src/helper/configuration.h
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55
56 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         struct command_context_s *cmd_ctx = priv;
224         
225         if (event == TARGET_EVENT_HALTED)
226         {
227                 target_unregister_event_callback(target_init_handler, priv);
228
229                 target_invoke_script(cmd_ctx, target, "reset");
230
231                 jtag_execute_queue();
232         }
233         
234         return ERROR_OK;
235 }
236
237 int target_run_and_halt_handler(void *priv)
238 {
239         target_t *target = priv;
240         
241         target_halt(target);
242         
243         return ERROR_OK;
244 }
245
246 int target_poll(struct target_s *target)
247 {
248         /* We can't poll until after examine */
249         if (!target->type->examined)
250         {
251                 /* Fail silently lest we pollute the log */
252                 return ERROR_FAIL;
253         }
254         return target->type->poll(target);
255 }
256
257 int target_halt(struct target_s *target)
258 {
259         /* We can't poll until after examine */
260         if (!target->type->examined)
261         {
262                 LOG_ERROR("Target not examined yet");
263                 return ERROR_FAIL;
264         }
265         return target->type->halt(target);
266 }
267
268 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
269 {
270         /* We can't poll until after examine */
271         if (!target->type->examined)
272         {
273                 LOG_ERROR("Target not examined yet");
274                 return ERROR_FAIL;
275         }
276         return target->type->resume(target, current, address, handle_breakpoints, debug_execution);
277 }
278
279
280 int target_process_reset(struct command_context_s *cmd_ctx)
281 {
282         int retval = ERROR_OK;
283         target_t *target;
284         struct timeval timeout, now;
285
286         jtag->speed(jtag_speed);
287
288         target = targets;
289         while (target)
290         {
291                 target_invoke_script(cmd_ctx, target, "pre_reset");
292                 target = target->next;
293         }
294         
295         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
296                 return retval;
297         
298         /* First time this is executed after launching OpenOCD, it will read out 
299          * the type of CPU, etc. and init Embedded ICE registers in host
300          * memory. 
301          * 
302          * It will also set up ICE registers in the target.
303          * 
304          * However, if we assert TRST later, we need to set up the registers again. 
305          * 
306          * For the "reset halt/init" case we must only set up the registers here.
307          */
308         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
309                 return retval;
310         
311         /* prepare reset_halt where necessary */
312         target = targets;
313         while (target)
314         {
315                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
316                 {
317                         switch (target->reset_mode)
318                         {
319                                 case RESET_HALT:
320                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
321                                         target->reset_mode = RESET_RUN_AND_HALT;
322                                         break;
323                                 case RESET_INIT:
324                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
325                                         target->reset_mode = RESET_RUN_AND_INIT;
326                                         break;
327                                 default:
328                                         break;
329                         } 
330                 }
331                 target = target->next;
332         }
333         
334         target = targets;
335         while (target)
336         {
337                 /* we have no idea what state the target is in, so we
338                  * have to drop working areas
339                  */
340                 target_free_all_working_areas_restore(target, 0);
341                 target->type->assert_reset(target);
342                 target = target->next;
343         }
344         if ((retval = jtag_execute_queue()) != ERROR_OK)
345         {
346                 LOG_WARNING("JTAG communication failed asserting reset.");
347                 retval = ERROR_OK;
348         }
349         
350         /* request target halt if necessary, and schedule further action */
351         target = targets;
352         while (target)
353         {
354                 switch (target->reset_mode)
355                 {
356                         case RESET_RUN:
357                                 /* nothing to do if target just wants to be run */
358                                 break;
359                         case RESET_RUN_AND_HALT:
360                                 /* schedule halt */
361                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
362                                 break;
363                         case RESET_RUN_AND_INIT:
364                                 /* schedule halt */
365                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
366                                 target_register_event_callback(target_init_handler, cmd_ctx);
367                                 break;
368                         case RESET_HALT:
369                                 target_halt(target);
370                                 break;
371                         case RESET_INIT:
372                                 target_halt(target);
373                                 target_register_event_callback(target_init_handler, cmd_ctx);
374                                 break;
375                         default:
376                                 LOG_ERROR("BUG: unknown target->reset_mode");
377                 }
378                 target = target->next;
379         }
380         
381         if ((retval = jtag_execute_queue()) != ERROR_OK)
382         {
383                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
384                 retval = ERROR_OK;              
385         }
386         
387         target = targets;
388         while (target)
389         {
390                 target->type->deassert_reset(target);
391                 target = target->next;
392         }
393         
394         if ((retval = jtag_execute_queue()) != ERROR_OK)
395         {
396                 LOG_WARNING("JTAG communication failed while deasserting reset.");
397                 retval = ERROR_OK;
398         }
399
400         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
401         {
402                 /* If TRST was asserted we need to set up registers again */
403                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
404                         return retval;
405         }               
406         
407         
408         LOG_DEBUG("Waiting for halted stated as approperiate");
409         
410         /* Wait for reset to complete, maximum 5 seconds. */    
411         gettimeofday(&timeout, NULL);
412         timeval_add_time(&timeout, 5, 0);
413         for(;;)
414         {
415                 gettimeofday(&now, NULL);
416                 
417                 target_call_timer_callbacks_now();
418                 
419                 target = targets;
420                 while (target)
421                 {
422                         LOG_DEBUG("Polling target");
423                         target_poll(target);
424                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
425                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
426                                         (target->reset_mode == RESET_HALT) ||
427                                         (target->reset_mode == RESET_INIT))
428                         {
429                                 if (target->state != TARGET_HALTED)
430                                 {
431                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
432                                         {
433                                                 LOG_USER("Timed out waiting for halt after reset");
434                                                 goto done;
435                                         }
436                                         /* this will send alive messages on e.g. GDB remote protocol. */
437                                         usleep(500*1000); 
438                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
439                                         goto again;
440                                 }
441                         }
442                         target = target->next;
443                 }
444                 /* All targets we're waiting for are halted */
445                 break;
446                 
447                 again:;
448         }
449         done:
450         
451         
452         /* We want any events to be processed before the prompt */
453         target_call_timer_callbacks_now();
454
455         /* if we timed out we need to unregister these handlers */
456         target = targets;
457         while (target)
458         {
459                 target_unregister_timer_callback(target_run_and_halt_handler, target);
460                 target = target->next;
461         }
462         target_unregister_event_callback(target_init_handler, cmd_ctx);
463                                 
464         
465         jtag->speed(jtag_speed_post_reset);
466         
467         return retval;
468 }
469
470 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
471 {
472         *physical = virtual;
473         return ERROR_OK;
474 }
475
476 static int default_mmu(struct target_s *target, int *enabled)
477 {
478         *enabled = 0;
479         return ERROR_OK;
480 }
481
482 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
483 {
484         target->type->examined = 1;
485         return ERROR_OK;
486 }
487
488
489 /* Targets that correctly implement init+examine, i.e.
