Cleanup and fi handle_wait_halt_command:
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t feroceon_target;
86 extern target_type_t xscale_target;
87 extern target_type_t cortexm3_target;
88 extern target_type_t cortexa8_target;
89 extern target_type_t arm11_target;
90 extern target_type_t mips_m4k_target;
91 extern target_type_t avr_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &cortexa8_target,
105         &arm11_target,
106         &mips_m4k_target,
107         &avr_target,
108         NULL,
109 };
110
111 target_t *all_targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 const Jim_Nvp nvp_assert[] = {
116         { .name = "assert", NVP_ASSERT },
117         { .name = "deassert", NVP_DEASSERT },
118         { .name = "T", NVP_ASSERT },
119         { .name = "F", NVP_DEASSERT },
120         { .name = "t", NVP_ASSERT },
121         { .name = "f", NVP_DEASSERT },
122         { .name = NULL, .value = -1 }
123 };
124
125 const Jim_Nvp nvp_error_target[] = {
126         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
127         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
128         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
129         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
130         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
131         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
132         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
133         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
134         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
135         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
136         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
137         { .value = -1, .name = NULL }
138 };
139
140 const char *target_strerror_safe( int err )
141 {
142         const Jim_Nvp *n;
143
144         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
145         if( n->name == NULL ){
146                 return "unknown";
147         } else {
148                 return n->name;
149         }
150 }
151
152 static const Jim_Nvp nvp_target_event[] = {
153         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
154         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
155
156         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
157         { .value = TARGET_EVENT_HALTED, .name = "halted" },
158         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
159         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
160         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
161
162         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
163         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
164
165         /* historical name */
166
167         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
168
169         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
170         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
171         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
173         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
174         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
175         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
176         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
177         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
178         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
179
180         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
181         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
182
183         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
184         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
185
186         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
187         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
188
189         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
191
192         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
194
195         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
197         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
198
199         { .name = NULL, .value = -1 }
200 };
201
202 const Jim_Nvp nvp_target_state[] = {
203         { .name = "unknown", .value = TARGET_UNKNOWN },
204         { .name = "running", .value = TARGET_RUNNING },
205         { .name = "halted",  .value = TARGET_HALTED },
206         { .name = "reset",   .value = TARGET_RESET },
207         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208         { .name = NULL, .value = -1 },
209 };
210
211 const Jim_Nvp nvp_target_debug_reason [] = {
212         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
213         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
214         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
215         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
217         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
218         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
219         { .name = NULL, .value = -1 },
220 };
221
222 const Jim_Nvp nvp_target_endian[] = {
223         { .name = "big",    .value = TARGET_BIG_ENDIAN },
224         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225         { .name = "be",     .value = TARGET_BIG_ENDIAN },
226         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
227         { .name = NULL,     .value = -1 },
228 };
229
230 const Jim_Nvp nvp_reset_modes[] = {
231         { .name = "unknown", .value = RESET_UNKNOWN },
232         { .name = "run"    , .value = RESET_RUN },
233         { .name = "halt"   , .value = RESET_HALT },
234         { .name = "init"   , .value = RESET_INIT },
235         { .name = NULL     , .value = -1 },
236 };
237
238 static int max_target_number(void)
239 {
240         target_t *t;
241         int x;
242
243         x = -1;
244         t = all_targets;
245         while( t ){
246                 if( x < t->target_number ){
247                         x = (t->target_number)+1;
248                 }
249                 t = t->next;
250         }
251         return x;
252 }
253
254 /* determine the number of the new target */
255 static int new_target_number(void)
256 {
257         target_t *t;
258         int x;
259
260         /* number is 0 based */
261         x = -1;
262         t = all_targets;
263         while(t){
264                 if( x < t->target_number ){
265                         x = t->target_number;
266                 }
267                 t = t->next;
268         }
269         return x+1;
270 }
271
272 static int target_continous_poll = 1;
273
274 /* read a u32 from a buffer in target memory endianness */
275 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
276 {
277         if (target->endianness == TARGET_LITTLE_ENDIAN)
278                 return le_to_h_u32(buffer);
279         else
280                 return be_to_h_u32(buffer);
281 }
282
283 /* read a u16 from a buffer in target memory endianness */
284 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
285 {
286         if (target->endianness == TARGET_LITTLE_ENDIAN)
287                 return le_to_h_u16(buffer);
288         else
289                 return be_to_h_u16(buffer);
290 }
291
292 /* read a u8 from a buffer in target memory endianness */
293 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
294 {
295         return *buffer & 0x0ff;
296 }
297
298 /* write a u32 to a buffer in target memory endianness */
299 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
300 {
301         if (target->endianness == TARGET_LITTLE_ENDIAN)
302                 h_u32_to_le(buffer, value);
303         else
304                 h_u32_to_be(buffer, value);
305 }
306
307 /* write a u16 to a buffer in target memory endianness */
308 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
309 {
310         if (target->endianness == TARGET_LITTLE_ENDIAN)
311                 h_u16_to_le(buffer, value);
312         else
313                 h_u16_to_be(buffer, value);
314 }
315
316 /* write a u8 to a buffer in target memory endianness */
317 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
318 {
319         *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 target_t *get_target(const char *id)
324 {
325         target_t *target;
326
327         /* try as tcltarget name */
328         for (target = all_targets; target; target = target->next) {
329                 if (target->cmd_name == NULL)
330                         continue;
331                 if (strcmp(id, target->cmd_name) == 0)
332                         return target;
333         }
334
335         /* no match, try as number */
336         unsigned num;
337         if (parse_uint(id, &num) != ERROR_OK)
338                 return NULL;
339
340         for (target = all_targets; target; target = target->next) {
341                 if (target->target_number == (int)num)
342                         return target;
343         }
344
345         return NULL;
346 }
347
348 /* returns a pointer to the n-th configured target */
349 static target_t *get_target_by_num(int num)
350 {
351         target_t *target = all_targets;
352
353         while (target){
354                 if( target->target_number == num ){
355                         return target;
356                 }
357                 target = target->next;
358         }
359
360         return NULL;
361 }
362
363 int get_num_by_target(target_t *query_target)
364 {
365         return query_target->target_number;
366 }
367
368 target_t* get_current_target(command_context_t *cmd_ctx)
369 {
370         target_t *target = get_target_by_num(cmd_ctx->current_target);
371
372         if (target == NULL)
373         {
374                 LOG_ERROR("BUG: current_target out of bounds");
375                 exit(-1);
376         }
377
378         return target;
379 }
380
381 int target_poll(struct target_s *target)
382 {
383         /* We can't poll until after examine */
384         if (!target_was_examined(target))
385         {
386                 /* Fail silently lest we pollute the log */
387                 return ERROR_FAIL;
388         }
389         return target->type->poll(target);
390 }
391
392 int target_halt(struct target_s *target)
393 {
394         /* We can't poll until after examine */
395         if (!target_was_examined(target))
396         {
397                 LOG_ERROR("Target not examined yet");
398                 return ERROR_FAIL;
399         }
400         return target->type->halt(target);
401 }
402
403 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
404 {
405         int retval;
406
407         /* We can't poll until after examine */
408         if (!target_was_examined(target))
409         {
410                 LOG_ERROR("Target not examined yet");
411                 return ERROR_FAIL;
412         }
413
414         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
415          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
416          * the application.
417          */
418         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
419                 return retval;
420
421         return retval;
422 }
423
424 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
425 {
426         char buf[100];
427         int retval;
428         Jim_Nvp *n;
429         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
430         if( n->name == NULL ){
431                 LOG_ERROR("invalid reset mode");
432                 return ERROR_FAIL;
433         }
434
435         /* disable polling during reset to make reset event scripts
436          * more predictable, i.e. dr/irscan & pathmove in events will
437          * not have JTAG operations injected into the middle of a sequence.
438          */
439         int save_poll = target_continous_poll;
440         target_continous_poll = 0;
441
442         sprintf( buf, "ocd_process_reset %s", n->name );
443         retval = Jim_Eval( interp, buf );
444
445         target_continous_poll = save_poll;
446
447         if(retval != JIM_OK) {
448                 Jim_PrintErrorMessage(interp);
449                 return ERROR_FAIL;
450         }
451
452         /* We want any events to be processed before the prompt */
453         retval = target_call_timer_callbacks_now();
454
455         return retval;
456 }
457
458 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
459 {
460         *physical = virtual;
461         return ERROR_OK;
462 }
463
464 static int default_mmu(struct target_s *target, int *enabled)
465 {
466         *enabled = 0;
467         return ERROR_OK;
468 }
469
470 static int default_examine(struct target_s *target)
471 {
472         target_set_examined(target);
473         return ERROR_OK;
474 }
475
476 int target_examine_one(struct target_s *target)
477 {
478         return target->type->examine(target);
479 }
480
481 /* Targets that correctly implement init+examine, i.e.
482  * no communication with target during init:
483  *
484  * XScale
485  */
486 int target_examine(void)
487 {
488         int retval = ERROR_OK;
489         target_t *target;
490
491         for (target = all_targets; target; target = target->next)
492         {
493                 if (!target->tap->enabled)
494                         continue;
495                 if ((retval = target_examine_one(target)) != ERROR_OK)
496                         return retval;
497         }
498         return retval;
499 }
500 const char *target_get_name(struct target_s *target)
501 {
502         return target->type->name;
503 }
504
505 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
506 {
507         if (!target_was_examined(target))
508         {
509                 LOG_ERROR("Target not examined yet");
510                 return ERROR_FAIL;
511         }
512         return target->type->write_memory_imp(target, address, size, count, buffer);
513 }
514
515 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
516 {
517         if (!target_was_examined(target))
518         {
519                 LOG_ERROR("Target not examined yet");
520                 return ERROR_FAIL;
521         }
522         return target->type->read_memory_imp(target, address, size, count, buffer);
523 }
524
525 static int target_soft_reset_halt_imp(struct target_s *target)
526 {
527         if (!target_was_examined(target))
528         {
529                 LOG_ERROR("Target not examined yet");
530                 return ERROR_FAIL;
531         }
532         return target->type->soft_reset_halt_imp(target);
533 }
534
535 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
536 {
537         if (!target_was_examined(target))
538         {
539                 LOG_ERROR("Target not examined yet");
540                 return ERROR_FAIL;
541         }
542         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
543 }
544
545 int target_read_memory(struct target_s *target,
546                 u32 address, u32 size, u32 count, u8 *buffer)
547 {
548         return target->type->read_memory(target, address, size, count, buffer);
549 }
550
551 int target_write_memory(struct target_s *target,
552                 u32 address, u32 size, u32 count, u8 *buffer)
553 {
554         return target->type->write_memory(target, address, size, count, buffer);
555 }
556 int target_bulk_write_memory(struct target_s *target,
557                 u32 address, u32 count, u8 *buffer)
558 {
559         return target->type->bulk_write_memory(target, address, count, buffer);
560 }
561
562 int target_add_breakpoint(struct target_s *target,
563                 struct breakpoint_s *breakpoint)
564 {
565         return target->type->add_breakpoint(target, breakpoint);
566 }
567 int target_remove_breakpoint(struct target_s *target,
568                 struct breakpoint_s *breakpoint)
569 {
570         return target->type->remove_breakpoint(target, breakpoint);
571 }
572
573 int target_add_watchpoint(struct target_s *target,
574                 struct watchpoint_s *watchpoint)
575 {
576         return target->type->add_watchpoint(target, watchpoint);
577 }
578 int target_remove_watchpoint(struct target_s *target,
579                 struct watchpoint_s *watchpoint)
580 {
581         return target->type->remove_watchpoint(target, watchpoint);
582 }
583
584 int target_get_gdb_reg_list(struct target_s *target,
585                 struct reg_s **reg_list[], int *reg_list_size)
586 {
587         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
588 }
589 int target_step(struct target_s *target,
590                 int current, u32 address, int handle_breakpoints)
591 {
592         return target->type->step(target, current, address, handle_breakpoints);
593 }
594
595
596 int target_run_algorithm(struct target_s *target,
597                 int num_mem_params, mem_param_t *mem_params,
598                 int num_reg_params, reg_param_t *reg_param,
599                 u32 entry_point, u32 exit_point,
600                 int timeout_ms, void *arch_info)
601 {
602         return target->type->run_algorithm(target,
603                         num_mem_params, mem_params, num_reg_params, reg_param,
604                         entry_point, exit_point, timeout_ms, arch_info);
605 }
606
607 /// @returns @c true if the target has been examined.
608 bool target_was_examined(struct target_s *target)
609 {
610         return target->type->examined;
611 }
612 /// Sets the @c examined flag for the given target.
613 void target_set_examined(struct target_s *target)
614 {
615         target->type->examined = true;
616 }
617 // Reset the @c examined flag for the given target.
