LOG_ERROR("Failed to alloc empty reg list value!");
2492                         goto fail;
2493                 }
2494                 xtensa->empty_regs[i].arch_info = xtensa;
2495         }
2496
2497         /* Construct contiguous register list from contiguous descriptor list */
2498         if (xtensa->regmap_contiguous && xtensa->contiguous_regs_desc) {
2499                 xtensa->contiguous_regs_list = calloc(xtensa->total_regs_num, sizeof(struct reg *));
2500                 if (!xtensa->contiguous_regs_list) {
2501                         LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2502                         goto fail;
2503                 }
2504                 for (unsigned int i = 0; i < xtensa->total_regs_num; i++) {
2505                         unsigned int j;
2506                         for (j = 0; j < reg_cache->num_regs; j++) {
2507                                 if (!strcmp(reg_cache->reg_list[j].name, xtensa->contiguous_regs_desc[i]->name)) {
2508                                         xtensa->contiguous_regs_list[i] = &(reg_cache->reg_list[j]);
2509                                         LOG_TARGET_DEBUG(target,
2510                                                 "POPULATE contiguous regs list: %-16s, dbreg_num 0x%04x",
2511                                                 xtensa->contiguous_regs_list[i]->name,
2512                                                 xtensa->contiguous_regs_desc[i]->dbreg_num);
2513                                         break;
2514                                 }
2515                         }
2516                         if (j == reg_cache->num_regs)
2517                                 LOG_TARGET_WARNING(target, "contiguous register %s not found",
2518                                         xtensa->contiguous_regs_desc[i]->name);
2519                 }
2520         }
2521
2522         xtensa->algo_context_backup = calloc(reg_cache->num_regs, sizeof(void *));
2523         if (!xtensa->algo_context_backup) {
2524                 LOG_ERROR("Failed to alloc mem for algorithm context backup!");
2525                 goto fail;
2526         }
2527         for (unsigned int i = 0; i < reg_cache->num_regs; i++) {
2528                 struct reg *reg = &reg_cache->reg_list[i];
2529                 xtensa->algo_context_backup[i] = calloc(1, reg->size / 8);
2530                 if (!xtensa->algo_context_backup[i]) {
2531                         LOG_ERROR("Failed to alloc mem for algorithm context!");
2532                         goto fail;
2533                 }
2534         }
2535         xtensa->core_cache = reg_cache;
2536         if (cache_p)
2537                 *cache_p = reg_cache;
2538         return ERROR_OK;
2539
2540 fail:
2541         if (reg_list) {
2542                 for (unsigned int i = 0; i < reg_list_size; i++)
2543                         free(reg_list[i].value);
2544                 free(reg_list);
2545         }
2546         if (xtensa->empty_regs) {
2547                 for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2548                         free((void *)xtensa->empty_regs[i].name);
2549                         free(xtensa->empty_regs[i].value);
2550                 }
2551                 free(xtensa->empty_regs);
2552         }
2553         if (xtensa->algo_context_backup) {
2554                 for (unsigned int i = 0; i < reg_cache->num_regs; i++)
2555                         free(xtensa->algo_context_backup[i]);
2556                 free(xtensa->algo_context_backup);
2557         }
2558         free(reg_cache);
2559
2560         return ERROR_FAIL;
2561 }
2562
2563 static int32_t xtensa_gdbqc_parse_exec_tie_ops(struct target *target, char *opstr)
2564 {
2565         struct xtensa *xtensa = target_to_xtensa(target);
2566         int32_t status = ERROR_COMMAND_ARGUMENT_INVALID;
2567         /* Process op[] list */
2568         while (opstr && (*opstr == ':')) {
2569                 uint8_t ops[32];
2570                 unsigned int oplen = strtoul(opstr + 1, &opstr, 16);
2571                 if (oplen > 32) {
2572                         LOG_TARGET_ERROR(target, "TIE access instruction too long (%d)\n", oplen);
2573                         break;
2574                 }
2575                 unsigned int i = 0;
2576                 while ((i < oplen) && opstr && (*opstr == ':'))
2577                         ops[i++] = strtoul(opstr + 1, &opstr, 16);
2578                 if (i != oplen) {
2579                         LOG_TARGET_ERROR(target, "TIE access instruction malformed (%d)\n", i);
2580                         break;
2581                 }
2582
2583                 char insn_buf[128];
2584                 sprintf(insn_buf, "Exec %d-byte TIE sequence: ", oplen);
2585                 for (i = 0; i < oplen; i++)
2586                         sprintf(insn_buf + strlen(insn_buf), "%02x:", ops[i]);
2587                 LOG_TARGET_DEBUG(target, "%s", insn_buf);
2588                 xtensa_queue_exec_ins_wide(xtensa, ops, oplen); /* Handles endian-swap */
2589                 status = ERROR_OK;
2590         }
2591         return status;
2592 }
2593
2594 static int xtensa_gdbqc_qxtreg(struct target *target, const char *packet, char **response_p)
2595 {
2596         struct xtensa *xtensa = target_to_xtensa(target);
2597         bool iswrite = (packet[0] == 'Q');
2598         enum xtensa_qerr_e error;
2599
2600         /* Read/write TIE register.  Requires spill location.
2601          * qxtreg<num>:<len>:<oplen>:<op[0]>:<...>[:<oplen>:<op[0]>:<...>]
2602          * Qxtreg<num>:<len>:<oplen>:<op[0]>:<...>[:<oplen>:<op[0]>:<...>]=<value>
2603          */
2604         if (!(xtensa->spill_buf)) {
2605                 LOG_ERROR("Spill location not specified. Try 'target remote <host>:3333 &spill_location0'");
2606                 error = XT_QERR_FAIL;
2607                 goto xtensa_gdbqc_qxtreg_fail;
2608         }
2609
2610         char *delim;
2611         uint32_t regnum = strtoul(packet + 6, &delim, 16);
2612         if (*delim != ':') {
2613                 LOG_ERROR("Malformed qxtreg packet");
2614                 error = XT_QERR_INVAL;
2615                 goto xtensa_gdbqc_qxtreg_fail;
2616         }
2617         uint32_t reglen = strtoul(delim + 1, &delim, 16);
2618         if (*delim != ':') {
2619                 LOG_ERROR("Malformed qxtreg packet");
2620                 error = XT_QERR_INVAL;
2621                 goto xtensa_gdbqc_qxtreg_fail;
2622         }
2623         uint8_t regbuf[XT_QUERYPKT_RESP_MAX];
2624         memset(regbuf, 0, XT_QUERYPKT_RESP_MAX);
2625         LOG_DEBUG("TIE reg 0x%08" PRIx32 " %s (%d bytes)", regnum, iswrite ? "write" : "read", reglen);
2626         if (reglen * 2 + 1 > XT_QUERYPKT_RESP_MAX) {
2627                 LOG_ERROR("TIE register too large");
2628                 error = XT_QERR_MEM;
2629                 goto xtensa_gdbqc_qxtreg_fail;
2630         }
2631
2632         /* (1) Save spill memory, (1.5) [if write then store value to spill location],
2633          * (2) read old a4, (3) write spill address to a4.