490  * no communication with target during init:
491  * 
492  * XScale 
493  */
494 int target_examine(struct command_context_s *cmd_ctx)
495 {
496         int retval = ERROR_OK;
497         target_t *target = targets;
498         while (target)
499         {
500                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
501                         return retval;
502                 target = target->next;
503         }
504         return retval;
505 }
506
507 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
508 {
509         if (!target->type->examined)
510         {
511                 LOG_ERROR("Target not examined yet");
512                 return ERROR_FAIL;
513         }
514         return target->type->write_memory_imp(target, address, size, count, buffer);
515 }
516
517 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
518 {
519         if (!target->type->examined)
520         {
521                 LOG_ERROR("Target not examined yet");
522                 return ERROR_FAIL;
523         }
524         return target->type->read_memory_imp(target, address, size, count, buffer);
525 }
526
527 static int target_soft_reset_halt_imp(struct target_s *target)
528 {
529         if (!target->type->examined)
530         {
531                 LOG_ERROR("Target not examined yet");
532                 return ERROR_FAIL;
533         }
534         return target->type->soft_reset_halt_imp(target);
535 }
536
537 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
538 {
539         if (!target->type->examined)
540         {
541                 LOG_ERROR("Target not examined yet");
542                 return ERROR_FAIL;
543         }
544         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
545 }
546
547 int target_init(struct command_context_s *cmd_ctx)
548 {
549         target_t *target = targets;
550         
551         while (target)
552         {
553                 target->type->examined = 0;
554                 if (target->type->examine == NULL)
555                 {
556                         target->type->examine = default_examine;
557                 }
558                 
559                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
560                 {
561                         LOG_ERROR("target '%s' init failed", target->type->name);
562                         exit(-1);
563                 }
564                 
565                 /* Set up default functions if none are provided by target */
566                 if (target->type->virt2phys == NULL)
567                 {
568                         target->type->virt2phys = default_virt2phys;
569                 }
570                 target->type->virt2phys = default_virt2phys;
571                 /* a non-invasive way(in terms of patches) to add some code that
572                  * runs before the type->write/read_memory implementation
573                  */
574                 target->type->write_memory_imp = target->type->write_memory;
575                 target->type->write_memory = target_write_memory_imp;
576                 target->type->read_memory_imp = target->type->read_memory;
577                 target->type->read_memory = target_read_memory_imp;
578                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
579                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
580                 target->type->run_algorithm_imp = target->type->run_algorithm;
581                 target->type->run_algorithm = target_run_algorithm_imp;
582
583                 
584                 if (target->type->mmu == NULL)
585                 {
586                         target->type->mmu = default_mmu;
587                 }
588                 target = target->next;
589         }
590         
591         if (targets)
592         {
593                 target_register_user_commands(cmd_ctx);
594                 target_register_timer_callback(handle_target, 100, 1, NULL);
595         }
596                 
597         return ERROR_OK;
598 }
599
600 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
601 {
602         target_event_callback_t **callbacks_p = &target_event_callbacks;
603         
604         if (callback == NULL)
605         {
606                 return ERROR_INVALID_ARGUMENTS;
607         }
608         
609         if (*callbacks_p)
610         {
611                 while ((*callbacks_p)->next)
612                         callbacks_p = &((*callbacks_p)->next);
613                 callbacks_p = &((*callbacks_p)->next);
614         }
615         
616         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
617         (*callbacks_p)->callback = callback;
618         (*callbacks_p)->priv = priv;
619         (*callbacks_p)->next = NULL;
620         
621         return ERROR_OK;
622 }
623
624 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
625 {
626         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
627         struct timeval now;
628         
629         if (callback == NULL)
630         {
631                 return ERROR_INVALID_ARGUMENTS;
632         }
633         
634         if (*callbacks_p)
635         {
636                 while ((*callbacks_p)->next)
637                         callbacks_p = &((*callbacks_p)->next);
638                 callbacks_p = &((*callbacks_p)->next);
639         }
640         
641         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
642         (*callbacks_p)->callback = callback;
643         (*callbacks_p)->periodic = periodic;
644         (*callbacks_p)->time_ms = time_ms;
645         
646         gettimeofday(&now, NULL);
647         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
648         time_ms -= (time_ms % 1000);
649         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
650         if ((*callbacks_p)->when.tv_usec > 1000000)
651         {
652                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
653                 (*callbacks_p)->when.tv_sec += 1;
654         }
655         
656         (*callbacks_p)->priv = priv;
657         (*callbacks_p)->next = NULL;
658         
659         return ERROR_OK;
660 }
661
662 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
663 {
664         target_event_callback_t **p = &target_event_callbacks;
665         target_event_callback_t *c = target_event_callbacks;
666         
667         if (callback == NULL)
668         {
669                 return ERROR_INVALID_ARGUMENTS;
670         }
671                 
672         while (c)
673         {
674                 target_event_callback_t *next = c->next;
675                 if ((c->callback == callback) && (c->priv == priv))
676                 {
677                         *p = next;
678                         free(c);
679                         return ERROR_OK;
680                 }
681                 else
682                         p = &(c->next);
683                 c = next;
684         }
685         
686         return ERROR_OK;
687 }
688
689 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
690 {
691         target_timer_callback_t **p = &target_timer_callbacks;
692         target_timer_callback_t *c = target_timer_callbacks;
693         
694         if (callback == NULL)
695         {
696                 return ERROR_INVALID_ARGUMENTS;
697         }
698                 
699         while (c)
700         {
701                 target_timer_callback_t *next = c->next;
702                 if ((c->callback == callback) && (c->priv == priv))
703                 {
704                         *p = next;
705                         free(c);
706                         return ERROR_OK;
707                 }
708                 else
709                         p = &(c->next);
710                 c = next;
711         }
712         
713         return ERROR_OK;
714 }
715
716 int target_call_event_callbacks(target_t *target, enum target_event event)
717 {
718         target_event_callback_t *callback = target_event_callbacks;
719         target_event_callback_t *next_callback;
720         
721         LOG_DEBUG("target event %i", event);
722         
723         while (callback)
724         {
725                 next_callback = callback->next;
726                 callback->callback(target, event, callback->priv);
727                 callback = next_callback;
728         }
729         
730         return ERROR_OK;
731 }
732
733 static int target_call_timer_callbacks_check_time(int checktime)
734 {
735         target_timer_callback_t *callback = target_timer_callbacks;
736         target_timer_callback_t *next_callback;
737         struct timeval now;
738
739         gettimeofday(&now, NULL);
740         
741         while (callback)
742         {
743                 next_callback = callback->next;
744                 
745                 if ((!checktime&&callback->periodic)||
746                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
747                                                 || (now.tv_sec > callback->when.tv_sec)))
748                 {
749                         if(callback->callback != NULL)
750                         {
751                                 callback->callback(callback->priv);
752                                 if (callback->periodic)
753                                 {
754                                         int time_ms = callback->time_ms;
755                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
756                                         time_ms -= (time_ms % 1000);
757                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
758                                         if (callback->when.tv_usec > 1000000)
759                                         {
760                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
761                                                 callback->when.tv_sec += 1;
762                                         }
763                                 }
764                                 else
765                                         target_unregister_timer_callback(callback->callback, callback->priv);
766                         }
767                 }
768                         
769                 callback = next_callback;
770         }
771         
772         return ERROR_OK;
773 }
774
775 int target_call_timer_callbacks()
776 {
777         return target_call_timer_callbacks_check_time(1);
778 }
779
780 /* invoke periodic callbacks immediately */
781 int target_call_timer_callbacks_now()
782 {
783         return target_call_timer_callbacks(0);
784 }
785
786
787 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
788 {
789         working_area_t *c = target->working_areas;
790         working_area_t *new_wa = NULL;
791         
792         /* Reevaluate working area address based on MMU state*/
793         if (target->working_areas == NULL)
794         {
795                 int retval;
796                 int enabled;
797                 retval = target->type->mmu(target, &enabled);
798                 if (retval != ERROR_OK)
799                 {
