David Brownell <david-b@pacbell.net> Bugfix: $target_name cget/configure -work-area...
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t feroceon_target;
86 extern target_type_t xscale_target;
87 extern target_type_t cortexm3_target;
88 extern target_type_t cortexa8_target;
89 extern target_type_t arm11_target;
90 extern target_type_t mips_m4k_target;
91 extern target_type_t avr_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &cortexa8_target,
105         &arm11_target,
106         &mips_m4k_target,
107         &avr_target,
108         NULL,
109 };
110
111 target_t *all_targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 const Jim_Nvp nvp_assert[] = {
116         { .name = "assert", NVP_ASSERT },
117         { .name = "deassert", NVP_DEASSERT },
118         { .name = "T", NVP_ASSERT },
119         { .name = "F", NVP_DEASSERT },
120         { .name = "t", NVP_ASSERT },
121         { .name = "f", NVP_DEASSERT },
122         { .name = NULL, .value = -1 }
123 };
124
125 const Jim_Nvp nvp_error_target[] = {
126         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
127         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
128         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
129         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
130         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
131         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
132         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
133         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
134         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
135         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
136         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
137         { .value = -1, .name = NULL }
138 };
139
140 const char *target_strerror_safe( int err )
141 {
142         const Jim_Nvp *n;
143
144         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
145         if( n->name == NULL ){
146                 return "unknown";
147         } else {
148                 return n->name;
149         }
150 }
151
152 static const Jim_Nvp nvp_target_event[] = {
153         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
154         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
155
156         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
157         { .value = TARGET_EVENT_HALTED, .name = "halted" },
158         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
159         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
160         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
161
162         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
163         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
164
165         /* historical name */
166
167         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
168
169         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
170         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
171         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
173         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
174         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
175         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
176         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
177         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
178         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
179
180         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
181         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
182
183         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
184         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
185
186         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
187         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
188
189         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
191
192         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
194
195         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
197         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
198
199         { .name = NULL, .value = -1 }
200 };
201
202 const Jim_Nvp nvp_target_state[] = {
203         { .name = "unknown", .value = TARGET_UNKNOWN },
204         { .name = "running", .value = TARGET_RUNNING },
205         { .name = "halted",  .value = TARGET_HALTED },
206         { .name = "reset",   .value = TARGET_RESET },
207         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208         { .name = NULL, .value = -1 },
209 };
210
211 const Jim_Nvp nvp_target_debug_reason [] = {
212         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
213         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
214         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
215         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
217         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
218         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
219         { .name = NULL, .value = -1 },
220 };
221
222 const Jim_Nvp nvp_target_endian[] = {
223         { .name = "big",    .value = TARGET_BIG_ENDIAN },
224         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225         { .name = "be",     .value = TARGET_BIG_ENDIAN },
226         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
227         { .name = NULL,     .value = -1 },
228 };
229
230 const Jim_Nvp nvp_reset_modes[] = {
231         { .name = "unknown", .value = RESET_UNKNOWN },
232         { .name = "run"    , .value = RESET_RUN },
233         { .name = "halt"   , .value = RESET_HALT },
234         { .name = "init"   , .value = RESET_INIT },
235         { .name = NULL     , .value = -1 },
236 };
237
238 static int max_target_number(void)
239 {
240         target_t *t;
241         int x;
242
243         x = -1;
244         t = all_targets;
245         while( t ){
246                 if( x < t->target_number ){
247                         x = (t->target_number)+1;
248                 }
249                 t = t->next;
250         }
251         return x;
252 }
253
254 /* determine the number of the new target */
255 static int new_target_number(void)
256 {
257         target_t *t;
258         int x;
259
260         /* number is 0 based */
261         x = -1;
262         t = all_targets;
263         while(t){
264                 if( x < t->target_number ){
265                         x = t->target_number;
266                 }
267                 t = t->next;
268         }
269         return x+1;
270 }
271
272 static int target_continous_poll = 1;
273
274 /* read a u32 from a buffer in target memory endianness */
275 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
276 {
277         if (target->endianness == TARGET_LITTLE_ENDIAN)
278                 return le_to_h_u32(buffer);
279         else
280                 return be_to_h_u32(buffer);
281 }
282
283 /* read a u16 from a buffer in target memory endianness */
284 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
285 {
286         if (target->endianness == TARGET_LITTLE_ENDIAN)
287                 return le_to_h_u16(buffer);
288         else
289                 return be_to_h_u16(buffer);
290 }
291
292 /* read a u8 from a buffer in target memory endianness */
293 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
294 {
295         return *buffer & 0x0ff;
296 }
297
298 /* write a u32 to a buffer in target memory endianness */
299 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
300 {
301         if (target->endianness == TARGET_LITTLE_ENDIAN)
302                 h_u32_to_le(buffer, value);
303         else
304                 h_u32_to_be(buffer, value);
305 }
306
307 /* write a u16 to a buffer in target memory endianness */
308 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
309 {
310         if (target->endianness == TARGET_LITTLE_ENDIAN)
311                 h_u16_to_le(buffer, value);
312         else
313                 h_u16_to_be(buffer, value);
314 }
315
316 /* write a u8 to a buffer in target memory endianness */
317 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
318 {
319         *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 target_t *get_target(const char *id)
324 {
325         target_t *target;
326         char *endptr;
327         int num;
328
329         /* try as tcltarget name */
330         for (target = all_targets; target; target = target->next) {
331                 if (target->cmd_name == NULL)
332                         continue;
333                 if (strcmp(id, target->cmd_name) == 0)
334                         return target;
335         }
336
337         /* no match, try as number */
338         num = strtoul(id, &endptr, 0);
339         if (*endptr != 0)
340                 return NULL;
341
342         for (target = all_targets; target; target = target->next) {
343                 if (target->target_number == num)
344                         return target;
345         }
346
347         return NULL;
348 }
349
350 /* returns a pointer to the n-th configured target */
351 static target_t *get_target_by_num(int num)
352 {
353         target_t *target = all_targets;
354
355         while (target){
356                 if( target->target_number == num ){
357                         return target;
358                 }
359                 target = target->next;
360         }
361
362         return NULL;
363 }
364
365 int get_num_by_target(target_t *query_target)
366 {
367         return query_target->target_number;
368 }
369
370 target_t* get_current_target(command_context_t *cmd_ctx)
371 {
372         target_t *target = get_target_by_num(cmd_ctx->current_target);
373
374         if (target == NULL)
375         {
376                 LOG_ERROR("BUG: current_target out of bounds");
377                 exit(-1);
378         }
379
380         return target;
381 }
382
383 int target_poll(struct target_s *target)
384 {
385         /* We can't poll until after examine */
386         if (!target_was_examined(target))
387         {
388                 /* Fail silently lest we pollute the log */
389                 return ERROR_FAIL;
390         }
391         return target->type->poll(target);
392 }
393
394 int target_halt(struct target_s *target)
395 {
396         /* We can't poll until after examine */
397         if (!target_was_examined(target))
398         {
399                 LOG_ERROR("Target not examined yet");
400                 return ERROR_FAIL;
401         }
402         return target->type->halt(target);
403 }
404
405 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
406 {
407         int retval;
408
409         /* We can't poll until after examine */
410         if (!target_was_examined(target))
411         {
412                 LOG_ERROR("Target not examined yet");
413                 return ERROR_FAIL;
414         }
415
416         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
417          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
418          * the application.
419          */
420         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
421                 return retval;
422
423         return retval;
424 }
425
426 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
427 {
428         char buf[100];
429         int retval;
430         Jim_Nvp *n;
431         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
432         if( n->name == NULL ){
433                 LOG_ERROR("invalid reset mode");
434                 return ERROR_FAIL;
435         }
436
437         sprintf( buf, "ocd_process_reset %s", n->name );
438         retval = Jim_Eval( interp, buf );
439
440         if(retval != JIM_OK) {
441                 Jim_PrintErrorMessage(interp);
442                 return ERROR_FAIL;
443         }
444
445         /* We want any events to be processed before the prompt */
446         retval = target_call_timer_callbacks_now();
447
448         return retval;
449 }
450
451 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
452 {
453         *physical = virtual;
454         return ERROR_OK;
455 }
456
457 static int default_mmu(struct target_s *target, int *enabled)
458 {
459         *enabled = 0;
460         return ERROR_OK;
461 }
462
463 static int default_examine(struct target_s *target)
464 {
465         target_set_examined(target);
466         return ERROR_OK;
467 }
468
469 int target_examine_one(struct target_s *target)
470 {
471         return target->type->examine(target);
472 }
473
474 /* Targets that correctly implement init+examine, i.e.
475  * no communication with target during init:
476  *
477  * XScale
478  */
479 int target_examine(void)
480 {
481         int retval = ERROR_OK;
482         target_t *target;
483
484         for (target = all_targets; target; target = target->next)
485         {
486                 if (!target->tap->enabled)
487                         continue;
488                 if ((retval = target_examine_one(target)) != ERROR_OK)
489                         return retval;
490         }
491         return retval;
492 }
493 const char *target_get_name(struct target_s *target)
494 {
495         return target->type->name;
496 }
497
498 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
499 {
500         if (!target_was_examined(target))
501         {
502                 LOG_ERROR("Target not examined yet");
503                 return ERROR_FAIL;
504         }
505         return target->type->write_memory_imp(target, address, size, count, buffer);
506 }
507
508 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
509 {
510         if (!target_was_examined(target))
511         {
512                 LOG_ERROR("Target not examined yet");
513                 return ERROR_FAIL;
514         }
515         return target->type->read_memory_imp(target, address, size, count, buffer);
516 }
517
518 static int target_soft_reset_halt_imp(struct target_s *target)
519 {
520         if (!target_was_examined(target))
521         {
522                 LOG_ERROR("Target not examined yet");
523                 return ERROR_FAIL;
524         }
525         return target->type->soft_reset_halt_imp(target);
526 }
527
528 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
529 {
530         if (!target_was_examined(target))
531         {
532                 LOG_ERROR("Target not examined yet");
533                 return ERROR_FAIL;
534         }
535         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
536 }
537
538 int target_read_memory(struct target_s *target,
539                 u32 address, u32 size, u32 count, u8 *buffer)
540 {
541         return target->type->read_memory(target, address, size, count, buffer);
542 }
543
544 int target_write_memory(struct target_s *target,
545                 u32 address, u32 size, u32 count, u8 *buffer)
546 {
547         return target->type->write_memory(target, address, size, count, buffer);
548 }
549 int target_bulk_write_memory(struct target_s *target,
550                 u32 address, u32 count, u8 *buffer)
551 {
552         return target->type->bulk_write_memory(target, address, count, buffer);
553 }
554
555 int target_add_breakpoint(struct target_s *target,
556                 struct breakpoint_s *breakpoint)
557 {
558         return target->type->add_breakpoint(target, breakpoint);
559 }
560 int target_remove_breakpoint(struct target_s *target,
561                 struct breakpoint_s *breakpoint)
562 {
563         return target->type->remove_breakpoint(target, breakpoint);
564 }
565
566 int target_add_watchpoint(struct target_s *target,
567                 struct watchpoint_s *watchpoint)
568 {
569         return target->type->add_watchpoint(target, watchpoint);
570 }
571 int target_remove_watchpoint(struct target_s *target,
572                 struct watchpoint_s *watchpoint)
573 {
574         return target->type->remove_watchpoint(target, watchpoint);
575 }
576
577 int target_get_gdb_reg_list(struct target_s *target,
578                 struct reg_s **reg_list[], int *reg_list_size)
579 {
580         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
581 }
582 int target_step(struct target_s *target,
583                 int current, u32 address, int handle_breakpoints)
584 {
585         return target->type->step(target, current, address, handle_breakpoints);
586 }
587
588
589 int target_run_algorithm(struct target_s *target,
590                 int num_mem_params, mem_param_t *mem_params,
591                 int num_reg_params, reg_param_t *reg_param,
592                 u32 entry_point, u32 exit_point,
593                 int timeout_ms, void *arch_info)
594 {
595         return target->type->run_algorithm(target,
596                         num_mem_params, mem_params, num_reg_params, reg_param,
597                         entry_point, exit_point, timeout_ms, arch_info);
598 }
599
600 /// @returns @c true if the target has been examined.
601 bool target_was_examined(struct target_s *target)
602 {
603         return target->type->examined;
604 }
605 /// Sets the @c examined flag for the given target.
606 void target_set_examined(struct target_s *target)
607 {
608         target->type->examined = true;
609 }
610 // Reset the @c examined flag for the given target.