618 void target_reset_examined(struct target_s *target)
619 {
620         target->type->examined = false;
621 }
622
623
624 int target_init(struct command_context_s *cmd_ctx)
625 {
626         target_t *target = all_targets;
627         int retval;
628
629         while (target)
630         {
631                 target_reset_examined(target);
632                 if (target->type->examine == NULL)
633                 {
634                         target->type->examine = default_examine;
635                 }
636
637                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
638                 {
639                         LOG_ERROR("target '%s' init failed", target_get_name(target));
640                         return retval;
641                 }
642
643                 /* Set up default functions if none are provided by target */
644                 if (target->type->virt2phys == NULL)
645                 {
646                         target->type->virt2phys = default_virt2phys;
647                 }
648                 target->type->virt2phys = default_virt2phys;
649                 /* a non-invasive way(in terms of patches) to add some code that
650                  * runs before the type->write/read_memory implementation
651                  */
652                 target->type->write_memory_imp = target->type->write_memory;
653                 target->type->write_memory = target_write_memory_imp;
654                 target->type->read_memory_imp = target->type->read_memory;
655                 target->type->read_memory = target_read_memory_imp;
656                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
657                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
658                 target->type->run_algorithm_imp = target->type->run_algorithm;
659                 target->type->run_algorithm = target_run_algorithm_imp;
660
661                 if (target->type->mmu == NULL)
662                 {
663                         target->type->mmu = default_mmu;
664                 }
665                 target = target->next;
666         }
667
668         if (all_targets)
669         {
670                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
671                         return retval;
672                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
673                         return retval;
674         }
675
676         return ERROR_OK;
677 }
678
679 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
680 {
681         target_event_callback_t **callbacks_p = &target_event_callbacks;
682
683         if (callback == NULL)
684         {
685                 return ERROR_INVALID_ARGUMENTS;
686         }
687
688         if (*callbacks_p)
689         {
690                 while ((*callbacks_p)->next)
691                         callbacks_p = &((*callbacks_p)->next);
692                 callbacks_p = &((*callbacks_p)->next);
693         }
694
695         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
696         (*callbacks_p)->callback = callback;
697         (*callbacks_p)->priv = priv;
698         (*callbacks_p)->next = NULL;
699
700         return ERROR_OK;
701 }
702
703 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
704 {
705         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
706         struct timeval now;
707
708         if (callback == NULL)
709         {
710                 return ERROR_INVALID_ARGUMENTS;
711         }
712
713         if (*callbacks_p)
714         {
715                 while ((*callbacks_p)->next)
716                         callbacks_p = &((*callbacks_p)->next);
717                 callbacks_p = &((*callbacks_p)->next);
718         }
719
720         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
721         (*callbacks_p)->callback = callback;
722         (*callbacks_p)->periodic = periodic;
723         (*callbacks_p)->time_ms = time_ms;
724
725         gettimeofday(&now, NULL);
726         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
727         time_ms -= (time_ms % 1000);
728         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
729         if ((*callbacks_p)->when.tv_usec > 1000000)
730         {
731                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
732                 (*callbacks_p)->when.tv_sec += 1;
733         }
734
735         (*callbacks_p)->priv = priv;
736         (*callbacks_p)->next = NULL;
737
738         return ERROR_OK;
739 }
740
741 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
742 {
743         target_event_callback_t **p = &target_event_callbacks;
744         target_event_callback_t *c = target_event_callbacks;
745
746         if (callback == NULL)
747         {
748                 return ERROR_INVALID_ARGUMENTS;
749         }
750
751         while (c)
752         {
753                 target_event_callback_t *next = c->next;
754                 if ((c->callback == callback) && (c->priv == priv))
755                 {
756                         *p = next;
757                         free(c);
758                         return ERROR_OK;
759                 }
760                 else
761                         p = &(c->next);
762                 c = next;
763         }
764
765         return ERROR_OK;
766 }
767
768 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
769 {
770         target_timer_callback_t **p = &target_timer_callbacks;
771         target_timer_callback_t *c = target_timer_callbacks;
772
773         if (callback == NULL)
774         {
775                 return ERROR_INVALID_ARGUMENTS;
776         }
777
778         while (c)
779         {
780                 target_timer_callback_t *next = c->next;
781                 if ((c->callback == callback) && (c->priv == priv))
782                 {
783                         *p = next;
784                         free(c);
785                         return ERROR_OK;
786                 }
787                 else
788                         p = &(c->next);
789                 c = next;
790         }
791
792         return ERROR_OK;
793 }
794
795 int target_call_event_callbacks(target_t *target, enum target_event event)
796 {
797         target_event_callback_t *callback = target_event_callbacks;
798         target_event_callback_t *next_callback;
799
800         if (event == TARGET_EVENT_HALTED)
801         {
802                 /* execute early halted first */
803                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
804         }
805
806         LOG_DEBUG("target event %i (%s)",
807                           event,
808                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
809
810         target_handle_event( target, event );
811
812         while (callback)
813         {
814                 next_callback = callback->next;
815                 callback->callback(target, event, callback->priv);
816                 callback = next_callback;
817         }
818
819         return ERROR_OK;
820 }
821
822 static int target_timer_callback_periodic_restart(
823                 target_timer_callback_t *cb, struct timeval *now)
824 {
825         int time_ms = cb->time_ms;
826         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
827         time_ms -= (time_ms % 1000);
828         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
829         if (cb->when.tv_usec > 1000000)
830         {
831                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
832                 cb->when.tv_sec += 1;
833         }
834         return ERROR_OK;
835 }
836
837 static int target_call_timer_callback(target_timer_callback_t *cb,
838                 struct timeval *now)
839 {
840         cb->callback(cb->priv);
841
842         if (cb->periodic)
843                 return target_timer_callback_periodic_restart(cb, now);
844
845         return target_unregister_timer_callback(cb->callback, cb->priv);
846 }
847
848 static int target_call_timer_callbacks_check_time(int checktime)
849 {
850         keep_alive();
851
852         struct timeval now;
853         gettimeofday(&now, NULL);
854
855         target_timer_callback_t *callback = target_timer_callbacks;
856         while (callback)
857         {
858                 // cleaning up may unregister and free this callback
859                 target_timer_callback_t *next_callback = callback->next;
860
861                 bool call_it = callback->callback &&
862                         ((!checktime && callback->periodic) ||
863                           now.tv_sec > callback->when.tv_sec ||
864                          (now.tv_sec == callback->when.tv_sec &&
865                           now.tv_usec >= callback->when.tv_usec));
866
867                 if (call_it)
868                 {
869                         int retval = target_call_timer_callback(callback, &now);
870                         if (retval != ERROR_OK)
871                                 return retval;
872                 }
873
874                 callback = next_callback;
875         }
876
877         return ERROR_OK;
878 }
879
880 int target_call_timer_callbacks(void)
881 {
882         return target_call_timer_callbacks_check_time(1);
883 }
884
885 /* invoke periodic callbacks immediately */
886 int target_call_timer_callbacks_now(void)
887 {
888         return target_call_timer_callbacks_check_time(0);
889 }
890
891 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
892 {
893         working_area_t *c = target->working_areas;
894         working_area_t *new_wa = NULL;
895
896         /* Reevaluate working area address based on MMU state*/
897         if (target->working_areas == NULL)
898         {
899                 int retval;
900                 int enabled;
901                 retval = target->type->mmu(target, &enabled);
902                 if (retval != ERROR_OK)
903                 {
904                         return retval;
905                 }
906                 if (enabled)
907                 {
908                         target->working_area = target->working_area_virt;
909                 }
910                 else
911                 {
912                         target->working_area = target->working_area_phys;
913                 }
914         }
915
916         /* only allocate multiples of 4 byte */
917         if (size % 4)
918         {
919                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
920                 size = CEIL(size, 4);
921         }
922
923         /* see if there's already a matching working area */
924         while (c)
925         {
926                 if ((c->free) && (c->size == size))
927                 {
928                         new_wa = c;
929                         break;
930                 }
931                 c = c->next;
932         }
933
934         /* if not, allocate a new one */
935         if (!new_wa)
936         {
937                 working_area_t **p = &target->working_areas;
938                 u32 first_free = target->working_area;
939                 u32 free_size = target->working_area_size;
940
941                 LOG_DEBUG("allocating new working area");
942
943                 c = target->working_areas;
944                 while (c)
945                 {
946                         first_free += c->size;
947                         free_size -= c->size;
948                         p = &c->next;
949                         c = c->next;
950                 }
951
952                 if (free_size < size)
953                 {
954                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
955                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
956                 }
957
958                 new_wa = malloc(sizeof(working_area_t));
959                 new_wa->next = NULL;
960                 new_wa->size = size;
961                 new_wa->address = first_free;
962
963                 if (target->backup_working_area)
964                 {
965                         int retval;
966                         new_wa->backup = malloc(new_wa->size);
967                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
968                         {
969                                 free(new_wa->backup);
970                                 free(new_wa);
971                                 return retval;
972                         }
973                 }
974                 else
975                 {
976                         new_wa->backup = NULL;
977                 }
978
979                 /* put new entry in list */
980                 *p = new_wa;
981         }
982
983         /* mark as used, and return the new (reused) area */
984         new_wa->free = 0;
985         *area = new_wa;
986
987         /* user pointer */
988         new_wa->user = area;
989
990         return ERROR_OK;
991 }
992
993 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
994 {
995         if (area->free)
996                 return ERROR_OK;
997
998         if (restore&&target->backup_working_area)
999         {
1000                 int retval;
1001                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1002                         return retval;
1003         }
1004
1005         area->free = 1;
1006
1007         /* mark user pointer invalid */
1008         *area->user = NULL;
1009         area->user = NULL;
1010
1011         return ERROR_OK;
1012 }
1013
1014 int target_free_working_area(struct target_s *target, working_area_t *area)
1015 {
1016         return target_free_working_area_restore(target, area, 1);
1017 }
1018
1019 /* free resources and restore memory, if restoring memory fails,
1020  * free up resources anyway
1021  */
1022 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1023 {
1024         working_area_t *c = target->working_areas;
1025
1026         while (c)
1027         {
1028                 working_area_t *next = c->next;
1029                 target_free_working_area_restore(target, c, restore);
1030
1031                 if (c->backup)
1032                         free(c->backup);
1033
1034                 free(c);
1035
1036                 c = next;
1037         }
1038
1039         target->working_areas = NULL;
1040 }
1041
1042 void target_free_all_working_areas(struct target_s *target)
1043 {
1044         target_free_all_working_areas_restore(target, 1);
1045 }
1046
1047 int target_register_commands(struct command_context_s *cmd_ctx)
1048 {
1049
1050         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1051
1052
1053
1054
1055         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1056
1057         return ERROR_OK;
1058 }
1059
1060 int target_arch_state(struct target_s *target)
1061 {
1062         int retval;
1063         if (target==NULL)
1064         {
1065                 LOG_USER("No target has been configured");
1066                 return ERROR_OK;
1067         }
1068
1069         LOG_USER("target state: %s",
1070                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1071
1072         if (target->state!=TARGET_HALTED)
1073                 return ERROR_OK;
1074
1075         retval=target->type->arch_state(target);
1076         return retval;
1077 }
1078
1079 /* Single aligned words are guaranteed to use 16 or 32 bit access
1080  * mode respectively, otherwise data is handled as quickly as
1081  * possible
1082  */
1083 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1084 {
1085         int retval;
1086         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1087
1088         if (!target_was_examined(target))
1089         {
1090                 LOG_ERROR("Target not examined yet");
1091                 return ERROR_FAIL;
1092         }
1093
1094         if (size == 0) {
1095                 return ERROR_OK;
1096         }
1097
1098         if ((address + size - 1) < address)
1099         {
1100                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1101                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1102                 return ERROR_FAIL;
1103         }
1104
1105         if (((address % 2) == 0) && (size == 2))
1106         {
1107                 return target_write_memory(target, address, 2, 1, buffer);
1108         }
1109
1110         /* handle unaligned head bytes */
1111         if (address % 4)
1112         {
1113                 u32 unaligned = 4 - (address % 4);
1114
1115                 if (unaligned > size)
1116                         unaligned = size;
1117
1118                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1119                         return retval;
1120
1121                 buffer += unaligned;
1122                 address += unaligned;
1123                 size -= unaligned;
1124         }
1125
1126         /* handle aligned words */
1127         if (size >= 4)
1128         {
1129                 int aligned = size - (size % 4);
1130
1131                 /* use bulk writes above a certain limit. This may have to be changed */
1132                 if (aligned > 128)
1133                 {
1134                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1135                                 return retval;
1136                 }
1137                 else
1138                 {
1139                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1140                                 return retval;
1141                 }
1142
1143                 buffer += aligned;
1144                 address += aligned;
1145                 size -= aligned;
1146         }
1147
1148         /* handle tail writes of less than 4 bytes */
1149         if (size > 0)
1150         {
1151                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1152                         return retval;
1153         }
1154
1155         return ERROR_OK;
1156 }
1157
1158 /* Single aligned words are guaranteed to use 16 or 32 bit access
1159  * mode respectively, otherwise data is handled as quickly as
1160  * possible
1161  */
1162 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1163 {
1164         int retval;
1165         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1166
1167         if (!target_was_examined(target))
1168         {
1169                 LOG_ERROR("Target not examined yet");
1170                 return ERROR_FAIL;
1171         }
1172
1173         if (size == 0) {
1174                 return ERROR_OK;
1175         }
1176
1177         if ((address + size - 1) < address)
1178         {
1179                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1180                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1181                 return ERROR_FAIL;
1182         }
1183
1184         if (((address % 2) == 0) && (size == 2))
1185         {
1186                 return target_read_memory(target, address, 2, 1, buffer);
1187         }
1188
1189         /* handle unaligned head bytes */
1190         if (address % 4)
1191         {
1192                 u32 unaligned = 4 - (address % 4);
1193
1194                 if (unaligned > size)
1195                         unaligned = size;
1196
1197                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1198                         return retval;
1199
1200                 buffer += unaligned;
1201                 address += unaligned;
1202                 size -= unaligned;
1203         }
1204
1205         /* handle aligned words */
1206         if (size >= 4)
1207         {
1208                 int aligned = size - (size % 4);
1209
1210                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1211                         return retval;
1212
1213                 buffer += aligned;
1214                 address += aligned;
1215                 size -= aligned;
1216         }
1217
1218         /* handle tail writes of less than 4 bytes */
1219         if (size > 0)
1220         {
1221                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1222                         return retval;
1223         }
1224
1225         return ERROR_OK;
1226 }
1227
1228 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1229 {
1230         u8 *buffer;
1231         int retval;
1232         u32 i;
1233         u32 checksum = 0;
1234         if (!target_was_examined(target))
1235         {
1236                 LOG_ERROR("Target not examined yet");
1237                 return ERROR_FAIL;
1238         }
1239
1240         if ((retval = target->type->checksum_memory(target, address,
1241                 size, &checksum)) != ERROR_OK)
1242         {
1243                 buffer = malloc(size);
1244                 if (buffer == NULL)
1245                 {
1246                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1247                         return ERROR_INVALID_ARGUMENTS;
1248                 }
1249                 retval = target_read_buffer(target, address, size, buffer);
1250                 if (retval != ERROR_OK)
1251                 {
1252                         free(buffer);
1253                         return retval;
1254                 }
1255
