armv8: allow halt on exception
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
38  ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110 extern struct target_type riscv_target;
111 extern struct target_type mem_ap_target;
112 extern struct target_type esirisc_target;
113
114 static struct target_type *target_types[] = {
115         &arm7tdmi_target,
116         &arm9tdmi_target,
117         &arm920t_target,
118         &arm720t_target,
119         &arm966e_target,
120         &arm946e_target,
121         &arm926ejs_target,
122         &fa526_target,
123         &feroceon_target,
124         &dragonite_target,
125         &xscale_target,
126         &cortexm_target,
127         &cortexa_target,
128         &cortexr4_target,
129         &arm11_target,
130         &ls1_sap_target,
131         &mips_m4k_target,
132         &avr_target,
133         &dsp563xx_target,
134         &dsp5680xx_target,
135         &testee_target,
136         &avr32_ap7k_target,
137         &hla_target,
138         &nds32_v2_target,
139         &nds32_v3_target,
140         &nds32_v3m_target,
141         &or1k_target,
142         &quark_x10xx_target,
143         &quark_d20xx_target,
144         &stm8_target,
145         &riscv_target,
146         &mem_ap_target,
147         &esirisc_target,
148 #if BUILD_TARGET64
149         &aarch64_target,
150 #endif
151         NULL,
152 };
153
154 struct target *all_targets;
155 static struct target_event_callback *target_event_callbacks;
156 static struct target_timer_callback *target_timer_callbacks;
157 LIST_HEAD(target_reset_callback_list);
158 LIST_HEAD(target_trace_callback_list);
159 static const int polling_interval = 100;
160
161 static const Jim_Nvp nvp_assert[] = {
162         { .name = "assert", NVP_ASSERT },
163         { .name = "deassert", NVP_DEASSERT },
164         { .name = "T", NVP_ASSERT },
165         { .name = "F", NVP_DEASSERT },
166         { .name = "t", NVP_ASSERT },
167         { .name = "f", NVP_DEASSERT },
168         { .name = NULL, .value = -1 }
169 };
170
171 static const Jim_Nvp nvp_error_target[] = {
172         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
173         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
174         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
175         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
176         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
177         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
178         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
179         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
180         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
181         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
182         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
183         { .value = -1, .name = NULL }
184 };
185
186 static const char *target_strerror_safe(int err)
187 {
188         const Jim_Nvp *n;
189
190         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
191         if (n->name == NULL)
192                 return "unknown";
193         else
194                 return n->name;
195 }
196
197 static const Jim_Nvp nvp_target_event[] = {
198
199         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
200         { .value = TARGET_EVENT_HALTED, .name = "halted" },
201         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
202         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
203         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
204
205         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
206         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
207
208         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
209         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
210         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
211         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
212         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
213         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
214         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
215         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
216
217         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
218         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
219
220         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
221         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
222
223         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
224         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
225
226         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
227         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
228
229         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
230         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
231
232         { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
233
234         { .name = NULL, .value = -1 }
235 };
236
237 static const Jim_Nvp nvp_target_state[] = {
238         { .name = "unknown", .value = TARGET_UNKNOWN },
239         { .name = "running", .value = TARGET_RUNNING },
240         { .name = "halted",  .value = TARGET_HALTED },
241         { .name = "reset",   .value = TARGET_RESET },
242         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
243         { .name = NULL, .value = -1 },
244 };
245
246 static const Jim_Nvp nvp_target_debug_reason[] = {
247         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
248         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
249         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
250         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
251         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
252         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
253         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
254         { .name = "exception-catch"          , .value = DBG_REASON_EXC_CATCH },
255         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
256         { .name = NULL, .value = -1 },
257 };
258
259 static const Jim_Nvp nvp_target_endian[] = {
260         { .name = "big",    .value = TARGET_BIG_ENDIAN },
261         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
262         { .name = "be",     .value = TARGET_BIG_ENDIAN },
263         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
264         { .name = NULL,     .value = -1 },
265 };
266
267 static const Jim_Nvp nvp_reset_modes[] = {
268         { .name = "unknown", .value = RESET_UNKNOWN },
269         { .name = "run"    , .value = RESET_RUN },
270         { .name = "halt"   , .value = RESET_HALT },
271         { .name = "init"   , .value = RESET_INIT },
272         { .name = NULL     , .value = -1 },
273 };
274
275 const char *debug_reason_name(struct target *t)