611 void target_reset_examined(struct target_s *target)
612 {
613         target->type->examined = false;
614 }
615
616
617 int target_init(struct command_context_s *cmd_ctx)
618 {
619         target_t *target = all_targets;
620         int retval;
621
622         while (target)
623         {
624                 target_reset_examined(target);
625                 if (target->type->examine == NULL)
626                 {
627                         target->type->examine = default_examine;
628                 }
629
630                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
631                 {
632                         LOG_ERROR("target '%s' init failed", target_get_name(target));
633                         return retval;
634                 }
635
636                 /* Set up default functions if none are provided by target */
637                 if (target->type->virt2phys == NULL)
638                 {
639                         target->type->virt2phys = default_virt2phys;
640                 }
641                 target->type->virt2phys = default_virt2phys;
642                 /* a non-invasive way(in terms of patches) to add some code that
643                  * runs before the type->write/read_memory implementation
644                  */
645                 target->type->write_memory_imp = target->type->write_memory;
646                 target->type->write_memory = target_write_memory_imp;
647                 target->type->read_memory_imp = target->type->read_memory;
648                 target->type->read_memory = target_read_memory_imp;
649                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
650                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
651                 target->type->run_algorithm_imp = target->type->run_algorithm;
652                 target->type->run_algorithm = target_run_algorithm_imp;
653
654                 if (target->type->mmu == NULL)
655                 {
656                         target->type->mmu = default_mmu;
657                 }
658                 target = target->next;
659         }
660
661         if (all_targets)
662         {
663                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
664                         return retval;
665                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
666                         return retval;
667         }
668
669         return ERROR_OK;
670 }
671
672 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
673 {
674         target_event_callback_t **callbacks_p = &target_event_callbacks;
675
676         if (callback == NULL)
677         {
678                 return ERROR_INVALID_ARGUMENTS;
679         }
680
681         if (*callbacks_p)
682         {
683                 while ((*callbacks_p)->next)
684                         callbacks_p = &((*callbacks_p)->next);
685                 callbacks_p = &((*callbacks_p)->next);
686         }
687
688         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
689         (*callbacks_p)->callback = callback;
690         (*callbacks_p)->priv = priv;
691         (*callbacks_p)->next = NULL;
692
693         return ERROR_OK;
694 }
695
696 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
697 {
698         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
699         struct timeval now;
700
701         if (callback == NULL)
702         {
703                 return ERROR_INVALID_ARGUMENTS;
704         }
705
706         if (*callbacks_p)
707         {
708                 while ((*callbacks_p)->next)
709                         callbacks_p = &((*callbacks_p)->next);
710                 callbacks_p = &((*callbacks_p)->next);
711         }
712
713         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
714         (*callbacks_p)->callback = callback;
715         (*callbacks_p)->periodic = periodic;
716         (*callbacks_p)->time_ms = time_ms;
717
718         gettimeofday(&now, NULL);
719         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
720         time_ms -= (time_ms % 1000);
721         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
722         if ((*callbacks_p)->when.tv_usec > 1000000)
723         {
724                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
725                 (*callbacks_p)->when.tv_sec += 1;
726         }
727
728         (*callbacks_p)->priv = priv;
729         (*callbacks_p)->next = NULL;
730
731         return ERROR_OK;
732 }
733
734 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
735 {
736         target_event_callback_t **p = &target_event_callbacks;
737         target_event_callback_t *c = target_event_callbacks;
738
739         if (callback == NULL)
740         {
741                 return ERROR_INVALID_ARGUMENTS;
742         }
743
744         while (c)
745         {
746                 target_event_callback_t *next = c->next;
747                 if ((c->callback == callback) && (c->priv == priv))
748                 {
749                         *p = next;
750                         free(c);
751                         return ERROR_OK;
752                 }
753                 else
754                         p = &(c->next);
755                 c = next;
756         }
757
758         return ERROR_OK;
759 }
760
761 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
762 {
763         target_timer_callback_t **p = &target_timer_callbacks;
764         target_timer_callback_t *c = target_timer_callbacks;
765
766         if (callback == NULL)
767         {
768                 return ERROR_INVALID_ARGUMENTS;
769         }
770
771         while (c)
772         {
773                 target_timer_callback_t *next = c->next;
774                 if ((c->callback == callback) && (c->priv == priv))
775                 {
776                         *p = next;
777                         free(c);
778                         return ERROR_OK;
779                 }
780                 else
781                         p = &(c->next);
782                 c = next;
783         }
784
785         return ERROR_OK;
786 }
787
788 int target_call_event_callbacks(target_t *target, enum target_event event)
789 {
790         target_event_callback_t *callback = target_event_callbacks;
791         target_event_callback_t *next_callback;
792
793         if (event == TARGET_EVENT_HALTED)
794         {
795                 /* execute early halted first */
796                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
797         }
798
799         LOG_DEBUG("target event %i (%s)",
800                           event,
801                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
802
803         target_handle_event( target, event );
804
805         while (callback)
806         {
807                 next_callback = callback->next;
808                 callback->callback(target, event, callback->priv);
809                 callback = next_callback;
810         }
811
812         return ERROR_OK;
813 }
814
815 static int target_call_timer_callbacks_check_time(int checktime)
816 {
817         target_timer_callback_t *callback = target_timer_callbacks;
818         target_timer_callback_t *next_callback;
819         struct timeval now;
820
821         keep_alive();
822
823         gettimeofday(&now, NULL);
824
825         while (callback)
826         {
827                 next_callback = callback->next;
828
829                 if ((!checktime&&callback->periodic)||
830                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
831                                                 || (now.tv_sec > callback->when.tv_sec)))
832                 {
833                         if(callback->callback != NULL)
834                         {
835                                 callback->callback(callback->priv);
836                                 if (callback->periodic)
837                                 {
838                                         int time_ms = callback->time_ms;
839                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
840                                         time_ms -= (time_ms % 1000);
841                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
842                                         if (callback->when.tv_usec > 1000000)
843                                         {
844                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
845                                                 callback->when.tv_sec += 1;
846                                         }
847                                 }
848                                 else
849                                 {
850                                         int retval;
851                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
852                                                 return retval;
853                                 }
854                         }
855                 }
856
857                 callback = next_callback;
858         }
859
860         return ERROR_OK;
861 }
862
863 int target_call_timer_callbacks(void)
864 {
865         return target_call_timer_callbacks_check_time(1);
866 }
867
868 /* invoke periodic callbacks immediately */
869 int target_call_timer_callbacks_now(void)
870 {
871         return target_call_timer_callbacks_check_time(0);
872 }
873
874 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
875 {
876         working_area_t *c = target->working_areas;
877         working_area_t *new_wa = NULL;
878
879         /* Reevaluate working area address based on MMU state*/
880         if (target->working_areas == NULL)
881         {
882                 int retval;
883                 int enabled;
884                 retval = target->type->mmu(target, &enabled);
885                 if (retval != ERROR_OK)
886                 {
887                         return retval;
888                 }
889                 if (enabled)
890                 {
891                         target->working_area = target->working_area_virt;
892                 }
893                 else
894                 {
895                         target->working_area = target->working_area_phys;
896                 }
897         }
898
899         /* only allocate multiples of 4 byte */
900         if (size % 4)
901         {
902                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
903                 size = CEIL(size, 4);
904         }
905
906         /* see if there's already a matching working area */
907         while (c)
908         {
909                 if ((c->free) && (c->size == size))
910                 {
911                         new_wa = c;
912                         break;
913                 }
914                 c = c->next;
915         }
916
917         /* if not, allocate a new one */
918         if (!new_wa)
919         {
920                 working_area_t **p = &target->working_areas;
921                 u32 first_free = target->working_area;
922                 u32 free_size = target->working_area_size;
923
924                 LOG_DEBUG("allocating new working area");
925
926                 c = target->working_areas;
927                 while (c)
928                 {
929                         first_free += c->size;
930                         free_size -= c->size;
931                         p = &c->next;
932                         c = c->next;
933                 }
934
935                 if (free_size < size)
936                 {
937                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
938                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
939                 }
940
941                 new_wa = malloc(sizeof(working_area_t));
942                 new_wa->next = NULL;
943                 new_wa->size = size;
944                 new_wa->address = first_free;
945
946                 if (target->backup_working_area)
947                 {
948                         int retval;
949                         new_wa->backup = malloc(new_wa->size);
950                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
951                         {
952                                 free(new_wa->backup);
953                                 free(new_wa);
954                                 return retval;
955                         }
956                 }
957                 else
958                 {
959                         new_wa->backup = NULL;
960                 }
961
962                 /* put new entry in list */
963                 *p = new_wa;
964         }
965
966         /* mark as used, and return the new (reused) area */
967         new_wa->free = 0;
968         *area = new_wa;
969
970         /* user pointer */
971         new_wa->user = area;
972
973         return ERROR_OK;
974 }
975
976 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
977 {
978         if (area->free)
979                 return ERROR_OK;
980
981         if (restore&&target->backup_working_area)
982         {
983                 int retval;
984                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
985                         return retval;
986         }
987
988         area->free = 1;
989
990         /* mark user pointer invalid */
991         *area->user = NULL;
992         area->user = NULL;
993
994         return ERROR_OK;
995 }
996
997 int target_free_working_area(struct target_s *target, working_area_t *area)
998 {
999         return target_free_working_area_restore(target, area, 1);
1000 }
1001
1002 /* free resources and restore memory, if restoring memory fails,
1003  * free up resources anyway
1004  */
1005 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1006 {
1007         working_area_t *c = target->working_areas;
1008
1009         while (c)
1010         {
1011                 working_area_t *next = c->next;
1012                 target_free_working_area_restore(target, c, restore);
1013
1014                 if (c->backup)
1015                         free(c->backup);
1016
1017                 free(c);
1018
1019                 c = next;
1020         }
1021
1022         target->working_areas = NULL;
1023 }
1024
1025 void target_free_all_working_areas(struct target_s *target)
1026 {
1027         target_free_all_working_areas_restore(target, 1);
1028 }
1029
1030 int target_register_commands(struct command_context_s *cmd_ctx)
1031 {
1032
1033         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1034
1035
1036
1037
1038         register_jim(cmd_ctx, "target", jim_target, "configure target" );
1039
1040         return ERROR_OK;
1041 }
1042
1043 int target_arch_state(struct target_s *target)
1044 {
1045         int retval;
1046         if (target==NULL)
1047         {
1048                 LOG_USER("No target has been configured");
1049                 return ERROR_OK;
1050         }
1051
1052         LOG_USER("target state: %s",
1053                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1054
1055         if (target->state!=TARGET_HALTED)
1056                 return ERROR_OK;
1057
1058         retval=target->type->arch_state(target);
1059         return retval;
1060 }
1061
1062 /* Single aligned words are guaranteed to use 16 or 32 bit access
1063  * mode respectively, otherwise data is handled as quickly as
1064  * possible
1065  */
1066 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1067 {
1068         int retval;
1069         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1070
1071         if (!target_was_examined(target))
1072         {
1073                 LOG_ERROR("Target not examined yet");
1074                 return ERROR_FAIL;
1075         }
1076
1077         if (size == 0) {
1078                 return ERROR_OK;
1079         }
1080
1081         if ((address + size - 1) < address)
1082         {
1083                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1084                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1085                 return ERROR_FAIL;
1086         }
1087
1088         if (((address % 2) == 0) && (size == 2))
1089         {
1090                 return target_write_memory(target, address, 2, 1, buffer);
1091         }
1092
1093         /* handle unaligned head bytes */
1094         if (address % 4)
1095         {
1096                 u32 unaligned = 4 - (address % 4);
1097
1098                 if (unaligned > size)
1099                         unaligned = size;
1100
1101                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1102                         return retval;
1103
1104                 buffer += unaligned;
1105                 address += unaligned;
1106                 size -= unaligned;
1107         }
1108
1109         /* handle aligned words */
1110         if (size >= 4)
1111         {
1112                 int aligned = size - (size % 4);
1113
1114                 /* use bulk writes above a certain limit. This may have to be changed */
1115                 if (aligned > 128)
1116                 {
1117                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1118                                 return retval;
1119                 }
1120                 else
1121                 {
1122                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1123                                 return retval;
1124                 }
1125
1126                 buffer += aligned;
1127                 address += aligned;
1128                 size -= aligned;
1129         }
1130
1131         /* handle tail writes of less than 4 bytes */
1132         if (size > 0)
1133         {
1134                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1135                         return retval;
1136         }
1137
1138         return ERROR_OK;
1139 }
1140
1141 /* Single aligned words are guaranteed to use 16 or 32 bit access
1142  * mode respectively, otherwise data is handled as quickly as
1143  * possible
1144  */
1145 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1146 {
1147         int retval;
1148         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1149
1150         if (!target_was_examined(target))
1151         {
1152                 LOG_ERROR("Target not examined yet");
1153                 return ERROR_FAIL;
1154         }
1155
1156         if (size == 0) {
1157                 return ERROR_OK;
1158         }
1159
1160         if ((address + size - 1) < address)
1161         {
1162                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1163                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1164                 return ERROR_FAIL;
1165         }
1166
1167         if (((address % 2) == 0) && (size == 2))
1168         {
1169                 return target_read_memory(target, address, 2, 1, buffer);
1170         }
1171
1172         /* handle unaligned head bytes */
1173         if (address % 4)
1174         {
1175                 u32 unaligned = 4 - (address % 4);
1176
1177                 if (unaligned > size)
1178                         unaligned = size;
1179
1180                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1181                         return retval;
1182
1183                 buffer += unaligned;
1184                 address += unaligned;
1185                 size -= unaligned;
1186         }
1187
1188         /* handle aligned words */
1189         if (size >= 4)
1190         {
1191                 int aligned = size - (size % 4);
1192
1193                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1194                         return retval;
1195
1196                 buffer += aligned;
1197                 address += aligned;
1198                 size -= aligned;
1199         }
1200
1201         /* handle tail writes of less than 4 bytes */
1202         if (size > 0)
1203         {
1204                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1205                         return retval;
1206         }
1207
1208         return ERROR_OK;
1209 }
1210
1211 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1212 {
1213         u8 *buffer;
1214         int retval;
1215         u32 i;
1216         u32 checksum = 0;
1217         if (!target_was_examined(target))
1218         {
1219                 LOG_ERROR("Target not examined yet");
1220                 return ERROR_FAIL;
1221         }
1222
1223         if ((retval = target->type->checksum_memory(target, address,
1224                 size, &checksum)) != ERROR_OK)
1225         {
1226                 buffer = malloc(size);
1227                 if (buffer == NULL)
1228                 {
1229                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1230                         return ERROR_INVALID_ARGUMENTS;
1231                 }