1256                 /* convert to target endianess */
1257                 for (i = 0; i < (size/sizeof(u32)); i++)
1258                 {
1259                         u32 target_data;
1260                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1261                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1262                 }
1263
1264                 retval = image_calculate_checksum( buffer, size, &checksum );
1265                 free(buffer);
1266         }
1267
1268         *crc = checksum;
1269
1270         return retval;
1271 }
1272
1273 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1274 {
1275         int retval;
1276         if (!target_was_examined(target))
1277         {
1278                 LOG_ERROR("Target not examined yet");
1279                 return ERROR_FAIL;
1280         }
1281
1282         if (target->type->blank_check_memory == 0)
1283                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284
1285         retval = target->type->blank_check_memory(target, address, size, blank);
1286
1287         return retval;
1288 }
1289
1290 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1291 {
1292         u8 value_buf[4];
1293         if (!target_was_examined(target))
1294         {
1295                 LOG_ERROR("Target not examined yet");
1296                 return ERROR_FAIL;
1297         }
1298
1299         int retval = target_read_memory(target, address, 4, 1, value_buf);
1300
1301         if (retval == ERROR_OK)
1302         {
1303                 *value = target_buffer_get_u32(target, value_buf);
1304                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1305         }
1306         else
1307         {
1308                 *value = 0x0;
1309                 LOG_DEBUG("address: 0x%8.8x failed", address);
1310         }
1311
1312         return retval;
1313 }
1314
1315 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1316 {
1317         u8 value_buf[2];
1318         if (!target_was_examined(target))
1319         {
1320                 LOG_ERROR("Target not examined yet");
1321                 return ERROR_FAIL;
1322         }
1323
1324         int retval = target_read_memory(target, address, 2, 1, value_buf);
1325
1326         if (retval == ERROR_OK)
1327         {
1328                 *value = target_buffer_get_u16(target, value_buf);
1329                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1330         }
1331         else
1332         {
1333                 *value = 0x0;
1334                 LOG_DEBUG("address: 0x%8.8x failed", address);
1335         }
1336
1337         return retval;
1338 }
1339
1340 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1341 {
1342         int retval = target_read_memory(target, address, 1, 1, value);
1343         if (!target_was_examined(target))
1344         {
1345                 LOG_ERROR("Target not examined yet");
1346                 return ERROR_FAIL;
1347         }
1348
1349         if (retval == ERROR_OK)
1350         {
1351                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1352         }
1353         else
1354         {
1355                 *value = 0x0;
1356                 LOG_DEBUG("address: 0x%8.8x failed", address);
1357         }
1358
1359         return retval;
1360 }
1361
1362 int target_write_u32(struct target_s *target, u32 address, u32 value)
1363 {
1364         int retval;
1365         u8 value_buf[4];
1366         if (!target_was_examined(target))
1367         {
1368                 LOG_ERROR("Target not examined yet");
1369                 return ERROR_FAIL;
1370         }
1371
1372         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1373
1374         target_buffer_set_u32(target, value_buf, value);
1375         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1376         {
1377                 LOG_DEBUG("failed: %i", retval);
1378         }
1379
1380         return retval;
1381 }
1382
1383 int target_write_u16(struct target_s *target, u32 address, u16 value)
1384 {
1385         int retval;
1386         u8 value_buf[2];
1387         if (!target_was_examined(target))
1388         {
1389                 LOG_ERROR("Target not examined yet");
1390                 return ERROR_FAIL;
1391         }
1392
1393         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1394
1395         target_buffer_set_u16(target, value_buf, value);
1396         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1397         {
1398                 LOG_DEBUG("failed: %i", retval);
1399         }
1400
1401         return retval;
1402 }
1403
1404 int target_write_u8(struct target_s *target, u32 address, u8 value)
1405 {
1406         int retval;
1407         if (!target_was_examined(target))
1408         {
1409                 LOG_ERROR("Target not examined yet");
1410                 return ERROR_FAIL;
1411         }
1412
1413         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1414
1415         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1416         {
1417                 LOG_DEBUG("failed: %i", retval);
1418         }
1419
1420         return retval;
1421 }
1422
1423 int target_register_user_commands(struct command_context_s *cmd_ctx)
1424 {
1425         int retval = ERROR_OK;
1426
1427
1428         /* script procedures */
1429         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1430         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1431         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1432
1433         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1434                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1435
1436         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1437                         "loads active fast load image to current target - mainly for profiling purposes");
1438
1439
1440         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1441         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1442         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1443         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1444         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1445         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1446         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1447         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1448         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1449
1450         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1451         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1452         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1453
1454         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1455         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1456         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1457
1458         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1459         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1460         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1461         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1462
1463         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1464         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1465         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1466         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1467
1468         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1469                 return retval;
1470         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1471                 return retval;
1472
1473         return retval;
1474 }
1475
1476 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1477 {
1478         target_t *target = all_targets;
1479
1480         if (argc == 1)
1481         {
1482                 target = get_target(args[0]);
1483                 if (target == NULL) {
1484                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1485                         goto DumpTargets;
1486                 }
1487                 if (!target->tap->enabled) {
1488                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1489                                         "can't be the current target\n",
1490                                         target->tap->dotted_name);
1491                         return ERROR_FAIL;
1492                 }
1493
1494                 cmd_ctx->current_target = target->target_number;
1495                 return ERROR_OK;
1496         }
1497 DumpTargets:
1498
1499         target = all_targets;
1500         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1501         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1502         while (target)
1503         {
1504                 const char *state;
1505                 char marker = ' ';
1506
1507                 if (target->tap->enabled)
1508                         state = Jim_Nvp_value2name_simple(nvp_target_state,
1509                                         target->state)->name;
1510                 else
1511                         state = "tap-disabled";
1512
1513                 if (cmd_ctx->current_target == target->target_number)
1514                         marker = '*';
1515
1516                 /* keep columns lined up to match the headers above */
1517                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1518                                           target->target_number,
1519                                           marker,
1520                                           target->cmd_name,
1521                                           target_get_name(target),
1522                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1523                                                                 target->endianness)->name,
1524                                           target->tap->dotted_name,
1525                                           state);
1526                 target = target->next;
1527         }
1528
1529         return ERROR_OK;
1530 }
1531
1532 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1533
1534 static int powerDropout;
1535 static int srstAsserted;
1536
1537 static int runPowerRestore;
1538 static int runPowerDropout;
1539 static int runSrstAsserted;
1540 static int runSrstDeasserted;
1541
1542 static int sense_handler(void)
1543 {
1544         static int prevSrstAsserted = 0;
1545         static int prevPowerdropout = 0;
1546
1547         int retval;
1548         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1549                 return retval;
1550
1551         int powerRestored;
1552         powerRestored = prevPowerdropout && !powerDropout;
1553         if (powerRestored)
1554         {
1555                 runPowerRestore = 1;
1556         }
1557
1558         long long current = timeval_ms();
1559         static long long lastPower = 0;
1560         int waitMore = lastPower + 2000 > current;
1561         if (powerDropout && !waitMore)
1562         {
1563                 runPowerDropout = 1;
1564                 lastPower = current;
1565         }
1566
1567         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1568                 return retval;
1569
1570         int srstDeasserted;
1571         srstDeasserted = prevSrstAsserted && !srstAsserted;
1572
1573         static long long lastSrst = 0;
1574         waitMore = lastSrst + 2000 > current;
1575         if (srstDeasserted && !waitMore)
1576         {
1577                 runSrstDeasserted = 1;
1578                 lastSrst = current;
1579         }
1580
1581         if (!prevSrstAsserted && srstAsserted)
1582         {
1583                 runSrstAsserted = 1;
1584         }
1585
1586         prevSrstAsserted = srstAsserted;
1587         prevPowerdropout = powerDropout;
1588
1589         if (srstDeasserted || powerRestored)
1590         {
1591                 /* Other than logging the event we can't do anything here.
1592                  * Issuing a reset is a particularly bad idea as we might
1593                  * be inside a reset already.
1594                  */
1595         }
1596
1597         return ERROR_OK;
1598 }
1599
1600 /* process target state changes */
1601 int handle_target(void *priv)
1602 {
1603         int retval = ERROR_OK;
1604
1605         /* we do not want to recurse here... */
1606         static int recursive = 0;
1607         if (! recursive)
1608         {
1609                 recursive = 1;
1610                 sense_handler();
1611                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1612                  * We need to avoid an infinite loop/recursion here and we do that by
1613                  * clearing the flags after running these events.
1614                  */
1615                 int did_something = 0;
1616                 if (runSrstAsserted)
1617                 {
1618                         Jim_Eval( interp, "srst_asserted");
1619                         did_something = 1;
1620                 }
1621                 if (runSrstDeasserted)
1622                 {
1623                         Jim_Eval( interp, "srst_deasserted");
1624                         did_something = 1;
1625                 }
1626                 if (runPowerDropout)
1627                 {
1628                         Jim_Eval( interp, "power_dropout");
1629                         did_something = 1;
1630                 }
1631                 if (runPowerRestore)
1632                 {
1633                         Jim_Eval( interp, "power_restore");
1634                         did_something = 1;
1635                 }
1636
1637                 if (did_something)
1638                 {
1639                         /* clear detect flags */
1640                         sense_handler();
1641                 }
1642
1643                 /* clear action flags */
1644
1645                 runSrstAsserted=0;
1646                 runSrstDeasserted=0;
1647                 runPowerRestore=0;
1648                 runPowerDropout=0;
1649
1650                 recursive = 0;
1651         }
1652
1653         target_t *target = all_targets;
1654
1655         while (target)
1656         {
1657
1658                 /* only poll target if we've got power and srst isn't asserted */
1659                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1660                 {
1661                         /* polling may fail silently until the target has been examined */
1662                         if((retval = target_poll(target)) != ERROR_OK)
1663                                 return retval;
1664                 }
1665
1666                 target = target->next;
1667         }
1668
1669         return retval;
1670 }
1671
1672 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1673 {
1674         target_t *target;
1675         reg_t *reg = NULL;
1676         int count = 0;
1677         char *value;
1678
1679         LOG_DEBUG("-");
1680
1681         target = get_current_target(cmd_ctx);
1682
1683         /* list all available registers for the current target */
1684         if (argc == 0)
1685         {
1686                 reg_cache_t *cache = target->reg_cache;
1687
1688                 count = 0;
1689                 while(cache)
1690                 {
1691                         int i;
1692                         for (i = 0; i < cache->num_regs; i++)
1693                         {
1694                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1695                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1696                                 free(value);
1697                         }
1698                         cache = cache->next;
1699                 }
1700
1701                 return ERROR_OK;
1702         }
1703
1704         /* access a single register by its ordinal number */
1705         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1706         {
1707                 unsigned num;
1708                 int retval = parse_uint(args[0], &num);
1709                 if (ERROR_OK != retval)
1710                         return ERROR_COMMAND_SYNTAX_ERROR;
1711
1712                 reg_cache_t *cache = target->reg_cache;
1713                 count = 0;
1714                 while(cache)
1715                 {
1716                         int i;
1717                         for (i = 0; i < cache->num_regs; i++)
1718                         {
1719                                 if (count++ == (int)num)
1720                                 {
1721                                         reg = &cache->reg_list[i];
1722                                         break;
1723                                 }
1724                         }
1725                         if (reg)
1726                                 break;
1727                         cache = cache->next;
1728                 }
1729
1730                 if (!reg)
1731                 {
1732                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1733                         return ERROR_OK;
1734                 }
1735         } else /* access a single register by its name */
1736         {
1737                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1738
1739                 if (!reg)
1740                 {
1741                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1742                         return ERROR_OK;
1743                 }
1744         }
1745
1746         /* display a register */
1747         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1748         {
1749                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1750                         reg->valid = 0;
1751
1752                 if (reg->valid == 0)
1753                 {
1754                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1755                         arch_type->get(reg);
1756                 }
1757                 value = buf_to_str(reg->value, reg->size, 16);
1758                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1759                 free(value);
1760                 return ERROR_OK;
1761         }
1762
1763         /* set register value */
1764         if (argc == 2)
1765         {
1766                 u8 *buf = malloc(CEIL(reg->size, 8));
1767                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1768
1769                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1770                 arch_type->set(reg, buf);
1771
1772                 value = buf_to_str(reg->value, reg->size, 16);
1773                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1774                 free(value);
1775
1776                 free(buf);
1777
1778                 return ERROR_OK;
1779         }
1780
1781         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1782
1783         return ERROR_OK;
1784 }
1785
1786 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1787 {
1788         int retval = ERROR_OK;
1789         target_t *target = get_current_target(cmd_ctx);
1790
1791         if (argc == 0)
1792         {
1793                 command_print(cmd_ctx, "background polling: %s",
1794                                 target_continous_poll ?  "on" : "off");
1795                 if ((retval = target_poll(target)) != ERROR_OK)
1796                         return retval;
1797                 if ((retval = target_arch_state(target)) != ERROR_OK)
1798                         return retval;
1799
1800         }
1801         else if (argc==1)
1802         {
1803                 if (strcmp(args[0], "on") == 0)
1804                 {
1805                         target_continous_poll = 1;
1806                 }
1807                 else if (strcmp(args[0], "off") == 0)
1808                 {
1809                         target_continous_poll = 0;
1810                 }
1811                 else
1812                 {
1813                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1814                 }
1815         } else
1816         {
1817                 return ERROR_COMMAND_SYNTAX_ERROR;
1818         }
1819
1820         return retval;
1821 }
1822
1823 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1824 {
1825         if (argc > 1)
1826                 return ERROR_COMMAND_SYNTAX_ERROR;
1827
1828         unsigned ms = 5000;
1829         if (1 == argc)
1830         {
1831                 int retval = parse_uint(args[0], &ms);
1832                 if (ERROR_OK != retval)
1833                 {
1834                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1835                         return ERROR_COMMAND_SYNTAX_ERROR;
1836                 }
1837                 // convert seconds (given) to milliseconds (needed)
1838                 ms *= 1000;
1839         }
1840
1841         target_t *target = get_current_target(cmd_ctx);
1842         return target_wait_state(target, TARGET_HALTED, ms);
1843 }
1844
1845 /* wait for target state to change. The trick here is to have a low
1846  * latency for short waits and not to suck up all the CPU time
1847  * on longer waits.