800                         return retval;
801                 }
802                 if (enabled)
803                 {
804                         target->working_area = target->working_area_virt;
805                 }
806                 else
807                 {
808                         target->working_area = target->working_area_phys;
809                 }
810         }
811         
812         /* only allocate multiples of 4 byte */
813         if (size % 4)
814         {
815                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
816                 size = CEIL(size, 4);
817         }
818         
819         /* see if there's already a matching working area */
820         while (c)
821         {
822                 if ((c->free) && (c->size == size))
823                 {
824                         new_wa = c;
825                         break;
826                 }
827                 c = c->next;
828         }
829         
830         /* if not, allocate a new one */
831         if (!new_wa)
832         {
833                 working_area_t **p = &target->working_areas;
834                 u32 first_free = target->working_area;
835                 u32 free_size = target->working_area_size;
836                 
837                 LOG_DEBUG("allocating new working area");
838                 
839                 c = target->working_areas;
840                 while (c)
841                 {
842                         first_free += c->size;
843                         free_size -= c->size;
844                         p = &c->next;
845                         c = c->next;
846                 }
847                 
848                 if (free_size < size)
849                 {
850                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
851                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
852                 }
853                 
854                 new_wa = malloc(sizeof(working_area_t));
855                 new_wa->next = NULL;
856                 new_wa->size = size;
857                 new_wa->address = first_free;
858                 
859                 if (target->backup_working_area)
860                 {
861                         new_wa->backup = malloc(new_wa->size);
862                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
863                 }
864                 else
865                 {
866                         new_wa->backup = NULL;
867                 }
868                 
869                 /* put new entry in list */
870                 *p = new_wa;
871         }
872         
873         /* mark as used, and return the new (reused) area */
874         new_wa->free = 0;
875         *area = new_wa;
876         
877         /* user pointer */
878         new_wa->user = area;
879         
880         return ERROR_OK;
881 }
882
883 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
884 {
885         if (area->free)
886                 return ERROR_OK;
887         
888         if (restore&&target->backup_working_area)
889                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
890         
891         area->free = 1;
892         
893         /* mark user pointer invalid */
894         *area->user = NULL;
895         area->user = NULL;
896         
897         return ERROR_OK;
898 }
899
900 int target_free_working_area(struct target_s *target, working_area_t *area)
901 {
902         return target_free_working_area_restore(target, area, 1);
903 }
904
905 int target_free_all_working_areas_restore(struct target_s *target, int restore)
906 {
907         working_area_t *c = target->working_areas;
908
909         while (c)
910         {
911                 working_area_t *next = c->next;
912                 target_free_working_area_restore(target, c, restore);
913                 
914                 if (c->backup)
915                         free(c->backup);
916                 
917                 free(c);
918                 
919                 c = next;
920         }
921         
922         target->working_areas = NULL;
923         
924         return ERROR_OK;
925 }
926
927 int target_free_all_working_areas(struct target_s *target)
928 {
929         return target_free_all_working_areas_restore(target, 1); 
930 }
931
932 int target_register_commands(struct command_context_s *cmd_ctx)
933 {
934         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
935         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
936         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, 
937         "target_script <target#> <event=reset/pre_reset/post_halt/pre_resume/gdb_program_config> <script_file>");
938         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
939         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
940         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
941         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
942
943         return ERROR_OK;
944 }
945
946 int target_arch_state(struct target_s *target)
947 {
948         int retval;
949         if (target==NULL)
950         {
951                 LOG_USER("No target has been configured");
952                 return ERROR_OK;
953         }
954         
955         LOG_USER("target state: %s", target_state_strings[target->state]);
956         
957         if (target->state!=TARGET_HALTED)
958                 return ERROR_OK;
959         
960         retval=target->type->arch_state(target);
961         return retval;
962 }
963
964 /* Single aligned words are guaranteed to use 16 or 32 bit access 
965  * mode respectively, otherwise data is handled as quickly as 
966  * possible
967  */
968 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
969 {
970         int retval;
971         if (!target->type->examined)
972         {
973                 LOG_ERROR("Target not examined yet");
974                 return ERROR_FAIL;
975         }
976         
977         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
978         
979         if (((address % 2) == 0) && (size == 2))
980         {
981                 return target->type->write_memory(target, address, 2, 1, buffer);
982         }
983         
984         /* handle unaligned head bytes */
985         if (address % 4)
986         {
987                 int unaligned = 4 - (address % 4);
988                 
989                 if (unaligned > size)
990                         unaligned = size;
991
992                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
993                         return retval;
994                 
995                 buffer += unaligned;
996                 address += unaligned;
997                 size -= unaligned;
998         }
999                 
1000         /* handle aligned words */
1001         if (size >= 4)
1002         {
1003                 int aligned = size - (size % 4);
1004         
1005                 /* use bulk writes above a certain limit. This may have to be changed */
1006                 if (aligned > 128)
1007                 {
1008                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1009                                 return retval;
1010                 }
1011                 else
1012                 {
1013                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1014                                 return retval;
1015                 }
1016                 
1017                 buffer += aligned;
1018                 address += aligned;
1019                 size -= aligned;
1020         }
1021         
1022         /* handle tail writes of less than 4 bytes */
1023         if (size > 0)
1024         {
1025                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1026                         return retval;
1027         }
1028         
1029         return ERROR_OK;
1030 }
1031
1032
1033 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1034  * mode respectively, otherwise data is handled as quickly as 
1035  * possible
1036  */
1037 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1038 {
1039         int retval;
1040         if (!target->type->examined)
1041         {
1042                 LOG_ERROR("Target not examined yet");
1043                 return ERROR_FAIL;
1044         }
1045
1046         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1047         
1048         if (((address % 2) == 0) && (size == 2))
1049         {
1050                 return target->type->read_memory(target, address, 2, 1, buffer);
1051         }
1052         
1053         /* handle unaligned head bytes */
1054         if (address % 4)
1055         {
1056                 int unaligned = 4 - (address % 4);
1057                 
1058                 if (unaligned > size)
1059                         unaligned = size;
1060
1061                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1062                         return retval;
1063                 
1064                 buffer += unaligned;
1065                 address += unaligned;
1066                 size -= unaligned;
1067         }
1068                 
1069         /* handle aligned words */
1070         if (size >= 4)
1071         {
1072                 int aligned = size - (size % 4);
1073         
1074                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1075                         return retval;
1076                 
1077                 buffer += aligned;
1078                 address += aligned;
1079                 size -= aligned;
1080         }
1081         
1082         /* handle tail writes of less than 4 bytes */
1083         if (size > 0)
1084         {
1085                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1086                         return retval;
1087         }
1088         
1089         return ERROR_OK;
1090 }
1091
1092 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1093 {
1094         u8 *buffer;
1095         int retval;
1096         int i;
1097         u32 checksum = 0;
1098         if (!target->type->examined)
1099         {
1100                 LOG_ERROR("Target not examined yet");
1101                 return ERROR_FAIL;
1102         }
1103         
1104         if ((retval = target->type->checksum_memory(target, address,
1105                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1106         {
1107                 buffer = malloc(size);
1108                 if (buffer == NULL)
1109                 {
1110                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1111                         return ERROR_INVALID_ARGUMENTS;
1112                 }
1113                 retval = target_read_buffer(target, address, size, buffer);
1114                 if (retval != ERROR_OK)
1115                 {
1116                         free(buffer);
1117                         return retval;
1118                 }
1119
1120                 /* convert to target endianess */
1121                 for (i = 0; i < (size/sizeof(u32)); i++)
1122                 {