1232                 retval = target_read_buffer(target, address, size, buffer);
1233                 if (retval != ERROR_OK)
1234                 {
1235                         free(buffer);
1236                         return retval;
1237                 }
1238
1239                 /* convert to target endianess */
1240                 for (i = 0; i < (size/sizeof(u32)); i++)
1241                 {
1242                         u32 target_data;
1243                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1244                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1245                 }
1246
1247                 retval = image_calculate_checksum( buffer, size, &checksum );
1248                 free(buffer);
1249         }
1250
1251         *crc = checksum;
1252
1253         return retval;
1254 }
1255
1256 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1257 {
1258         int retval;
1259         if (!target_was_examined(target))
1260         {
1261                 LOG_ERROR("Target not examined yet");
1262                 return ERROR_FAIL;
1263         }
1264
1265         if (target->type->blank_check_memory == 0)
1266                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1267
1268         retval = target->type->blank_check_memory(target, address, size, blank);
1269
1270         return retval;
1271 }
1272
1273 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1274 {
1275         u8 value_buf[4];
1276         if (!target_was_examined(target))
1277         {
1278                 LOG_ERROR("Target not examined yet");
1279                 return ERROR_FAIL;
1280         }
1281
1282         int retval = target_read_memory(target, address, 4, 1, value_buf);
1283
1284         if (retval == ERROR_OK)
1285         {
1286                 *value = target_buffer_get_u32(target, value_buf);
1287                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1288         }
1289         else
1290         {
1291                 *value = 0x0;
1292                 LOG_DEBUG("address: 0x%8.8x failed", address);
1293         }
1294
1295         return retval;
1296 }
1297
1298 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1299 {
1300         u8 value_buf[2];
1301         if (!target_was_examined(target))
1302         {
1303                 LOG_ERROR("Target not examined yet");
1304                 return ERROR_FAIL;
1305         }
1306
1307         int retval = target_read_memory(target, address, 2, 1, value_buf);
1308
1309         if (retval == ERROR_OK)
1310         {
1311                 *value = target_buffer_get_u16(target, value_buf);
1312                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1313         }
1314         else
1315         {
1316                 *value = 0x0;
1317                 LOG_DEBUG("address: 0x%8.8x failed", address);
1318         }
1319
1320         return retval;
1321 }
1322
1323 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1324 {
1325         int retval = target_read_memory(target, address, 1, 1, value);
1326         if (!target_was_examined(target))
1327         {
1328                 LOG_ERROR("Target not examined yet");
1329                 return ERROR_FAIL;
1330         }
1331
1332         if (retval == ERROR_OK)
1333         {
1334                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1335         }
1336         else
1337         {
1338                 *value = 0x0;
1339                 LOG_DEBUG("address: 0x%8.8x failed", address);
1340         }
1341
1342         return retval;
1343 }
1344
1345 int target_write_u32(struct target_s *target, u32 address, u32 value)
1346 {
1347         int retval;
1348         u8 value_buf[4];
1349         if (!target_was_examined(target))
1350         {
1351                 LOG_ERROR("Target not examined yet");
1352                 return ERROR_FAIL;
1353         }
1354
1355         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1356
1357         target_buffer_set_u32(target, value_buf, value);
1358         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1359         {
1360                 LOG_DEBUG("failed: %i", retval);
1361         }
1362
1363         return retval;
1364 }
1365
1366 int target_write_u16(struct target_s *target, u32 address, u16 value)
1367 {
1368         int retval;
1369         u8 value_buf[2];
1370         if (!target_was_examined(target))
1371         {
1372                 LOG_ERROR("Target not examined yet");
1373                 return ERROR_FAIL;
1374         }
1375
1376         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1377
1378         target_buffer_set_u16(target, value_buf, value);
1379         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1380         {
1381                 LOG_DEBUG("failed: %i", retval);
1382         }
1383
1384         return retval;
1385 }
1386
1387 int target_write_u8(struct target_s *target, u32 address, u8 value)
1388 {
1389         int retval;
1390         if (!target_was_examined(target))
1391         {
1392                 LOG_ERROR("Target not examined yet");
1393                 return ERROR_FAIL;
1394         }
1395
1396         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1397
1398         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1399         {
1400                 LOG_DEBUG("failed: %i", retval);
1401         }
1402
1403         return retval;
1404 }
1405
1406 int target_register_user_commands(struct command_context_s *cmd_ctx)
1407 {
1408         int retval = ERROR_OK;
1409
1410
1411         /* script procedures */
1412         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1413         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1414         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1415
1416         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1417                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1418
1419         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1420                         "loads active fast load image to current target - mainly for profiling purposes");
1421
1422
1423         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1424         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1425         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1426         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1427         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1428         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1429         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1430         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1431         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1432
1433         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1434         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1435         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1436
1437         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1438         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1439         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1440
1441         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1442         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1443         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1444         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1445
1446         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1447         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1448         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1449         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1450
1451         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1452                 return retval;
1453         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1454                 return retval;
1455
1456         return retval;
1457 }
1458
1459 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1460 {
1461         target_t *target = all_targets;
1462
1463         if (argc == 1)
1464         {
1465                 target = get_target(args[0]);
1466                 if (target == NULL) {
1467                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1468                         goto DumpTargets;
1469                 }
1470                 if (!target->tap->enabled) {
1471                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1472                                         "can't be the current target\n",
1473                                         target->tap->dotted_name);
1474                         return ERROR_FAIL;
1475                 }
1476
1477                 cmd_ctx->current_target = target->target_number;
1478                 return ERROR_OK;
1479         }
1480 DumpTargets:
1481
1482         target = all_targets;
1483         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1484         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1485         while (target)
1486         {
1487                 const char *state;
1488                 char marker = ' ';
1489
1490                 if (target->tap->enabled)
1491                         state = Jim_Nvp_value2name_simple(nvp_target_state,
1492                                         target->state)->name;
1493                 else
1494                         state = "tap-disabled";
1495
1496                 if (cmd_ctx->current_target == target->target_number)
1497                         marker = '*';
1498
1499                 /* keep columns lined up to match the headers above */
1500                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1501                                           target->target_number,
1502                                           marker,
1503                                           target->cmd_name,
1504                                           target_get_name(target),
1505                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1506                                                                 target->endianness)->name,
1507                                           target->tap->dotted_name,
1508                                           state);
1509                 target = target->next;
1510         }
1511
1512         return ERROR_OK;
1513 }
1514
1515 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1516
1517 static int powerDropout;
1518 static int srstAsserted;
1519
1520 static int runPowerRestore;
1521 static int runPowerDropout;
1522 static int runSrstAsserted;
1523 static int runSrstDeasserted;
1524
1525 static int sense_handler(void)
1526 {
1527         static int prevSrstAsserted = 0;
1528         static int prevPowerdropout = 0;
1529
1530         int retval;
1531         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1532                 return retval;
1533
1534         int powerRestored;
1535         powerRestored = prevPowerdropout && !powerDropout;
1536         if (powerRestored)
1537         {
1538                 runPowerRestore = 1;
1539         }
1540
1541         long long current = timeval_ms();
1542         static long long lastPower = 0;
1543         int waitMore = lastPower + 2000 > current;
1544         if (powerDropout && !waitMore)
1545         {
1546                 runPowerDropout = 1;
1547                 lastPower = current;
1548         }
1549
1550         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1551                 return retval;
1552
1553         int srstDeasserted;
1554         srstDeasserted = prevSrstAsserted && !srstAsserted;
1555
1556         static long long lastSrst = 0;
1557         waitMore = lastSrst + 2000 > current;
1558         if (srstDeasserted && !waitMore)
1559         {
1560                 runSrstDeasserted = 1;
1561                 lastSrst = current;
1562         }
1563
1564         if (!prevSrstAsserted && srstAsserted)
1565         {
1566                 runSrstAsserted = 1;
1567         }
1568
1569         prevSrstAsserted = srstAsserted;
1570         prevPowerdropout = powerDropout;
1571
1572         if (srstDeasserted || powerRestored)
1573         {
1574                 /* Other than logging the event we can't do anything here.
1575                  * Issuing a reset is a particularly bad idea as we might
1576                  * be inside a reset already.
1577                  */
1578         }
1579
1580         return ERROR_OK;
1581 }
1582
1583 /* process target state changes */
1584 int handle_target(void *priv)
1585 {
1586         int retval = ERROR_OK;
1587
1588         /* we do not want to recurse here... */
1589         static int recursive = 0;
1590         if (! recursive)
1591         {
1592                 recursive = 1;
1593                 sense_handler();
1594                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1595                  * We need to avoid an infinite loop/recursion here and we do that by
1596                  * clearing the flags after running these events.
1597                  */
1598                 int did_something = 0;
1599                 if (runSrstAsserted)
1600                 {
1601                         Jim_Eval( interp, "srst_asserted");
1602                         did_something = 1;
1603                 }
1604                 if (runSrstDeasserted)
1605                 {
1606                         Jim_Eval( interp, "srst_deasserted");
1607                         did_something = 1;
1608                 }
1609                 if (runPowerDropout)
1610                 {
1611                         Jim_Eval( interp, "power_dropout");
1612                         did_something = 1;
1613                 }
1614                 if (runPowerRestore)
1615                 {
1616                         Jim_Eval( interp, "power_restore");
1617                         did_something = 1;
1618                 }
1619
1620                 if (did_something)
1621                 {
1622                         /* clear detect flags */
1623                         sense_handler();
1624                 }
1625
1626                 /* clear action flags */
1627
1628                 runSrstAsserted=0;
1629                 runSrstDeasserted=0;
1630                 runPowerRestore=0;
1631                 runPowerDropout=0;
1632
1633                 recursive = 0;
1634         }
1635
1636         target_t *target = all_targets;
1637
1638         while (target)
1639         {
1640
1641                 /* only poll target if we've got power and srst isn't asserted */
1642                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1643                 {
1644                         /* polling may fail silently until the target has been examined */
1645                         if((retval = target_poll(target)) != ERROR_OK)
1646                                 return retval;
1647                 }
1648
1649                 target = target->next;
1650         }
1651
1652         return retval;
1653 }
1654
1655 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1656 {
1657         target_t *target;
1658         reg_t *reg = NULL;
1659         int count = 0;
1660         char *value;
1661
1662         LOG_DEBUG("-");
1663
1664         target = get_current_target(cmd_ctx);
1665
1666         /* list all available registers for the current target */
1667         if (argc == 0)
1668         {
1669                 reg_cache_t *cache = target->reg_cache;
1670
1671                 count = 0;
1672                 while(cache)
1673                 {
1674                         int i;
1675                         for (i = 0; i < cache->num_regs; i++)
1676                         {
1677                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1678                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1679                                 free(value);
1680                         }
1681                         cache = cache->next;
1682                 }
1683
1684                 return ERROR_OK;
1685         }
1686
1687         /* access a single register by its ordinal number */
1688         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1689         {
1690                 int num = strtoul(args[0], NULL, 0);
1691                 reg_cache_t *cache = target->reg_cache;
1692
1693                 count = 0;
1694                 while(cache)
1695                 {
1696                         int i;
1697                         for (i = 0; i < cache->num_regs; i++)
1698                         {
1699                                 if (count++ == num)
1700                                 {
1701                                         reg = &cache->reg_list[i];
1702                                         break;
1703                                 }
1704                         }
1705                         if (reg)
1706                                 break;
1707                         cache = cache->next;
1708                 }
1709
1710                 if (!reg)
1711                 {
1712                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1713                         return ERROR_OK;
1714                 }
1715         } else /* access a single register by its name */
1716         {
1717                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1718
1719                 if (!reg)
1720                 {
1721                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1722                         return ERROR_OK;
1723                 }
1724         }
1725
1726         /* display a register */
1727         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1728         {
1729                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1730                         reg->valid = 0;
1731
1732                 if (reg->valid == 0)
1733                 {
1734                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1735                         arch_type->get(reg);
1736                 }
1737                 value = buf_to_str(reg->value, reg->size, 16);
1738                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1739                 free(value);
1740                 return ERROR_OK;
1741         }
1742
1743         /* set register value */
1744         if (argc == 2)
1745         {
1746                 u8 *buf = malloc(CEIL(reg->size, 8));
1747                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1748
1749                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1750                 arch_type->set(reg, buf);
1751
1752                 value = buf_to_str(reg->value, reg->size, 16);
1753                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1754                 free(value);
1755
1756                 free(buf);
1757
1758                 return ERROR_OK;
1759         }
1760
1761         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1762
1763         return ERROR_OK;
1764 }
1765
1766 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1767 {
1768         int retval = ERROR_OK;
1769         target_t *target = get_current_target(cmd_ctx);
1770
1771         if (argc == 0)
1772         {
1773                 if((retval = target_poll(target)) != ERROR_OK)
1774                         return retval;
1775                 if((retval = target_arch_state(target)) != ERROR_OK)
1776                         return retval;
1777
1778         }
1779         else if (argc==1)
1780         {
1781                 if (strcmp(args[0], "on") == 0)
1782                 {
1783                         target_continous_poll = 1;
1784                 }
1785                 else if (strcmp(args[0], "off") == 0)
1786                 {
1787                         target_continous_poll = 0;
1788                 }
1789                 else
1790                 {
1791                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1792                 }
1793         } else
1794         {
1795                 return ERROR_COMMAND_SYNTAX_ERROR;
1796         }
1797
1798         return retval;
1799 }
1800
1801 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1802 {
1803         int ms = 5000;
1804
1805         if (argc > 0)
1806         {
1807                 char *end;
1808
1809                 ms = strtoul(args[0], &end, 0) * 1000;
1810                 if (*end)
1811                 {
1812                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1813                         return ERROR_OK;
1814                 }
1815         }
1816         target_t *target = get_current_target(cmd_ctx);
1817
1818         return target_wait_state(target, TARGET_HALTED, ms);
1819 }
1820
1821 /* wait for target state to change. The trick here is to have a low
1822  * latency for short waits and not to suck up all the CPU time
1823  * on longer waits.