1848  *
1849  * After 500ms, keep_alive() is invoked
1850  */
1851 int target_wait_state(target_t *target, enum target_state state, int ms)
1852 {
1853         int retval;
1854         long long then=0, cur;
1855         int once=1;
1856
1857         for (;;)
1858         {
1859                 if ((retval=target_poll(target))!=ERROR_OK)
1860                         return retval;
1861                 if (target->state == state)
1862                 {
1863                         break;
1864                 }
1865                 cur = timeval_ms();
1866                 if (once)
1867                 {
1868                         once=0;
1869                         then = timeval_ms();
1870                         LOG_DEBUG("waiting for target %s...",
1871                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1872                 }
1873
1874                 if (cur-then>500)
1875                 {
1876                         keep_alive();
1877                 }
1878
1879                 if ((cur-then)>ms)
1880                 {
1881                         LOG_ERROR("timed out while waiting for target %s",
1882                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1883                         return ERROR_FAIL;
1884                 }
1885         }
1886
1887         return ERROR_OK;
1888 }
1889
1890 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1891 {
1892         int retval;
1893         target_t *target = get_current_target(cmd_ctx);
1894
1895         LOG_DEBUG("-");
1896
1897         if ((retval = target_halt(target)) != ERROR_OK)
1898         {
1899                 return retval;
1900         }
1901
1902         if (argc == 1)
1903         {
1904                 int wait;
1905                 char *end;
1906
1907                 wait = strtoul(args[0], &end, 0);
1908                 if (!*end && !wait)
1909                         return ERROR_OK;
1910         }
1911
1912         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1913 }
1914
1915 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1916 {
1917         target_t *target = get_current_target(cmd_ctx);
1918
1919         LOG_USER("requesting target halt and executing a soft reset");
1920
1921         target->type->soft_reset_halt(target);
1922
1923         return ERROR_OK;
1924 }
1925
1926 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1927 {
1928         if (argc > 1)
1929                 return ERROR_COMMAND_SYNTAX_ERROR;
1930
1931         enum target_reset_mode reset_mode = RESET_RUN;
1932         if (argc == 1)
1933         {
1934                 const Jim_Nvp *n;
1935                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1936                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1937                         return ERROR_COMMAND_SYNTAX_ERROR;
1938                 }
1939                 reset_mode = n->value;
1940         }
1941
1942         /* reset *all* targets */
1943         return target_process_reset(cmd_ctx, reset_mode);
1944 }
1945
1946
1947 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1948 {
1949         if (argc > 1)
1950                 return ERROR_COMMAND_SYNTAX_ERROR;
1951
1952         target_t *target = get_current_target(cmd_ctx);
1953         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
1954
1955         /* with no args, resume from current pc, addr = 0,
1956          * with one arguments, addr = args[0],
1957          * handle breakpoints, not debugging */
1958         u32 addr = 0;
1959         if (argc == 1)
1960                 addr = strtoul(args[0], NULL, 0);
1961
1962         return target_resume(target, 0, addr, 1, 0);
1963 }
1964
1965 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1966 {
1967         if (argc > 1)
1968                 return ERROR_COMMAND_SYNTAX_ERROR;
1969
1970         LOG_DEBUG("-");
1971
1972         /* with no args, step from current pc, addr = 0,
1973          * with one argument addr = args[0],
1974          * handle breakpoints, debugging */
1975         u32 addr = 0;
1976         if (argc == 1)
1977                 addr = strtoul(args[0], NULL, 0);
1978
1979         target_t *target = get_current_target(cmd_ctx);
1980         return target->type->step(target, 0, addr, 1);
1981 }
1982
1983 static void handle_md_output(struct command_context_s *cmd_ctx,
1984                 struct target_s *target, u32 address, unsigned size,
1985                 unsigned count, const u8 *buffer)
1986 {
1987         const unsigned line_bytecnt = 32;
1988         unsigned line_modulo = line_bytecnt / size;
1989
1990         char output[line_bytecnt * 4 + 1];
1991         unsigned output_len = 0;
1992
1993         const char *value_fmt;
1994         switch (size) {
1995         case 4: value_fmt = "%8.8x "; break;
1996         case 2: value_fmt = "%4.2x "; break;
1997         case 1: value_fmt = "%2.2x "; break;
1998         default:
1999                 LOG_ERROR("invalid memory read size: %u", size);
2000                 exit(-1);
2001         }
2002
2003         for (unsigned i = 0; i < count; i++)
2004         {
2005                 if (i % line_modulo == 0)
2006                 {
2007                         output_len += snprintf(output + output_len,
2008                                         sizeof(output) - output_len,
2009                                         "0x%8.8x: ", address + (i*size));
2010                 }
2011
2012                 u32 value=0;
2013                 const u8 *value_ptr = buffer + i * size;
2014                 switch (size) {
2015                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2016                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2017                 case 1: value = *value_ptr;
2018                 }
2019                 output_len += snprintf(output + output_len,
2020                                 sizeof(output) - output_len,
2021                                 value_fmt, value);
2022
2023                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2024                 {
2025                         command_print(cmd_ctx, "%s", output);
2026                         output_len = 0;
2027                 }
2028         }
2029 }
2030
2031 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2032 {
2033         if (argc < 1)
2034                 return ERROR_COMMAND_SYNTAX_ERROR;
2035
2036         unsigned size = 0;
2037         switch (cmd[2]) {
2038         case 'w': size = 4; break;
2039         case 'h': size = 2; break;
2040         case 'b': size = 1; break;
2041         default: return ERROR_COMMAND_SYNTAX_ERROR;
2042         }
2043
2044         u32 address = strtoul(args[0], NULL, 0);
2045
2046         unsigned count = 1;
2047         if (argc == 2)
2048                 count = strtoul(args[1], NULL, 0);
2049
2050         u8 *buffer = calloc(count, size);
2051
2052         target_t *target = get_current_target(cmd_ctx);
2053         int retval = target_read_memory(target,
2054                                 address, size, count, buffer);
2055         if (ERROR_OK == retval)
2056                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2057
2058         free(buffer);
2059
2060         return retval;
2061 }
2062
2063 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2064 {
2065         u32 address = 0;
2066         u32 value = 0;
2067         int count = 1;
2068         int i;
2069         int wordsize;
2070         target_t *target = get_current_target(cmd_ctx);
2071         u8 value_buf[4];
2072
2073          if ((argc < 2) || (argc > 3))
2074                 return ERROR_COMMAND_SYNTAX_ERROR;
2075
2076         address = strtoul(args[0], NULL, 0);
2077         value = strtoul(args[1], NULL, 0);
2078         if (argc == 3)
2079                 count = strtoul(args[2], NULL, 0);
2080
2081         switch (cmd[2])
2082         {
2083                 case 'w':
2084                         wordsize = 4;
2085                         target_buffer_set_u32(target, value_buf, value);
2086                         break;
2087                 case 'h':
2088                         wordsize = 2;
2089                         target_buffer_set_u16(target, value_buf, value);
2090                         break;
2091                 case 'b':
2092                         wordsize = 1;
2093                         value_buf[0] = value;
2094                         break;
2095                 default:
2096                         return ERROR_COMMAND_SYNTAX_ERROR;
2097         }
2098         for (i=0; i<count; i++)
2099         {
2100                 int retval = target_write_memory(target,
2101                                 address + i * wordsize, wordsize, 1, value_buf);
2102                 if (ERROR_OK != retval)
2103                         return retval;
2104                 keep_alive();
2105         }
2106
2107         return ERROR_OK;
2108
2109 }
2110
2111 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2112 {
2113         u8 *buffer;
2114         u32 buf_cnt;
2115         u32 image_size;
2116         u32 min_address=0;
2117         u32 max_address=0xffffffff;
2118         int i;
2119         int retval, retvaltemp;
2120
2121         image_t image;
2122
2123         duration_t duration;
2124         char *duration_text;
2125
2126         target_t *target = get_current_target(cmd_ctx);
2127
2128         if ((argc < 1)||(argc > 5))
2129         {
2130                 return ERROR_COMMAND_SYNTAX_ERROR;
2131         }
2132
2133         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2134         if (argc >= 2)
2135         {
2136                 image.base_address_set = 1;
2137                 image.base_address = strtoul(args[1], NULL, 0);
2138         }
2139         else
2140         {
2141                 image.base_address_set = 0;
2142         }
2143
2144
2145         image.start_address_set = 0;
2146
2147         if (argc>=4)
2148         {
2149                 min_address=strtoul(args[3], NULL, 0);
2150         }
2151         if (argc>=5)
2152         {
2153                 max_address=strtoul(args[4], NULL, 0)+min_address;
2154         }
2155
2156         if (min_address>max_address)
2157         {
2158                 return ERROR_COMMAND_SYNTAX_ERROR;
2159         }
2160
2161         duration_start_measure(&duration);
2162
2163         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2164         {
2165                 return ERROR_OK;
2166         }
2167
2168         image_size = 0x0;
2169         retval = ERROR_OK;
2170         for (i = 0; i < image.num_sections; i++)
2171         {
2172                 buffer = malloc(image.sections[i].size);
2173                 if (buffer == NULL)
2174                 {
2175                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2176                         break;
2177                 }
2178
2179                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2180                 {
2181                         free(buffer);
2182                         break;
2183                 }
2184
2185                 u32 offset=0;
2186                 u32 length=buf_cnt;
2187
2188                 /* DANGER!!! beware of unsigned comparision here!!! */
2189
2190                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2191                                 (image.sections[i].base_address<max_address))
2192                 {
2193                         if (image.sections[i].base_address<min_address)
2194                         {
2195                                 /* clip addresses below */
2196                                 offset+=min_address-image.sections[i].base_address;
2197                                 length-=offset;
2198                         }
2199
2200                         if (image.sections[i].base_address+buf_cnt>max_address)
2201                         {
2202                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2203                         }
2204
2205                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2206                         {
2207                                 free(buffer);
2208                                 break;
2209                         }
2210                         image_size += length;
2211                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2212                 }
2213
2214                 free(buffer);
2215         }
2216
2217         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2218         {
2219                 image_close(&image);
2220                 return retvaltemp;
2221         }
2222
2223         if (retval==ERROR_OK)
2224         {
2225                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2226         }
2227         free(duration_text);
2228
2229         image_close(&image);
2230
2231         return retval;
2232
2233 }
2234
2235 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2236 {
2237         fileio_t fileio;
2238
2239         u32 address;
2240         u32 size;
2241         u8 buffer[560];
2242         int retval=ERROR_OK, retvaltemp;
2243
2244         duration_t duration;
2245         char *duration_text;
2246
2247         target_t *target = get_current_target(cmd_ctx);
2248
2249         if (argc != 3)
2250         {
2251                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2252                 return ERROR_OK;
2253         }
2254
2255         address = strtoul(args[1], NULL, 0);
2256         size = strtoul(args[2], NULL, 0);
2257
2258         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2259         {
2260                 return ERROR_OK;
2261         }
2262
2263         duration_start_measure(&duration);
2264
2265         while (size > 0)
2266         {
2267                 u32 size_written;
2268                 u32 this_run_size = (size > 560) ? 560 : size;
2269
2270                 retval = target_read_buffer(target, address, this_run_size, buffer);
2271                 if (retval != ERROR_OK)
2272                 {
2273                         break;
2274                 }
2275
2276                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2277                 if (retval != ERROR_OK)
2278                 {
2279                         break;
2280                 }
2281
2282                 size -= this_run_size;
2283                 address += this_run_size;
2284         }
2285
2286         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2287                 return retvaltemp;
2288
2289         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2290                 return retvaltemp;
2291
2292         if (retval==ERROR_OK)
2293         {
2294                 command_print(cmd_ctx, "dumped %lld byte in %s",
2295                                 fileio.size, duration_text);
2296                 free(duration_text);
2297         }
2298
2299         return retval;
2300 }
2301
2302 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2303 {
2304         u8 *buffer;
2305         u32 buf_cnt;
2306         u32 image_size;
2307         int i;
2308         int retval, retvaltemp;
2309         u32 checksum = 0;
2310         u32 mem_checksum = 0;
2311
2312         image_t image;
2313
2314         duration_t duration;
2315         char *duration_text;
2316
2317         target_t *target = get_current_target(cmd_ctx);
2318
2319         if (argc < 1)
2320         {
2321                 return ERROR_COMMAND_SYNTAX_ERROR;
2322         }
2323
2324         if (!target)
2325         {
2326                 LOG_ERROR("no target selected");
2327                 return ERROR_FAIL;
2328         }
2329
2330         duration_start_measure(&duration);
2331
2332         if (argc >= 2)
2333         {
2334                 image.base_address_set = 1;
2335                 image.base_address = strtoul(args[1], NULL, 0);
2336         }
2337         else
2338         {
2339                 image.base_address_set = 0;
2340                 image.base_address = 0x0;
2341         }
2342
2343         image.start_address_set = 0;
2344
2345         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2346         {
2347                 return retval;
2348         }
2349
2350         image_size = 0x0;
2351         retval=ERROR_OK;
2352         for (i = 0; i < image.num_sections; i++)
2353         {
2354                 buffer = malloc(image.sections[i].size);
2355                 if (buffer == NULL)
2356                 {
2357                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2358                         break;
2359                 }
2360                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2361                 {
2362                         free(buffer);
2363                         break;
2364                 }
2365
2366                 if (verify)
2367                 {
2368                         /* calculate checksum of image */
2369                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2370
2371                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2372                         if( retval != ERROR_OK )
2373                         {
2374                                 free(buffer);
2375                                 break;
2376                         }
2377
2378                         if( checksum != mem_checksum )
2379                         {
2380                                 /* failed crc checksum, fall back to a binary compare */
2381                                 u8 *data;
2382
2383                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2384
2385                                 data = (u8*)malloc(buf_cnt);
2386
2387                                 /* Can we use 32bit word accesses? */
2388                                 int size = 1;
2389                                 int count = buf_cnt;
2390                                 if ((count % 4) == 0)
2391                                 {
2392                                         size *= 4;
2393                                         count /= 4;
2394                                 }
2395                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2396                                 if (retval == ERROR_OK)
2397                                 {
2398                                         u32 t;
2399                                         for (t = 0; t < buf_cnt; t++)
2400                                         {
2401                                                 if (data[t] != buffer[t])