1123                         u32 target_data;
1124                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1125                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1126                 }
1127
1128                 retval = image_calculate_checksum( buffer, size, &checksum );
1129                 free(buffer);
1130         }
1131         
1132         *crc = checksum;
1133         
1134         return retval;
1135 }
1136
1137 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1138 {
1139         int retval;
1140         if (!target->type->examined)
1141         {
1142                 LOG_ERROR("Target not examined yet");
1143                 return ERROR_FAIL;
1144         }
1145         
1146         if (target->type->blank_check_memory == 0)
1147                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1148         
1149         retval = target->type->blank_check_memory(target, address, size, blank);
1150                         
1151         return retval;
1152 }
1153
1154 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1155 {
1156         u8 value_buf[4];
1157         if (!target->type->examined)
1158         {
1159                 LOG_ERROR("Target not examined yet");
1160                 return ERROR_FAIL;
1161         }
1162
1163         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1164         
1165         if (retval == ERROR_OK)
1166         {
1167                 *value = target_buffer_get_u32(target, value_buf);
1168                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1169         }
1170         else
1171         {
1172                 *value = 0x0;
1173                 LOG_DEBUG("address: 0x%8.8x failed", address);
1174         }
1175         
1176         return retval;
1177 }
1178
1179 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1180 {
1181         u8 value_buf[2];
1182         if (!target->type->examined)
1183         {
1184                 LOG_ERROR("Target not examined yet");
1185                 return ERROR_FAIL;
1186         }
1187
1188         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1189         
1190         if (retval == ERROR_OK)
1191         {
1192                 *value = target_buffer_get_u16(target, value_buf);
1193                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1194         }
1195         else
1196         {
1197                 *value = 0x0;
1198                 LOG_DEBUG("address: 0x%8.8x failed", address);
1199         }
1200         
1201         return retval;
1202 }
1203
1204 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1205 {
1206         int retval = target->type->read_memory(target, address, 1, 1, value);
1207         if (!target->type->examined)
1208         {
1209                 LOG_ERROR("Target not examined yet");
1210                 return ERROR_FAIL;
1211         }
1212
1213         if (retval == ERROR_OK)
1214         {
1215                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1216         }
1217         else
1218         {
1219                 *value = 0x0;
1220                 LOG_DEBUG("address: 0x%8.8x failed", address);
1221         }
1222         
1223         return retval;
1224 }
1225
1226 int target_write_u32(struct target_s *target, u32 address, u32 value)
1227 {
1228         int retval;
1229         u8 value_buf[4];
1230         if (!target->type->examined)
1231         {
1232                 LOG_ERROR("Target not examined yet");
1233                 return ERROR_FAIL;
1234         }
1235
1236         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1237
1238         target_buffer_set_u32(target, value_buf, value);        
1239         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1240         {
1241                 LOG_DEBUG("failed: %i", retval);
1242         }
1243         
1244         return retval;
1245 }
1246
1247 int target_write_u16(struct target_s *target, u32 address, u16 value)
1248 {
1249         int retval;
1250         u8 value_buf[2];
1251         if (!target->type->examined)
1252         {
1253                 LOG_ERROR("Target not examined yet");
1254                 return ERROR_FAIL;
1255         }
1256
1257         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1258
1259         target_buffer_set_u16(target, value_buf, value);        
1260         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1261         {
1262                 LOG_DEBUG("failed: %i", retval);
1263         }
1264         
1265         return retval;
1266 }
1267
1268 int target_write_u8(struct target_s *target, u32 address, u8 value)
1269 {
1270         int retval;
1271         if (!target->type->examined)
1272         {
1273                 LOG_ERROR("Target not examined yet");
1274                 return ERROR_FAIL;
1275         }
1276
1277         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1278
1279         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1280         {
1281                 LOG_DEBUG("failed: %i", retval);
1282         }
1283         
1284         return retval;
1285 }
1286
1287 int target_register_user_commands(struct command_context_s *cmd_ctx)
1288 {
1289         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1290         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1291         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1292         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1293         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1294         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1295         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1296         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1297
1298         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1299         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1300         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1301         
1302         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1303         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1304         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1305         
1306         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1307         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1308         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1309         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1310         
1311         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1312         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1313         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1314         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1315         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1316         
1317         target_request_register_commands(cmd_ctx);
1318         trace_register_commands(cmd_ctx);
1319         
1320         return ERROR_OK;
1321 }
1322
1323 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1324 {
1325         target_t *target = targets;
1326         int count = 0;
1327         
1328         if (argc == 1)
1329         {
1330                 int num = strtoul(args[0], NULL, 0);
1331                 
1332                 while (target)
1333                 {
1334                         count++;
1335                         target = target->next;
1336                 }
1337                 
1338                 if (num < count)
1339                         cmd_ctx->current_target = num;
1340                 else
1341                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1342                         
1343                 return ERROR_OK;
1344         }
1345                 
1346         while (target)
1347         {
1348                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1349                 target = target->next;
1350         }
1351         
1352         return ERROR_OK;
1353 }
1354
1355 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1356 {
1357         int i;
1358         int found = 0;
1359         
1360         if (argc < 3)
1361         {
1362                 return ERROR_COMMAND_SYNTAX_ERROR;
1363         }
1364         
1365         /* search for the specified target */
1366         if (args[0] && (args[0][0] != 0))
1367         {
1368                 for (i = 0; target_types[i]; i++)
1369                 {
1370                         if (strcmp(args[0], target_types[i]->name) == 0)
1371                         {
1372                                 target_t **last_target_p = &targets;
1373                                 
1374                                 /* register target specific commands */
1375                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1376                                 {
1377                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1378                                         exit(-1);
1379                                 }
1380
1381                                 if (*last_target_p)
1382                                 {
1383                                         while ((*last_target_p)->next)
1384                                                 last_target_p = &((*last_target_p)->next);
1385                                         last_target_p = &((*last_target_p)->next);
1386                                 }
1387
1388                                 *last_target_p = malloc(sizeof(target_t));
1389                                 
1390                                 /* allocate memory for each unique target type */
1391                                 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1392                                 *((*last_target_p)->type) = *target_types[i]; 
1393                                 
1394                                 if (strcmp(args[1], "big") == 0)
1395                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1396                                 else if (strcmp(args[1], "little") == 0)
1397                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1398                                 else
1399                                 {
1400                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1401                                         return ERROR_COMMAND_SYNTAX_ERROR;
1402                                 }
1403                                 
1404                                 /* what to do on a target reset */
1405                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1406                                 if (strcmp(args[2], "reset_halt") == 0)
1407                                         (*last_target_p)->reset_mode = RESET_HALT;
1408                                 else if (strcmp(args[2], "reset_run") == 0)
1409                                         (*last_target_p)->reset_mode = RESET_RUN;
1410                                 else if (strcmp(args[2], "reset_init") == 0)
1411                                         (*last_target_p)->reset_mode = RESET_INIT;
1412                                 else if (strcmp(args[2], "run_and_halt") == 0)