2634          * NOTE: ensure a4 is restored properly by all error handling logic
2635          */
2636         unsigned int memop_size = (xtensa->spill_loc & 3) ? 1 : 4;
2637         int status = xtensa_read_memory(target, xtensa->spill_loc, memop_size,
2638                 xtensa->spill_bytes / memop_size, xtensa->spill_buf);
2639         if (status != ERROR_OK) {
2640                 LOG_ERROR("Spill memory save");
2641                 error = XT_QERR_MEM;
2642                 goto xtensa_gdbqc_qxtreg_fail;
2643         }
2644         if (iswrite) {
2645                 /* Extract value and store in spill memory */
2646                 unsigned int b = 0;
2647                 char *valbuf = strchr(delim, '=');
2648                 if (!(valbuf && (*valbuf == '='))) {
2649                         LOG_ERROR("Malformed Qxtreg packet");
2650                         error = XT_QERR_INVAL;
2651                         goto xtensa_gdbqc_qxtreg_fail;
2652                 }
2653                 valbuf++;
2654                 while (*valbuf && *(valbuf + 1)) {
2655                         char bytestr[3] = { 0, 0, 0 };
2656                         strncpy(bytestr, valbuf, 2);
2657                         regbuf[b++] = strtoul(bytestr, NULL, 16);
2658                         valbuf += 2;
2659                 }
2660                 if (b != reglen) {
2661                         LOG_ERROR("Malformed Qxtreg packet");
2662                         error = XT_QERR_INVAL;
2663                         goto xtensa_gdbqc_qxtreg_fail;
2664                 }
2665                 status = xtensa_write_memory(target, xtensa->spill_loc, memop_size,
2666                         reglen / memop_size, regbuf);
2667                 if (status != ERROR_OK) {
2668                         LOG_ERROR("TIE value store");
2669                         error = XT_QERR_MEM;
2670                         goto xtensa_gdbqc_qxtreg_fail;
2671                 }
2672         }
2673         xtensa_reg_val_t orig_a4 = xtensa_reg_get(target, XT_REG_IDX_A4);
2674         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, xtensa->spill_loc);
2675         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
2676
2677         int32_t tieop_status = xtensa_gdbqc_parse_exec_tie_ops(target, delim);
2678
2679         /* Restore a4 but not yet spill memory.  Execute it all... */
2680         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, orig_a4);
2681         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
2682         status = xtensa_dm_queue_execute(&xtensa->dbg_mod);
2683         if (status != ERROR_OK) {
2684                 LOG_TARGET_ERROR(target, "TIE queue execute: %d\n", status);
2685                 tieop_status = status;
2686         }
2687         status = xtensa_core_status_check(target);
2688         if (status != ERROR_OK) {
2689                 LOG_TARGET_ERROR(target, "TIE instr execute: %d\n", status);
2690                 tieop_status = status;
2691         }
2692
2693         if (tieop_status == ERROR_OK) {
2694                 if (iswrite) {
2695                         /* TIE write succeeded; send OK */
2696                         strcpy(*response_p, "OK");
2697                 } else {
2698                         /* TIE read succeeded; copy result from spill memory */
2699                         status = xtensa_read_memory(target, xtensa->spill_loc, memop_size, reglen, regbuf);
2700                         if (status != ERROR_OK) {
2701                                 LOG_TARGET_ERROR(target, "TIE result read");
2702                                 tieop_status = status;
2703                         }
2704                         unsigned int i;
2705                         for (i = 0; i < reglen; i++)
2706                                 sprintf(*response_p + 2 * i, "%02x", regbuf[i]);
2707                         *(*response_p + 2 * i) = '\0';
2708                         LOG_TARGET_DEBUG(target, "TIE response: %s", *response_p);
2709                 }
2710         }
2711
2712         /* Restore spill memory first, then report any previous errors */
2713         status = xtensa_write_memory(target, xtensa->spill_loc, memop_size,
2714                 xtensa->spill_bytes / memop_size, xtensa->spill_buf);
2715         if (status != ERROR_OK) {
2716                 LOG_ERROR("Spill memory restore");
2717                 error = XT_QERR_MEM;
2718                 goto xtensa_gdbqc_qxtreg_fail;
2719         }
2720         if (tieop_status != ERROR_OK) {
2721                 LOG_ERROR("TIE execution");
2722                 error = XT_QERR_FAIL;
2723                 goto xtensa_gdbqc_qxtreg_fail;
2724         }
2725         return ERROR_OK;
2726
2727 xtensa_gdbqc_qxtreg_fail:
2728         strcpy(*response_p, xt_qerr[error].chrval);
2729         return xt_qerr[error].intval;
2730 }
2731
2732 int xtensa_gdb_query_custom(struct target *target, const char *packet, char **response_p)
2733 {
2734         struct xtensa *xtensa = target_to_xtensa(target);
2735         enum xtensa_qerr_e error;
2736         if (!packet || !response_p) {
2737                 LOG_TARGET_ERROR(target, "invalid parameter: packet %p response_p %p", packet, response_p);
2738                 return ERROR_FAIL;
2739         }
2740
2741         *response_p = xtensa->qpkt_resp;
2742         if (strncmp(packet, "qxtn", 4) == 0) {
2743                 strcpy(*response_p, "OpenOCD");
2744                 return ERROR_OK;
2745         } else if (strncasecmp(packet, "qxtgdbversion=", 14) == 0) {
2746                 return ERROR_OK;
2747         } else if ((strncmp(packet, "Qxtsis=", 7) == 0) || (strncmp(packet, "Qxtsds=", 7) == 0)) {
2748                 /* Confirm host cache params match core .cfg file */
2749                 struct xtensa_cache_config *cachep = (packet[4] == 'i') ?
2750                         &xtensa->core_config->icache : &xtensa->core_config->dcache;
2751                 unsigned int line_size = 0, size = 0, way_count = 0;
2752                 sscanf(&packet[7], "%x,%x,%x", &line_size, &size, &way_count);
2753                 if ((cachep->line_size != line_size) ||
2754                         (cachep->size != size) ||
2755                         (cachep->way_count != way_count)) {
2756                         LOG_TARGET_WARNING(target, "%cCache mismatch; check xtensa-core-XXX.cfg file",
2757                                 cachep == &xtensa->core_config->icache ? 'I' : 'D');
2758                 }
2759                 strcpy(*response_p, "OK");
2760                 return ERROR_OK;
2761         } else if ((strncmp(packet, "Qxtiram=", 8) == 0) || (strncmp(packet, "Qxtirom=", 8) == 0)) {
2762                 /* Confirm host IRAM/IROM params match core .cfg file */
2763                 struct xtensa_local_mem_config *memp = (packet[5] == 'a') ?
2764                         &xtensa->core_config->iram : &xtensa->core_config->irom;
2765                 unsigned int base = 0, size = 0, i;
2766                 char *pkt = (char *)&packet[7];
2767                 do {
2768                         pkt++;
2769                         size = strtoul(pkt, &pkt, 16);
2770                         pkt++;
2771                         base = strtoul(pkt, &pkt, 16);
2772                         LOG_TARGET_DEBUG(target, "memcheck: %dB @ 0x%08x", size, base);
2773                         for (i = 0; i < memp->count; i++) {
2774                                 if ((memp->regions[i].base == base) && (memp->regions[i].size == size))
2775                                         break;
2776                         }
2777                         if (i == memp->count) {
2778                                 LOG_TARGET_WARNING(target, "%s mismatch; check xtensa-core-XXX.cfg file",
2779                                         memp == &xtensa->core_config->iram ? "IRAM" : "IROM");
2780                                 break;
2781                         }
2782                         for (i = 0; i < 11; i++) {
2783                                 pkt++;
2784                                 strtoul(pkt, &pkt, 16);
2785                         }
2786                 } while (pkt && (pkt[0] == ','));
2787                 strcpy(*response_p, "OK");
2788                 return ERROR_OK;
2789         } else if (strncmp(packet, "Qxtexcmlvl=", 11) == 0) {
2790                 /* Confirm host EXCM_LEVEL matches core .cfg file */
2791                 unsigned int excm_level = strtoul(&packet[11], NULL, 0);
2792                 if (!xtensa->core_config->high_irq.enabled ||
2793                         (excm_level != xtensa->core_config->high_irq.excm_level))
2794                         LOG_TARGET_WARNING(target, "EXCM_LEVEL mismatch; check xtensa-core-XXX.cfg file");
2795                 strcpy(*response_p, "OK");
2796                 return ERROR_OK;
2797         } else if ((strncmp(packet, "Qxtl2cs=", 8) == 0) ||
2798                 (strncmp(packet, "Qxtl2ca=", 8) == 0) ||
2799                 (strncmp(packet, "Qxtdensity=", 11) == 0)) {
2800                 strcpy(*response_p, "OK");
2801                 return ERROR_OK;
2802         } else if (strncmp(packet, "Qxtspill=", 9) == 0) {
2803                 char *delim;
2804                 uint32_t spill_loc = strtoul(packet + 9, &delim, 16);
2805                 if (*delim != ':') {
2806                         LOG_ERROR("Malformed Qxtspill packet");
2807                         error = XT_QERR_INVAL;
2808                         goto xtensa_gdb_query_custom_fail;
2809                 }
2810                 xtensa->spill_loc = spill_loc;
2811                 xtensa->spill_bytes = strtoul(delim + 1, NULL, 16);
2812                 if (xtensa->spill_buf)
2813                         free(xtensa->spill_buf);
2814                 xtensa->spill_buf = calloc(1, xtensa->spill_bytes);
2815                 if (!xtensa->spill_buf) {
2816                         LOG_ERROR("Spill buf alloc");
2817                         error = XT_QERR_MEM;
2818                         goto xtensa_gdb_query_custom_fail;
2819                 }
2820                 LOG_TARGET_DEBUG(target, "Set spill 0x%08" PRIx32 " (%d)", xtensa->spill_loc, xtensa->spill_bytes);
2821                 strcpy(*response_p, "OK");
2822                 return ERROR_OK;
2823         } else if (strncasecmp(packet, "qxtreg", 6) == 0) {
2824                 return xtensa_gdbqc_qxtreg(target, packet, response_p);
2825         } else if ((strncmp(packet, "qTStatus", 8) == 0) ||
2826                 (strncmp(packet, "qxtftie", 7) == 0) ||
2827                 (strncmp(packet, "qxtstie", 7) == 0)) {
2828                 /* Return empty string to indicate trace, TIE wire debug are unsupported */
2829                 strcpy(*response_p, "");
2830                 return ERROR_OK;
2831         }
2832
2833         /* Warn for all other queries, but do not return errors */
2834         LOG_TARGET_WARNING(target, "Unknown target-specific query packet: %s", packet);
2835         strcpy(*response_p, "");
2836         return ERROR_OK;
2837
2838 xtensa_gdb_query_custom_fail:
2839         strcpy(*response_p, xt_qerr[error].chrval);
2840         return xt_qerr[error].intval;
2841 }
2842
2843 int xtensa_init_arch_info(struct target *target, struct xtensa *xtensa,
2844         const struct xtensa_debug_module_config *dm_cfg)
2845 {
2846         target->arch_info = xtensa;
2847         xtensa->common_magic = XTENSA_COMMON_MAGIC;
2848         xtensa->target = target;
2849         xtensa->stepping_isr_mode = XT_STEPPING_ISR_ON;
2850
2851         xtensa->core_config = calloc(1, sizeof(struct xtensa_config));
2852         if (!xtensa->core_config) {
2853                 LOG_ERROR("Xtensa configuration alloc failed\n");
2854                 return ERROR_FAIL;
2855         }
2856
2857         /* Default cache settings are disabled with 1 way */
2858         xtensa->core_config->icache.way_count = 1;
2859         xtensa->core_config->dcache.way_count = 1;
2860
2861         /* chrval: AR3/AR4 register names will change with window mapping.
2862          * intval: tracks whether scratch register was set through gdb P packet.