2402                                                 {
2403                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2404                                                         free(data);
2405                                                         free(buffer);
2406                                                         retval=ERROR_FAIL;
2407                                                         goto done;
2408                                                 }
2409                                                 if ((t%16384)==0)
2410                                                 {
2411                                                         keep_alive();
2412                                                 }
2413                                         }
2414                                 }
2415
2416                                 free(data);
2417                         }
2418                 } else
2419                 {
2420                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2421                 }
2422
2423                 free(buffer);
2424                 image_size += buf_cnt;
2425         }
2426 done:
2427
2428         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2429         {
2430                 image_close(&image);
2431                 return retvaltemp;
2432         }
2433
2434         if (retval==ERROR_OK)
2435         {
2436                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2437         }
2438         free(duration_text);
2439
2440         image_close(&image);
2441
2442         return retval;
2443 }
2444
2445 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2446 {
2447         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2448 }
2449
2450 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2451 {
2452         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2453 }
2454
2455 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2456 {
2457         target_t *target = get_current_target(cmd_ctx);
2458         breakpoint_t *breakpoint = target->breakpoints;
2459         while (breakpoint)
2460         {
2461                 if (breakpoint->type == BKPT_SOFT)
2462                 {
2463                         char* buf = buf_to_str(breakpoint->orig_instr,
2464                                         breakpoint->length, 16);
2465                         command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s",
2466                                         breakpoint->address, breakpoint->length,
2467                                         breakpoint->set, buf);
2468                         free(buf);
2469                 }
2470                 else
2471                 {
2472                         command_print(cmd_ctx, "0x%8.8x, 0x%x, %i",
2473                                         breakpoint->address, breakpoint->length, breakpoint->set);
2474                 }
2475
2476                 breakpoint = breakpoint->next;
2477         }
2478         return ERROR_OK;
2479 }
2480
2481 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2482                 u32 addr, u32 length, int hw)
2483 {
2484         target_t *target = get_current_target(cmd_ctx);
2485         int retval = breakpoint_add(target, addr, length, hw);
2486         if (ERROR_OK == retval)
2487                 command_print(cmd_ctx, "breakpoint set at 0x%8.8x", addr);
2488         else
2489                 LOG_ERROR("Failure setting breakpoint");
2490         return retval;
2491 }
2492
2493 static int handle_bp_command(struct command_context_s *cmd_ctx,
2494                 char *cmd, char **args, int argc)
2495 {
2496         if (argc == 0)
2497                 return handle_bp_command_list(cmd_ctx);
2498
2499         if (argc < 2 || argc > 3)
2500         {
2501                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2502                 return ERROR_COMMAND_SYNTAX_ERROR;
2503         }
2504
2505         u32 addr = strtoul(args[0], NULL, 0);
2506         u32 length = strtoul(args[1], NULL, 0);
2507
2508         int hw = BKPT_SOFT;
2509         if (argc == 3)
2510         {
2511                 if (strcmp(args[2], "hw") == 0)
2512                         hw = BKPT_HARD;
2513                 else
2514                         return ERROR_COMMAND_SYNTAX_ERROR;
2515         }
2516
2517         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2518 }
2519
2520 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2521 {
2522         target_t *target = get_current_target(cmd_ctx);
2523
2524         if (argc > 0)
2525                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2526
2527         return ERROR_OK;
2528 }
2529
2530 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2531 {
2532         target_t *target = get_current_target(cmd_ctx);
2533         int retval;
2534
2535         if (argc == 0)
2536         {
2537                 watchpoint_t *watchpoint = target->watchpoints;
2538
2539                 while (watchpoint)
2540                 {
2541                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2542                         watchpoint = watchpoint->next;
2543                 }
2544         }
2545         else if (argc >= 2)
2546         {
2547                 enum watchpoint_rw type = WPT_ACCESS;
2548                 u32 data_value = 0x0;
2549                 u32 data_mask = 0xffffffff;
2550
2551                 if (argc >= 3)
2552                 {
2553                         switch(args[2][0])
2554                         {
2555                                 case 'r':
2556                                         type = WPT_READ;
2557                                         break;
2558                                 case 'w':
2559                                         type = WPT_WRITE;
2560                                         break;
2561                                 case 'a':
2562                                         type = WPT_ACCESS;
2563                                         break;
2564                                 default:
2565                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2566                                         return ERROR_OK;
2567                         }
2568                 }
2569                 if (argc >= 4)
2570                 {
2571                         data_value = strtoul(args[3], NULL, 0);
2572                 }
2573                 if (argc >= 5)
2574                 {
2575                         data_mask = strtoul(args[4], NULL, 0);
2576                 }
2577
2578                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2579                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2580                 {
2581                         LOG_ERROR("Failure setting breakpoints");
2582                 }
2583         }
2584         else
2585         {
2586                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2587         }
2588
2589         return ERROR_OK;
2590 }
2591
2592 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2593 {
2594         if (argc != 1)
2595                 return ERROR_COMMAND_SYNTAX_ERROR;
2596
2597         target_t *target = get_current_target(cmd_ctx);
2598         watchpoint_remove(target, strtoul(args[0], NULL, 0));
2599
2600         return ERROR_OK;
2601 }
2602
2603
2604 /**
2605  * Translate a virtual address to a physical address.
2606  *
2607  * The low-level target implementation must have logged a detailed error
2608  * which is forwarded to telnet/GDB session.
2609  */
2610 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2611                 char *cmd, char **args, int argc)
2612 {
2613         if (argc != 1)
2614                 return ERROR_COMMAND_SYNTAX_ERROR;
2615
2616         target_t *target = get_current_target(cmd_ctx);
2617         u32 va = strtoul(args[0], NULL, 0);
2618         u32 pa;
2619
2620         int retval = target->type->virt2phys(target, va, &pa);
2621         if (retval == ERROR_OK)
2622                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2623
2624         return retval;
2625 }
2626
2627 static void writeData(FILE *f, const void *data, size_t len)
2628 {
2629         size_t written = fwrite(data, 1, len, f);
2630         if (written != len)
2631                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2632 }
2633
2634 static void writeLong(FILE *f, int l)
2635 {
2636         int i;
2637         for (i=0; i<4; i++)
2638         {
2639                 char c=(l>>(i*8))&0xff;
2640                 writeData(f, &c, 1);
2641         }
2642
2643 }
2644
2645 static void writeString(FILE *f, char *s)
2646 {
2647         writeData(f, s, strlen(s));
2648 }
2649
2650 /* Dump a gmon.out histogram file. */
2651 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2652 {
2653         u32 i;
2654         FILE *f=fopen(filename, "w");
2655         if (f==NULL)
2656                 return;
2657         writeString(f, "gmon");
2658         writeLong(f, 0x00000001); /* Version */
2659         writeLong(f, 0); /* padding */
2660         writeLong(f, 0); /* padding */
2661         writeLong(f, 0); /* padding */
2662
2663         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2664         writeData(f, &zero, 1);
2665
2666         /* figure out bucket size */
2667         u32 min=samples[0];
2668         u32 max=samples[0];
2669         for (i=0; i<sampleNum; i++)
2670         {
2671                 if (min>samples[i])
2672                 {
2673                         min=samples[i];
2674                 }
2675                 if (max<samples[i])
2676                 {
2677                         max=samples[i];
2678                 }
2679         }
2680
2681         int addressSpace=(max-min+1);
2682
2683         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2684         u32 length = addressSpace;
2685         if (length > maxBuckets)
2686         {
2687                 length=maxBuckets;
2688         }
2689         int *buckets=malloc(sizeof(int)*length);
2690         if (buckets==NULL)
2691         {
2692                 fclose(f);
2693                 return;
2694         }
2695         memset(buckets, 0, sizeof(int)*length);
2696         for (i=0; i<sampleNum;i++)
2697         {
2698                 u32 address=samples[i];
2699                 long long a=address-min;
2700                 long long b=length-1;
2701                 long long c=addressSpace-1;
2702                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2703                 buckets[index]++;
2704         }
2705
2706         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2707         writeLong(f, min);                      /* low_pc */
2708         writeLong(f, max);                      /* high_pc */
2709         writeLong(f, length);           /* # of samples */
2710         writeLong(f, 64000000);         /* 64MHz */
2711         writeString(f, "seconds");
2712         for (i=0; i<(15-strlen("seconds")); i++)
2713                 writeData(f, &zero, 1);
2714         writeString(f, "s");
2715
2716         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2717
2718         char *data=malloc(2*length);
2719         if (data!=NULL)
2720         {
2721                 for (i=0; i<length;i++)
2722                 {
2723                         int val;
2724                         val=buckets[i];
2725                         if (val>65535)
2726                         {
2727                                 val=65535;
2728                         }
2729                         data[i*2]=val&0xff;
2730                         data[i*2+1]=(val>>8)&0xff;
2731                 }
2732                 free(buckets);
2733                 writeData(f, data, length * 2);
2734                 free(data);
2735         } else
2736         {
2737                 free(buckets);
2738         }
2739
2740         fclose(f);
2741 }
2742
2743 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2744 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2745 {
2746         target_t *target = get_current_target(cmd_ctx);
2747         struct timeval timeout, now;
2748
2749         gettimeofday(&timeout, NULL);
2750         if (argc!=2)
2751         {
2752                 return ERROR_COMMAND_SYNTAX_ERROR;
2753         }
2754         char *end;
2755         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2756         if (*end)
2757         {
2758                 return ERROR_OK;
2759         }
2760
2761         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2762
2763         static const int maxSample=10000;
2764         u32 *samples=malloc(sizeof(u32)*maxSample);
2765         if (samples==NULL)
2766                 return ERROR_OK;
2767
2768         int numSamples=0;
2769         int retval=ERROR_OK;
2770         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2771         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2772
2773         for (;;)
2774         {
2775                 target_poll(target);
2776                 if (target->state == TARGET_HALTED)
2777                 {
2778                         u32 t=*((u32 *)reg->value);
2779                         samples[numSamples++]=t;
2780                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2781                         target_poll(target);
2782                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2783                 } else if (target->state == TARGET_RUNNING)
2784                 {
2785                         /* We want to quickly sample the PC. */
2786                         if((retval = target_halt(target)) != ERROR_OK)
2787                         {
2788                                 free(samples);
2789                                 return retval;
2790                         }
2791                 } else
2792                 {
2793                         command_print(cmd_ctx, "Target not halted or running");
2794                         retval=ERROR_OK;
2795                         break;
2796                 }
2797                 if (retval!=ERROR_OK)
2798                 {
2799                         break;
2800                 }
2801
2802                 gettimeofday(&now, NULL);
2803                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2804                 {
2805                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2806                         if((retval = target_poll(target)) != ERROR_OK)
2807                         {
2808                                 free(samples);
2809                                 return retval;
2810                         }
2811                         if (target->state == TARGET_HALTED)
2812                         {
2813                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2814                         }
2815                         if((retval = target_poll(target)) != ERROR_OK)
2816                         {
2817                                 free(samples);
2818                                 return retval;
2819                         }
2820                         writeGmon(samples, numSamples, args[1]);
2821                         command_print(cmd_ctx, "Wrote %s", args[1]);
2822                         break;
2823                 }
2824         }
2825         free(samples);
2826
2827         return ERROR_OK;
2828 }
2829
2830 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2831 {
2832         char *namebuf;
2833         Jim_Obj *nameObjPtr, *valObjPtr;
2834         int result;
2835
2836         namebuf = alloc_printf("%s(%d)", varname, idx);
2837         if (!namebuf)
2838                 return JIM_ERR;
2839
2840         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2841         valObjPtr = Jim_NewIntObj(interp, val);
2842         if (!nameObjPtr || !valObjPtr)
2843         {
2844                 free(namebuf);
2845                 return JIM_ERR;
2846         }
2847
2848         Jim_IncrRefCount(nameObjPtr);
2849         Jim_IncrRefCount(valObjPtr);
2850         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2851         Jim_DecrRefCount(interp, nameObjPtr);
2852         Jim_DecrRefCount(interp, valObjPtr);
2853         free(namebuf);
2854         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2855         return result;
2856 }
2857
2858 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2859 {
2860         command_context_t *context;
2861         target_t *target;
2862
2863         context = Jim_GetAssocData(interp, "context");
2864         if (context == NULL)
2865         {
2866                 LOG_ERROR("mem2array: no command context");
2867                 return JIM_ERR;
2868         }
2869         target = get_current_target(context);
2870         if (target == NULL)
2871         {
2872                 LOG_ERROR("mem2array: no current target");
2873                 return JIM_ERR;
2874         }
2875
2876         return  target_mem2array(interp, target, argc-1, argv+1);
2877 }
2878
2879 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2880 {
2881         long l;
2882         u32 width;
2883         int len;
2884         u32 addr;
2885         u32 count;
2886         u32 v;
2887         const char *varname;
2888         u8 buffer[4096];
2889         int  n, e, retval;
2890         u32 i;
2891
2892         /* argv[1] = name of array to receive the data
2893          * argv[2] = desired width
2894          * argv[3] = memory address
2895          * argv[4] = count of times to read
2896          */
2897         if (argc != 4) {
2898                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2899                 return JIM_ERR;
2900         }
2901         varname = Jim_GetString(argv[0], &len);
2902         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2903
2904         e = Jim_GetLong(interp, argv[1], &l);
2905         width = l;
2906         if (e != JIM_OK) {
2907                 return e;
2908         }
2909
2910         e = Jim_GetLong(interp, argv[2], &l);
2911         addr = l;
2912         if (e != JIM_OK) {
2913                 return e;
2914         }
2915         e = Jim_GetLong(interp, argv[3], &l);
2916         len = l;
2917         if (e != JIM_OK) {
2918                 return e;
2919         }
2920         switch (width) {
2921                 case 8:
2922                         width = 1;
2923                         break;
2924                 case 16:
2925                         width = 2;
2926                         break;
2927                 case 32:
2928                         width = 4;
2929                         break;
2930                 default:
2931                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2932                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2933                         return JIM_ERR;
2934         }
2935         if (len == 0) {
2936                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2937                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2938                 return JIM_ERR;
2939         }
2940         if ((addr + (len * width)) < addr) {
2941                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2942                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2943                 return JIM_ERR;
2944         }
2945         /* absurd transfer size? */
2946         if (len > 65536) {
2947                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2948                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2949                 return JIM_ERR;
2950         }
2951
2952         if ((width == 1) ||
2953                 ((width == 2) && ((addr & 1) == 0)) ||
2954                 ((width == 4) && ((addr & 3) == 0))) {
2955                 /* all is well */
2956         } else {
2957                 char buf[100];
2958                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2959                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2960                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2961                 return JIM_ERR;
2962         }
2963
2964         /* Transfer loop */
2965
2966         /* index counter */
2967         n = 0;
2968         /* assume ok */
2969         e = JIM_OK;
2970         while (len) {
2971                 /* Slurp... in buffer size chunks */
2972
2973                 count = len; /* in objects.. */
2974                 if (count > (sizeof(buffer)/width)) {
2975                         count = (sizeof(buffer)/width);
2976                 }
2977
2978                 retval = target_read_memory( target, addr, width, count, buffer );
2979                 if (retval != ERROR_OK) {
2980                         /* BOO !*/
2981                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2982                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2983                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2984                         e = JIM_ERR;
2985                         len = 0;
2986                 } else {
2987                         v = 0; /* shut up gcc */
2988                         for (i = 0 ;i < count ;i++, n++) {
2989                                 switch (width) {
2990                                         case 4:
2991                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2992                                                 break;
2993                                         case 2:
2994                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2995                                                 break;
2996                                         case 1:
2997                                                 v = buffer[i] & 0x0ff;
2998                                                 break;
2999                                 }
3000                                 new_int_array_element(interp, varname, n, v);
3001                         }
3002                         len -= count;
3003                 }
3004         }
3005
3006         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3007
3008         return JIM_OK;
3009 }
3010
3011 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
3012 {
3013         char *namebuf;
3014         Jim_Obj *nameObjPtr, *valObjPtr;
3015         int result;
3016         long l;
3017
3018         namebuf = alloc_printf("%s(%d)", varname, idx);
3019         if (!namebuf)
3020                 return JIM_ERR;
3021
3022         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3023         if (!nameObjPtr)
3024         {
3025                 free(namebuf);
3026                 return JIM_ERR;
3027         }
3028
3029         Jim_IncrRefCount(nameObjPtr);
3030         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3031         Jim_DecrRefCount(interp, nameObjPtr);
3032         free(namebuf);
3033         if (valObjPtr == NULL)
3034                 return JIM_ERR;
3035
3036         result = Jim_GetLong(interp, valObjPtr, &l);
3037         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3038         *val = l;
3039         return result;
3040 }
3041
3042 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3043 {
3044         command_context_t *context;
3045         target_t *target;
3046
3047         context = Jim_GetAssocData(interp, "context");
3048         if (context == NULL){
3049                 LOG_ERROR("array2mem: no command context");
3050                 return JIM_ERR;
3051         }
3052         target = get_current_target(context);
3053         if (target == NULL){
3054                 LOG_ERROR("array2mem: no current target");
3055                 return JIM_ERR;
3056         }
3057
3058         return target_array2mem( interp,target, argc-1, argv+1 );
3059 }
3060
3061 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3062 {
3063         long l;
3064         u32 width;
3065         int len;
3066         u32 addr;
3067         u32 count;
3068         u32 v;
3069         const char *varname;
3070         u8 buffer[4096];
3071         int  n, e, retval;
3072         u32 i;
3073
3074         /* argv[1] = name of array to get the data
3075          * argv[2] = desired width
3076          * argv[3] = memory address
3077          * argv[4] = count to write
3078          */
3079         if (argc != 4) {
3080                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3081                 return JIM_ERR;
3082         }
3083         varname = Jim_GetString(argv[0], &len);
3084         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3085
3086         e = Jim_GetLong(interp, argv[1], &l);
3087         width = l;
3088         if (e != JIM_OK) {
3089                 return e;
3090         }
3091
3092         e = Jim_GetLong(interp, argv[2], &l);
3093         addr = l;
3094         if (e != JIM_OK) {
3095                 return e;
3096         }
3097         e = Jim_GetLong(interp, argv[3], &l);
3098         len = l;
3099         if (e != JIM_OK) {
3100                 return e;
3101         }
3102         switch (width) {
3103                 case 8:
3104                         width = 1;
3105                         break;
3106                 case 16:
3107                         width = 2;
3108                         break;
3109                 case 32:
3110                         width = 4;
3111                         break;
3112                 default:
3113                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3114                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3115                         return JIM_ERR;
3116         }
3117         if (len == 0) {
3118                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3119                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3120                 return JIM_ERR;
3121         }
3122         if ((addr + (len * width)) < addr) {
3123                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3124                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3125                 return JIM_ERR;
3126         }
3127         /* absurd transfer size? */
3128         if (len > 65536) {
3129                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3130                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3131                 return JIM_ERR;
3132         }
3133
3134         if ((width == 1) ||
3135                 ((width == 2) && ((addr & 1) == 0)) ||
3136                 ((width == 4) && ((addr & 3) == 0))) {
3137                 /* all is well */
3138         } else {
3139                 char buf[100];
3140                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3141                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3142                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3143                 return JIM_ERR;
3144         }
3145
3146         /* Transfer loop */
3147
3148         /* index counter */
3149         n = 0;
3150         /* assume ok */
3151         e = JIM_OK;
3152         while (len) {
3153                 /* Slurp... in buffer size chunks */
3154
3155                 count = len; /* in objects.. */
3156                 if (count > (sizeof(buffer)/width)) {
3157                         count = (sizeof(buffer)/width);
3158                 }
3159
3160                 v = 0; /* shut up gcc */
3161                 for (i = 0 ;i < count ;i++, n++) {
3162                         get_int_array_element(interp, varname, n, &v);
3163                         switch (width) {
3164                         case 4:
3165                                 target_buffer_set_u32(target, &buffer[i*width], v);
3166                                 break;
3167                         case 2:
3168                                 target_buffer_set_u16(target, &buffer[i*width], v);
3169                                 break;
3170                         case 1:
3171                                 buffer[i] = v & 0x0ff;
3172                                 break;
3173                         }
3174                 }
3175                 len -= count;
3176
3177                 retval = target_write_memory(target, addr, width, count, buffer);
3178                 if (retval != ERROR_OK) {
3179                         /* BOO !*/
3180                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3181                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3182                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3183                         e = JIM_ERR;
3184                         len = 0;
3185                 }
3186         }
3187
3188         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3189
3190         return JIM_OK;
3191 }
3192
3193 void target_all_handle_event( enum target_event e )
3194 {
3195         target_t *target;
3196
3197         LOG_DEBUG( "**all*targets: event: %d, %s",
3198                         e,
3199                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3200
3201         target = all_targets;
3202         while (target){
3203                 target_handle_event( target, e );
3204                 target = target->next;
3205         }
3206 }
3207
3208 void target_handle_event( target_t *target, enum target_event e )
3209 {
3210         target_event_action_t *teap;
3211         int done;
3212
3213         teap = target->event_action;
3214
3215         done = 0;
3216         while( teap ){
3217                 if( teap->event == e ){
3218                         done = 1;
3219                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3220                                            target->target_number,
3221                                            target->cmd_name,
3222                                            target_get_name(target),
3223                                            e,
3224                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3225                                            Jim_GetString( teap->body, NULL ) );
3226                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3227                         {
3228                                 Jim_PrintErrorMessage(interp);
3229                         }
3230                 }
3231                 teap = teap->next;
3232         }
3233         if( !done ){
3234                 LOG_DEBUG( "event: %d %s - no action",
3235                                    e,
3236                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3237         }
3238 }
3239
3240 enum target_cfg_param {
3241         TCFG_TYPE,
3242         TCFG_EVENT,
3243         TCFG_WORK_AREA_VIRT,
3244         TCFG_WORK_AREA_PHYS,
3245         TCFG_WORK_AREA_SIZE,
3246         TCFG_WORK_AREA_BACKUP,
3247         TCFG_ENDIAN,
3248         TCFG_VARIANT,
3249         TCFG_CHAIN_POSITION,
3250 };
3251
3252 static Jim_Nvp nvp_config_opts[] = {
3253         { .name = "-type",             .value = TCFG_TYPE },
3254         { .name = "-event",            .value = TCFG_EVENT },
3255         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3256         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3257         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3258         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3259         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3260         { .name = "-variant",          .value = TCFG_VARIANT },
3261         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3262
3263         { .name = NULL, .value = -1 }
3264 };
3265
3266 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3267 {
3268         Jim_Nvp *n;
3269         Jim_Obj *o;
3270         jim_wide w;
3271         char *cp;
3272         int e;
3273
3274         /* parse config or cget options ... */
3275         while( goi->argc > 0 ){
3276                 Jim_SetEmptyResult( goi->interp );
3277                 /* Jim_GetOpt_Debug( goi ); */
3278
3279                 if( target->type->target_jim_configure ){
3280                         /* target defines a configure function */
3281                         /* target gets first dibs on parameters */
3282                         e = (*(target->type->target_jim_configure))( target, goi );
3283                         if( e == JIM_OK ){
3284                                 /* more? */
3285                                 continue;
3286                         }
3287                         if( e == JIM_ERR ){
3288                                 /* An error */
3289                                 return e;
3290                         }
3291                         /* otherwise we 'continue' below */
3292                 }
3293                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3294                 if( e != JIM_OK ){
3295                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3296                         return e;
3297                 }
3298                 switch( n->value ){
3299                 case TCFG_TYPE:
3300                         /* not setable */
3301                         if( goi->isconfigure ){
3302                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3303                                 return JIM_ERR;
3304                         } else {
3305                         no_params:
3306                                 if( goi->argc != 0 ){
3307                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3308                                         return JIM_ERR;
3309                                 }
3310                         }
3311                         Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3312                         /* loop for more */
3313                         break;
3314                 case TCFG_EVENT:
3315                         if( goi->argc == 0 ){
3316                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3317                                 return JIM_ERR;
3318                         }
3319
3320                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3321                         if( e != JIM_OK ){
3322                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3323                                 return e;
3324                         }
3325
3326                         if( goi->isconfigure ){
3327                                 if( goi->argc != 1 ){
3328                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3329                                         return JIM_ERR;
3330                                 }
3331                         } else {
3332                                 if( goi->argc != 0 ){
3333                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3334                                         return JIM_ERR;
3335                                 }
3336                         }
3337
3338                         {
3339                                 target_event_action_t *teap;
3340
3341                                 teap = target->event_action;
3342                                 /* replace existing? */
3343                                 while( teap ){
3344                                         if( teap->event == (enum target_event)n->value ){
3345                                                 break;
3346                                         }
3347                                         teap = teap->next;
3348                                 }
3349
3350                                 if( goi->isconfigure ){
3351                                         if( teap == NULL ){
3352                                                 /* create new */
3353                                                 teap = calloc( 1, sizeof(*teap) );
3354                                         }
3355                                         teap->event = n->value;
3356                                         Jim_GetOpt_Obj( goi, &o );
3357                                         if( teap->body ){
3358                                                 Jim_DecrRefCount( interp, teap->body );
3359                                         }
3360                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3361                                         /*
3362                                          * FIXME:
3363                                          *     Tcl/TK - "tk events" have a nice feature.
3364                                          *     See the "BIND" command.
3365                                          *    We should support that here.
3366                                          *     You can specify %X and %Y in the event code.
3367                                          *     The idea is: %T - target name.
3368                                          *     The idea is: %N - target number
3369                                          *     The idea is: %E - event name.