1824  *
1825  * After 500ms, keep_alive() is invoked
1826  */
1827 int target_wait_state(target_t *target, enum target_state state, int ms)
1828 {
1829         int retval;
1830         long long then=0, cur;
1831         int once=1;
1832
1833         for (;;)
1834         {
1835                 if ((retval=target_poll(target))!=ERROR_OK)
1836                         return retval;
1837                 if (target->state == state)
1838                 {
1839                         break;
1840                 }
1841                 cur = timeval_ms();
1842                 if (once)
1843                 {
1844                         once=0;
1845                         then = timeval_ms();
1846                         LOG_DEBUG("waiting for target %s...",
1847                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1848                 }
1849
1850                 if (cur-then>500)
1851                 {
1852                         keep_alive();
1853                 }
1854
1855                 if ((cur-then)>ms)
1856                 {
1857                         LOG_ERROR("timed out while waiting for target %s",
1858                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1859                         return ERROR_FAIL;
1860                 }
1861         }
1862
1863         return ERROR_OK;
1864 }
1865
1866 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1867 {
1868         int retval;
1869         target_t *target = get_current_target(cmd_ctx);
1870
1871         LOG_DEBUG("-");
1872
1873         if ((retval = target_halt(target)) != ERROR_OK)
1874         {
1875                 return retval;
1876         }
1877
1878         if (argc == 1)
1879         {
1880                 int wait;
1881                 char *end;
1882
1883                 wait = strtoul(args[0], &end, 0);
1884                 if (!*end && !wait)
1885                         return ERROR_OK;
1886         }
1887
1888         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1889 }
1890
1891 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1892 {
1893         target_t *target = get_current_target(cmd_ctx);
1894
1895         LOG_USER("requesting target halt and executing a soft reset");
1896
1897         target->type->soft_reset_halt(target);
1898
1899         return ERROR_OK;
1900 }
1901
1902 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1903 {
1904         const Jim_Nvp *n;
1905         enum target_reset_mode reset_mode = RESET_RUN;
1906
1907         if (argc >= 1)
1908         {
1909                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1910                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1911                         return ERROR_COMMAND_SYNTAX_ERROR;
1912                 }
1913                 reset_mode = n->value;
1914         }
1915
1916         /* reset *all* targets */
1917         return target_process_reset(cmd_ctx, reset_mode);
1918 }
1919
1920
1921 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1922 {
1923         int retval;
1924         target_t *target = get_current_target(cmd_ctx);
1925
1926         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1927
1928         if (argc == 0)
1929                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1930         else if (argc == 1)
1931                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1932         else
1933         {
1934                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1935         }
1936
1937         return retval;
1938 }
1939
1940 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1941 {
1942         target_t *target = get_current_target(cmd_ctx);
1943
1944         LOG_DEBUG("-");
1945
1946         if (argc == 0)
1947                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1948
1949         if (argc == 1)
1950                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1951
1952         return ERROR_OK;
1953 }
1954
1955 static void handle_md_output(struct command_context_s *cmd_ctx,
1956                 struct target_s *target, u32 address, unsigned size,
1957                 unsigned count, const u8 *buffer)
1958 {
1959         const unsigned line_bytecnt = 32;
1960         unsigned line_modulo = line_bytecnt / size;
1961
1962         char output[line_bytecnt * 4 + 1];
1963         unsigned output_len = 0;
1964
1965         const char *value_fmt;
1966         switch (size) {
1967         case 4: value_fmt = "%8.8x "; break;
1968         case 2: value_fmt = "%4.2x "; break;
1969         case 1: value_fmt = "%2.2x "; break;
1970         default:
1971                 LOG_ERROR("invalid memory read size: %u", size);
1972                 exit(-1);
1973         }
1974
1975         for (unsigned i = 0; i < count; i++)
1976         {
1977                 if (i % line_modulo == 0)
1978                 {
1979                         output_len += snprintf(output + output_len,
1980                                         sizeof(output) - output_len,
1981                                         "0x%8.8x: ", address + (i*size));
1982                 }
1983
1984                 u32 value=0;
1985                 const u8 *value_ptr = buffer + i * size;
1986                 switch (size) {
1987                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
1988                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
1989                 case 1: value = *value_ptr;
1990                 }
1991                 output_len += snprintf(output + output_len,
1992                                 sizeof(output) - output_len,
1993                                 value_fmt, value);
1994
1995                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
1996                 {
1997                         command_print(cmd_ctx, "%s", output);
1998                         output_len = 0;
1999                 }
2000         }
2001 }
2002
2003 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2004 {
2005         if (argc < 1)
2006                 return ERROR_COMMAND_SYNTAX_ERROR;
2007
2008         unsigned size = 0;
2009         switch (cmd[2]) {
2010         case 'w': size = 4; break;
2011         case 'h': size = 2; break;
2012         case 'b': size = 1; break;
2013         default: return ERROR_COMMAND_SYNTAX_ERROR;
2014         }
2015
2016         u32 address = strtoul(args[0], NULL, 0);
2017
2018         unsigned count = 1;
2019         if (argc == 2)
2020                 count = strtoul(args[1], NULL, 0);
2021
2022         u8 *buffer = calloc(count, size);
2023
2024         target_t *target = get_current_target(cmd_ctx);
2025         int retval = target_read_memory(target,
2026                                 address, size, count, buffer);
2027         if (ERROR_OK == retval)
2028                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2029
2030         free(buffer);
2031
2032         return retval;
2033 }
2034
2035 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2036 {
2037         u32 address = 0;
2038         u32 value = 0;
2039         int count = 1;
2040         int i;
2041         int wordsize;
2042         target_t *target = get_current_target(cmd_ctx);
2043         u8 value_buf[4];
2044
2045          if ((argc < 2) || (argc > 3))
2046                 return ERROR_COMMAND_SYNTAX_ERROR;
2047
2048         address = strtoul(args[0], NULL, 0);
2049         value = strtoul(args[1], NULL, 0);
2050         if (argc == 3)
2051                 count = strtoul(args[2], NULL, 0);
2052
2053         switch (cmd[2])
2054         {
2055                 case 'w':
2056                         wordsize = 4;
2057                         target_buffer_set_u32(target, value_buf, value);
2058                         break;
2059                 case 'h':
2060                         wordsize = 2;
2061                         target_buffer_set_u16(target, value_buf, value);
2062                         break;
2063                 case 'b':
2064                         wordsize = 1;
2065                         value_buf[0] = value;
2066                         break;
2067                 default:
2068                         return ERROR_COMMAND_SYNTAX_ERROR;
2069         }
2070         for (i=0; i<count; i++)
2071         {
2072                 int retval = target_write_memory(target,
2073                                 address + i * wordsize, wordsize, 1, value_buf);
2074                 if (ERROR_OK != retval)
2075                         return retval;
2076                 keep_alive();
2077         }
2078
2079         return ERROR_OK;
2080
2081 }
2082
2083 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2084 {
2085         u8 *buffer;
2086         u32 buf_cnt;
2087         u32 image_size;
2088         u32 min_address=0;
2089         u32 max_address=0xffffffff;
2090         int i;
2091         int retval, retvaltemp;
2092
2093         image_t image;
2094
2095         duration_t duration;
2096         char *duration_text;
2097
2098         target_t *target = get_current_target(cmd_ctx);
2099
2100         if ((argc < 1)||(argc > 5))
2101         {
2102                 return ERROR_COMMAND_SYNTAX_ERROR;
2103         }
2104
2105         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2106         if (argc >= 2)
2107         {
2108                 image.base_address_set = 1;
2109                 image.base_address = strtoul(args[1], NULL, 0);
2110         }
2111         else
2112         {
2113                 image.base_address_set = 0;
2114         }
2115
2116
2117         image.start_address_set = 0;
2118
2119         if (argc>=4)
2120         {
2121                 min_address=strtoul(args[3], NULL, 0);
2122         }
2123         if (argc>=5)
2124         {
2125                 max_address=strtoul(args[4], NULL, 0)+min_address;
2126         }
2127
2128         if (min_address>max_address)
2129         {
2130                 return ERROR_COMMAND_SYNTAX_ERROR;
2131         }
2132
2133         duration_start_measure(&duration);
2134
2135         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2136         {
2137                 return ERROR_OK;
2138         }
2139
2140         image_size = 0x0;
2141         retval = ERROR_OK;
2142         for (i = 0; i < image.num_sections; i++)
2143         {
2144                 buffer = malloc(image.sections[i].size);
2145                 if (buffer == NULL)
2146                 {
2147                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2148                         break;
2149                 }
2150
2151                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2152                 {
2153                         free(buffer);
2154                         break;
2155                 }
2156
2157                 u32 offset=0;
2158                 u32 length=buf_cnt;
2159
2160                 /* DANGER!!! beware of unsigned comparision here!!! */
2161
2162                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2163                                 (image.sections[i].base_address<max_address))
2164                 {
2165                         if (image.sections[i].base_address<min_address)
2166                         {
2167                                 /* clip addresses below */
2168                                 offset+=min_address-image.sections[i].base_address;
2169                                 length-=offset;
2170                         }
2171
2172                         if (image.sections[i].base_address+buf_cnt>max_address)
2173                         {
2174                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2175                         }
2176
2177                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2178                         {
2179                                 free(buffer);
2180                                 break;
2181                         }
2182                         image_size += length;
2183                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2184                 }
2185
2186                 free(buffer);
2187         }
2188
2189         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2190         {
2191                 image_close(&image);
2192                 return retvaltemp;
2193         }
2194
2195         if (retval==ERROR_OK)
2196         {
2197                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2198         }
2199         free(duration_text);
2200
2201         image_close(&image);
2202
2203         return retval;
2204
2205 }
2206
2207 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2208 {
2209         fileio_t fileio;
2210
2211         u32 address;
2212         u32 size;
2213         u8 buffer[560];
2214         int retval=ERROR_OK, retvaltemp;
2215
2216         duration_t duration;
2217         char *duration_text;
2218
2219         target_t *target = get_current_target(cmd_ctx);
2220
2221         if (argc != 3)
2222         {
2223                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2224                 return ERROR_OK;
2225         }
2226
2227         address = strtoul(args[1], NULL, 0);
2228         size = strtoul(args[2], NULL, 0);
2229
2230         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2231         {
2232                 return ERROR_OK;
2233         }
2234
2235         duration_start_measure(&duration);
2236
2237         while (size > 0)
2238         {
2239                 u32 size_written;
2240                 u32 this_run_size = (size > 560) ? 560 : size;
2241
2242                 retval = target_read_buffer(target, address, this_run_size, buffer);
2243                 if (retval != ERROR_OK)
2244                 {
2245                         break;
2246                 }
2247
2248                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2249                 if (retval != ERROR_OK)
2250                 {
2251                         break;
2252                 }
2253
2254                 size -= this_run_size;
2255                 address += this_run_size;
2256         }
2257
2258         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2259                 return retvaltemp;
2260
2261         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2262                 return retvaltemp;
2263
2264         if (retval==ERROR_OK)
2265         {
2266                 command_print(cmd_ctx, "dumped %lld byte in %s",
2267                                 fileio.size, duration_text);
2268                 free(duration_text);
2269         }
2270
2271         return retval;
2272 }
2273
2274 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2275 {
2276         u8 *buffer;
2277         u32 buf_cnt;
2278         u32 image_size;
2279         int i;
2280         int retval, retvaltemp;
2281         u32 checksum = 0;
2282         u32 mem_checksum = 0;
2283
2284         image_t image;
2285
2286         duration_t duration;
2287         char *duration_text;
2288
2289         target_t *target = get_current_target(cmd_ctx);
2290
2291         if (argc < 1)
2292         {
2293                 return ERROR_COMMAND_SYNTAX_ERROR;
2294         }
2295
2296         if (!target)
2297         {
2298                 LOG_ERROR("no target selected");
2299                 return ERROR_FAIL;
2300         }
2301
2302         duration_start_measure(&duration);
2303
2304         if (argc >= 2)
2305         {
2306                 image.base_address_set = 1;
2307                 image.base_address = strtoul(args[1], NULL, 0);
2308         }
2309         else
2310         {
2311                 image.base_address_set = 0;
2312                 image.base_address = 0x0;
2313         }
2314
2315         image.start_address_set = 0;
2316
2317         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2318         {
2319                 return retval;
2320         }
2321
2322         image_size = 0x0;
2323         retval=ERROR_OK;
2324         for (i = 0; i < image.num_sections; i++)
2325         {
2326                 buffer = malloc(image.sections[i].size);
2327                 if (buffer == NULL)
2328                 {
2329                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2330                         break;
2331                 }
2332                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2333                 {
2334                         free(buffer);
2335                         break;
2336                 }
2337
2338                 if (verify)
2339                 {
2340                         /* calculate checksum of image */
2341                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2342
2343                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2344                         if( retval != ERROR_OK )
2345                         {
2346                                 free(buffer);
2347                                 break;
2348                         }
2349
2350                         if( checksum != mem_checksum )
2351                         {
2352                                 /* failed crc checksum, fall back to a binary compare */
2353                                 u8 *data;
2354
2355                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2356
2357                                 data = (u8*)malloc(buf_cnt);
2358
2359                                 /* Can we use 32bit word accesses? */
2360                                 int size = 1;
2361                                 int count = buf_cnt;
2362                                 if ((count % 4) == 0)
2363                                 {
2364                                         size *= 4;
2365                                         count /= 4;
2366                                 }
2367                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2368                                 if (retval == ERROR_OK)
2369                                 {
2370                                         u32 t;
2371                                         for (t = 0; t < buf_cnt; t++)
2372                                         {