2863          */
2864         for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++) {
2865                 xtensa->scratch_ars[s].chrval = calloc(8, sizeof(char));
2866                 if (!xtensa->scratch_ars[s].chrval) {
2867                         for (enum xtensa_ar_scratch_set_e f = 0; f < s; f++)
2868                                 free(xtensa->scratch_ars[f].chrval);
2869                         free(xtensa->core_config);
2870                         LOG_ERROR("Xtensa scratch AR alloc failed\n");
2871                         return ERROR_FAIL;
2872                 }
2873                 xtensa->scratch_ars[s].intval = false;
2874                 sprintf(xtensa->scratch_ars[s].chrval, "%s%d",
2875                         ((s == XT_AR_SCRATCH_A3) || (s == XT_AR_SCRATCH_A4)) ? "a" : "ar",
2876                         ((s == XT_AR_SCRATCH_A3) || (s == XT_AR_SCRATCH_AR3)) ? 3 : 4);
2877         }
2878
2879         return xtensa_dm_init(&xtensa->dbg_mod, dm_cfg);
2880 }
2881
2882 void xtensa_set_permissive_mode(struct target *target, bool state)
2883 {
2884         target_to_xtensa(target)->permissive_mode = state;
2885 }
2886
2887 int xtensa_target_init(struct command_context *cmd_ctx, struct target *target)
2888 {
2889         struct xtensa *xtensa = target_to_xtensa(target);
2890
2891         xtensa->come_online_probes_num = 3;
2892         xtensa->hw_brps = calloc(XT_HW_IBREAK_MAX_NUM, sizeof(struct breakpoint *));
2893         if (!xtensa->hw_brps) {
2894                 LOG_ERROR("Failed to alloc memory for HW breakpoints!");
2895                 return ERROR_FAIL;
2896         }
2897         xtensa->hw_wps = calloc(XT_HW_DBREAK_MAX_NUM, sizeof(struct watchpoint *));
2898         if (!xtensa->hw_wps) {
2899                 free(xtensa->hw_brps);
2900                 LOG_ERROR("Failed to alloc memory for HW watchpoints!");
2901                 return ERROR_FAIL;
2902         }
2903         xtensa->sw_brps = calloc(XT_SW_BREAKPOINTS_MAX_NUM, sizeof(struct xtensa_sw_breakpoint));
2904         if (!xtensa->sw_brps) {
2905                 free(xtensa->hw_brps);
2906                 free(xtensa->hw_wps);
2907                 LOG_ERROR("Failed to alloc memory for SW breakpoints!");
2908                 return ERROR_FAIL;
2909         }
2910
2911         xtensa->spill_loc = 0xffffffff;
2912         xtensa->spill_bytes = 0;
2913         xtensa->spill_buf = NULL;
2914         xtensa->probe_lsddr32p = -1;    /* Probe for fast load/store operations */
2915
2916         return xtensa_build_reg_cache(target);
2917 }
2918
2919 static void xtensa_free_reg_cache(struct target *target)
2920 {
2921         struct xtensa *xtensa = target_to_xtensa(target);
2922         struct reg_cache *cache = xtensa->core_cache;
2923
2924         if (cache) {
2925                 register_unlink_cache(&target->reg_cache, cache);
2926                 for (unsigned int i = 0; i < cache->num_regs; i++) {
2927                         free(xtensa->algo_context_backup[i]);
2928                         free(cache->reg_list[i].value);
2929                 }
2930                 free(xtensa->algo_context_backup);
2931                 free(cache->reg_list);
2932                 free(cache);
2933         }
2934         xtensa->core_cache = NULL;
2935         xtensa->algo_context_backup = NULL;
2936
2937         if (xtensa->empty_regs) {
2938                 for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2939                         free((void *)xtensa->empty_regs[i].name);
2940                         free(xtensa->empty_regs[i].value);
2941                 }
2942                 free(xtensa->empty_regs);
2943         }
2944         xtensa->empty_regs = NULL;
2945         if (xtensa->optregs) {
2946                 for (unsigned int i = 0; i < xtensa->num_optregs; i++)
2947                         free((void *)xtensa->optregs[i].name);
2948                 free(xtensa->optregs);
2949         }
2950         xtensa->optregs = NULL;
2951 }
2952
2953 void xtensa_target_deinit(struct target *target)
2954 {
2955         struct xtensa *xtensa = target_to_xtensa(target);
2956
2957         LOG_DEBUG("start");
2958
2959         if (target_was_examined(target)) {
2960                 int ret = xtensa_queue_dbg_reg_write(xtensa, XDMREG_DCRCLR, OCDDCR_ENABLEOCD);
2961                 if (ret != ERROR_OK) {
2962                         LOG_ERROR("Failed to queue OCDDCR_ENABLEOCD clear operation!");
2963                         return;
2964                 }
2965                 xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
2966                 ret = xtensa_dm_queue_execute(&xtensa->dbg_mod);
2967                 if (ret != ERROR_OK) {
2968                         LOG_ERROR("Failed to clear OCDDCR_ENABLEOCD!");
2969                         return;
2970                 }
2971                 xtensa_dm_deinit(&xtensa->dbg_mod);
2972         }
2973         xtensa_free_reg_cache(target);
2974         free(xtensa->hw_brps);
2975         free(xtensa->hw_wps);
2976         free(xtensa->sw_brps);
2977         if (xtensa->spill_buf) {
2978                 free(xtensa->spill_buf);
2979                 xtensa->spill_buf = NULL;
2980         }
2981         for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
2982                 free(xtensa->scratch_ars[s].chrval);
2983         free(xtensa->core_config);
2984 }
2985
2986 const char *xtensa_get_gdb_arch(struct target *target)
2987 {
2988         return "xtensa";
2989 }
2990
2991 /* exe <ascii-encoded hexadecimal instruction bytes> */
2992 static COMMAND_HELPER(xtensa_cmd_exe_do, struct target *target)
2993 {
2994         struct xtensa *xtensa = target_to_xtensa(target);
2995
2996         if (CMD_ARGC != 1)
2997                 return ERROR_COMMAND_SYNTAX_ERROR;
2998
2999         /* Process ascii-encoded hex byte string */
3000         const char *parm = CMD_ARGV[0];
3001         unsigned int parm_len = strlen(parm);
3002         if ((parm_len >= 64) || (parm_len & 1)) {
3003                 LOG_ERROR("Invalid parameter length (%d): must be even, < 64 characters", parm_len);
3004                 return ERROR_FAIL;
3005         }
3006
3007         uint8_t ops[32];
3008         memset(ops, 0, 32);
3009         unsigned int oplen = parm_len / 2;
3010         char encoded_byte[3] = { 0, 0, 0 };
3011         for (unsigned int i = 0; i < oplen; i++) {
3012                 encoded_byte[0] = *parm++;
3013                 encoded_byte[1] = *parm++;
3014                 ops[i] = strtoul(encoded_byte, NULL, 16);
3015         }
3016
3017         /* GDB must handle state save/restore.
3018          * Flush reg cache in case spill location is in an AR
3019          * Update CPENABLE only for this execution; later restore cached copy
3020          * Keep a copy of exccause in case executed code triggers an exception
3021          */
3022         int status = xtensa_write_dirty_registers(target);
3023         if (status != ERROR_OK) {
3024                 LOG_ERROR("%s: Failed to write back register cache.", target_name(target));
3025                 return ERROR_FAIL;
3026         }
3027         xtensa_reg_val_t exccause = xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE);
3028         xtensa_reg_val_t cpenable = xtensa_reg_get(target, XT_REG_IDX_CPENABLE);
3029         xtensa_reg_val_t a3 = xtensa_reg_get(target, XT_REG_IDX_A3);
3030         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, 0xffffffff);
3031         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
3032         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa,
3033                         xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
3034         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, a3);
3035         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
3036
3037         /* Queue instruction list and execute everything */
3038         LOG_TARGET_DEBUG(target, "execute stub: %s", CMD_ARGV[0]);
3039         xtensa_queue_exec_ins_wide(xtensa, ops, oplen); /* Handles endian-swap */
3040         status = xtensa_dm_queue_execute(&xtensa->dbg_mod);
3041         if (status != ERROR_OK)
3042                 LOG_TARGET_ERROR(target, "TIE queue execute: %d\n", status);
3043         status = xtensa_core_status_check(target);
3044         if (status != ERROR_OK)
3045                 LOG_TARGET_ERROR(target, "TIE instr execute: %d\n", status);
3046
3047         /* Reread register cache and restore saved regs after instruction execution */
3048         if (xtensa_fetch_all_regs(target) != ERROR_OK)
3049                 LOG_TARGET_ERROR(target, "%s: Failed to fetch register cache (post-exec).", target_name(target));
3050         xtensa_reg_set(target, XT_REG_IDX_EXCCAUSE, exccause);
3051         xtensa_reg_set(target, XT_REG_IDX_CPENABLE, cpenable);
3052         return status;
3053 }
3054
3055 COMMAND_HANDLER(xtensa_cmd_exe)
3056 {
3057         return CALL_COMMAND_HANDLER(xtensa_cmd_exe_do, get_current_target(CMD_CTX));
3058 }
3059
3060 /* xtdef <name> */
3061 COMMAND_HELPER(xtensa_cmd_xtdef_do, struct xtensa *xtensa)
3062 {
3063         if (CMD_ARGC != 1)
3064                 return ERROR_COMMAND_SYNTAX_ERROR;
3065
3066         const char *core_name = CMD_ARGV[0];
3067         if (strcasecmp(core_name, "LX") == 0) {
3068                 xtensa->core_config->core_type = XT_LX;
3069         } else {
3070                 LOG_ERROR("xtdef [LX]\n");
3071                 return ERROR_COMMAND_SYNTAX_ERROR;