3370                                          */
3371                                         Jim_IncrRefCount( teap->body );
3372
3373                                         /* add to head of event list */
3374                                         teap->next = target->event_action;
3375                                         target->event_action = teap;
3376                                         Jim_SetEmptyResult(goi->interp);
3377                                 } else {
3378                                         /* get */
3379                                         if( teap == NULL ){
3380                                                 Jim_SetEmptyResult( goi->interp );
3381                                         } else {
3382                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3383                                         }
3384                                 }
3385                         }
3386                         /* loop for more */
3387                         break;
3388
3389                 case TCFG_WORK_AREA_VIRT:
3390                         if( goi->isconfigure ){
3391                                 target_free_all_working_areas(target);
3392                                 e = Jim_GetOpt_Wide( goi, &w );
3393                                 if( e != JIM_OK ){
3394                                         return e;
3395                                 }
3396                                 target->working_area_virt = w;
3397                         } else {
3398                                 if( goi->argc != 0 ){
3399                                         goto no_params;
3400                                 }
3401                         }
3402                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3403                         /* loop for more */
3404                         break;
3405
3406                 case TCFG_WORK_AREA_PHYS:
3407                         if( goi->isconfigure ){
3408                                 target_free_all_working_areas(target);
3409                                 e = Jim_GetOpt_Wide( goi, &w );
3410                                 if( e != JIM_OK ){
3411                                         return e;
3412                                 }
3413                                 target->working_area_phys = w;
3414                         } else {
3415                                 if( goi->argc != 0 ){
3416                                         goto no_params;
3417                                 }
3418                         }
3419                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3420                         /* loop for more */
3421                         break;
3422
3423                 case TCFG_WORK_AREA_SIZE:
3424                         if( goi->isconfigure ){
3425                                 target_free_all_working_areas(target);
3426                                 e = Jim_GetOpt_Wide( goi, &w );
3427                                 if( e != JIM_OK ){
3428                                         return e;
3429                                 }
3430                                 target->working_area_size = w;
3431                         } else {
3432                                 if( goi->argc != 0 ){
3433                                         goto no_params;
3434                                 }
3435                         }
3436                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3437                         /* loop for more */
3438                         break;
3439
3440                 case TCFG_WORK_AREA_BACKUP:
3441                         if( goi->isconfigure ){
3442                                 target_free_all_working_areas(target);
3443                                 e = Jim_GetOpt_Wide( goi, &w );
3444                                 if( e != JIM_OK ){
3445                                         return e;
3446                                 }
3447                                 /* make this exactly 1 or 0 */
3448                                 target->backup_working_area = (!!w);
3449                         } else {
3450                                 if( goi->argc != 0 ){
3451                                         goto no_params;
3452                                 }
3453                         }
3454                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3455                         /* loop for more e*/
3456                         break;
3457
3458                 case TCFG_ENDIAN:
3459                         if( goi->isconfigure ){
3460                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3461                                 if( e != JIM_OK ){
3462                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3463                                         return e;
3464                                 }
3465                                 target->endianness = n->value;
3466                         } else {
3467                                 if( goi->argc != 0 ){
3468                                         goto no_params;
3469                                 }
3470                         }
3471                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3472                         if( n->name == NULL ){
3473                                 target->endianness = TARGET_LITTLE_ENDIAN;
3474                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3475                         }
3476                         Jim_SetResultString( goi->interp, n->name, -1 );
3477                         /* loop for more */
3478                         break;
3479
3480                 case TCFG_VARIANT:
3481                         if( goi->isconfigure ){
3482                                 if( goi->argc < 1 ){
3483                                         Jim_SetResult_sprintf( goi->interp,
3484                                                                                    "%s ?STRING?",
3485                                                                                    n->name );
3486                                         return JIM_ERR;
3487                                 }
3488                                 if( target->variant ){
3489                                         free((void *)(target->variant));
3490                                 }
3491                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3492                                 target->variant = strdup(cp);
3493                         } else {
3494                                 if( goi->argc != 0 ){
3495                                         goto no_params;
3496                                 }
3497                         }
3498                         Jim_SetResultString( goi->interp, target->variant,-1 );
3499                         /* loop for more */
3500                         break;
3501                 case TCFG_CHAIN_POSITION:
3502                         if( goi->isconfigure ){
3503                                 Jim_Obj *o;
3504                                 jtag_tap_t *tap;
3505                                 target_free_all_working_areas(target);
3506                                 e = Jim_GetOpt_Obj( goi, &o );
3507                                 if( e != JIM_OK ){
3508                                         return e;
3509                                 }
3510                                 tap = jtag_tap_by_jim_obj( goi->interp, o );
3511                                 if( tap == NULL ){
3512                                         return JIM_ERR;
3513                                 }
3514                                 /* make this exactly 1 or 0 */
3515                                 target->tap = tap;
3516                         } else {
3517                                 if( goi->argc != 0 ){
3518                                         goto no_params;
3519                                 }
3520                         }
3521                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3522                         /* loop for more e*/
3523                         break;
3524                 }
3525         } /* while( goi->argc ) */
3526
3527
3528                 /* done - we return */
3529         return JIM_OK;
3530 }
3531
3532 /** this is the 'tcl' handler for the target specific command */
3533 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3534 {
3535         Jim_GetOptInfo goi;
3536         jim_wide a,b,c;
3537         int x,y,z;
3538         u8  target_buf[32];
3539         Jim_Nvp *n;
3540         target_t *target;
3541         struct command_context_s *cmd_ctx;
3542         int e;
3543
3544         enum {
3545                 TS_CMD_CONFIGURE,
3546                 TS_CMD_CGET,
3547
3548                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3549                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3550                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3551                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3552                 TS_CMD_EXAMINE,
3553                 TS_CMD_POLL,
3554                 TS_CMD_RESET,
3555                 TS_CMD_HALT,
3556                 TS_CMD_WAITSTATE,
3557                 TS_CMD_EVENTLIST,
3558                 TS_CMD_CURSTATE,
3559                 TS_CMD_INVOKE_EVENT,
3560         };
3561
3562         static const Jim_Nvp target_options[] = {
3563                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3564                 { .name = "cget", .value = TS_CMD_CGET },
3565                 { .name = "mww", .value = TS_CMD_MWW },
3566                 { .name = "mwh", .value = TS_CMD_MWH },
3567                 { .name = "mwb", .value = TS_CMD_MWB },
3568                 { .name = "mdw", .value = TS_CMD_MDW },
3569                 { .name = "mdh", .value = TS_CMD_MDH },
3570                 { .name = "mdb", .value = TS_CMD_MDB },
3571                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3572                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3573                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3574                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3575
3576                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3577                 { .name = "arp_poll", .value = TS_CMD_POLL },
3578                 { .name = "arp_reset", .value = TS_CMD_RESET },
3579                 { .name = "arp_halt", .value = TS_CMD_HALT },
3580                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3581                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3582
3583                 { .name = NULL, .value = -1 },
3584         };
3585
3586         /* go past the "command" */
3587         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3588
3589         target = Jim_CmdPrivData( goi.interp );
3590         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3591
3592         /* commands here are in an NVP table */
3593         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3594         if( e != JIM_OK ){
3595                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3596                 return e;
3597         }
3598         /* Assume blank result */
3599         Jim_SetEmptyResult( goi.interp );
3600
3601         switch( n->value ){
3602         case TS_CMD_CONFIGURE:
3603                 if( goi.argc < 2 ){
3604                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3605                         return JIM_ERR;
3606                 }
3607                 goi.isconfigure = 1;
3608                 return target_configure( &goi, target );
3609         case TS_CMD_CGET:
3610                 // some things take params
3611                 if( goi.argc < 1 ){
3612                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3613                         return JIM_ERR;
3614                 }
3615                 goi.isconfigure = 0;
3616                 return target_configure( &goi, target );
3617                 break;
3618         case TS_CMD_MWW:
3619         case TS_CMD_MWH:
3620         case TS_CMD_MWB:
3621                 /* argv[0] = cmd
3622                  * argv[1] = address
3623                  * argv[2] = data
3624                  * argv[3] = optional count.
3625                  */
3626
3627                 if( (goi.argc == 3) || (goi.argc == 4) ){
3628                         /* all is well */
3629                 } else {
3630                 mwx_error:
3631                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3632                         return JIM_ERR;
3633                 }
3634
3635                 e = Jim_GetOpt_Wide( &goi, &a );
3636                 if( e != JIM_OK ){
3637                         goto mwx_error;
3638                 }
3639
3640                 e = Jim_GetOpt_Wide( &goi, &b );
3641                 if( e != JIM_OK ){
3642                         goto mwx_error;
3643                 }
3644                 if( goi.argc ){
3645                         e = Jim_GetOpt_Wide( &goi, &c );
3646                         if( e != JIM_OK ){
3647                                 goto mwx_error;
3648                         }
3649                 } else {
3650                         c = 1;
3651                 }
3652
3653                 switch( n->value ){
3654                 case TS_CMD_MWW:
3655                         target_buffer_set_u32( target, target_buf, b );
3656                         b = 4;
3657                         break;
3658                 case TS_CMD_MWH:
3659                         target_buffer_set_u16( target, target_buf, b );
3660                         b = 2;
3661                         break;
3662                 case TS_CMD_MWB:
3663                         target_buffer_set_u8( target, target_buf, b );
3664                         b = 1;
3665                         break;
3666                 }
3667                 for( x = 0 ; x < c ; x++ ){
3668                         e = target_write_memory( target, a, b, 1, target_buf );
3669                         if( e != ERROR_OK ){
3670                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3671                                 return JIM_ERR;
3672                         }
3673                         /* b = width */
3674                         a = a + b;
3675                 }
3676                 return JIM_OK;
3677                 break;
3678
3679                 /* display */
3680         case TS_CMD_MDW:
3681         case TS_CMD_MDH:
3682         case TS_CMD_MDB:
3683                 /* argv[0] = command
3684                  * argv[1] = address
3685                  * argv[2] = optional count
3686                  */
3687                 if( (goi.argc == 2) || (goi.argc == 3) ){
3688                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3689                         return JIM_ERR;
3690                 }
3691                 e = Jim_GetOpt_Wide( &goi, &a );
3692                 if( e != JIM_OK ){
3693                         return JIM_ERR;
3694                 }
3695                 if( goi.argc ){
3696                         e = Jim_GetOpt_Wide( &goi, &c );
3697                         if( e != JIM_OK ){
3698                                 return JIM_ERR;
3699                         }
3700                 } else {
3701                         c = 1;
3702                 }
3703                 b = 1; /* shut up gcc */
3704                 switch( n->value ){
3705                 case TS_CMD_MDW:
3706                         b =  4;
3707                         break;
3708                 case TS_CMD_MDH:
3709                         b = 2;
3710                         break;
3711                 case TS_CMD_MDB:
3712                         b = 1;
3713                         break;
3714                 }
3715
3716                 /* convert to "bytes" */
3717                 c = c * b;
3718                 /* count is now in 'BYTES' */
3719                 while( c > 0 ){
3720                         y = c;
3721                         if( y > 16 ){
3722                                 y = 16;
3723                         }
3724                         e = target_read_memory( target, a, b, y / b, target_buf );
3725                         if( e != ERROR_OK ){
3726                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3727                                 return JIM_ERR;
3728                         }
3729
3730                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3731                         switch( b ){
3732                         case 4:
3733                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3734                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3735                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3736                                 }
3737                                 for( ; (x < 16) ; x += 4 ){
3738                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3739                                 }
3740                                 break;
3741                         case 2:
3742                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3743                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3744                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3745                                 }
3746                                 for( ; (x < 16) ; x += 2 ){
3747                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3748                                 }
3749                                 break;
3750                         case 1:
3751                         default:
3752                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3753                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3754                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3755                                 }
3756                                 for( ; (x < 16) ; x += 1 ){
3757                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3758                                 }
3759                                 break;
3760                         }
3761                         /* ascii-ify the bytes */
3762                         for( x = 0 ; x < y ; x++ ){
3763                                 if( (target_buf[x] >= 0x20) &&
3764                                         (target_buf[x] <= 0x7e) ){
3765                                         /* good */
3766                                 } else {
3767                                         /* smack it */
3768                                         target_buf[x] = '.';
3769                                 }
3770                         }
3771                         /* space pad  */
3772                         while( x < 16 ){
3773                                 target_buf[x] = ' ';
3774                                 x++;
3775                         }
3776                         /* terminate */
3777                         target_buf[16] = 0;
3778                         /* print - with a newline */
3779                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3780                         /* NEXT... */
3781                         c -= 16;
3782                         a += 16;
3783                 }
3784                 return JIM_OK;
3785         case TS_CMD_MEM2ARRAY:
3786                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3787                 break;
3788         case TS_CMD_ARRAY2MEM:
3789                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3790                 break;
3791         case TS_CMD_EXAMINE:
3792                 if( goi.argc ){
3793                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3794                         return JIM_ERR;
3795                 }
3796                 if (!target->tap->enabled)
3797                         goto err_tap_disabled;
3798                 e = target->type->examine( target );
3799                 if( e != ERROR_OK ){
3800                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3801                         return JIM_ERR;
3802                 }
3803                 return JIM_OK;
3804         case TS_CMD_POLL:
3805                 if( goi.argc ){
3806                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3807                         return JIM_ERR;
3808                 }
3809                 if (!target->tap->enabled)
3810                         goto err_tap_disabled;
3811                 if( !(target_was_examined(target)) ){
3812                         e = ERROR_TARGET_NOT_EXAMINED;
3813                 } else {
3814                         e = target->type->poll( target );
3815                 }
3816                 if( e != ERROR_OK ){
3817                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3818                         return JIM_ERR;
3819                 } else {
3820                         return JIM_OK;
3821                 }
3822                 break;
3823         case TS_CMD_RESET:
3824                 if( goi.argc != 2 ){
3825                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3826                         return JIM_ERR;
3827                 }
3828                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3829                 if( e != JIM_OK ){
3830                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3831                         return e;
3832                 }
3833                 /* the halt or not param */
3834                 e = Jim_GetOpt_Wide( &goi, &a);
3835                 if( e != JIM_OK ){
3836                         return e;
3837                 }
3838                 if (!target->tap->enabled)
3839                         goto err_tap_disabled;
3840                 /* determine if we should halt or not. */
3841                 target->reset_halt = !!a;
3842                 /* When this happens - all workareas are invalid. */
3843                 target_free_all_working_areas_restore(target, 0);
3844
3845                 /* do the assert */
3846                 if( n->value == NVP_ASSERT ){
3847                         target->type->assert_reset( target );
3848                 } else {
3849                         target->type->deassert_reset( target );
3850                 }
3851                 return JIM_OK;
3852         case TS_CMD_HALT:
3853                 if( goi.argc ){
3854                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3855                         return JIM_ERR;
3856                 }
3857                 if (!target->tap->enabled)
3858                         goto err_tap_disabled;
3859                 target->type->halt( target );
3860                 return JIM_OK;
3861         case TS_CMD_WAITSTATE:
3862                 /* params:  <name>  statename timeoutmsecs */
3863                 if( goi.argc != 2 ){
3864                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3865                         return JIM_ERR;
3866                 }
3867                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3868                 if( e != JIM_OK ){
3869                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3870                         return e;
3871                 }
3872                 e = Jim_GetOpt_Wide( &goi, &a );
3873                 if( e != JIM_OK ){
3874                         return e;
3875                 }
3876                 if (!target->tap->enabled)
3877                         goto err_tap_disabled;
3878                 e = target_wait_state( target, n->value, a );
3879                 if( e != ERROR_OK ){
3880                         Jim_SetResult_sprintf( goi.interp,
3881                                                                    "target: %s wait %s fails (%d) %s",
3882                                                                    target->cmd_name,
3883                                                                    n->name,
3884                                                                    e, target_strerror_safe(e) );
3885                         return JIM_ERR;
3886                 } else {
3887                         return JIM_OK;
3888                 }
3889         case TS_CMD_EVENTLIST:
3890                 /* List for human, Events defined for this target.