1413                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1414                                 else if (strcmp(args[2], "run_and_init") == 0)
1415                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1416                                 else
1417                                 {
1418                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1419                                         args--;
1420                                         argc++;
1421                                 }
1422                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1423                                 
1424                                 (*last_target_p)->working_area = 0x0;
1425                                 (*last_target_p)->working_area_size = 0x0;
1426                                 (*last_target_p)->working_areas = NULL;
1427                                 (*last_target_p)->backup_working_area = 0;
1428                                 
1429                                 (*last_target_p)->state = TARGET_UNKNOWN;
1430                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1431                                 (*last_target_p)->reg_cache = NULL;
1432                                 (*last_target_p)->breakpoints = NULL;
1433                                 (*last_target_p)->watchpoints = NULL;
1434                                 (*last_target_p)->next = NULL;
1435                                 (*last_target_p)->arch_info = NULL;
1436                                 
1437                                 /* initialize trace information */
1438                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1439                                 (*last_target_p)->trace_info->num_trace_points = 0;
1440                                 (*last_target_p)->trace_info->trace_points_size = 0;
1441                                 (*last_target_p)->trace_info->trace_points = NULL;
1442                                 (*last_target_p)->trace_info->trace_history_size = 0;
1443                                 (*last_target_p)->trace_info->trace_history = NULL;
1444                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1445                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1446                                 
1447                                 (*last_target_p)->dbgmsg = NULL;
1448                                 (*last_target_p)->dbg_msg_enabled = 0;
1449                                                                 
1450                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1451                                 
1452                                 found = 1;
1453                                 break;
1454                         }
1455                 }
1456         }
1457         
1458         /* no matching target found */
1459         if (!found)
1460         {
1461                 LOG_ERROR("target '%s' not found", args[0]);
1462                 return ERROR_COMMAND_SYNTAX_ERROR;
1463         }
1464
1465         return ERROR_OK;
1466 }
1467
1468 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1469 {
1470         return command_run_linef(cmd_ctx, " if {[catch {info body target_%s_%d} t]==0} {target_%s_%d}", 
1471         name, get_num_by_target(target),
1472         name, get_num_by_target(target));
1473 }
1474
1475
1476 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1477 {
1478         target_t *target = NULL;
1479         
1480         if (argc < 3)
1481         {
1482                 LOG_ERROR("incomplete target_script command");
1483                 return ERROR_COMMAND_SYNTAX_ERROR;
1484         }
1485         
1486         target = get_target_by_num(strtoul(args[0], NULL, 0));
1487         
1488         if (!target)
1489         {
1490                 return ERROR_COMMAND_SYNTAX_ERROR;
1491         }
1492         
1493         /* Define a tcl procedure which we'll invoke upon some event */
1494         command_run_linef(cmd_ctx, 
1495         "proc target_%s_%d {} {"
1496         "openocd {script %s}" 
1497         "}",
1498         args[1],
1499         get_num_by_target(target),
1500         args[2]);
1501         
1502         return ERROR_OK;
1503 }
1504
1505 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1506 {
1507         target_t *target = NULL;
1508         
1509         if (argc < 2)
1510         {
1511                 return ERROR_COMMAND_SYNTAX_ERROR;
1512         }
1513         
1514         target = get_target_by_num(strtoul(args[0], NULL, 0));
1515         if (!target)
1516         {
1517                 return ERROR_COMMAND_SYNTAX_ERROR;
1518         }
1519         
1520         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1521         
1522         return ERROR_OK;
1523 }
1524
1525 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1526 {
1527         target_t *target = NULL;
1528         
1529         if ((argc < 4) || (argc > 5))
1530         {
1531                 return ERROR_COMMAND_SYNTAX_ERROR;
1532         }
1533         
1534         target = get_target_by_num(strtoul(args[0], NULL, 0));
1535         if (!target)
1536         {
1537                 return ERROR_COMMAND_SYNTAX_ERROR;
1538         }
1539         target_free_all_working_areas(target);
1540         
1541         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1542         if (argc == 5)
1543         {
1544                 target->working_area_virt = strtoul(args[4], NULL, 0);
1545         }
1546         target->working_area_size = strtoul(args[2], NULL, 0);
1547         
1548         if (strcmp(args[3], "backup") == 0)
1549         {
1550                 target->backup_working_area = 1;
1551         }
1552         else if (strcmp(args[3], "nobackup") == 0)
1553         {
1554                 target->backup_working_area = 0;
1555         }
1556         else
1557         {
1558                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1559                 return ERROR_COMMAND_SYNTAX_ERROR;
1560         }
1561         
1562         return ERROR_OK;
1563 }
1564
1565
1566 /* process target state changes */
1567 int handle_target(void *priv)
1568 {
1569         target_t *target = targets;
1570         
1571         while (target)
1572         {
1573                 if (target_continous_poll)
1574                 {
1575                         /* polling may fail silently until the target has been examined */
1576                         target_poll(target);
1577                 }
1578         
1579                 target = target->next;
1580         }
1581         
1582         return ERROR_OK;
1583 }
1584
1585 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1586 {
1587         target_t *target;
1588         reg_t *reg = NULL;
1589         int count = 0;
1590         char *value;
1591         
1592         LOG_DEBUG("-");
1593         
1594         target = get_current_target(cmd_ctx);
1595         
1596         /* list all available registers for the current target */
1597         if (argc == 0)
1598         {
1599                 reg_cache_t *cache = target->reg_cache;
1600                 
1601                 count = 0;
1602                 while(cache)
1603                 {
1604                         int i;
1605                         for (i = 0; i < cache->num_regs; i++)
1606                         {
1607                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1608                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1609                                 free(value);
1610                         }
1611                         cache = cache->next;
1612                 }
1613                 
1614                 return ERROR_OK;
1615         }
1616         
1617         /* access a single register by its ordinal number */
1618         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1619         {
1620                 int num = strtoul(args[0], NULL, 0);
1621                 reg_cache_t *cache = target->reg_cache;
1622                 
1623                 count = 0;
1624                 while(cache)
1625                 {
1626                         int i;
1627                         for (i = 0; i < cache->num_regs; i++)
1628                         {
1629                                 if (count++ == num)
1630                                 {
1631                                         reg = &cache->reg_list[i];
1632                                         break;
1633                                 }
1634                         }
1635                         if (reg)
1636                                 break;
1637                         cache = cache->next;
1638                 }
1639                 
1640                 if (!reg)
1641                 {
1642                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1643                         return ERROR_OK;
1644                 }
1645         } else /* access a single register by its name */
1646         {
1647                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1648                 
1649                 if (!reg)
1650                 {
1651                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1652                         return ERROR_OK;
1653                 }
1654         }
1655
1656         /* display a register */
1657         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1658         {
1659                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1660                         reg->valid = 0;
1661                 
1662                 if (reg->valid == 0)
1663                 {
1664                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1665                         if (arch_type == NULL)
1666                         {
1667                                 LOG_ERROR("BUG: encountered unregistered arch type");
1668                                 return ERROR_OK;
1669                         }
1670                         arch_type->get(reg);
1671                 }
1672                 value = buf_to_str(reg->value, reg->size, 16);
1673                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1674                 free(value);
1675                 return ERROR_OK;
1676         }
1677         
1678         /* set register value */
1679         if (argc == 2)
1680         {
1681                 u8 *buf = malloc(CEIL(reg->size, 8));
1682                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1683
1684                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1685                 if (arch_type == NULL)
1686                 {
1687                         LOG_ERROR("BUG: encountered unregistered arch type");
1688                         return ERROR_OK;
1689                 }
1690                 
1691                 arch_type->set(reg, buf);
1692                 
1693                 value = buf_to_str(reg->value, reg->size, 16);
1694                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1695                 free(value);