3072         }
3073         return ERROR_OK;
3074 }
3075
3076 COMMAND_HANDLER(xtensa_cmd_xtdef)
3077 {
3078         return CALL_COMMAND_HANDLER(xtensa_cmd_xtdef_do,
3079                 target_to_xtensa(get_current_target(CMD_CTX)));
3080 }
3081
3082 static inline bool xtensa_cmd_xtopt_legal_val(char *opt, int val, int min, int max)
3083 {
3084         if ((val < min) || (val > max)) {
3085                 LOG_ERROR("xtopt %s (%d) out of range [%d..%d]\n", opt, val, min, max);
3086                 return false;
3087         }
3088         return true;
3089 }
3090
3091 /* xtopt <name> <value> */
3092 COMMAND_HELPER(xtensa_cmd_xtopt_do, struct xtensa *xtensa)
3093 {
3094         if (CMD_ARGC != 2)
3095                 return ERROR_COMMAND_SYNTAX_ERROR;
3096
3097         const char *opt_name = CMD_ARGV[0];
3098         int opt_val = strtol(CMD_ARGV[1], NULL, 0);
3099         if (strcasecmp(opt_name, "arnum") == 0) {
3100                 if (!xtensa_cmd_xtopt_legal_val("arnum", opt_val, 0, 64))
3101                         return ERROR_COMMAND_ARGUMENT_INVALID;
3102                 xtensa->core_config->aregs_num = opt_val;
3103         } else if (strcasecmp(opt_name, "windowed") == 0) {
3104                 if (!xtensa_cmd_xtopt_legal_val("windowed", opt_val, 0, 1))
3105                         return ERROR_COMMAND_ARGUMENT_INVALID;
3106                 xtensa->core_config->windowed = opt_val;
3107         } else if (strcasecmp(opt_name, "cpenable") == 0) {
3108                 if (!xtensa_cmd_xtopt_legal_val("cpenable", opt_val, 0, 1))
3109                         return ERROR_COMMAND_ARGUMENT_INVALID;
3110                 xtensa->core_config->coproc = opt_val;
3111         } else if (strcasecmp(opt_name, "exceptions") == 0) {
3112                 if (!xtensa_cmd_xtopt_legal_val("exceptions", opt_val, 0, 1))
3113                         return ERROR_COMMAND_ARGUMENT_INVALID;
3114                 xtensa->core_config->exceptions = opt_val;
3115         } else if (strcasecmp(opt_name, "intnum") == 0) {
3116                 if (!xtensa_cmd_xtopt_legal_val("intnum", opt_val, 0, 32))
3117                         return ERROR_COMMAND_ARGUMENT_INVALID;
3118                 xtensa->core_config->irq.enabled = (opt_val > 0);
3119                 xtensa->core_config->irq.irq_num = opt_val;
3120         } else if (strcasecmp(opt_name, "hipriints") == 0) {
3121                 if (!xtensa_cmd_xtopt_legal_val("hipriints", opt_val, 0, 1))
3122                         return ERROR_COMMAND_ARGUMENT_INVALID;
3123                 xtensa->core_config->high_irq.enabled = opt_val;
3124         } else if (strcasecmp(opt_name, "excmlevel") == 0) {
3125                 if (!xtensa_cmd_xtopt_legal_val("excmlevel", opt_val, 1, 6))
3126                         return ERROR_COMMAND_ARGUMENT_INVALID;
3127                 if (!xtensa->core_config->high_irq.enabled) {
3128                         LOG_ERROR("xtopt excmlevel requires hipriints\n");
3129                         return ERROR_COMMAND_ARGUMENT_INVALID;
3130                 }
3131                 xtensa->core_config->high_irq.excm_level = opt_val;
3132         } else if (strcasecmp(opt_name, "intlevels") == 0) {
3133                 if (xtensa->core_config->core_type == XT_LX) {
3134                         if (!xtensa_cmd_xtopt_legal_val("intlevels", opt_val, 2, 6))
3135                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3136                 } else {
3137                         if (!xtensa_cmd_xtopt_legal_val("intlevels", opt_val, 1, 255))
3138                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3139                 }
3140                 if (!xtensa->core_config->high_irq.enabled) {
3141                         LOG_ERROR("xtopt intlevels requires hipriints\n");
3142                         return ERROR_COMMAND_ARGUMENT_INVALID;
3143                 }
3144                 xtensa->core_config->high_irq.level_num = opt_val;
3145         } else if (strcasecmp(opt_name, "debuglevel") == 0) {
3146                 if (xtensa->core_config->core_type == XT_LX) {
3147                         if (!xtensa_cmd_xtopt_legal_val("debuglevel", opt_val, 2, 6))
3148                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3149                 } else {
3150                         if (!xtensa_cmd_xtopt_legal_val("debuglevel", opt_val, 0, 0))
3151                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3152                 }
3153                 xtensa->core_config->debug.enabled = 1;
3154                 xtensa->core_config->debug.irq_level = opt_val;
3155         } else if (strcasecmp(opt_name, "ibreaknum") == 0) {
3156                 if (!xtensa_cmd_xtopt_legal_val("ibreaknum", opt_val, 0, 2))
3157                         return ERROR_COMMAND_ARGUMENT_INVALID;
3158                 xtensa->core_config->debug.ibreaks_num = opt_val;
3159         } else if (strcasecmp(opt_name, "dbreaknum") == 0) {
3160                 if (!xtensa_cmd_xtopt_legal_val("dbreaknum", opt_val, 0, 2))
3161                         return ERROR_COMMAND_ARGUMENT_INVALID;
3162                 xtensa->core_config->debug.dbreaks_num = opt_val;
3163         } else if (strcasecmp(opt_name, "tracemem") == 0) {
3164                 if (!xtensa_cmd_xtopt_legal_val("tracemem", opt_val, 0, 256 * 1024))
3165                         return ERROR_COMMAND_ARGUMENT_INVALID;
3166                 xtensa->core_config->trace.mem_sz = opt_val;
3167                 xtensa->core_config->trace.enabled = (opt_val > 0);
3168         } else if (strcasecmp(opt_name, "tracememrev") == 0) {
3169                 if (!xtensa_cmd_xtopt_legal_val("tracememrev", opt_val, 0, 1))
3170                         return ERROR_COMMAND_ARGUMENT_INVALID;
3171                 xtensa->core_config->trace.reversed_mem_access = opt_val;
3172         } else if (strcasecmp(opt_name, "perfcount") == 0) {
3173                 if (!xtensa_cmd_xtopt_legal_val("perfcount", opt_val, 0, 8))
3174                         return ERROR_COMMAND_ARGUMENT_INVALID;
3175                 xtensa->core_config->debug.perfcount_num = opt_val;
3176         } else {
3177                 LOG_WARNING("Unknown xtensa command ignored: \"xtopt %s %s\"", CMD_ARGV[0], CMD_ARGV[1]);
3178                 return ERROR_OK;
3179         }
3180
3181         return ERROR_OK;
3182 }
3183
3184 COMMAND_HANDLER(xtensa_cmd_xtopt)
3185 {
3186         return CALL_COMMAND_HANDLER(xtensa_cmd_xtopt_do,
3187                 target_to_xtensa(get_current_target(CMD_CTX)));
3188 }
3189
3190 /* xtmem <type> [parameters] */
3191 COMMAND_HELPER(xtensa_cmd_xtmem_do, struct xtensa *xtensa)
3192 {
3193         struct xtensa_cache_config *cachep = NULL;
3194         struct xtensa_local_mem_config *memp = NULL;
3195         int mem_access = 0;
3196         bool is_dcache = false;
3197
3198         if (CMD_ARGC == 0) {
3199                 LOG_ERROR("xtmem <type> [parameters]\n");
3200                 return ERROR_COMMAND_SYNTAX_ERROR;
3201         }
3202
3203         const char *mem_name = CMD_ARGV[0];
3204         if (strcasecmp(mem_name, "icache") == 0) {
3205                 cachep = &xtensa->core_config->icache;
3206         } else if (strcasecmp(mem_name, "dcache") == 0) {
3207                 cachep = &xtensa->core_config->dcache;
3208                 is_dcache = true;
3209         } else if (strcasecmp(mem_name, "l2cache") == 0) {
3210                 /* TODO: support L2 cache */
3211         } else if (strcasecmp(mem_name, "l2addr") == 0) {
3212                 /* TODO: support L2 cache */
3213         } else if (strcasecmp(mem_name, "iram") == 0) {
3214                 memp = &xtensa->core_config->iram;
3215                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3216         } else if (strcasecmp(mem_name, "dram") == 0) {
3217                 memp = &xtensa->core_config->dram;
3218                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3219         } else if (strcasecmp(mem_name, "sram") == 0) {
3220                 memp = &xtensa->core_config->sram;
3221                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3222         } else if (strcasecmp(mem_name, "irom") == 0) {
3223                 memp = &xtensa->core_config->irom;
3224                 mem_access = XT_MEM_ACCESS_READ;
3225         } else if (strcasecmp(mem_name, "drom") == 0) {
3226                 memp = &xtensa->core_config->drom;
3227                 mem_access = XT_MEM_ACCESS_READ;
3228         } else if (strcasecmp(mem_name, "srom") == 0) {
3229                 memp = &xtensa->core_config->srom;
3230                 mem_access = XT_MEM_ACCESS_READ;
3231         } else {
3232                 LOG_ERROR("xtmem types: <icache|dcache|l2cache|l2addr|iram|irom|dram|drom|sram|srom>\n");
3233                 return ERROR_COMMAND_ARGUMENT_INVALID;
3234         }
3235
3236         if (cachep) {
3237                 if ((CMD_ARGC != 4) && (CMD_ARGC != 5)) {
3238                         LOG_ERROR("xtmem <cachetype> <linebytes> <cachebytes> <ways> [writeback]\n");
3239                         return ERROR_COMMAND_SYNTAX_ERROR;
3240                 }
3241                 cachep->line_size = strtoul(CMD_ARGV[1], NULL, 0);
3242                 cachep->size = strtoul(CMD_ARGV[2], NULL, 0);
3243                 cachep->way_count = strtoul(CMD_ARGV[3], NULL, 0);
3244                 cachep->writeback = ((CMD_ARGC == 5) && is_dcache) ?