3891                  * scripts/programs should use 'name cget -event NAME'
3892                  */
3893                 {
3894                         target_event_action_t *teap;
3895                         teap = target->event_action;
3896                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3897                                                    target->target_number,
3898                                                    target->cmd_name );
3899                         command_print( cmd_ctx, "%-25s | Body", "Event");
3900                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3901                         while( teap ){
3902                                 command_print( cmd_ctx,
3903                                                            "%-25s | %s",
3904                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3905                                                            Jim_GetString( teap->body, NULL ) );
3906                                 teap = teap->next;
3907                         }
3908                         command_print( cmd_ctx, "***END***");
3909                         return JIM_OK;
3910                 }
3911         case TS_CMD_CURSTATE:
3912                 if( goi.argc != 0 ){
3913                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3914                         return JIM_ERR;
3915                 }
3916                 Jim_SetResultString( goi.interp,
3917                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3918                 return JIM_OK;
3919         case TS_CMD_INVOKE_EVENT:
3920                 if( goi.argc != 1 ){
3921                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3922                         return JIM_ERR;
3923                 }
3924                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3925                 if( e != JIM_OK ){
3926                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3927                         return e;
3928                 }
3929                 target_handle_event( target, n->value );
3930                 return JIM_OK;
3931         }
3932         return JIM_ERR;
3933
3934 err_tap_disabled:
3935         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
3936         return JIM_ERR;
3937 }
3938
3939 static int target_create( Jim_GetOptInfo *goi )
3940 {
3941         Jim_Obj *new_cmd;
3942         Jim_Cmd *cmd;
3943         const char *cp;
3944         char *cp2;
3945         int e;
3946         int x;
3947         target_t *target;
3948         struct command_context_s *cmd_ctx;
3949
3950         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3951         if( goi->argc < 3 ){
3952                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3953                 return JIM_ERR;
3954         }
3955
3956         /* COMMAND */
3957         Jim_GetOpt_Obj( goi, &new_cmd );
3958         /* does this command exist? */
3959         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3960         if( cmd ){
3961                 cp = Jim_GetString( new_cmd, NULL );
3962                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3963                 return JIM_ERR;
3964         }
3965
3966         /* TYPE */
3967         e = Jim_GetOpt_String( goi, &cp2, NULL );
3968         cp = cp2;
3969         /* now does target type exist */
3970         for( x = 0 ; target_types[x] ; x++ ){
3971                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3972                         /* found */
3973                         break;
3974                 }
3975         }
3976         if( target_types[x] == NULL ){
3977                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3978                 for( x = 0 ; target_types[x] ; x++ ){
3979                         if( target_types[x+1] ){
3980                                 Jim_AppendStrings( goi->interp,
3981                                                                    Jim_GetResult(goi->interp),
3982                                                                    target_types[x]->name,
3983                                                                    ", ", NULL);
3984                         } else {
3985                                 Jim_AppendStrings( goi->interp,
3986                                                                    Jim_GetResult(goi->interp),
3987                                                                    " or ",
3988                                                                    target_types[x]->name,NULL );
3989                         }
3990                 }
3991                 return JIM_ERR;
3992         }
3993
3994         /* Create it */
3995         target = calloc(1,sizeof(target_t));
3996         /* set target number */
3997         target->target_number = new_target_number();
3998
3999         /* allocate memory for each unique target type */
4000         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4001
4002         memcpy( target->type, target_types[x], sizeof(target_type_t));
4003
4004         /* will be set by "-endian" */
4005         target->endianness = TARGET_ENDIAN_UNKNOWN;
4006
4007         target->working_area        = 0x0;
4008         target->working_area_size   = 0x0;
4009         target->working_areas       = NULL;
4010         target->backup_working_area = 0;
4011
4012         target->state               = TARGET_UNKNOWN;
4013         target->debug_reason        = DBG_REASON_UNDEFINED;
4014         target->reg_cache           = NULL;
4015         target->breakpoints         = NULL;
4016         target->watchpoints         = NULL;
4017         target->next                = NULL;
4018         target->arch_info           = NULL;
4019
4020         target->display             = 1;
4021
4022         /* initialize trace information */
4023         target->trace_info = malloc(sizeof(trace_t));
4024         target->trace_info->num_trace_points         = 0;
4025         target->trace_info->trace_points_size        = 0;
4026         target->trace_info->trace_points             = NULL;
4027         target->trace_info->trace_history_size       = 0;
4028         target->trace_info->trace_history            = NULL;
4029         target->trace_info->trace_history_pos        = 0;
4030         target->trace_info->trace_history_overflowed = 0;
4031
4032         target->dbgmsg          = NULL;
4033         target->dbg_msg_enabled = 0;
4034
4035         target->endianness = TARGET_ENDIAN_UNKNOWN;
4036
4037         /* Do the rest as "configure" options */
4038         goi->isconfigure = 1;
4039         e = target_configure( goi, target);
4040
4041         if (target->tap == NULL)
4042         {
4043                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4044                 e=JIM_ERR;
4045         }
4046
4047         if( e != JIM_OK ){
4048                 free( target->type );
4049                 free( target );
4050                 return e;
4051         }
4052
4053         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4054                 /* default endian to little if not specified */
4055                 target->endianness = TARGET_LITTLE_ENDIAN;
4056         }
4057
4058         /* incase variant is not set */
4059         if (!target->variant)
4060                 target->variant = strdup("");
4061
4062         /* create the target specific commands */
4063         if( target->type->register_commands ){
4064                 (*(target->type->register_commands))( cmd_ctx );
4065         }
4066         if( target->type->target_create ){
4067                 (*(target->type->target_create))( target, goi->interp );
4068         }
4069
4070         /* append to end of list */
4071         {
4072                 target_t **tpp;
4073                 tpp = &(all_targets);
4074                 while( *tpp ){
4075                         tpp = &( (*tpp)->next );
4076                 }
4077                 *tpp = target;
4078         }
4079
4080         cp = Jim_GetString( new_cmd, NULL );
4081         target->cmd_name = strdup(cp);
4082
4083         /* now - create the new target name command */
4084         e = Jim_CreateCommand( goi->interp,
4085                                                    /* name */
4086                                                    cp,
4087                                                    tcl_target_func, /* C function */
4088                                                    target, /* private data */
4089                                                    NULL ); /* no del proc */
4090
4091         return e;
4092 }
4093
4094 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4095 {
4096         int x,r,e;
4097         jim_wide w;
4098         struct command_context_s *cmd_ctx;
4099         target_t *target;
4100         Jim_GetOptInfo goi;
4101         enum tcmd {
4102                 /* TG = target generic */
4103                 TG_CMD_CREATE,
4104                 TG_CMD_TYPES,
4105                 TG_CMD_NAMES,
4106                 TG_CMD_CURRENT,
4107                 TG_CMD_NUMBER,
4108                 TG_CMD_COUNT,
4109         };
4110         const char *target_cmds[] = {
4111                 "create", "types", "names", "current", "number",
4112                 "count",
4113                 NULL /* terminate */
4114         };
4115
4116         LOG_DEBUG("Target command params:");
4117         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4118
4119         cmd_ctx = Jim_GetAssocData( interp, "context" );
4120
4121         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4122
4123         if( goi.argc == 0 ){
4124                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4125                 return JIM_ERR;
4126         }
4127
4128         /* Jim_GetOpt_Debug( &goi ); */
4129         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4130         if( r != JIM_OK ){
4131                 return r;
4132         }
4133
4134         switch(x){
4135         default:
4136                 Jim_Panic(goi.interp,"Why am I here?");
4137                 return JIM_ERR;
4138         case TG_CMD_CURRENT:
4139                 if( goi.argc != 0 ){
4140                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4141                         return JIM_ERR;
4142                 }
4143                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4144                 return JIM_OK;
4145         case TG_CMD_TYPES:
4146                 if( goi.argc != 0 ){
4147                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4148                         return JIM_ERR;
4149                 }
4150                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4151                 for( x = 0 ; target_types[x] ; x++ ){
4152                         Jim_ListAppendElement( goi.interp,
4153                                                                    Jim_GetResult(goi.interp),
4154                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4155                 }
4156                 return JIM_OK;
4157         case TG_CMD_NAMES:
4158                 if( goi.argc != 0 ){
4159                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4160                         return JIM_ERR;
4161                 }
4162                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4163                 target = all_targets;
4164                 while( target ){
4165                         Jim_ListAppendElement( goi.interp,
4166                                                                    Jim_GetResult(goi.interp),
4167                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4168                         target = target->next;
4169                 }
4170                 return JIM_OK;
4171         case TG_CMD_CREATE:
4172                 if( goi.argc < 3 ){
4173                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4174                         return JIM_ERR;
4175                 }
4176                 return target_create( &goi );
4177                 break;
4178         case TG_CMD_NUMBER:
4179                 if( goi.argc != 1 ){
4180                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4181                         return JIM_ERR;
4182                 }
4183                 e = Jim_GetOpt_Wide( &goi, &w );
4184                 if( e != JIM_OK ){
4185                         return JIM_ERR;
4186                 }
4187                 {
4188                         target_t *t;
4189                         t = get_target_by_num(w);
4190                         if( t == NULL ){
4191                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4192                                 return JIM_ERR;
4193                         }
4194                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4195                         return JIM_OK;
4196                 }
4197         case TG_CMD_COUNT:
4198                 if( goi.argc != 0 ){
4199                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4200                         return JIM_ERR;
4201                 }
4202                 Jim_SetResult( goi.interp,
4203                                            Jim_NewIntObj( goi.interp, max_target_number()));
4204                 return JIM_OK;
4205         }
4206
4207         return JIM_ERR;
4208 }
4209
4210
4211 struct FastLoad
4212 {
4213         u32 address;
4214         u8 *data;
4215         int length;
4216
4217 };
4218
4219 static int fastload_num;
4220 static struct FastLoad *fastload;
4221
4222 static void free_fastload(void)
4223 {
4224         if (fastload!=NULL)
4225         {
4226                 int i;
4227                 for (i=0; i<fastload_num; i++)
4228                 {
4229                         if (fastload[i].data)
4230                                 free(fastload[i].data);
4231                 }
4232                 free(fastload);
4233                 fastload=NULL;
4234         }
4235 }
4236
4237
4238
4239
4240 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4241 {
4242         u8 *buffer;
4243         u32 buf_cnt;
4244         u32 image_size;
4245         u32 min_address=0;
4246         u32 max_address=0xffffffff;
4247         int i;
4248         int retval;
4249
4250         image_t image;
4251
4252         duration_t duration;
4253         char *duration_text;
4254
4255         if ((argc < 1)||(argc > 5))
4256         {
4257                 return ERROR_COMMAND_SYNTAX_ERROR;
4258         }
4259
4260         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4261         if (argc >= 2)
4262         {
4263                 image.base_address_set = 1;
4264                 image.base_address = strtoul(args[1], NULL, 0);
4265         }
4266         else
4267         {
4268                 image.base_address_set = 0;
4269         }
4270
4271
4272         image.start_address_set = 0;
4273
4274         if (argc>=4)
4275         {
4276                 min_address=strtoul(args[3], NULL, 0);
4277         }
4278         if (argc>=5)
4279         {
4280                 max_address=strtoul(args[4], NULL, 0)+min_address;
4281         }
4282
4283         if (min_address>max_address)
4284         {
4285                 return ERROR_COMMAND_SYNTAX_ERROR;
4286         }
4287
4288         duration_start_measure(&duration);
4289
4290         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4291         {
4292                 return ERROR_OK;
4293         }
4294
4295         image_size = 0x0;
4296         retval = ERROR_OK;
4297         fastload_num=image.num_sections;
4298         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4299         if (fastload==NULL)
4300         {
4301                 image_close(&image);
4302                 return ERROR_FAIL;
4303         }
4304         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4305         for (i = 0; i < image.num_sections; i++)
4306         {
4307                 buffer = malloc(image.sections[i].size);
4308                 if (buffer == NULL)
4309                 {
4310                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4311                         break;
4312                 }
4313
4314                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4315                 {
4316                         free(buffer);
4317                         break;
4318                 }
4319
4320                 u32 offset=0;
4321                 u32 length=buf_cnt;
4322
4323
4324                 /* DANGER!!! beware of unsigned comparision here!!! */
4325
4326                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4327                                 (image.sections[i].base_address<max_address))
4328                 {
4329                         if (image.sections[i].base_address<min_address)
4330                         {
4331                                 /* clip addresses below */
4332                                 offset+=min_address-image.sections[i].base_address;
4333                                 length-=offset;
4334                         }
4335
4336                         if (image.sections[i].base_address+buf_cnt>max_address)
4337                         {
4338                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4339                         }
4340
4341                         fastload[i].address=image.sections[i].base_address+offset;
4342                         fastload[i].data=malloc(length);
4343                         if (fastload[i].data==NULL)
4344                         {
4345                                 free(buffer);
4346                                 break;
4347                         }
4348                         memcpy(fastload[i].data, buffer+offset, length);
4349                         fastload[i].length=length;
4350
4351                         image_size += length;
4352                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4353                 }
4354
4355                 free(buffer);
4356         }
4357
4358         duration_stop_measure(&duration, &duration_text);
4359         if (retval==ERROR_OK)
4360         {
4361                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4362                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4363         }
4364         free(duration_text);
4365
4366         image_close(&image);
4367
4368         if (retval!=ERROR_OK)
4369         {
4370                 free_fastload();
4371         }
4372
4373         return retval;
4374 }
4375
4376 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4377 {
4378         if (argc>0)
4379                 return ERROR_COMMAND_SYNTAX_ERROR;
4380         if (fastload==NULL)
4381         {
4382                 LOG_ERROR("No image in memory");
4383                 return ERROR_FAIL;
4384         }
4385         int i;
4386         int ms=timeval_ms();
4387         int size=0;
4388         int retval=ERROR_OK;
4389         for (i=0; i<fastload_num;i++)
4390         {
4391                 target_t *target = get_current_target(cmd_ctx);
4392                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4393                 if (retval==ERROR_OK)
4394                 {
4395                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4396                 }
4397                 size+=fastload[i].length;
4398         }
4399         int after=timeval_ms();
4400         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4401         return retval;
4402 }