1696                 
1697                 free(buf);
1698                 
1699                 return ERROR_OK;
1700         }
1701         
1702         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1703         
1704         return ERROR_OK;
1705 }
1706
1707 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1708
1709 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1710 {
1711         target_t *target = get_current_target(cmd_ctx);
1712
1713         if (argc == 0)
1714         {
1715                 target_poll(target);
1716                 target_arch_state(target);
1717         }
1718         else
1719         {
1720                 if (strcmp(args[0], "on") == 0)
1721                 {
1722                         target_continous_poll = 1;
1723                 }
1724                 else if (strcmp(args[0], "off") == 0)
1725                 {
1726                         target_continous_poll = 0;
1727                 }
1728                 else
1729                 {
1730                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1731                 }
1732         }
1733         
1734         
1735         return ERROR_OK;
1736 }
1737
1738 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1739 {
1740         int ms = 5000;
1741         
1742         if (argc > 0)
1743         {
1744                 char *end;
1745
1746                 ms = strtoul(args[0], &end, 0) * 1000;
1747                 if (*end)
1748                 {
1749                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1750                         return ERROR_OK;
1751                 }
1752         }
1753
1754         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1755 }
1756
1757 static void target_process_events(struct command_context_s *cmd_ctx)
1758 {
1759         target_t *target = get_current_target(cmd_ctx);
1760         target_poll(target);
1761         target_call_timer_callbacks_now();
1762 }
1763
1764 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1765 {
1766         int retval;
1767         struct timeval timeout, now;
1768         int once=1;
1769         gettimeofday(&timeout, NULL);
1770         timeval_add_time(&timeout, 0, ms * 1000);
1771         
1772         target_t *target = get_current_target(cmd_ctx);
1773         for (;;)
1774         {
1775                 if ((retval=target_poll(target))!=ERROR_OK)
1776                         return retval;
1777                 target_call_timer_callbacks_now();
1778                 if (target->state == state)
1779                 {
1780                         break;
1781                 }
1782                 if (once)
1783                 {
1784                         once=0;
1785                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1786                 }
1787                 
1788                 gettimeofday(&now, NULL);
1789                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1790                 {
1791                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1792                         break;
1793                 }
1794         }
1795         
1796         return ERROR_OK;
1797 }
1798
1799 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1800 {
1801         int retval;
1802         target_t *target = get_current_target(cmd_ctx);
1803
1804         LOG_DEBUG("-");
1805
1806         if ((retval = target_halt(target)) != ERROR_OK)
1807         {
1808                 return retval;
1809         }
1810         
1811         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1812 }
1813
1814                 
1815 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1816 {
1817         target_t *target = get_current_target(cmd_ctx);
1818         
1819         LOG_USER("requesting target halt and executing a soft reset");
1820         
1821         target->type->soft_reset_halt(target);
1822         
1823         return ERROR_OK;
1824 }
1825
1826 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1827 {
1828         target_t *target = get_current_target(cmd_ctx);
1829         enum target_reset_mode reset_mode = target->reset_mode;
1830         enum target_reset_mode save = target->reset_mode;
1831         
1832         LOG_DEBUG("-");
1833         
1834         if (argc >= 1)
1835         {
1836                 if (strcmp("run", args[0]) == 0)
1837                         reset_mode = RESET_RUN;
1838                 else if (strcmp("halt", args[0]) == 0)
1839                         reset_mode = RESET_HALT;
1840                 else if (strcmp("init", args[0]) == 0)
1841                         reset_mode = RESET_INIT;
1842                 else if (strcmp("run_and_halt", args[0]) == 0)
1843                 {
1844                         reset_mode = RESET_RUN_AND_HALT;
1845                         if (argc >= 2)
1846                         {
1847                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1848                         }
1849                 }
1850                 else if (strcmp("run_and_init", args[0]) == 0)
1851                 {
1852                         reset_mode = RESET_RUN_AND_INIT;
1853                         if (argc >= 2)
1854                         {
1855                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1856                         }
1857                 }
1858                 else
1859                 {
1860                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1861                         return ERROR_OK;
1862                 }
1863         }
1864         
1865         /* temporarily modify mode of current reset target */
1866         target->reset_mode = reset_mode;
1867
1868         /* reset *all* targets */
1869         target_process_reset(cmd_ctx);
1870         
1871         /* Restore default reset mode for this target */
1872     target->reset_mode = save;
1873         
1874         return ERROR_OK;
1875 }
1876
1877 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1878 {
1879         int retval;
1880         target_t *target = get_current_target(cmd_ctx);
1881         
1882         if (argc == 0)
1883                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1884         else if (argc == 1)
1885                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1886         else
1887         {
1888                 return ERROR_COMMAND_SYNTAX_ERROR;
1889         }
1890
1891         target_process_events(cmd_ctx);
1892         
1893         return retval;
1894 }
1895
1896 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1897 {
1898         target_t *target = get_current_target(cmd_ctx);
1899         
1900         LOG_DEBUG("-");
1901         
1902         if (argc == 0)
1903                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1904
1905         if (argc == 1)
1906                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1907         
1908         return ERROR_OK;
1909 }
1910
1911 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1912 {
1913         const int line_bytecnt = 32;
1914         int count = 1;
1915         int size = 4;
1916         u32 address = 0;
1917         int line_modulo;
1918         int i;
1919
1920         char output[128];
1921         int output_len;
1922
1923         int retval;
1924
1925         u8 *buffer;
1926         target_t *target = get_current_target(cmd_ctx);
1927
1928         if (argc < 1)
1929                 return ERROR_OK;
1930
1931         if (argc == 2)
1932                 count = strtoul(args[1], NULL, 0);
1933
1934         address = strtoul(args[0], NULL, 0);
1935         
1936
1937         switch (cmd[2])
1938         {
1939                 case 'w':
1940                         size = 4; line_modulo = line_bytecnt / 4;
1941                         break;
1942                 case 'h':
1943                         size = 2; line_modulo = line_bytecnt / 2;
1944                         break;
1945                 case 'b':
1946                         size = 1; line_modulo = line_bytecnt / 1;
1947                         break;
1948                 default:
1949                         return ERROR_OK;
1950         }
1951
1952         buffer = calloc(count, size);
1953         retval  = target->type->read_memory(target, address, size, count, buffer);
1954         if (retval == ERROR_OK)
1955         {
1956                 output_len = 0;
1957         
1958                 for (i = 0; i < count; i++)
1959                 {
1960                         if (i%line_modulo == 0)
1961                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1962                         
1963                         switch (size)
1964                         {
1965                                 case 4:
1966                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1967                                         break;
1968                                 case 2:
1969                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1970                                         break;
1971                                 case 1:
1972                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1973                                         break;
1974                         }
1975         
1976                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1977                         {
1978                                 command_print(cmd_ctx, output);
1979                                 output_len = 0;
1980                         }
1981                 }
1982         }
1983
1984         free(buffer);
1985         
1986         return retval;
1987 }
1988
1989 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1990 {
1991         u32 address = 0;
1992         u32 value = 0;
1993         int count = 1;
1994         int i;
1995         int wordsize;
1996         target_t *target = get_current_target(cmd_ctx);
1997         u8 value_buf[4];
1998
1999          if ((argc < 2) || (argc > 3))
2000                 return ERROR_COMMAND_SYNTAX_ERROR;
2001
2002         address = strtoul(args[0], NULL, 0);
2003         value = strtoul(args[1], NULL, 0);
2004         if (argc == 3)
2005                 count = strtoul(args[2], NULL, 0);
2006
2007
2008         switch (cmd[2])
2009         {
2010                 case 'w':
2011                         wordsize = 4;
2012                         target_buffer_set_u32(target, value_buf, value);
2013                         break;
2014                 case 'h':
2015                         wordsize = 2;
2016                         target_buffer_set_u16(target, value_buf, value);
2017                         break;
2018                 case 'b':
2019                         wordsize = 1;
2020                         value_buf[0] = value;
2021                         break;
2022                 default:
2023                         return ERROR_COMMAND_SYNTAX_ERROR;
2024         }
2025         for (i=0; i<count; i++)
2026         {
2027                 int retval;
2028                 switch (wordsize)