2373                                                 if (data[t] != buffer[t])
2374                                                 {
2375                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2376                                                         free(data);
2377                                                         free(buffer);
2378                                                         retval=ERROR_FAIL;
2379                                                         goto done;
2380                                                 }
2381                                                 if ((t%16384)==0)
2382                                                 {
2383                                                         keep_alive();
2384                                                 }
2385                                         }
2386                                 }
2387
2388                                 free(data);
2389                         }
2390                 } else
2391                 {
2392                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2393                 }
2394
2395                 free(buffer);
2396                 image_size += buf_cnt;
2397         }
2398 done:
2399
2400         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2401         {
2402                 image_close(&image);
2403                 return retvaltemp;
2404         }
2405
2406         if (retval==ERROR_OK)
2407         {
2408                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2409         }
2410         free(duration_text);
2411
2412         image_close(&image);
2413
2414         return retval;
2415 }
2416
2417 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2418 {
2419         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2420 }
2421
2422 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2423 {
2424         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2425 }
2426
2427 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2428 {
2429         int retval;
2430         target_t *target = get_current_target(cmd_ctx);
2431
2432         if (argc == 0)
2433         {
2434                 breakpoint_t *breakpoint = target->breakpoints;
2435
2436                 while (breakpoint)
2437                 {
2438                         if (breakpoint->type == BKPT_SOFT)
2439                         {
2440                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2441                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2442                                 free(buf);
2443                         }
2444                         else
2445                         {
2446                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2447                         }
2448                         breakpoint = breakpoint->next;
2449                 }
2450         }
2451         else if (argc >= 2)
2452         {
2453                 int hw = BKPT_SOFT;
2454                 u32 length = 0;
2455
2456                 length = strtoul(args[1], NULL, 0);
2457
2458                 if (argc >= 3)
2459                         if (strcmp(args[2], "hw") == 0)
2460                                 hw = BKPT_HARD;
2461
2462                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2463                 {
2464                         LOG_ERROR("Failure setting breakpoints");
2465                 }
2466                 else
2467                 {
2468                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2469                                         strtoul(args[0], NULL, 0));
2470                 }
2471         }
2472         else
2473         {
2474                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2475         }
2476
2477         return ERROR_OK;
2478 }
2479
2480 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2481 {
2482         target_t *target = get_current_target(cmd_ctx);
2483
2484         if (argc > 0)
2485                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2486
2487         return ERROR_OK;
2488 }
2489
2490 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2491 {
2492         target_t *target = get_current_target(cmd_ctx);
2493         int retval;
2494
2495         if (argc == 0)
2496         {
2497                 watchpoint_t *watchpoint = target->watchpoints;
2498
2499                 while (watchpoint)
2500                 {
2501                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2502                         watchpoint = watchpoint->next;
2503                 }
2504         }
2505         else if (argc >= 2)
2506         {
2507                 enum watchpoint_rw type = WPT_ACCESS;
2508                 u32 data_value = 0x0;
2509                 u32 data_mask = 0xffffffff;
2510
2511                 if (argc >= 3)
2512                 {
2513                         switch(args[2][0])
2514                         {
2515                                 case 'r':
2516                                         type = WPT_READ;
2517                                         break;
2518                                 case 'w':
2519                                         type = WPT_WRITE;
2520                                         break;
2521                                 case 'a':
2522                                         type = WPT_ACCESS;
2523                                         break;
2524                                 default:
2525                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2526                                         return ERROR_OK;
2527                         }
2528                 }
2529                 if (argc >= 4)
2530                 {
2531                         data_value = strtoul(args[3], NULL, 0);
2532                 }
2533                 if (argc >= 5)
2534                 {
2535                         data_mask = strtoul(args[4], NULL, 0);
2536                 }
2537
2538                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2539                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2540                 {
2541                         LOG_ERROR("Failure setting breakpoints");
2542                 }
2543         }
2544         else
2545         {
2546                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2547         }
2548
2549         return ERROR_OK;
2550 }
2551
2552 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2553 {
2554         target_t *target = get_current_target(cmd_ctx);
2555
2556         if (argc > 0)
2557                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2558
2559         return ERROR_OK;
2560 }
2561
2562 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2563 {
2564         int retval;
2565         target_t *target = get_current_target(cmd_ctx);
2566         u32 va;
2567         u32 pa;
2568
2569         if (argc != 1)
2570         {
2571                 return ERROR_COMMAND_SYNTAX_ERROR;
2572         }
2573         va = strtoul(args[0], NULL, 0);
2574
2575         retval = target->type->virt2phys(target, va, &pa);
2576         if (retval == ERROR_OK)
2577         {
2578                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2579         }
2580         else
2581         {
2582                 /* lower levels will have logged a detailed error which is
2583                  * forwarded to telnet/GDB session.
2584                  */
2585         }
2586         return retval;
2587 }
2588
2589 static void writeData(FILE *f, const void *data, size_t len)
2590 {
2591         size_t written = fwrite(data, len, 1, f);
2592         if (written != len)
2593                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2594 }
2595
2596 static void writeLong(FILE *f, int l)
2597 {
2598         int i;
2599         for (i=0; i<4; i++)
2600         {
2601                 char c=(l>>(i*8))&0xff;
2602                 writeData(f, &c, 1);
2603         }
2604
2605 }
2606
2607 static void writeString(FILE *f, char *s)
2608 {
2609         writeData(f, s, strlen(s));
2610 }
2611
2612 /* Dump a gmon.out histogram file. */
2613 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2614 {
2615         u32 i;
2616         FILE *f=fopen(filename, "w");
2617         if (f==NULL)
2618                 return;
2619         writeString(f, "gmon");
2620         writeLong(f, 0x00000001); /* Version */
2621         writeLong(f, 0); /* padding */
2622         writeLong(f, 0); /* padding */
2623         writeLong(f, 0); /* padding */
2624
2625         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2626         writeData(f, &zero, 1);
2627
2628         /* figure out bucket size */
2629         u32 min=samples[0];
2630         u32 max=samples[0];
2631         for (i=0; i<sampleNum; i++)
2632         {
2633                 if (min>samples[i])
2634                 {
2635                         min=samples[i];
2636                 }
2637                 if (max<samples[i])
2638                 {
2639                         max=samples[i];
2640                 }
2641         }
2642
2643         int addressSpace=(max-min+1);
2644
2645         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2646         u32 length = addressSpace;
2647         if (length > maxBuckets)
2648         {
2649                 length=maxBuckets;
2650         }
2651         int *buckets=malloc(sizeof(int)*length);
2652         if (buckets==NULL)
2653         {
2654                 fclose(f);
2655                 return;
2656         }
2657         memset(buckets, 0, sizeof(int)*length);
2658         for (i=0; i<sampleNum;i++)
2659         {
2660                 u32 address=samples[i];
2661                 long long a=address-min;
2662                 long long b=length-1;
2663                 long long c=addressSpace-1;
2664                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2665                 buckets[index]++;
2666         }
2667
2668         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2669         writeLong(f, min);                      /* low_pc */
2670         writeLong(f, max);                      /* high_pc */
2671         writeLong(f, length);           /* # of samples */
2672         writeLong(f, 64000000);         /* 64MHz */
2673         writeString(f, "seconds");
2674         for (i=0; i<(15-strlen("seconds")); i++)
2675                 writeData(f, &zero, 1);
2676         writeString(f, "s");
2677
2678         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2679
2680         char *data=malloc(2*length);
2681         if (data!=NULL)
2682         {
2683                 for (i=0; i<length;i++)
2684                 {
2685                         int val;
2686                         val=buckets[i];
2687                         if (val>65535)
2688                         {
2689                                 val=65535;
2690                         }
2691                         data[i*2]=val&0xff;
2692                         data[i*2+1]=(val>>8)&0xff;
2693                 }
2694                 free(buckets);
2695                 writeData(f, data, length * 2);
2696                 free(data);
2697         } else
2698         {
2699                 free(buckets);
2700         }
2701
2702         fclose(f);
2703 }
2704
2705 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2706 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2707 {
2708         target_t *target = get_current_target(cmd_ctx);
2709         struct timeval timeout, now;
2710
2711         gettimeofday(&timeout, NULL);
2712         if (argc!=2)
2713         {
2714                 return ERROR_COMMAND_SYNTAX_ERROR;
2715         }
2716         char *end;
2717         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2718         if (*end)
2719         {
2720                 return ERROR_OK;
2721         }
2722
2723         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2724
2725         static const int maxSample=10000;
2726         u32 *samples=malloc(sizeof(u32)*maxSample);
2727         if (samples==NULL)
2728                 return ERROR_OK;
2729
2730         int numSamples=0;
2731         int retval=ERROR_OK;
2732         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2733         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2734
2735         for (;;)
2736         {
2737                 target_poll(target);
2738                 if (target->state == TARGET_HALTED)
2739                 {
2740                         u32 t=*((u32 *)reg->value);
2741                         samples[numSamples++]=t;
2742                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2743                         target_poll(target);
2744                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2745                 } else if (target->state == TARGET_RUNNING)
2746                 {
2747                         /* We want to quickly sample the PC. */
2748                         if((retval = target_halt(target)) != ERROR_OK)
2749                         {
2750                                 free(samples);
2751                                 return retval;
2752                         }
2753                 } else
2754                 {
2755                         command_print(cmd_ctx, "Target not halted or running");
2756                         retval=ERROR_OK;
2757                         break;
2758                 }
2759                 if (retval!=ERROR_OK)
2760                 {
2761                         break;
2762                 }
2763
2764                 gettimeofday(&now, NULL);
2765                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2766                 {
2767                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2768                         if((retval = target_poll(target)) != ERROR_OK)
2769                         {
2770                                 free(samples);
2771                                 return retval;
2772                         }
2773                         if (target->state == TARGET_HALTED)
2774                         {
2775                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2776                         }
2777                         if((retval = target_poll(target)) != ERROR_OK)
2778                         {
2779                                 free(samples);
2780                                 return retval;
2781                         }
2782                         writeGmon(samples, numSamples, args[1]);
2783                         command_print(cmd_ctx, "Wrote %s", args[1]);
2784                         break;
2785                 }
2786         }
2787         free(samples);
2788
2789         return ERROR_OK;
2790 }
2791
2792 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2793 {
2794         char *namebuf;
2795         Jim_Obj *nameObjPtr, *valObjPtr;
2796         int result;
2797
2798         namebuf = alloc_printf("%s(%d)", varname, idx);
2799         if (!namebuf)
2800                 return JIM_ERR;
2801
2802         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2803         valObjPtr = Jim_NewIntObj(interp, val);
2804         if (!nameObjPtr || !valObjPtr)
2805         {
2806                 free(namebuf);
2807                 return JIM_ERR;
2808         }
2809
2810         Jim_IncrRefCount(nameObjPtr);
2811         Jim_IncrRefCount(valObjPtr);
2812         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2813         Jim_DecrRefCount(interp, nameObjPtr);
2814         Jim_DecrRefCount(interp, valObjPtr);
2815         free(namebuf);
2816         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2817         return result;
2818 }
2819
2820 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2821 {
2822         command_context_t *context;
2823         target_t *target;
2824
2825         context = Jim_GetAssocData(interp, "context");
2826         if (context == NULL)
2827         {
2828                 LOG_ERROR("mem2array: no command context");
2829                 return JIM_ERR;
2830         }
2831         target = get_current_target(context);
2832         if (target == NULL)
2833         {
2834                 LOG_ERROR("mem2array: no current target");
2835                 return JIM_ERR;
2836         }
2837
2838         return  target_mem2array(interp, target, argc-1, argv+1);
2839 }
2840
2841 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2842 {
2843         long l;
2844         u32 width;
2845         int len;
2846         u32 addr;
2847         u32 count;
2848         u32 v;
2849         const char *varname;
2850         u8 buffer[4096];
2851         int  n, e, retval;
2852         u32 i;
2853
2854         /* argv[1] = name of array to receive the data
2855          * argv[2] = desired width
2856          * argv[3] = memory address
2857          * argv[4] = count of times to read
2858          */
2859         if (argc != 4) {
2860                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2861                 return JIM_ERR;
2862         }
2863         varname = Jim_GetString(argv[0], &len);
2864         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2865
2866         e = Jim_GetLong(interp, argv[1], &l);
2867         width = l;
2868         if (e != JIM_OK) {
2869                 return e;
2870         }
2871
2872         e = Jim_GetLong(interp, argv[2], &l);
2873         addr = l;
2874         if (e != JIM_OK) {
2875                 return e;
2876         }
2877         e = Jim_GetLong(interp, argv[3], &l);
2878         len = l;
2879         if (e != JIM_OK) {
2880                 return e;
2881         }
2882         switch (width) {
2883                 case 8:
2884                         width = 1;
2885                         break;
2886                 case 16:
2887                         width = 2;
2888                         break;
2889                 case 32:
2890                         width = 4;
2891                         break;
2892                 default:
2893                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2894                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2895                         return JIM_ERR;