3245                         strtoul(CMD_ARGV[4], NULL, 0) : 0;
3246         } else if (memp) {
3247                 if (CMD_ARGC != 3) {
3248                         LOG_ERROR("xtmem <memtype> <baseaddr> <bytes>\n");
3249                         return ERROR_COMMAND_SYNTAX_ERROR;
3250                 }
3251                 struct xtensa_local_mem_region_config *memcfgp = &memp->regions[memp->count];
3252                 memcfgp->base = strtoul(CMD_ARGV[1], NULL, 0);
3253                 memcfgp->size = strtoul(CMD_ARGV[2], NULL, 0);
3254                 memcfgp->access = mem_access;
3255                 memp->count++;
3256         }
3257
3258         return ERROR_OK;
3259 }
3260
3261 COMMAND_HANDLER(xtensa_cmd_xtmem)
3262 {
3263         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmem_do,
3264                 target_to_xtensa(get_current_target(CMD_CTX)));
3265 }
3266
3267 /* xtmpu <num FG seg> <min seg size> <lockable> <executeonly> */
3268 COMMAND_HELPER(xtensa_cmd_xtmpu_do, struct xtensa *xtensa)
3269 {
3270         if (CMD_ARGC != 4) {
3271                 LOG_ERROR("xtmpu <num FG seg> <min seg size> <lockable> <executeonly>\n");
3272                 return ERROR_COMMAND_SYNTAX_ERROR;
3273         }
3274
3275         unsigned int nfgseg = strtoul(CMD_ARGV[0], NULL, 0);
3276         unsigned int minsegsize = strtoul(CMD_ARGV[1], NULL, 0);
3277         unsigned int lockable = strtoul(CMD_ARGV[2], NULL, 0);
3278         unsigned int execonly = strtoul(CMD_ARGV[3], NULL, 0);
3279
3280         if ((nfgseg > 32)) {
3281                 LOG_ERROR("<nfgseg> must be within [0..32]\n");
3282                 return ERROR_COMMAND_ARGUMENT_INVALID;
3283         } else if (minsegsize & (minsegsize - 1)) {
3284                 LOG_ERROR("<minsegsize> must be a power of 2 >= 32\n");
3285                 return ERROR_COMMAND_ARGUMENT_INVALID;
3286         } else if (lockable > 1) {
3287                 LOG_ERROR("<lockable> must be 0 or 1\n");
3288                 return ERROR_COMMAND_ARGUMENT_INVALID;
3289         } else if (execonly > 1) {
3290                 LOG_ERROR("<execonly> must be 0 or 1\n");
3291                 return ERROR_COMMAND_ARGUMENT_INVALID;
3292         }
3293
3294         xtensa->core_config->mpu.enabled = true;
3295         xtensa->core_config->mpu.nfgseg = nfgseg;
3296         xtensa->core_config->mpu.minsegsize = minsegsize;
3297         xtensa->core_config->mpu.lockable = lockable;
3298         xtensa->core_config->mpu.execonly = execonly;
3299         return ERROR_OK;
3300 }
3301
3302 COMMAND_HANDLER(xtensa_cmd_xtmpu)
3303 {
3304         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmpu_do,
3305                 target_to_xtensa(get_current_target(CMD_CTX)));
3306 }
3307
3308 /* xtmmu <NIREFILLENTRIES> <NDREFILLENTRIES> <IVARWAY56> <DVARWAY56> */
3309 COMMAND_HELPER(xtensa_cmd_xtmmu_do, struct xtensa *xtensa)
3310 {
3311         if (CMD_ARGC != 2) {
3312                 LOG_ERROR("xtmmu <NIREFILLENTRIES> <NDREFILLENTRIES>\n");
3313                 return ERROR_COMMAND_SYNTAX_ERROR;
3314         }
3315
3316         unsigned int nirefillentries = strtoul(CMD_ARGV[0], NULL, 0);
3317         unsigned int ndrefillentries = strtoul(CMD_ARGV[1], NULL, 0);
3318         if ((nirefillentries != 16) && (nirefillentries != 32)) {
3319                 LOG_ERROR("<nirefillentries> must be 16 or 32\n");
3320                 return ERROR_COMMAND_ARGUMENT_INVALID;
3321         } else if ((ndrefillentries != 16) && (ndrefillentries != 32)) {
3322                 LOG_ERROR("<ndrefillentries> must be 16 or 32\n");
3323                 return ERROR_COMMAND_ARGUMENT_INVALID;
3324         }
3325
3326         xtensa->core_config->mmu.enabled = true;
3327         xtensa->core_config->mmu.itlb_entries_count = nirefillentries;
3328         xtensa->core_config->mmu.dtlb_entries_count = ndrefillentries;
3329         return ERROR_OK;
3330 }
3331
3332 COMMAND_HANDLER(xtensa_cmd_xtmmu)
3333 {
3334         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmmu_do,
3335                 target_to_xtensa(get_current_target(CMD_CTX)));
3336 }
3337
3338 /* xtregs <numregs>
3339  * xtreg <regname> <regnum> */
3340 COMMAND_HELPER(xtensa_cmd_xtreg_do, struct xtensa *xtensa)
3341 {
3342         if (CMD_ARGC == 1) {
3343                 int32_t numregs = strtoul(CMD_ARGV[0], NULL, 0);
3344                 if ((numregs <= 0) || (numregs > UINT16_MAX)) {
3345                         LOG_ERROR("xtreg <numregs>: Invalid 'numregs' (%d)", numregs);
3346                         return ERROR_COMMAND_SYNTAX_ERROR;
3347                 }
3348                 if ((xtensa->genpkt_regs_num > 0) && (numregs < (int32_t)xtensa->genpkt_regs_num)) {
3349                         LOG_ERROR("xtregs (%d) must be larger than numgenregs (%d) (if xtregfmt specified)",
3350                                 numregs, xtensa->genpkt_regs_num);
3351                         return ERROR_COMMAND_SYNTAX_ERROR;
3352                 }
3353                 xtensa->total_regs_num = numregs;
3354                 xtensa->core_regs_num = 0;
3355                 xtensa->num_optregs = 0;
3356                 /* A little more memory than required, but saves a second initialization pass */
3357                 xtensa->optregs = calloc(xtensa->total_regs_num, sizeof(struct xtensa_reg_desc));
3358                 if (!xtensa->optregs) {
3359                         LOG_ERROR("Failed to allocate xtensa->optregs!");
3360                         return ERROR_FAIL;
3361                 }
3362                 return ERROR_OK;
3363         } else if (CMD_ARGC != 2) {
3364                 return ERROR_COMMAND_SYNTAX_ERROR;
3365         }
3366
3367         /* "xtregfmt contiguous" must be specified prior to the first "xtreg" definition
3368          * if general register (g-packet) requests or contiguous register maps are supported */
3369         if (xtensa->regmap_contiguous && !xtensa->contiguous_regs_desc) {
3370                 xtensa->contiguous_regs_desc = calloc(xtensa->total_regs_num, sizeof(struct xtensa_reg_desc *));
3371                 if (!xtensa->contiguous_regs_desc) {
3372                         LOG_ERROR("Failed to allocate xtensa->contiguous_regs_desc!");
3373                         return ERROR_FAIL;
3374                 }
3375         }
3376
3377         const char *regname = CMD_ARGV[0];
3378         unsigned int regnum = strtoul(CMD_ARGV[1], NULL, 0);
3379         if (regnum > UINT16_MAX) {
3380                 LOG_ERROR("<regnum> must be a 16-bit number");
3381                 return ERROR_COMMAND_ARGUMENT_INVALID;
3382         }
3383
3384         if ((xtensa->num_optregs + xtensa->core_regs_num) >= xtensa->total_regs_num) {
3385                 if (xtensa->total_regs_num)
3386                         LOG_ERROR("'xtreg %s 0x%04x': Too many registers (%d expected, %d core %d extended)",
3387                                 regname, regnum,
3388                                 xtensa->total_regs_num, xtensa->core_regs_num, xtensa->num_optregs);
3389                 else
3390                         LOG_ERROR("'xtreg %s 0x%04x': Number of registers unspecified",
3391                                 regname, regnum);
3392                 return ERROR_FAIL;
3393         }
3394
3395         /* Determine whether register belongs in xtensa_regs[] or xtensa->xtensa_spec_regs[] */
3396         struct xtensa_reg_desc *rptr = &xtensa->optregs[xtensa->num_optregs];
3397         bool is_extended_reg = true;
3398         unsigned int ridx;
3399         for (ridx = 0; ridx < XT_NUM_REGS; ridx++) {
3400                 if (strcmp(CMD_ARGV[0], xtensa_regs[ridx].name) == 0) {
3401                         /* Flag core register as defined */
3402                         rptr = &xtensa_regs[ridx];
3403                         xtensa->core_regs_num++;
3404                         is_extended_reg = false;
3405                         break;
3406                 }
3407         }
3408
3409         rptr->exist = true;
3410         if (is_extended_reg) {
3411                 /* Register ID, debugger-visible register ID */
3412                 rptr->name = strdup(CMD_ARGV[0]);
3413                 rptr->dbreg_num = regnum;
3414                 rptr->reg_num = (regnum & XT_REG_INDEX_MASK);
3415                 xtensa->num_optregs++;
3416
3417                 /* Register type */
3418                 if ((regnum & XT_REG_GENERAL_MASK) == XT_REG_GENERAL_VAL) {
3419                         rptr->type = XT_REG_GENERAL;
3420                 } else if ((regnum & XT_REG_USER_MASK) == XT_REG_USER_VAL) {
3421                         rptr->type = XT_REG_USER;
3422                 } else if ((regnum & XT_REG_FR_MASK) == XT_REG_FR_VAL) {
3423                         rptr->type = XT_REG_FR;
3424                 } else if ((regnum & XT_REG_SPECIAL_MASK) == XT_REG_SPECIAL_VAL) {
3425                         rptr->type = XT_REG_SPECIAL;