2029                 {
2030                         case 4:
2031                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
2032                                 break;
2033                         case 2:
2034                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2035                                 break;
2036                         case 1:
2037                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2038                         break;
2039                         default:
2040                         return ERROR_OK;
2041                 }
2042                 if (retval!=ERROR_OK)
2043                 {
2044                         return retval;
2045                 }
2046         }
2047
2048         return ERROR_OK;
2049
2050 }
2051
2052 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2053 {
2054         u8 *buffer;
2055         u32 buf_cnt;
2056         u32 image_size;
2057         int i;
2058         int retval;
2059
2060         image_t image;  
2061         
2062         duration_t duration;
2063         char *duration_text;
2064         
2065         target_t *target = get_current_target(cmd_ctx);
2066
2067         if (argc < 1)
2068         {
2069                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2070                 return ERROR_OK;
2071         }
2072         
2073         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2074         if (argc >= 2)
2075         {
2076                 image.base_address_set = 1;
2077                 image.base_address = strtoul(args[1], NULL, 0);
2078         }
2079         else
2080         {
2081                 image.base_address_set = 0;
2082         }
2083         
2084         image.start_address_set = 0;
2085
2086         duration_start_measure(&duration);
2087         
2088         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2089         {
2090                 return ERROR_OK;
2091         }
2092         
2093         image_size = 0x0;
2094         retval = ERROR_OK;
2095         for (i = 0; i < image.num_sections; i++)
2096         {
2097                 buffer = malloc(image.sections[i].size);
2098                 if (buffer == NULL)
2099                 {
2100                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2101                         break;
2102                 }
2103                 
2104                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2105                 {
2106                         free(buffer);
2107                         break;
2108                 }
2109                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2110                 {
2111                         free(buffer);
2112                         break;
2113                 }
2114                 image_size += buf_cnt;
2115                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2116                 
2117                 free(buffer);
2118         }
2119
2120         duration_stop_measure(&duration, &duration_text);
2121         if (retval==ERROR_OK)
2122         {
2123                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2124         }
2125         free(duration_text);
2126         
2127         image_close(&image);
2128
2129         return retval;
2130
2131 }
2132
2133 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2134 {
2135         fileio_t fileio;
2136         
2137         u32 address;
2138         u32 size;
2139         u8 buffer[560];
2140         int retval=ERROR_OK;
2141         
2142         duration_t duration;
2143         char *duration_text;
2144         
2145         target_t *target = get_current_target(cmd_ctx);
2146
2147         if (argc != 3)
2148         {
2149                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2150                 return ERROR_OK;
2151         }
2152
2153         address = strtoul(args[1], NULL, 0);
2154         size = strtoul(args[2], NULL, 0);
2155
2156         if ((address & 3) || (size & 3))
2157         {
2158                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2159                 return ERROR_OK;
2160         }
2161         
2162         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2163         {
2164                 return ERROR_OK;
2165         }
2166         
2167         duration_start_measure(&duration);
2168         
2169         while (size > 0)
2170         {
2171                 u32 size_written;
2172                 u32 this_run_size = (size > 560) ? 560 : size;
2173                 
2174                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2175                 if (retval != ERROR_OK)
2176                 {
2177                         break;
2178                 }
2179                 
2180                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2181                 if (retval != ERROR_OK)
2182                 {
2183                         break;
2184                 }
2185                 
2186                 size -= this_run_size;
2187                 address += this_run_size;
2188         }
2189
2190         fileio_close(&fileio);
2191
2192         duration_stop_measure(&duration, &duration_text);
2193         if (retval==ERROR_OK)
2194         {
2195                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2196         }
2197         free(duration_text);
2198         
2199         return ERROR_OK;
2200 }
2201
2202 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2203 {
2204         u8 *buffer;
2205         u32 buf_cnt;
2206         u32 image_size;
2207         int i;
2208         int retval;
2209         u32 checksum = 0;
2210         u32 mem_checksum = 0;
2211
2212         image_t image;  
2213         
2214         duration_t duration;
2215         char *duration_text;
2216         
2217         target_t *target = get_current_target(cmd_ctx);
2218         
2219         if (argc < 1)
2220         {
2221                 return ERROR_COMMAND_SYNTAX_ERROR;
2222         }
2223         
2224         if (!target)
2225         {
2226                 LOG_ERROR("no target selected");
2227                 return ERROR_FAIL;
2228         }
2229         
2230         duration_start_measure(&duration);
2231         
2232         if (argc >= 2)
2233         {
2234                 image.base_address_set = 1;
2235                 image.base_address = strtoul(args[1], NULL, 0);
2236         }
2237         else
2238         {
2239                 image.base_address_set = 0;
2240                 image.base_address = 0x0;
2241         }
2242
2243         image.start_address_set = 0;
2244
2245         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2246         {
2247                 return retval;
2248         }
2249         
2250         image_size = 0x0;
2251         retval=ERROR_OK;
2252         for (i = 0; i < image.num_sections; i++)
2253         {
2254                 buffer = malloc(image.sections[i].size);
2255                 if (buffer == NULL)
2256                 {
2257                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2258                         break;
2259                 }
2260                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2261                 {
2262                         free(buffer);
2263                         break;
2264                 }
2265                 
2266                 /* calculate checksum of image */
2267                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2268                 
2269                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2270                 if( retval != ERROR_OK )
2271                 {
2272                         free(buffer);
2273                         break;
2274                 }
2275                 
2276                 if( checksum != mem_checksum )
2277                 {
2278                         /* failed crc checksum, fall back to a binary compare */
2279                         u8 *data;
2280                         
2281                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2282                         
2283                         data = (u8*)malloc(buf_cnt);
2284                         
2285                         /* Can we use 32bit word accesses? */
2286                         int size = 1;
2287                         int count = buf_cnt;
2288                         if ((count % 4) == 0)
2289                         {
2290                                 size *= 4;
2291                                 count /= 4;
2292                         }
2293                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2294                         if (retval == ERROR_OK)
2295                         {
2296                                 int t;
2297                                 for (t = 0; t < buf_cnt; t++)
2298                                 {
2299                                         if (data[t] != buffer[t])
2300                                         {
2301                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2302                                                 free(data);
2303                                                 free(buffer);
2304                                                 retval=ERROR_FAIL;
2305                                                 goto done;
2306                                         }
2307                                 }
2308                         }
2309                         
2310                         free(data);
2311                 }
2312                 
2313                 free(buffer);
2314                 image_size += buf_cnt;
2315         }
2316 done:   
2317         duration_stop_measure(&duration, &duration_text);
2318         if (retval==ERROR_OK)
2319         {
2320                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2321         }
2322         free(duration_text);
2323         
2324         image_close(&image);
2325         
2326         return retval;
2327 }
2328
2329 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2330 {
2331         int retval;
2332         target_t *target = get_current_target(cmd_ctx);
2333
2334         if (argc == 0)
2335         {
2336                 breakpoint_t *breakpoint = target->breakpoints;
2337
2338                 while (breakpoint)
2339                 {
2340                         if (breakpoint->type == BKPT_SOFT)
2341                         {
2342                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2343                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2344                                 free(buf);
2345                         }
2346                         else
2347                         {
2348                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2349                         }
2350                         breakpoint = breakpoint->next;
2351                 }
2352         }
2353         else if (argc >= 2)
2354         {
2355                 int hw = BKPT_SOFT;
2356                 u32 length = 0;
2357