2896         }
2897         if (len == 0) {
2898                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2899                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2900                 return JIM_ERR;
2901         }
2902         if ((addr + (len * width)) < addr) {
2903                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2904                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2905                 return JIM_ERR;
2906         }
2907         /* absurd transfer size? */
2908         if (len > 65536) {
2909                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2910                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2911                 return JIM_ERR;
2912         }
2913
2914         if ((width == 1) ||
2915                 ((width == 2) && ((addr & 1) == 0)) ||
2916                 ((width == 4) && ((addr & 3) == 0))) {
2917                 /* all is well */
2918         } else {
2919                 char buf[100];
2920                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2921                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2922                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2923                 return JIM_ERR;
2924         }
2925
2926         /* Transfer loop */
2927
2928         /* index counter */
2929         n = 0;
2930         /* assume ok */
2931         e = JIM_OK;
2932         while (len) {
2933                 /* Slurp... in buffer size chunks */
2934
2935                 count = len; /* in objects.. */
2936                 if (count > (sizeof(buffer)/width)) {
2937                         count = (sizeof(buffer)/width);
2938                 }
2939
2940                 retval = target_read_memory( target, addr, width, count, buffer );
2941                 if (retval != ERROR_OK) {
2942                         /* BOO !*/
2943                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2944                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2945                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2946                         e = JIM_ERR;
2947                         len = 0;
2948                 } else {
2949                         v = 0; /* shut up gcc */
2950                         for (i = 0 ;i < count ;i++, n++) {
2951                                 switch (width) {
2952                                         case 4:
2953                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2954                                                 break;
2955                                         case 2:
2956                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2957                                                 break;
2958                                         case 1:
2959                                                 v = buffer[i] & 0x0ff;
2960                                                 break;
2961                                 }
2962                                 new_int_array_element(interp, varname, n, v);
2963                         }
2964                         len -= count;
2965                 }
2966         }
2967
2968         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2969
2970         return JIM_OK;
2971 }
2972
2973 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2974 {
2975         char *namebuf;
2976         Jim_Obj *nameObjPtr, *valObjPtr;
2977         int result;
2978         long l;
2979
2980         namebuf = alloc_printf("%s(%d)", varname, idx);
2981         if (!namebuf)
2982                 return JIM_ERR;
2983
2984         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2985         if (!nameObjPtr)
2986         {
2987                 free(namebuf);
2988                 return JIM_ERR;
2989         }
2990
2991         Jim_IncrRefCount(nameObjPtr);
2992         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2993         Jim_DecrRefCount(interp, nameObjPtr);
2994         free(namebuf);
2995         if (valObjPtr == NULL)
2996                 return JIM_ERR;
2997
2998         result = Jim_GetLong(interp, valObjPtr, &l);
2999         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3000         *val = l;
3001         return result;
3002 }
3003
3004 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3005 {
3006         command_context_t *context;
3007         target_t *target;
3008
3009         context = Jim_GetAssocData(interp, "context");
3010         if (context == NULL){
3011                 LOG_ERROR("array2mem: no command context");
3012                 return JIM_ERR;
3013         }
3014         target = get_current_target(context);
3015         if (target == NULL){
3016                 LOG_ERROR("array2mem: no current target");
3017                 return JIM_ERR;
3018         }
3019
3020         return target_array2mem( interp,target, argc-1, argv+1 );
3021 }
3022
3023 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3024 {
3025         long l;
3026         u32 width;
3027         int len;
3028         u32 addr;
3029         u32 count;
3030         u32 v;
3031         const char *varname;
3032         u8 buffer[4096];
3033         int  n, e, retval;
3034         u32 i;
3035
3036         /* argv[1] = name of array to get the data
3037          * argv[2] = desired width
3038          * argv[3] = memory address
3039          * argv[4] = count to write
3040          */
3041         if (argc != 4) {
3042                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3043                 return JIM_ERR;
3044         }
3045         varname = Jim_GetString(argv[0], &len);
3046         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3047
3048         e = Jim_GetLong(interp, argv[1], &l);
3049         width = l;
3050         if (e != JIM_OK) {
3051                 return e;
3052         }
3053
3054         e = Jim_GetLong(interp, argv[2], &l);
3055         addr = l;
3056         if (e != JIM_OK) {
3057                 return e;
3058         }
3059         e = Jim_GetLong(interp, argv[3], &l);
3060         len = l;
3061         if (e != JIM_OK) {
3062                 return e;
3063         }
3064         switch (width) {
3065                 case 8:
3066                         width = 1;
3067                         break;
3068                 case 16:
3069                         width = 2;
3070                         break;
3071                 case 32:
3072                         width = 4;
3073                         break;
3074                 default:
3075                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3076                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3077                         return JIM_ERR;
3078         }
3079         if (len == 0) {
3080                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3081                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3082                 return JIM_ERR;
3083         }
3084         if ((addr + (len * width)) < addr) {
3085                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3086                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3087                 return JIM_ERR;
3088         }
3089         /* absurd transfer size? */
3090         if (len > 65536) {
3091                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3092                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3093                 return JIM_ERR;
3094         }
3095
3096         if ((width == 1) ||
3097                 ((width == 2) && ((addr & 1) == 0)) ||
3098                 ((width == 4) && ((addr & 3) == 0))) {
3099                 /* all is well */
3100         } else {
3101                 char buf[100];
3102                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3103                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3104                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3105                 return JIM_ERR;
3106         }
3107
3108         /* Transfer loop */
3109
3110         /* index counter */
3111         n = 0;
3112         /* assume ok */
3113         e = JIM_OK;
3114         while (len) {
3115                 /* Slurp... in buffer size chunks */
3116
3117                 count = len; /* in objects.. */
3118                 if (count > (sizeof(buffer)/width)) {
3119                         count = (sizeof(buffer)/width);
3120                 }
3121
3122                 v = 0; /* shut up gcc */
3123                 for (i = 0 ;i < count ;i++, n++) {
3124                         get_int_array_element(interp, varname, n, &v);
3125                         switch (width) {
3126                         case 4:
3127                                 target_buffer_set_u32(target, &buffer[i*width], v);
3128                                 break;
3129                         case 2:
3130                                 target_buffer_set_u16(target, &buffer[i*width], v);
3131                                 break;
3132                         case 1:
3133                                 buffer[i] = v & 0x0ff;
3134                                 break;
3135                         }
3136                 }
3137                 len -= count;
3138
3139                 retval = target_write_memory(target, addr, width, count, buffer);
3140                 if (retval != ERROR_OK) {
3141                         /* BOO !*/
3142                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3143                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3144                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3145                         e = JIM_ERR;
3146                         len = 0;
3147                 }
3148         }
3149
3150         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3151
3152         return JIM_OK;
3153 }
3154
3155 void target_all_handle_event( enum target_event e )
3156 {
3157         target_t *target;
3158
3159         LOG_DEBUG( "**all*targets: event: %d, %s",
3160                         e,
3161                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3162
3163         target = all_targets;
3164         while (target){
3165                 target_handle_event( target, e );
3166                 target = target->next;
3167         }
3168 }
3169
3170 void target_handle_event( target_t *target, enum target_event e )
3171 {
3172         target_event_action_t *teap;
3173         int done;
3174
3175         teap = target->event_action;
3176
3177         done = 0;
3178         while( teap ){
3179                 if( teap->event == e ){
3180                         done = 1;
3181                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3182                                            target->target_number,
3183                                            target->cmd_name,
3184                                            target_get_name(target),
3185                                            e,
3186                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3187                                            Jim_GetString( teap->body, NULL ) );
3188                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3189                         {
3190                                 Jim_PrintErrorMessage(interp);
3191                         }
3192                 }
3193                 teap = teap->next;
3194         }
3195         if( !done ){
3196                 LOG_DEBUG( "event: %d %s - no action",
3197                                    e,
3198                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3199         }
3200 }
3201
3202 enum target_cfg_param {
3203         TCFG_TYPE,
3204         TCFG_EVENT,
3205         TCFG_WORK_AREA_VIRT,
3206         TCFG_WORK_AREA_PHYS,
3207         TCFG_WORK_AREA_SIZE,
3208         TCFG_WORK_AREA_BACKUP,
3209         TCFG_ENDIAN,
3210         TCFG_VARIANT,
3211         TCFG_CHAIN_POSITION,
3212 };
3213
3214 static Jim_Nvp nvp_config_opts[] = {
3215         { .name = "-type",             .value = TCFG_TYPE },
3216         { .name = "-event",            .value = TCFG_EVENT },
3217         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3218         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3219         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3220         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3221         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3222         { .name = "-variant",          .value = TCFG_VARIANT },
3223         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3224
3225         { .name = NULL, .value = -1 }
3226 };
3227
3228 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3229 {
3230         Jim_Nvp *n;
3231         Jim_Obj *o;
3232         jim_wide w;
3233         char *cp;
3234         int e;
3235
3236         /* parse config or cget options ... */
3237         while( goi->argc > 0 ){
3238                 Jim_SetEmptyResult( goi->interp );
3239                 /* Jim_GetOpt_Debug( goi ); */
3240
3241                 if( target->type->target_jim_configure ){
3242                         /* target defines a configure function */
3243                         /* target gets first dibs on parameters */
3244                         e = (*(target->type->target_jim_configure))( target, goi );
3245                         if( e == JIM_OK ){
3246                                 /* more? */
3247                                 continue;
3248                         }
3249                         if( e == JIM_ERR ){
3250                                 /* An error */
3251                                 return e;
3252                         }
3253                         /* otherwise we 'continue' below */
3254                 }
3255                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3256                 if( e != JIM_OK ){
3257                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3258                         return e;
3259                 }
3260                 switch( n->value ){
3261                 case TCFG_TYPE:
3262                         /* not setable */
3263                         if( goi->isconfigure ){
3264                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3265                                 return JIM_ERR;
3266                         } else {
3267                         no_params:
3268                                 if( goi->argc != 0 ){
3269                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3270                                         return JIM_ERR;
3271                                 }
3272                         }
3273                         Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3274                         /* loop for more */
3275                         break;
3276                 case TCFG_EVENT:
3277                         if( goi->argc == 0 ){
3278                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3279                                 return JIM_ERR;
3280                         }
3281
3282                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3283                         if( e != JIM_OK ){
3284                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3285                                 return e;
3286                         }
3287
3288                         if( goi->isconfigure ){
3289                                 if( goi->argc != 1 ){
3290                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3291                                         return JIM_ERR;
3292                                 }
3293                         } else {
3294                                 if( goi->argc != 0 ){
3295                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3296                                         return JIM_ERR;
3297                                 }
3298                         }
3299
3300                         {
3301                                 target_event_action_t *teap;
3302
3303                                 teap = target->event_action;
3304                                 /* replace existing? */
3305                                 while( teap ){
3306                                         if( teap->event == (enum target_event)n->value ){
3307                                                 break;
3308                                         }
3309                                         teap = teap->next;
3310                                 }
3311
3312                                 if( goi->isconfigure ){
3313                                         if( teap == NULL ){
3314                                                 /* create new */
3315                                                 teap = calloc( 1, sizeof(*teap) );
3316                                         }
3317                                         teap->event = n->value;
3318                                         Jim_GetOpt_Obj( goi, &o );
3319                                         if( teap->body ){
3320                                                 Jim_DecrRefCount( interp, teap->body );
3321                                         }
3322                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3323                                         /*
3324                                          * FIXME:
3325                                          *     Tcl/TK - "tk events" have a nice feature.
3326                                          *     See the "BIND" command.
3327                                          *    We should support that here.
3328                                          *     You can specify %X and %Y in the event code.
3329                                          *     The idea is: %T - target name.
3330                                          *     The idea is: %N - target number
3331                                          *     The idea is: %E - event name.