276 {
277         const char *cp;
278
279         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
280                         t->debug_reason)->name;
281         if (!cp) {
282                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
283                 cp = "(*BUG*unknown*BUG*)";
284         }
285         return cp;
286 }
287
288 const char *target_state_name(struct target *t)
289 {
290         const char *cp;
291         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
292         if (!cp) {
293                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
294                 cp = "(*BUG*unknown*BUG*)";
295         }
296
297         if (!target_was_examined(t) && t->defer_examine)
298                 cp = "examine deferred";
299
300         return cp;
301 }
302
303 const char *target_event_name(enum target_event event)
304 {
305         const char *cp;
306         cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
307         if (!cp) {
308                 LOG_ERROR("Invalid target event: %d", (int)(event));
309                 cp = "(*BUG*unknown*BUG*)";
310         }
311         return cp;
312 }
313
314 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
315 {
316         const char *cp;
317         cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
318         if (!cp) {
319                 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
320                 cp = "(*BUG*unknown*BUG*)";
321         }
322         return cp;
323 }
324
325 /* determine the number of the new target */
326 static int new_target_number(void)
327 {
328         struct target *t;
329         int x;
330
331         /* number is 0 based */
332         x = -1;
333         t = all_targets;
334         while (t) {
335                 if (x < t->target_number)
336                         x = t->target_number;
337                 t = t->next;
338         }
339         return x + 1;
340 }
341
342 /* read a uint64_t from a buffer in target memory endianness */
343 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
344 {
345         if (target->endianness == TARGET_LITTLE_ENDIAN)
346                 return le_to_h_u64(buffer);
347         else
348                 return be_to_h_u64(buffer);
349 }
350
351 /* read a uint32_t from a buffer in target memory endianness */
352 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
353 {
354         if (target->endianness == TARGET_LITTLE_ENDIAN)
355                 return le_to_h_u32(buffer);
356         else
357                 return be_to_h_u32(buffer);
358 }
359
360 /* read a uint24_t from a buffer in target memory endianness */
361 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
362 {
363         if (target->endianness == TARGET_LITTLE_ENDIAN)
364                 return le_to_h_u24(buffer);
365         else
366                 return be_to_h_u24(buffer);
367 }
368
369 /* read a uint16_t from a buffer in target memory endianness */
370 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
371 {
372         if (target->endianness == TARGET_LITTLE_ENDIAN)
373                 return le_to_h_u16(buffer);
374         else
375                 return be_to_h_u16(buffer);
376 }
377
378 /* read a uint8_t from a buffer in target memory endianness */
379 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
380 {
381         return *buffer & 0x0ff;
382 }
383
384 /* write a uint64_t to a buffer in target memory endianness */
385 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
386 {
387         if (target->endianness == TARGET_LITTLE_ENDIAN)
388                 h_u64_to_le(buffer, value);
389         else
390                 h_u64_to_be(buffer, value);
391 }
392
393 /* write a uint32_t to a buffer in target memory endianness */
394 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
395 {
396         if (target->endianness == TARGET_LITTLE_ENDIAN)
397                 h_u32_to_le(buffer, value);
398         else
399                 h_u32_to_be(buffer, value);
400 }
401
402 /* write a uint24_t to a buffer in target memory endianness */
403 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
404 {
405         if (target->endianness == TARGET_LITTLE_ENDIAN)
406                 h_u24_to_le(buffer, value);
407         else
408                 h_u24_to_be(buffer, value);
409 }
410
411 /* write a uint16_t to a buffer in target memory endianness */
412 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
413 {
414         if (target->endianness == TARGET_LITTLE_ENDIAN)
415                 h_u16_to_le(buffer, value);
416         else
417                 h_u16_to_be(buffer, value);
418 }
419
420 /* write a uint8_t to a buffer in target memory endianness */
421 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
422 {
423         *buffer = value;
424 }
425
426 /* write a uint64_t array to a buffer in target memory endianness */
427 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
428 {
429         uint32_t i;
430         for (i = 0; i < count; i++)
431                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
432 }
433
434 /* write a uint32_t array to a buffer in target memory endianness */
435 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
436 {
437         uint32_t i;
438         for (i = 0; i < count; i++)
439                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
440 }
441
442 /* write a uint16_t array to a buffer in target memory endianness */
443 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
444 {
445         uint32_t i;
446         for (i = 0; i < count; i++)
447                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
448 }
449
450 /* write a uint64_t array to a buffer in target memory endianness */
451 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
452 {
453         uint32_t i;
454         for (i = 0; i < count; i++)
455                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
456 }
457
458 /* write a uint32_t array to a buffer in target memory endianness */
459 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
460 {
461         uint32_t i;
462         for (i = 0; i < count; i++)
463                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
464 }
465
466 /* write a uint16_t array to a buffer in target memory endianness */
467 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
468 {
469         uint32_t i;
470         for (i = 0; i < count; i++)
471                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
472 }
473
474 /* return a pointer to a configured target; id is name or number */
475 struct target *get_target(const char *id)
476 {
477         struct target *target;
478
479         /* try as tcltarget name */
480         for (target = all_targets; target; target = target->next) {
481                 if (target_name(target) == NULL)