3426                 } else if ((regnum & XT_REG_RELGEN_MASK) == XT_REG_RELGEN_VAL) {
3427                         /* WARNING: For these registers, regnum points to the
3428                          * index of the corresponding ARx registers, NOT to
3429                          * the processor register number! */
3430                         rptr->type = XT_REG_RELGEN;
3431                         rptr->reg_num += XT_REG_IDX_ARFIRST;
3432                         rptr->dbreg_num += XT_REG_IDX_ARFIRST;
3433                 } else if ((regnum & XT_REG_TIE_MASK) != 0) {
3434                         rptr->type = XT_REG_TIE;
3435                 } else {
3436                         rptr->type = XT_REG_OTHER;
3437                 }
3438
3439                 /* Register flags */
3440                 if ((strcmp(rptr->name, "mmid") == 0) || (strcmp(rptr->name, "eraccess") == 0) ||
3441                         (strcmp(rptr->name, "ddr") == 0) || (strcmp(rptr->name, "intset") == 0) ||
3442                         (strcmp(rptr->name, "intclear") == 0))
3443                         rptr->flags = XT_REGF_NOREAD;
3444                 else
3445                         rptr->flags = 0;
3446
3447                 if ((rptr->reg_num == (XT_PS_REG_NUM_BASE + xtensa->core_config->debug.irq_level)) &&
3448                         (xtensa->core_config->core_type == XT_LX) && (rptr->type == XT_REG_SPECIAL)) {
3449                         xtensa->eps_dbglevel_idx = XT_NUM_REGS + xtensa->num_optregs - 1;
3450                         LOG_DEBUG("Setting PS (%s) index to %d", rptr->name, xtensa->eps_dbglevel_idx);
3451                 }
3452         } else if (strcmp(rptr->name, "cpenable") == 0) {
3453                 xtensa->core_config->coproc = true;
3454         }
3455
3456         /* Build out list of contiguous registers in specified order */
3457         unsigned int running_reg_count = xtensa->num_optregs + xtensa->core_regs_num;
3458         if (xtensa->contiguous_regs_desc) {
3459                 assert((running_reg_count <= xtensa->total_regs_num) && "contiguous register address internal error!");
3460                 xtensa->contiguous_regs_desc[running_reg_count - 1] = rptr;
3461         }
3462         if (xtensa_extra_debug_log)
3463                 LOG_DEBUG("Added %s register %-16s: 0x%04x/0x%02x t%d (%d of %d)",
3464                         is_extended_reg ? "config-specific" : "core",
3465                         rptr->name, rptr->dbreg_num, rptr->reg_num, rptr->type,
3466                         is_extended_reg ? xtensa->num_optregs : ridx,
3467                         is_extended_reg ? xtensa->total_regs_num : XT_NUM_REGS);
3468         return ERROR_OK;
3469 }
3470
3471 COMMAND_HANDLER(xtensa_cmd_xtreg)
3472 {
3473         return CALL_COMMAND_HANDLER(xtensa_cmd_xtreg_do,
3474                 target_to_xtensa(get_current_target(CMD_CTX)));
3475 }
3476
3477 /* xtregfmt <contiguous|sparse> [numgregs] */
3478 COMMAND_HELPER(xtensa_cmd_xtregfmt_do, struct xtensa *xtensa)
3479 {
3480         if ((CMD_ARGC == 1) || (CMD_ARGC == 2)) {
3481                 if (!strcasecmp(CMD_ARGV[0], "sparse")) {
3482                         return ERROR_OK;
3483                 } else if (!strcasecmp(CMD_ARGV[0], "contiguous")) {
3484                         xtensa->regmap_contiguous = true;
3485                         if (CMD_ARGC == 2) {
3486                                 unsigned int numgregs = strtoul(CMD_ARGV[1], NULL, 0);
3487                                 if ((numgregs <= 0) ||
3488                                         ((numgregs > xtensa->total_regs_num) &&
3489                                         (xtensa->total_regs_num > 0))) {
3490                                         LOG_ERROR("xtregfmt: if specified, numgregs (%d) must be <= numregs (%d)",
3491                                                 numgregs, xtensa->total_regs_num);
3492                                         return ERROR_COMMAND_SYNTAX_ERROR;
3493                                 }
3494                                 xtensa->genpkt_regs_num = numgregs;
3495                         }
3496                         return ERROR_OK;
3497                 }
3498         }
3499         return ERROR_COMMAND_SYNTAX_ERROR;
3500 }
3501
3502 COMMAND_HANDLER(xtensa_cmd_xtregfmt)
3503 {
3504         return CALL_COMMAND_HANDLER(xtensa_cmd_xtregfmt_do,
3505                 target_to_xtensa(get_current_target(CMD_CTX)));
3506 }
3507
3508 COMMAND_HELPER(xtensa_cmd_permissive_mode_do, struct xtensa *xtensa)
3509 {
3510         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
3511                 &xtensa->permissive_mode, "xtensa permissive mode");
3512 }
3513
3514 COMMAND_HANDLER(xtensa_cmd_permissive_mode)
3515 {
3516         return CALL_COMMAND_HANDLER(xtensa_cmd_permissive_mode_do,
3517                 target_to_xtensa(get_current_target(CMD_CTX)));
3518 }
3519
3520 /* perfmon_enable <counter_id> <select> [mask] [kernelcnt] [tracelevel] */
3521 COMMAND_HELPER(xtensa_cmd_perfmon_enable_do, struct xtensa *xtensa)
3522 {
3523         struct xtensa_perfmon_config config = {
3524                 .mask = 0xffff,
3525                 .kernelcnt = 0,
3526                 .tracelevel = -1        /* use DEBUGLEVEL by default */
3527         };
3528
3529         if (CMD_ARGC < 2 || CMD_ARGC > 6)
3530                 return ERROR_COMMAND_SYNTAX_ERROR;
3531
3532         unsigned int counter_id = strtoul(CMD_ARGV[0], NULL, 0);
3533         if (counter_id >= XTENSA_MAX_PERF_COUNTERS) {
3534                 command_print(CMD, "counter_id should be < %d", XTENSA_MAX_PERF_COUNTERS);
3535                 return ERROR_COMMAND_ARGUMENT_INVALID;
3536         }
3537
3538         config.select = strtoul(CMD_ARGV[1], NULL, 0);
3539         if (config.select > XTENSA_MAX_PERF_SELECT) {
3540                 command_print(CMD, "select should be < %d", XTENSA_MAX_PERF_SELECT);
3541                 return ERROR_COMMAND_ARGUMENT_INVALID;
3542         }
3543
3544         if (CMD_ARGC >= 3) {
3545                 config.mask = strtoul(CMD_ARGV[2], NULL, 0);
3546                 if (config.mask > XTENSA_MAX_PERF_MASK) {
3547                         command_print(CMD, "mask should be < %d", XTENSA_MAX_PERF_MASK);
3548                         return ERROR_COMMAND_ARGUMENT_INVALID;
3549                 }
3550         }
3551
3552         if (CMD_ARGC >= 4) {
3553                 config.kernelcnt = strtoul(CMD_ARGV[3], NULL, 0);
3554                 if (config.kernelcnt > 1) {
3555                         command_print(CMD, "kernelcnt should be 0 or 1");
3556                         return ERROR_COMMAND_ARGUMENT_INVALID;
3557                 }
3558         }
3559
3560         if (CMD_ARGC >= 5) {
3561                 config.tracelevel = strtoul(CMD_ARGV[4], NULL, 0);
3562                 if (config.tracelevel > 7) {
3563                         command_print(CMD, "tracelevel should be <=7");
3564                         return ERROR_COMMAND_ARGUMENT_INVALID;
3565                 }
3566         }
3567
3568         if (config.tracelevel == -1)
3569                 config.tracelevel = xtensa->core_config->debug.irq_level;
3570
3571         return xtensa_dm_perfmon_enable(&xtensa->dbg_mod, counter_id, &config);
3572 }
3573
3574 COMMAND_HANDLER(xtensa_cmd_perfmon_enable)
3575 {
3576         return CALL_COMMAND_HANDLER(xtensa_cmd_perfmon_enable_do,
3577                 target_to_xtensa(get_current_target(CMD_CTX)));
3578 }
3579
3580 /* perfmon_dump [counter_id] */
3581 COMMAND_HELPER(xtensa_cmd_perfmon_dump_do, struct xtensa *xtensa)
3582 {
3583         if (CMD_ARGC > 1)
3584                 return ERROR_COMMAND_SYNTAX_ERROR;
3585
3586         int counter_id = -1;
3587         if (CMD_ARGC == 1) {
3588                 counter_id = strtol(CMD_ARGV[0], NULL, 0);
3589                 if (counter_id > XTENSA_MAX_PERF_COUNTERS) {
3590                         command_print(CMD, "counter_id should be < %d", XTENSA_MAX_PERF_COUNTERS);
3591                         return ERROR_COMMAND_ARGUMENT_INVALID;
3592                 }
3593         }
3594
3595         unsigned int counter_start = (counter_id < 0) ? 0 : counter_id;
3596         unsigned int counter_end = (counter_id < 0) ? XTENSA_MAX_PERF_COUNTERS : counter_id + 1;
3597         for (unsigned int counter = counter_start; counter < counter_end; ++counter) {
3598                 char result_buf[128] = { 0 };
3599                 size_t result_pos = snprintf(result_buf, sizeof(result_buf), "Counter %d: ", counter);
3600                 struct xtensa_perfmon_result result;
3601                 int res = xtensa_dm_perfmon_dump(&xtensa->dbg_mod, counter, &result);
3602                 if (res != ERROR_OK)
3603                         return res;
3604                 snprintf(result_buf + result_pos, sizeof(result_buf) - result_pos,
3605                         "%-12" PRIu64 "%s",
3606                         result.value,