3332                                          */
3333                                         Jim_IncrRefCount( teap->body );
3334
3335                                         /* add to head of event list */
3336                                         teap->next = target->event_action;
3337                                         target->event_action = teap;
3338                                         Jim_SetEmptyResult(goi->interp);
3339                                 } else {
3340                                         /* get */
3341                                         if( teap == NULL ){
3342                                                 Jim_SetEmptyResult( goi->interp );
3343                                         } else {
3344                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3345                                         }
3346                                 }
3347                         }
3348                         /* loop for more */
3349                         break;
3350
3351                 case TCFG_WORK_AREA_VIRT:
3352                         if( goi->isconfigure ){
3353                                 target_free_all_working_areas(target);
3354                                 e = Jim_GetOpt_Wide( goi, &w );
3355                                 if( e != JIM_OK ){
3356                                         return e;
3357                                 }
3358                                 target->working_area_virt = w;
3359                         } else {
3360                                 if( goi->argc != 0 ){
3361                                         goto no_params;
3362                                 }
3363                         }
3364                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3365                         /* loop for more */
3366                         break;
3367
3368                 case TCFG_WORK_AREA_PHYS:
3369                         if( goi->isconfigure ){
3370                                 target_free_all_working_areas(target);
3371                                 e = Jim_GetOpt_Wide( goi, &w );
3372                                 if( e != JIM_OK ){
3373                                         return e;
3374                                 }
3375                                 target->working_area_phys = w;
3376                         } else {
3377                                 if( goi->argc != 0 ){
3378                                         goto no_params;
3379                                 }
3380                         }
3381                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3382                         /* loop for more */
3383                         break;
3384
3385                 case TCFG_WORK_AREA_SIZE:
3386                         if( goi->isconfigure ){
3387                                 target_free_all_working_areas(target);
3388                                 e = Jim_GetOpt_Wide( goi, &w );
3389                                 if( e != JIM_OK ){
3390                                         return e;
3391                                 }
3392                                 target->working_area_size = w;
3393                         } else {
3394                                 if( goi->argc != 0 ){
3395                                         goto no_params;
3396                                 }
3397                         }
3398                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3399                         /* loop for more */
3400                         break;
3401
3402                 case TCFG_WORK_AREA_BACKUP:
3403                         if( goi->isconfigure ){
3404                                 target_free_all_working_areas(target);
3405                                 e = Jim_GetOpt_Wide( goi, &w );
3406                                 if( e != JIM_OK ){
3407                                         return e;
3408                                 }
3409                                 /* make this exactly 1 or 0 */
3410                                 target->backup_working_area = (!!w);
3411                         } else {
3412                                 if( goi->argc != 0 ){
3413                                         goto no_params;
3414                                 }
3415                         }
3416                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3417                         /* loop for more e*/
3418                         break;
3419
3420                 case TCFG_ENDIAN:
3421                         if( goi->isconfigure ){
3422                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3423                                 if( e != JIM_OK ){
3424                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3425                                         return e;
3426                                 }
3427                                 target->endianness = n->value;
3428                         } else {
3429                                 if( goi->argc != 0 ){
3430                                         goto no_params;
3431                                 }
3432                         }
3433                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3434                         if( n->name == NULL ){
3435                                 target->endianness = TARGET_LITTLE_ENDIAN;
3436                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3437                         }
3438                         Jim_SetResultString( goi->interp, n->name, -1 );
3439                         /* loop for more */
3440                         break;
3441
3442                 case TCFG_VARIANT:
3443                         if( goi->isconfigure ){
3444                                 if( goi->argc < 1 ){
3445                                         Jim_SetResult_sprintf( goi->interp,
3446                                                                                    "%s ?STRING?",
3447                                                                                    n->name );
3448                                         return JIM_ERR;
3449                                 }
3450                                 if( target->variant ){
3451                                         free((void *)(target->variant));
3452                                 }
3453                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3454                                 target->variant = strdup(cp);
3455                         } else {
3456                                 if( goi->argc != 0 ){
3457                                         goto no_params;
3458                                 }
3459                         }
3460                         Jim_SetResultString( goi->interp, target->variant,-1 );
3461                         /* loop for more */
3462                         break;
3463                 case TCFG_CHAIN_POSITION:
3464                         if( goi->isconfigure ){
3465                                 Jim_Obj *o;
3466                                 jtag_tap_t *tap;
3467                                 target_free_all_working_areas(target);
3468                                 e = Jim_GetOpt_Obj( goi, &o );
3469                                 if( e != JIM_OK ){
3470                                         return e;
3471                                 }
3472                                 tap = jtag_tap_by_jim_obj( goi->interp, o );
3473                                 if( tap == NULL ){
3474                                         return JIM_ERR;
3475                                 }
3476                                 /* make this exactly 1 or 0 */
3477                                 target->tap = tap;
3478                         } else {
3479                                 if( goi->argc != 0 ){
3480                                         goto no_params;
3481                                 }
3482                         }
3483                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3484                         /* loop for more e*/
3485                         break;
3486                 }
3487         } /* while( goi->argc ) */
3488
3489
3490                 /* done - we return */
3491         return JIM_OK;
3492 }
3493
3494 /** this is the 'tcl' handler for the target specific command */
3495 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3496 {
3497         Jim_GetOptInfo goi;
3498         jim_wide a,b,c;
3499         int x,y,z;
3500         u8  target_buf[32];
3501         Jim_Nvp *n;
3502         target_t *target;
3503         struct command_context_s *cmd_ctx;
3504         int e;
3505
3506         enum {
3507                 TS_CMD_CONFIGURE,
3508                 TS_CMD_CGET,
3509
3510                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3511                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3512                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3513                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3514                 TS_CMD_EXAMINE,
3515                 TS_CMD_POLL,
3516                 TS_CMD_RESET,
3517                 TS_CMD_HALT,
3518                 TS_CMD_WAITSTATE,
3519                 TS_CMD_EVENTLIST,
3520                 TS_CMD_CURSTATE,
3521                 TS_CMD_INVOKE_EVENT,
3522         };
3523
3524         static const Jim_Nvp target_options[] = {
3525                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3526                 { .name = "cget", .value = TS_CMD_CGET },
3527                 { .name = "mww", .value = TS_CMD_MWW },
3528                 { .name = "mwh", .value = TS_CMD_MWH },
3529                 { .name = "mwb", .value = TS_CMD_MWB },
3530                 { .name = "mdw", .value = TS_CMD_MDW },
3531                 { .name = "mdh", .value = TS_CMD_MDH },
3532                 { .name = "mdb", .value = TS_CMD_MDB },
3533                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3534                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3535                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3536                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3537
3538                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3539                 { .name = "arp_poll", .value = TS_CMD_POLL },
3540                 { .name = "arp_reset", .value = TS_CMD_RESET },
3541                 { .name = "arp_halt", .value = TS_CMD_HALT },
3542                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3543                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3544
3545                 { .name = NULL, .value = -1 },
3546         };
3547
3548         /* go past the "command" */
3549         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3550
3551         target = Jim_CmdPrivData( goi.interp );
3552         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3553
3554         /* commands here are in an NVP table */
3555         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3556         if( e != JIM_OK ){
3557                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3558                 return e;
3559         }
3560         /* Assume blank result */
3561         Jim_SetEmptyResult( goi.interp );
3562
3563         switch( n->value ){
3564         case TS_CMD_CONFIGURE:
3565                 if( goi.argc < 2 ){
3566                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3567                         return JIM_ERR;
3568                 }
3569                 goi.isconfigure = 1;
3570                 return target_configure( &goi, target );
3571         case TS_CMD_CGET:
3572                 // some things take params
3573                 if( goi.argc < 1 ){
3574                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3575                         return JIM_ERR;
3576                 }
3577                 goi.isconfigure = 0;
3578                 return target_configure( &goi, target );
3579                 break;
3580         case TS_CMD_MWW:
3581         case TS_CMD_MWH:
3582         case TS_CMD_MWB:
3583                 /* argv[0] = cmd
3584                  * argv[1] = address
3585                  * argv[2] = data
3586                  * argv[3] = optional count.
3587                  */
3588
3589                 if( (goi.argc == 3) || (goi.argc == 4) ){
3590                         /* all is well */
3591                 } else {
3592                 mwx_error:
3593                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3594                         return JIM_ERR;
3595                 }
3596
3597                 e = Jim_GetOpt_Wide( &goi, &a );
3598                 if( e != JIM_OK ){
3599                         goto mwx_error;
3600                 }
3601
3602                 e = Jim_GetOpt_Wide( &goi, &b );
3603                 if( e != JIM_OK ){
3604                         goto mwx_error;
3605                 }
3606                 if( goi.argc ){
3607                         e = Jim_GetOpt_Wide( &goi, &c );
3608                         if( e != JIM_OK ){
3609                                 goto mwx_error;
3610                         }
3611                 } else {
3612                         c = 1;
3613                 }
3614
3615                 switch( n->value ){
3616                 case TS_CMD_MWW:
3617                         target_buffer_set_u32( target, target_buf, b );
3618                         b = 4;
3619                         break;
3620                 case TS_CMD_MWH:
3621                         target_buffer_set_u16( target, target_buf, b );
3622                         b = 2;
3623                         break;
3624                 case TS_CMD_MWB:
3625                         target_buffer_set_u8( target, target_buf, b );
3626                         b = 1;
3627                         break;
3628                 }
3629                 for( x = 0 ; x < c ; x++ ){
3630                         e = target_write_memory( target, a, b, 1, target_buf );
3631                         if( e != ERROR_OK ){
3632                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3633                                 return JIM_ERR;
3634                         }
3635                         /* b = width */
3636                         a = a + b;
3637                 }
3638                 return JIM_OK;
3639                 break;
3640
3641                 /* display */
3642         case TS_CMD_MDW:
3643         case TS_CMD_MDH:
3644         case TS_CMD_MDB:
3645                 /* argv[0] = command
3646                  * argv[1] = address
3647                  * argv[2] = optional count
3648                  */
3649                 if( (goi.argc == 2) || (goi.argc == 3) ){
3650                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3651                         return JIM_ERR;
3652                 }
3653                 e = Jim_GetOpt_Wide( &goi, &a );
3654                 if( e != JIM_OK ){
3655                         return JIM_ERR;
3656                 }
3657                 if( goi.argc ){
3658                         e = Jim_GetOpt_Wide( &goi, &c );
3659                         if( e != JIM_OK ){
3660                                 return JIM_ERR;
3661                         }
3662                 } else {
3663                         c = 1;
3664                 }
3665                 b = 1; /* shut up gcc */
3666                 switch( n->value ){
3667                 case TS_CMD_MDW:
3668                         b =  4;
3669                         break;
3670                 case TS_CMD_MDH:
3671                         b = 2;
3672                         break;
3673                 case TS_CMD_MDB:
3674                         b = 1;
3675                         break;
3676                 }
3677
3678                 /* convert to "bytes" */
3679                 c = c * b;
3680                 /* count is now in 'BYTES' */
3681                 while( c > 0 ){
3682                         y = c;
3683                         if( y > 16 ){
3684                                 y = 16;
3685                         }
3686                         e = target_read_memory( target, a, b, y / b, target_buf );
3687                         if( e != ERROR_OK ){
3688                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3689                                 return JIM_ERR;
3690                         }
3691
3692                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3693                         switch( b ){
3694                         case 4:
3695                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3696                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3697                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3698                                 }
3699                                 for( ; (x < 16) ; x += 4 ){
3700                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3701                                 }
3702                                 break;
3703                         case 2:
3704                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3705                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3706                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3707                                 }
3708                                 for( ; (x < 16) ; x += 2 ){
3709                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3710                                 }
3711                                 break;
3712                         case 1:
3713                         default:
3714                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3715                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3716                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3717                                 }
3718                                 for( ; (x < 16) ; x += 1 ){
3719                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3720                                 }
3721                                 break;
3722                         }
3723                         /* ascii-ify the bytes */
3724                         for( x = 0 ; x < y ; x++ ){
3725                                 if( (target_buf[x] >= 0x20) &&
3726                                         (target_buf[x] <= 0x7e) ){
3727                                         /* good */
3728                                 } else {
3729                                         /* smack it */
3730                                         target_buf[x] = '.';
3731                                 }
3732                         }
3733                         /* space pad  */
3734                         while( x < 16 ){
3735                                 target_buf[x] = ' ';
3736                                 x++;
3737                         }
3738                         /* terminate */
3739                         target_buf[16] = 0;
3740                         /* print - with a newline */
3741                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3742                         /* NEXT... */
3743                         c -= 16;
3744                         a += 16;
3745                 }
3746                 return JIM_OK;
3747         case TS_CMD_MEM2ARRAY:
3748                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3749                 break;
3750         case TS_CMD_ARRAY2MEM:
3751                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3752                 break;
3753         case TS_CMD_EXAMINE:
3754                 if( goi.argc ){
3755                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3756                         return JIM_ERR;
3757                 }
3758                 if (!target->tap->enabled)
3759                         goto err_tap_disabled;
3760                 e = target->type->examine( target );
3761                 if( e != ERROR_OK ){
3762                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3763                         return JIM_ERR;
3764                 }
3765                 return JIM_OK;
3766         case TS_CMD_POLL:
3767                 if( goi.argc ){
3768                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3769                         return JIM_ERR;
3770                 }
3771                 if (!target->tap->enabled)
3772                         goto err_tap_disabled;
3773                 if( !(target_was_examined(target)) ){
3774                         e = ERROR_TARGET_NOT_EXAMINED;
3775                 } else {
3776                         e = target->type->poll( target );
3777                 }
3778                 if( e != ERROR_OK ){
3779                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3780                         return JIM_ERR;
3781                 } else {
3782                         return JIM_OK;
3783                 }
3784                 break;
3785         case TS_CMD_RESET:
3786                 if( goi.argc != 2 ){
3787                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3788                         return JIM_ERR;
3789                 }
3790                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3791                 if( e != JIM_OK ){
3792                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3793                         return e;
3794                 }
3795                 /* the halt or not param */
3796                 e = Jim_GetOpt_Wide( &goi, &a);
3797                 if( e != JIM_OK ){
3798                         return e;
3799                 }
3800                 if (!target->tap->enabled)
3801                         goto err_tap_disabled;
3802                 /* determine if we should halt or not. */
3803                 target->reset_halt = !!a;
3804                 /* When this happens - all workareas are invalid. */
3805                 target_free_all_working_areas_restore(target, 0);
3806
3807                 /* do the assert */
3808                 if( n->value == NVP_ASSERT ){
3809                         target->type->assert_reset( target );
3810                 } else {
3811                         target->type->deassert_reset( target );
3812                 }
3813                 return JIM_OK;
3814         case TS_CMD_HALT:
3815                 if( goi.argc ){
3816                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3817                         return JIM_ERR;
3818                 }
3819                 if (!target->tap->enabled)
3820                         goto err_tap_disabled;
3821                 target->type->halt( target );
3822                 return JIM_OK;
3823         case TS_CMD_WAITSTATE:
3824                 /* params:  <name>  statename timeoutmsecs */
3825                 if( goi.argc != 2 ){
3826                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3827                         return JIM_ERR;
3828                 }
3829                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3830                 if( e != JIM_OK ){
3831                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3832                         return e;
3833                 }
3834                 e = Jim_GetOpt_Wide( &goi, &a );
3835                 if( e != JIM_OK ){
3836                         return e;
3837                 }
3838                 if (!target->tap->enabled)
3839                         goto err_tap_disabled;
3840                 e = target_wait_state( target, n->value, a );
3841                 if( e != ERROR_OK ){
3842                         Jim_SetResult_sprintf( goi.interp,
3843                                                                    "target: %s wait %s fails (%d) %s",
3844                                                                    target->cmd_name,
3845                                                                    n->name,
3846                                                                    e, target_strerror_safe(e) );
3847                         return JIM_ERR;
3848                 } else {
3849                         return JIM_OK;
3850                 }
3851         case TS_CMD_EVENTLIST:
3852                 /* List for human, Events defined for this target.