2358                 length = strtoul(args[1], NULL, 0);
2359                 
2360                 if (argc >= 3)
2361                         if (strcmp(args[2], "hw") == 0)
2362                                 hw = BKPT_HARD;
2363
2364                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2365                 {
2366                         LOG_ERROR("Failure setting breakpoints");
2367                 }
2368                 else
2369                 {
2370                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2371                 }
2372         }
2373         else
2374         {
2375                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2376         }
2377
2378         return ERROR_OK;
2379 }
2380
2381 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2382 {
2383         target_t *target = get_current_target(cmd_ctx);
2384
2385         if (argc > 0)
2386                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2387
2388         return ERROR_OK;
2389 }
2390
2391 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2392 {
2393         target_t *target = get_current_target(cmd_ctx);
2394         int retval;
2395
2396         if (argc == 0)
2397         {
2398                 watchpoint_t *watchpoint = target->watchpoints;
2399
2400                 while (watchpoint)
2401                 {
2402                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2403                         watchpoint = watchpoint->next;
2404                 }
2405         } 
2406         else if (argc >= 2)
2407         {
2408                 enum watchpoint_rw type = WPT_ACCESS;
2409                 u32 data_value = 0x0;
2410                 u32 data_mask = 0xffffffff;
2411                 
2412                 if (argc >= 3)
2413                 {
2414                         switch(args[2][0])
2415                         {
2416                                 case 'r':
2417                                         type = WPT_READ;
2418                                         break;
2419                                 case 'w':
2420                                         type = WPT_WRITE;
2421                                         break;
2422                                 case 'a':
2423                                         type = WPT_ACCESS;
2424                                         break;
2425                                 default:
2426                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2427                                         return ERROR_OK;
2428                         }
2429                 }
2430                 if (argc >= 4)
2431                 {
2432                         data_value = strtoul(args[3], NULL, 0);
2433                 }
2434                 if (argc >= 5)
2435                 {
2436                         data_mask = strtoul(args[4], NULL, 0);
2437                 }
2438                 
2439                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2440                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2441                 {
2442                         LOG_ERROR("Failure setting breakpoints");
2443                 }
2444         }
2445         else
2446         {
2447                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2448         }
2449                 
2450         return ERROR_OK;
2451 }
2452
2453 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2454 {
2455         target_t *target = get_current_target(cmd_ctx);
2456
2457         if (argc > 0)
2458                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2459         
2460         return ERROR_OK;
2461 }
2462
2463 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2464 {
2465         int retval;
2466         target_t *target = get_current_target(cmd_ctx);
2467         u32 va;
2468         u32 pa;
2469
2470         if (argc != 1)
2471         {
2472                 return ERROR_COMMAND_SYNTAX_ERROR;
2473         }
2474         va = strtoul(args[0], NULL, 0);
2475
2476         retval = target->type->virt2phys(target, va, &pa);
2477         if (retval == ERROR_OK)
2478         {
2479                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2480         }
2481         else
2482         {
2483                 /* lower levels will have logged a detailed error which is 
2484                  * forwarded to telnet/GDB session.  
2485                  */
2486         }
2487         return retval;
2488 }
2489 static void writeLong(FILE *f, int l)
2490 {
2491         int i;
2492         for (i=0; i<4; i++)
2493         {
2494                 char c=(l>>(i*8))&0xff;
2495                 fwrite(&c, 1, 1, f); 
2496         }
2497         
2498 }
2499 static void writeString(FILE *f, char *s)
2500 {
2501         fwrite(s, 1, strlen(s), f); 
2502 }
2503
2504
2505
2506 // Dump a gmon.out histogram file.
2507 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2508 {
2509         int i;
2510         FILE *f=fopen(filename, "w");
2511         if (f==NULL)
2512                 return;
2513         fwrite("gmon", 1, 4, f);
2514         writeLong(f, 0x00000001); // Version
2515         writeLong(f, 0); // padding
2516         writeLong(f, 0); // padding
2517         writeLong(f, 0); // padding
2518                                 
2519         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2520
2521         // figure out bucket size
2522         u32 min=samples[0];
2523         u32 max=samples[0];
2524         for (i=0; i<sampleNum; i++)
2525         {
2526                 if (min>samples[i])
2527                 {
2528                         min=samples[i];
2529                 }
2530                 if (max<samples[i])
2531                 {
2532                         max=samples[i];
2533                 }
2534         }
2535
2536         int addressSpace=(max-min+1);
2537         
2538         static int const maxBuckets=256*1024; // maximum buckets.
2539         int length=addressSpace;
2540         if (length > maxBuckets)
2541         {
2542                 length=maxBuckets; 
2543         }
2544         int *buckets=malloc(sizeof(int)*length);
2545         if (buckets==NULL)
2546         {
2547                 fclose(f);
2548                 return;
2549         }
2550         memset(buckets, 0, sizeof(int)*length);
2551         for (i=0; i<sampleNum;i++)
2552         {
2553                 u32 address=samples[i];
2554                 long long a=address-min;
2555                 long long b=length-1;
2556                 long long c=addressSpace-1;
2557                 int index=(a*b)/c; // danger!!!! int32 overflows 
2558                 buckets[index]++;
2559         }
2560         
2561         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2562         writeLong(f, min);                                      // low_pc
2563         writeLong(f, max);              // high_pc
2564         writeLong(f, length);           // # of samples
2565         writeLong(f, 64000000);                         // 64MHz
2566         writeString(f, "seconds");
2567         for (i=0; i<(15-strlen("seconds")); i++)
2568         {
2569                 fwrite("", 1, 1, f);  // padding
2570         }
2571         writeString(f, "s");
2572                 
2573 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2574         
2575         char *data=malloc(2*length);
2576         if (data!=NULL)
2577         {
2578                 for (i=0; i<length;i++)
2579                 {
2580                         int val;
2581                         val=buckets[i];
2582                         if (val>65535)
2583                         {
2584                                 val=65535;
2585                         }
2586                         data[i*2]=val&0xff;
2587                         data[i*2+1]=(val>>8)&0xff;
2588                 }
2589                 free(buckets);
2590                 fwrite(data, 1, length*2, f);
2591                 free(data);
2592         } else
2593         {
2594                 free(buckets);
2595         }
2596
2597         fclose(f);
2598 }
2599
2600 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2601 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2602 {
2603         target_t *target = get_current_target(cmd_ctx);
2604         struct timeval timeout, now;
2605         
2606         gettimeofday(&timeout, NULL);
2607         if (argc!=2)
2608         {
2609                 return ERROR_COMMAND_SYNTAX_ERROR;
2610         }
2611         char *end;
2612         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2613         if (*end) 
2614         {
2615                 return ERROR_OK;
2616         }
2617         
2618         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2619
2620         static const int maxSample=10000;
2621         u32 *samples=malloc(sizeof(u32)*maxSample);
2622         if (samples==NULL)
2623                 return ERROR_OK;
2624         
2625         int numSamples=0;
2626         int retval=ERROR_OK;
2627         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2628         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2629         
2630         for (;;)
2631         {
2632                 target_poll(target);
2633                 if (target->state == TARGET_HALTED)
2634                 {
2635                         u32 t=*((u32 *)reg->value);
2636                         samples[numSamples++]=t;
2637                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2638                         target_poll(target);
2639                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2640                 } else if (target->state == TARGET_RUNNING)
2641                 {
2642                         // We want to quickly sample the PC.
2643                         target_halt(target);
2644                 } else
2645                 {
2646                         command_print(cmd_ctx, "Target not halted or running");
2647                         retval=ERROR_OK;
2648                         break;
2649                 }
2650                 if (retval!=ERROR_OK)
2651                 {
2652                         break;
2653                 }
2654                 
2655                 gettimeofday(&now, NULL);
2656                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2657                 {
2658                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2659                         target_poll(target);
2660                         if (target->state == TARGET_HALTED)
2661                         {
2662                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2663                         }
2664                         target_poll(target);
2665                         writeGmon(samples, numSamples, args[1]);
2666                         command_print(cmd_ctx, "Wrote %s", args[1]);
2667                         break;
2668                 }
2669         }
2670         free(samples);
2671         
2672         return ERROR_OK;
2673 }
2674