3607                         result.overflow ? " (overflow)" : "");
3608                 LOG_INFO("%s", result_buf);
3609         }
3610
3611         return ERROR_OK;
3612 }
3613
3614 COMMAND_HANDLER(xtensa_cmd_perfmon_dump)
3615 {
3616         return CALL_COMMAND_HANDLER(xtensa_cmd_perfmon_dump_do,
3617                 target_to_xtensa(get_current_target(CMD_CTX)));
3618 }
3619
3620 COMMAND_HELPER(xtensa_cmd_mask_interrupts_do, struct xtensa *xtensa)
3621 {
3622         int state = -1;
3623
3624         if (CMD_ARGC < 1) {
3625                 const char *st;
3626                 state = xtensa->stepping_isr_mode;
3627                 if (state == XT_STEPPING_ISR_ON)
3628                         st = "OFF";
3629                 else if (state == XT_STEPPING_ISR_OFF)
3630                         st = "ON";
3631                 else
3632                         st = "UNKNOWN";
3633                 command_print(CMD, "Current ISR step mode: %s", st);
3634                 return ERROR_OK;
3635         }
3636         /* Masking is ON -> interrupts during stepping are OFF, and vice versa */
3637         if (!strcasecmp(CMD_ARGV[0], "off"))
3638                 state = XT_STEPPING_ISR_ON;
3639         else if (!strcasecmp(CMD_ARGV[0], "on"))
3640                 state = XT_STEPPING_ISR_OFF;
3641
3642         if (state == -1) {
3643                 command_print(CMD, "Argument unknown. Please pick one of ON, OFF");
3644                 return ERROR_FAIL;
3645         }
3646         xtensa->stepping_isr_mode = state;
3647         return ERROR_OK;
3648 }
3649
3650 COMMAND_HANDLER(xtensa_cmd_mask_interrupts)
3651 {
3652         return CALL_COMMAND_HANDLER(xtensa_cmd_mask_interrupts_do,
3653                 target_to_xtensa(get_current_target(CMD_CTX)));
3654 }
3655
3656 COMMAND_HELPER(xtensa_cmd_smpbreak_do, struct target *target)
3657 {
3658         int res;
3659         uint32_t val = 0;
3660
3661         if (CMD_ARGC >= 1) {
3662                 for (unsigned int i = 0; i < CMD_ARGC; i++) {
3663                         if (!strcasecmp(CMD_ARGV[0], "none")) {
3664                                 val = 0;
3665                         } else if (!strcasecmp(CMD_ARGV[i], "BreakIn")) {
3666                                 val |= OCDDCR_BREAKINEN;
3667                         } else if (!strcasecmp(CMD_ARGV[i], "BreakOut")) {
3668                                 val |= OCDDCR_BREAKOUTEN;
3669                         } else if (!strcasecmp(CMD_ARGV[i], "RunStallIn")) {
3670                                 val |= OCDDCR_RUNSTALLINEN;
3671                         } else if (!strcasecmp(CMD_ARGV[i], "DebugModeOut")) {
3672                                 val |= OCDDCR_DEBUGMODEOUTEN;
3673                         } else if (!strcasecmp(CMD_ARGV[i], "BreakInOut")) {
3674                                 val |= OCDDCR_BREAKINEN | OCDDCR_BREAKOUTEN;
3675                         } else if (!strcasecmp(CMD_ARGV[i], "RunStall")) {
3676                                 val |= OCDDCR_RUNSTALLINEN | OCDDCR_DEBUGMODEOUTEN;
3677                         } else {
3678                                 command_print(CMD, "Unknown arg %s", CMD_ARGV[i]);
3679                                 command_print(
3680                                         CMD,
3681                                         "use either BreakInOut, None or RunStall as arguments, or any combination of BreakIn, BreakOut, RunStallIn and DebugModeOut.");
3682                                 return ERROR_OK;
3683                         }
3684                 }
3685                 res = xtensa_smpbreak_set(target, val);
3686                 if (res != ERROR_OK)
3687                         command_print(CMD, "Failed to set smpbreak config %d", res);
3688         } else {
3689                 struct xtensa *xtensa = target_to_xtensa(target);
3690                 res = xtensa_smpbreak_read(xtensa, &val);
3691                 if (res == ERROR_OK)
3692                         command_print(CMD, "Current bits set:%s%s%s%s",
3693                                 (val & OCDDCR_BREAKINEN) ? " BreakIn" : "",
3694                                 (val & OCDDCR_BREAKOUTEN) ? " BreakOut" : "",
3695                                 (val & OCDDCR_RUNSTALLINEN) ? " RunStallIn" : "",
3696                                 (val & OCDDCR_DEBUGMODEOUTEN) ? " DebugModeOut" : ""
3697                                 );
3698                 else
3699                         command_print(CMD, "Failed to get smpbreak config %d", res);
3700         }
3701         return res;
3702 }
3703
3704 COMMAND_HANDLER(xtensa_cmd_smpbreak)
3705 {
3706         return CALL_COMMAND_HANDLER(xtensa_cmd_smpbreak_do,
3707                 get_current_target(CMD_CTX));
3708 }
3709
3710 COMMAND_HELPER(xtensa_cmd_tracestart_do, struct xtensa *xtensa)
3711 {
3712         struct xtensa_trace_status trace_status;
3713         struct xtensa_trace_start_config cfg = {
3714                 .stoppc = 0,
3715                 .stopmask = XTENSA_STOPMASK_DISABLED,
3716                 .after = 0,
3717                 .after_is_words = false
3718         };
3719
3720         /* Parse arguments */
3721         for (unsigned int i = 0; i < CMD_ARGC; i++) {
3722                 if ((!strcasecmp(CMD_ARGV[i], "pc")) && CMD_ARGC > i) {
3723                         char *e;
3724                         i++;
3725                         cfg.stoppc = strtol(CMD_ARGV[i], &e, 0);
3726                         cfg.stopmask = 0;
3727                         if (*e == '/')
3728                                 cfg.stopmask = strtol(e, NULL, 0);
3729                 } else if ((!strcasecmp(CMD_ARGV[i], "after")) && CMD_ARGC > i) {
3730                         i++;
3731                         cfg.after = strtol(CMD_ARGV[i], NULL, 0);
3732                 } else if (!strcasecmp(CMD_ARGV[i], "ins")) {
3733                         cfg.after_is_words = 0;
3734                 } else if (!strcasecmp(CMD_ARGV[i], "words")) {
3735                         cfg.after_is_words = 1;
3736                 } else {
3737                         command_print(CMD, "Did not understand %s", CMD_ARGV[i]);
3738                         return ERROR_FAIL;
3739                 }
3740         }
3741
3742         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3743         if (res != ERROR_OK)
3744                 return res;
3745         if (trace_status.stat & TRAXSTAT_TRACT) {
3746                 LOG_WARNING("Silently stop active tracing!");
3747                 res = xtensa_dm_trace_stop(&xtensa->dbg_mod, false);
3748                 if (res != ERROR_OK)
3749                         return res;
3750         }
3751
3752         res = xtensa_dm_trace_start(&xtensa->dbg_mod, &cfg);
3753         if (res != ERROR_OK)
3754                 return res;
3755
3756         xtensa->trace_active = true;
3757         command_print(CMD, "Trace started.");
3758         return ERROR_OK;
3759 }
3760
3761 COMMAND_HANDLER(xtensa_cmd_tracestart)
3762 {
3763         return CALL_COMMAND_HANDLER(xtensa_cmd_tracestart_do,
3764                 target_to_xtensa(get_current_target(CMD_CTX)));
3765 }
3766
3767 COMMAND_HELPER(xtensa_cmd_tracestop_do, struct xtensa *xtensa)
3768 {
3769         struct xtensa_trace_status trace_status;
3770
3771         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3772         if (res != ERROR_OK)
3773                 return res;
3774
3775         if (!(trace_status.stat & TRAXSTAT_TRACT)) {
3776                 command_print(CMD, "No trace is currently active.");
3777                 return ERROR_FAIL;
3778         }
3779
3780         res = xtensa_dm_trace_stop(&xtensa->dbg_mod, true);
3781         if (res != ERROR_OK)
3782                 return res;
3783
3784         xtensa->trace_active = false;
3785         command_print(CMD, "Trace stop triggered.");
3786         return ERROR_OK;
3787 }
3788
3789 COMMAND_HANDLER(xtensa_cmd_tracestop)
3790 {
3791         return CALL_COMMAND_HANDLER(xtensa_cmd_tracestop_do,
3792                 target_to_xtensa(get_current_target(CMD_CTX)));
3793 }
3794
3795 COMMAND_HELPER(xtensa_cmd_tracedump_do, struct xtensa *xtensa, const char *fname)
3796 {
3797         struct xtensa_trace_config trace_config;
3798         struct xtensa_trace_status trace_status;
3799         uint32_t memsz, wmem;
3800
3801         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3802         if (res != ERROR_OK)
3803                 return res;
3804
3805         if (trace_status.stat & TRAXSTAT_TRACT) {
3806                 command_print(CMD, "Tracing is still active. Please stop it first.");
3807                 return ERROR_FAIL;
3808         }
3809
3810         res = xtensa_dm_trace_config_read(&xtensa->dbg_mod, &trace_config);
3811         if (res != ERROR_OK)
3812                 return res;
3813
3814         if (!(trace_config.ctrl & TRAXCTRL_TREN)) {
3815                 command_print(CMD, "No active trace found; nothing to dump.");