3853                  * scripts/programs should use 'name cget -event NAME'
3854                  */
3855                 {
3856                         target_event_action_t *teap;
3857                         teap = target->event_action;
3858                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3859                                                    target->target_number,
3860                                                    target->cmd_name );
3861                         command_print( cmd_ctx, "%-25s | Body", "Event");
3862                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3863                         while( teap ){
3864                                 command_print( cmd_ctx,
3865                                                            "%-25s | %s",
3866                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3867                                                            Jim_GetString( teap->body, NULL ) );
3868                                 teap = teap->next;
3869                         }
3870                         command_print( cmd_ctx, "***END***");
3871                         return JIM_OK;
3872                 }
3873         case TS_CMD_CURSTATE:
3874                 if( goi.argc != 0 ){
3875                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3876                         return JIM_ERR;
3877                 }
3878                 Jim_SetResultString( goi.interp,
3879                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3880                 return JIM_OK;
3881         case TS_CMD_INVOKE_EVENT:
3882                 if( goi.argc != 1 ){
3883                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3884                         return JIM_ERR;
3885                 }
3886                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3887                 if( e != JIM_OK ){
3888                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3889                         return e;
3890                 }
3891                 target_handle_event( target, n->value );
3892                 return JIM_OK;
3893         }
3894         return JIM_ERR;
3895
3896 err_tap_disabled:
3897         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
3898         return JIM_ERR;
3899 }
3900
3901 static int target_create( Jim_GetOptInfo *goi )
3902 {
3903         Jim_Obj *new_cmd;
3904         Jim_Cmd *cmd;
3905         const char *cp;
3906         char *cp2;
3907         int e;
3908         int x;
3909         target_t *target;
3910         struct command_context_s *cmd_ctx;
3911
3912         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3913         if( goi->argc < 3 ){
3914                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3915                 return JIM_ERR;
3916         }
3917
3918         /* COMMAND */
3919         Jim_GetOpt_Obj( goi, &new_cmd );
3920         /* does this command exist? */
3921         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3922         if( cmd ){
3923                 cp = Jim_GetString( new_cmd, NULL );
3924                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3925                 return JIM_ERR;
3926         }
3927
3928         /* TYPE */
3929         e = Jim_GetOpt_String( goi, &cp2, NULL );
3930         cp = cp2;
3931         /* now does target type exist */
3932         for( x = 0 ; target_types[x] ; x++ ){
3933                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3934                         /* found */
3935                         break;
3936                 }
3937         }
3938         if( target_types[x] == NULL ){
3939                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3940                 for( x = 0 ; target_types[x] ; x++ ){
3941                         if( target_types[x+1] ){
3942                                 Jim_AppendStrings( goi->interp,
3943                                                                    Jim_GetResult(goi->interp),
3944                                                                    target_types[x]->name,
3945                                                                    ", ", NULL);
3946                         } else {
3947                                 Jim_AppendStrings( goi->interp,
3948                                                                    Jim_GetResult(goi->interp),
3949                                                                    " or ",
3950                                                                    target_types[x]->name,NULL );
3951                         }
3952                 }
3953                 return JIM_ERR;
3954         }
3955
3956         /* Create it */
3957         target = calloc(1,sizeof(target_t));
3958         /* set target number */
3959         target->target_number = new_target_number();
3960
3961         /* allocate memory for each unique target type */
3962         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3963
3964         memcpy( target->type, target_types[x], sizeof(target_type_t));
3965
3966         /* will be set by "-endian" */
3967         target->endianness = TARGET_ENDIAN_UNKNOWN;
3968
3969         target->working_area        = 0x0;
3970         target->working_area_size   = 0x0;
3971         target->working_areas       = NULL;
3972         target->backup_working_area = 0;
3973
3974         target->state               = TARGET_UNKNOWN;
3975         target->debug_reason        = DBG_REASON_UNDEFINED;
3976         target->reg_cache           = NULL;
3977         target->breakpoints         = NULL;
3978         target->watchpoints         = NULL;
3979         target->next                = NULL;
3980         target->arch_info           = NULL;
3981
3982         target->display             = 1;
3983
3984         /* initialize trace information */
3985         target->trace_info = malloc(sizeof(trace_t));
3986         target->trace_info->num_trace_points         = 0;
3987         target->trace_info->trace_points_size        = 0;
3988         target->trace_info->trace_points             = NULL;
3989         target->trace_info->trace_history_size       = 0;
3990         target->trace_info->trace_history            = NULL;
3991         target->trace_info->trace_history_pos        = 0;
3992         target->trace_info->trace_history_overflowed = 0;
3993
3994         target->dbgmsg          = NULL;
3995         target->dbg_msg_enabled = 0;
3996
3997         target->endianness = TARGET_ENDIAN_UNKNOWN;
3998
3999         /* Do the rest as "configure" options */
4000         goi->isconfigure = 1;
4001         e = target_configure( goi, target);
4002
4003         if (target->tap == NULL)
4004         {
4005                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4006                 e=JIM_ERR;
4007         }
4008
4009         if( e != JIM_OK ){
4010                 free( target->type );
4011                 free( target );
4012                 return e;
4013         }
4014
4015         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4016                 /* default endian to little if not specified */
4017                 target->endianness = TARGET_LITTLE_ENDIAN;
4018         }
4019
4020         /* incase variant is not set */
4021         if (!target->variant)
4022                 target->variant = strdup("");
4023
4024         /* create the target specific commands */
4025         if( target->type->register_commands ){
4026                 (*(target->type->register_commands))( cmd_ctx );
4027         }
4028         if( target->type->target_create ){
4029                 (*(target->type->target_create))( target, goi->interp );
4030         }
4031
4032         /* append to end of list */
4033         {
4034                 target_t **tpp;
4035                 tpp = &(all_targets);
4036                 while( *tpp ){
4037                         tpp = &( (*tpp)->next );
4038                 }
4039                 *tpp = target;
4040         }
4041
4042         cp = Jim_GetString( new_cmd, NULL );
4043         target->cmd_name = strdup(cp);
4044
4045         /* now - create the new target name command */
4046         e = Jim_CreateCommand( goi->interp,
4047                                                    /* name */
4048                                                    cp,
4049                                                    tcl_target_func, /* C function */
4050                                                    target, /* private data */
4051                                                    NULL ); /* no del proc */
4052
4053         return e;
4054 }
4055
4056 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4057 {
4058         int x,r,e;
4059         jim_wide w;
4060         struct command_context_s *cmd_ctx;
4061         target_t *target;
4062         Jim_GetOptInfo goi;
4063         enum tcmd {
4064                 /* TG = target generic */
4065                 TG_CMD_CREATE,
4066                 TG_CMD_TYPES,
4067                 TG_CMD_NAMES,
4068                 TG_CMD_CURRENT,
4069                 TG_CMD_NUMBER,
4070                 TG_CMD_COUNT,
4071         };
4072         const char *target_cmds[] = {
4073                 "create", "types", "names", "current", "number",
4074                 "count",
4075                 NULL /* terminate */
4076         };
4077
4078         LOG_DEBUG("Target command params:");
4079         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4080
4081         cmd_ctx = Jim_GetAssocData( interp, "context" );
4082
4083         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4084
4085         if( goi.argc == 0 ){
4086                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4087                 return JIM_ERR;
4088         }
4089
4090         /* Jim_GetOpt_Debug( &goi ); */
4091         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
4092         if( r != JIM_OK ){
4093                 return r;
4094         }
4095
4096         switch(x){
4097         default:
4098                 Jim_Panic(goi.interp,"Why am I here?");
4099                 return JIM_ERR;
4100         case TG_CMD_CURRENT:
4101                 if( goi.argc != 0 ){
4102                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4103                         return JIM_ERR;
4104                 }
4105                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4106                 return JIM_OK;
4107         case TG_CMD_TYPES:
4108                 if( goi.argc != 0 ){
4109                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4110                         return JIM_ERR;
4111                 }
4112                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4113                 for( x = 0 ; target_types[x] ; x++ ){
4114                         Jim_ListAppendElement( goi.interp,
4115                                                                    Jim_GetResult(goi.interp),
4116                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4117                 }
4118                 return JIM_OK;
4119         case TG_CMD_NAMES:
4120                 if( goi.argc != 0 ){
4121                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4122                         return JIM_ERR;
4123                 }
4124                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4125                 target = all_targets;
4126                 while( target ){
4127                         Jim_ListAppendElement( goi.interp,
4128                                                                    Jim_GetResult(goi.interp),
4129                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4130                         target = target->next;
4131                 }
4132                 return JIM_OK;
4133         case TG_CMD_CREATE:
4134                 if( goi.argc < 3 ){
4135                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4136                         return JIM_ERR;
4137                 }
4138                 return target_create( &goi );
4139                 break;
4140         case TG_CMD_NUMBER:
4141                 if( goi.argc != 1 ){
4142                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4143                         return JIM_ERR;
4144                 }
4145                 e = Jim_GetOpt_Wide( &goi, &w );
4146                 if( e != JIM_OK ){
4147                         return JIM_ERR;
4148                 }
4149                 {
4150                         target_t *t;
4151                         t = get_target_by_num(w);
4152                         if( t == NULL ){
4153                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4154                                 return JIM_ERR;
4155                         }
4156                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4157                         return JIM_OK;
4158                 }
4159         case TG_CMD_COUNT:
4160                 if( goi.argc != 0 ){
4161                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4162                         return JIM_ERR;
4163                 }
4164                 Jim_SetResult( goi.interp,
4165                                            Jim_NewIntObj( goi.interp, max_target_number()));
4166                 return JIM_OK;
4167         }
4168
4169         return JIM_ERR;
4170 }
4171
4172
4173 struct FastLoad
4174 {
4175         u32 address;
4176         u8 *data;
4177         int length;
4178
4179 };
4180
4181 static int fastload_num;
4182 static struct FastLoad *fastload;
4183
4184 static void free_fastload(void)
4185 {
4186         if (fastload!=NULL)
4187         {
4188                 int i;
4189                 for (i=0; i<fastload_num; i++)
4190                 {
4191                         if (fastload[i].data)
4192                                 free(fastload[i].data);
4193                 }
4194                 free(fastload);
4195                 fastload=NULL;
4196         }
4197 }
4198
4199
4200
4201
4202 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4203 {
4204         u8 *buffer;
4205         u32 buf_cnt;
4206         u32 image_size;
4207         u32 min_address=0;
4208         u32 max_address=0xffffffff;
4209         int i;
4210         int retval;
4211
4212         image_t image;
4213
4214         duration_t duration;
4215         char *duration_text;
4216
4217         if ((argc < 1)||(argc > 5))
4218         {
4219                 return ERROR_COMMAND_SYNTAX_ERROR;
4220         }
4221
4222         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4223         if (argc >= 2)
4224         {
4225                 image.base_address_set = 1;
4226                 image.base_address = strtoul(args[1], NULL, 0);
4227         }
4228         else
4229         {
4230                 image.base_address_set = 0;
4231         }
4232
4233
4234         image.start_address_set = 0;
4235
4236         if (argc>=4)
4237         {
4238                 min_address=strtoul(args[3], NULL, 0);
4239         }
4240         if (argc>=5)
4241         {
4242                 max_address=strtoul(args[4], NULL, 0)+min_address;
4243         }
4244
4245         if (min_address>max_address)
4246         {
4247                 return ERROR_COMMAND_SYNTAX_ERROR;
4248         }
4249
4250         duration_start_measure(&duration);
4251
4252         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4253         {
4254                 return ERROR_OK;
4255         }
4256
4257         image_size = 0x0;
4258         retval = ERROR_OK;
4259         fastload_num=image.num_sections;
4260         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4261         if (fastload==NULL)
4262         {
4263                 image_close(&image);
4264                 return ERROR_FAIL;
4265         }
4266         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4267         for (i = 0; i < image.num_sections; i++)
4268         {
4269                 buffer = malloc(image.sections[i].size);
4270                 if (buffer == NULL)
4271                 {
4272                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4273                         break;
4274                 }
4275
4276                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4277                 {
4278                         free(buffer);
4279                         break;
4280                 }
4281
4282                 u32 offset=0;
4283                 u32 length=buf_cnt;
4284
4285
4286                 /* DANGER!!! beware of unsigned comparision here!!! */
4287
4288                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4289                                 (image.sections[i].base_address<max_address))
4290                 {
4291                         if (image.sections[i].base_address<min_address)
4292                         {
4293                                 /* clip addresses below */
4294                                 offset+=min_address-image.sections[i].base_address;
4295                                 length-=offset;
4296                         }
4297
4298                         if (image.sections[i].base_address+buf_cnt>max_address)
4299                         {
4300                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4301                         }
4302
4303                         fastload[i].address=image.sections[i].base_address+offset;
4304                         fastload[i].data=malloc(length);
4305                         if (fastload[i].data==NULL)
4306                         {
4307                                 free(buffer);
4308                                 break;
4309                         }
4310                         memcpy(fastload[i].data, buffer+offset, length);
4311                         fastload[i].length=length;
4312
4313                         image_size += length;
4314                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4315                 }
4316
4317                 free(buffer);
4318         }
4319
4320         duration_stop_measure(&duration, &duration_text);
4321         if (retval==ERROR_OK)
4322         {
4323                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4324                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4325         }
4326         free(duration_text);
4327
4328         image_close(&image);
4329
4330         if (retval!=ERROR_OK)
4331         {
4332                 free_fastload();
4333         }
4334
4335         return retval;
4336 }
4337
4338 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4339 {
4340         if (argc>0)
4341                 return ERROR_COMMAND_SYNTAX_ERROR;
4342         if (fastload==NULL)
4343         {
4344                 LOG_ERROR("No image in memory");
4345                 return ERROR_FAIL;
4346         }
4347         int i;
4348         int ms=timeval_ms();
4349         int size=0;
4350         int retval=ERROR_OK;
4351         for (i=0; i<fastload_num;i++)
4352         {
4353                 target_t *target = get_current_target(cmd_ctx);
4354                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4355                 if (retval==ERROR_OK)
4356                 {
4357                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4358                 }
4359                 size+=fastload[i].length;
4360         }
4361         int after=timeval_ms();
4362         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4363         return retval;
4364 }