3816                 return ERROR_FAIL;
3817         }
3818
3819         memsz = trace_config.memaddr_end - trace_config.memaddr_start + 1;
3820         LOG_INFO("Total trace memory: %d words", memsz);
3821         if ((trace_config.addr &
3822                         ((TRAXADDR_TWRAP_MASK << TRAXADDR_TWRAP_SHIFT) | TRAXADDR_TWSAT)) == 0) {
3823                 /*Memory hasn't overwritten itself yet. */
3824                 wmem = trace_config.addr & TRAXADDR_TADDR_MASK;
3825                 LOG_INFO("...but trace is only %d words", wmem);
3826                 if (wmem < memsz)
3827                         memsz = wmem;
3828         } else {
3829                 if (trace_config.addr & TRAXADDR_TWSAT) {
3830                         LOG_INFO("Real trace is many times longer than that (overflow)");
3831                 } else {
3832                         uint32_t trc_sz = (trace_config.addr >> TRAXADDR_TWRAP_SHIFT) & TRAXADDR_TWRAP_MASK;
3833                         trc_sz = (trc_sz * memsz) + (trace_config.addr & TRAXADDR_TADDR_MASK);
3834                         LOG_INFO("Real trace is %d words, but the start has been truncated.", trc_sz);
3835                 }
3836         }
3837
3838         uint8_t *tracemem = malloc(memsz * 4);
3839         if (!tracemem) {
3840                 command_print(CMD, "Failed to alloc memory for trace data!");
3841                 return ERROR_FAIL;
3842         }
3843         res = xtensa_dm_trace_data_read(&xtensa->dbg_mod, tracemem, memsz * 4);
3844         if (res != ERROR_OK) {
3845                 free(tracemem);
3846                 return res;
3847         }
3848
3849         int f = open(fname, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3850         if (f <= 0) {
3851                 free(tracemem);
3852                 command_print(CMD, "Unable to open file %s", fname);
3853                 return ERROR_FAIL;
3854         }
3855         if (write(f, tracemem, memsz * 4) != (int)memsz * 4)
3856                 command_print(CMD, "Unable to write to file %s", fname);
3857         else
3858                 command_print(CMD, "Written %d bytes of trace data to %s", memsz * 4, fname);
3859         close(f);
3860
3861         bool is_all_zeroes = true;
3862         for (unsigned int i = 0; i < memsz * 4; i++) {
3863                 if (tracemem[i] != 0) {
3864                         is_all_zeroes = false;
3865                         break;
3866                 }
3867         }
3868         free(tracemem);
3869         if (is_all_zeroes)
3870                 command_print(
3871                         CMD,
3872                         "WARNING: File written is all zeroes. Are you sure you enabled trace memory?");
3873
3874         return ERROR_OK;
3875 }
3876
3877 COMMAND_HANDLER(xtensa_cmd_tracedump)
3878 {
3879         if (CMD_ARGC != 1) {
3880                 command_print(CMD, "Command takes exactly 1 parameter.Need filename to dump to as output!");
3881                 return ERROR_FAIL;
3882         }
3883
3884         return CALL_COMMAND_HANDLER(xtensa_cmd_tracedump_do,
3885                 target_to_xtensa(get_current_target(CMD_CTX)), CMD_ARGV[0]);
3886 }
3887
3888 static const struct command_registration xtensa_any_command_handlers[] = {
3889         {
3890                 .name = "xtdef",
3891                 .handler = xtensa_cmd_xtdef,
3892                 .mode = COMMAND_CONFIG,
3893                 .help = "Configure Xtensa core type",
3894                 .usage = "<type>",
3895         },
3896         {
3897                 .name = "xtopt",
3898                 .handler = xtensa_cmd_xtopt,
3899                 .mode = COMMAND_CONFIG,
3900                 .help = "Configure Xtensa core option",
3901                 .usage = "<name> <value>",
3902         },
3903         {
3904                 .name = "xtmem",
3905                 .handler = xtensa_cmd_xtmem,
3906                 .mode = COMMAND_CONFIG,
3907                 .help = "Configure Xtensa memory/cache option",
3908                 .usage = "<type> [parameters]",
3909         },
3910         {
3911                 .name = "xtmmu",
3912                 .handler = xtensa_cmd_xtmmu,
3913                 .mode = COMMAND_CONFIG,
3914                 .help = "Configure Xtensa MMU option",
3915                 .usage = "<NIREFILLENTRIES> <NDREFILLENTRIES> <IVARWAY56> <DVARWAY56>",
3916         },
3917         {
3918                 .name = "xtmpu",
3919                 .handler = xtensa_cmd_xtmpu,
3920                 .mode = COMMAND_CONFIG,
3921                 .help = "Configure Xtensa MPU option",
3922                 .usage = "<num FG seg> <min seg size> <lockable> <executeonly>",
3923         },
3924         {
3925                 .name = "xtreg",
3926                 .handler = xtensa_cmd_xtreg,
3927                 .mode = COMMAND_CONFIG,
3928                 .help = "Configure Xtensa register",
3929                 .usage = "<regname> <regnum>",
3930         },
3931         {
3932                 .name = "xtregs",
3933                 .handler = xtensa_cmd_xtreg,
3934                 .mode = COMMAND_CONFIG,
3935                 .help = "Configure number of Xtensa registers",
3936                 .usage = "<numregs>",
3937         },
3938         {
3939                 .name = "xtregfmt",
3940                 .handler = xtensa_cmd_xtregfmt,
3941                 .mode = COMMAND_CONFIG,
3942                 .help = "Configure format of Xtensa register map",
3943                 .usage = "<contiguous|sparse> [numgregs]",
3944         },
3945         {
3946                 .name = "set_permissive",
3947                 .handler = xtensa_cmd_permissive_mode,
3948                 .mode = COMMAND_ANY,
3949                 .help = "When set to 1, enable Xtensa permissive mode (fewer client-side checks)",
3950                 .usage = "[0|1]",
3951         },
3952         {
3953                 .name = "maskisr",
3954                 .handler = xtensa_cmd_mask_interrupts,
3955                 .mode = COMMAND_ANY,
3956                 .help = "mask Xtensa interrupts at step",
3957                 .usage = "['on'|'off']",
3958         },
3959         {
3960                 .name = "smpbreak",
3961                 .handler = xtensa_cmd_smpbreak,
3962                 .mode = COMMAND_ANY,
3963                 .help = "Set the way the CPU chains OCD breaks",
3964                 .usage = "[none|breakinout|runstall] | [BreakIn] [BreakOut] [RunStallIn] [DebugModeOut]",
3965         },
3966         {
3967                 .name = "perfmon_enable",
3968                 .handler = xtensa_cmd_perfmon_enable,
3969                 .mode = COMMAND_EXEC,
3970                 .help = "Enable and start performance counter",
3971                 .usage = "<counter_id> <select> [mask] [kernelcnt] [tracelevel]",
3972         },
3973         {
3974                 .name = "perfmon_dump",
3975                 .handler = xtensa_cmd_perfmon_dump,
3976                 .mode = COMMAND_EXEC,
3977                 .help = "Dump performance counter value. If no argument specified, dumps all counters.",
3978                 .usage = "[counter_id]",
3979         },
3980         {
3981                 .name = "tracestart",
3982                 .handler = xtensa_cmd_tracestart,
3983                 .mode = COMMAND_EXEC,
3984                 .help =
3985                         "Tracing: Set up and start a trace. Optionally set stop trigger address and amount of data captured after.",
3986                 .usage = "[pc <pcval>/[maskbitcount]] [after <n> [ins|words]]",
3987         },
3988         {
3989                 .name = "tracestop",
3990                 .handler = xtensa_cmd_tracestop,
3991                 .mode = COMMAND_EXEC,
3992                 .help = "Tracing: Stop current trace as started by the tracestart command",
3993                 .usage = "",
3994         },
3995         {
3996                 .name = "tracedump",
3997                 .handler = xtensa_cmd_tracedump,
3998                 .mode = COMMAND_EXEC,
3999                 .help = "Tracing: Dump trace memory to a files. One file per core.",
4000                 .usage = "<outfile>",
4001         },
4002         {
4003                 .name = "exe",
4004                 .handler = xtensa_cmd_exe,
4005                 .mode = COMMAND_ANY,
4006                 .help = "Xtensa stub execution",
4007                 .usage = "<ascii-encoded hexadecimal instruction bytes>",
4008         },
4009         COMMAND_REGISTRATION_DONE
4010 };
4011
4012 const struct command_registration xtensa_command_handlers[] = {
4013         {
4014                 .name = "xtensa",
4015                 .mode = COMMAND_ANY,
4016                 .help = "Xtensa command group",
4017                 .usage = "",
4018                 .chain = xtensa_any_command_handlers,
4019         },
4020         COMMAND_REGISTRATION_DONE
4021 };