482                         continue;
483                 if (strcmp(id, target_name(target)) == 0)
484                         return target;
485         }
486
487         /* It's OK to remove this fallback sometime after August 2010 or so */
488
489         /* no match, try as number */
490         unsigned num;
491         if (parse_uint(id, &num) != ERROR_OK)
492                 return NULL;
493
494         for (target = all_targets; target; target = target->next) {
495                 if (target->target_number == (int)num) {
496                         LOG_WARNING("use '%s' as target identifier, not '%u'",
497                                         target_name(target), num);
498                         return target;
499                 }
500         }
501
502         return NULL;
503 }
504
505 /* returns a pointer to the n-th configured target */
506 struct target *get_target_by_num(int num)
507 {
508         struct target *target = all_targets;
509
510         while (target) {
511                 if (target->target_number == num)
512                         return target;
513                 target = target->next;
514         }
515
516         return NULL;
517 }
518
519 struct target *get_current_target(struct command_context *cmd_ctx)
520 {
521         struct target *target = get_current_target_or_null(cmd_ctx);
522
523         if (target == NULL) {
524                 LOG_ERROR("BUG: current_target out of bounds");
525                 exit(-1);
526         }
527
528         return target;
529 }
530
531 struct target *get_current_target_or_null(struct command_context *cmd_ctx)
532 {
533         return cmd_ctx->current_target_override
534                 ? cmd_ctx->current_target_override
535                 : cmd_ctx->current_target;
536 }
537
538 int target_poll(struct target *target)
539 {
540         int retval;
541
542         /* We can't poll until after examine */
543         if (!target_was_examined(target)) {
544                 /* Fail silently lest we pollute the log */
545                 return ERROR_FAIL;
546         }
547
548         retval = target->type->poll(target);
549         if (retval != ERROR_OK)
550                 return retval;
551
552         if (target->halt_issued) {
553                 if (target->state == TARGET_HALTED)
554                         target->halt_issued = false;
555                 else {
556                         int64_t t = timeval_ms() - target->halt_issued_time;
557                         if (t > DEFAULT_HALT_TIMEOUT) {
558                                 target->halt_issued = false;
559                                 LOG_INFO("Halt timed out, wake up GDB.");
560                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
561                         }
562                 }
563         }
564
565         return ERROR_OK;
566 }
567
568 int target_halt(struct target *target)
569 {
570         int retval;
571         /* We can't poll until after examine */
572         if (!target_was_examined(target)) {
573                 LOG_ERROR("Target not examined yet");
574                 return ERROR_FAIL;
575         }
576
577         retval = target->type->halt(target);
578         if (retval != ERROR_OK)
579                 return retval;
580
581         target->halt_issued = true;
582         target->halt_issued_time = timeval_ms();
583
584         return ERROR_OK;
585 }
586
587 /**
588  * Make the target (re)start executing using its saved execution
589  * context (possibly with some modifications).
590  *
591  * @param target Which target should start executing.
592  * @param current True to use the target's saved program counter instead
593  *      of the address parameter
594  * @param address Optionally used as the program counter.
595  * @param handle_breakpoints True iff breakpoints at the resumption PC
596  *      should be skipped.  (For example, maybe execution was stopped by
597  *      such a breakpoint, in which case it would be counterprodutive to
598  *      let it re-trigger.
599  * @param debug_execution False if all working areas allocated by OpenOCD
600  *      should be released and/or restored to their original contents.
601  *      (This would for example be true to run some downloaded "helper"
602  *      algorithm code, which resides in one such working buffer and uses
603  *      another for data storage.)
604  *
605  * @todo Resolve the ambiguity about what the "debug_execution" flag
606  * signifies.  For example, Target implementations don't agree on how
607  * it relates to invalidation of the register cache, or to whether
608  * breakpoints and watchpoints should be enabled.  (It would seem wrong
609  * to enable breakpoints when running downloaded "helper" algorithms
610  * (debug_execution true), since the breakpoints would be set to match
611  * target firmware being debugged, not the helper algorithm.... and
612  * enabling them could cause such helpers to malfunction (for example,
613  * by overwriting data with a breakpoint instruction.  On the other
614  * hand the infrastructure for running such helpers might use this
615  * procedure but rely on hardware breakpoint to detect termination.)
616  */
617 int target_resume(struct target *target, int current, target_addr_t address,
618                 int handle_breakpoints, int debug_execution)
619 {
620         int retval;
621
622         /* We can't poll until after examine */
623         if (!target_was_examined(target)) {
624                 LOG_ERROR("Target not examined yet");
625                 return ERROR_FAIL;
626         }
627
628         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
629
630         /* note that resume *must* be asynchronous. The CPU can halt before
631          * we poll. The CPU can even halt at the current PC as a result of
632          * a software breakpoint being inserted by (a bug?) the application.
633          */
634         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
635         if (retval != ERROR_OK)
636                 return retval;
637
638         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
639
640         return retval;
641 }
642
643 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
644 {
645         char buf[100];
646         int retval;
647         Jim_Nvp *n;
648         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
649         if (n->name == NULL) {
650                 LOG_ERROR("invalid reset mode");
651                 return ERROR_FAIL;
652         }
653
654         struct target *target;
655         for (target = all_targets; target; target = target->next)
656                 target_call_reset_callbacks(target, reset_mode);
657
658         /* disable polling during reset to make reset event scripts
659          * more predictable, i.e. dr/irscan & pathmove in events will
660          * not have JTAG operations injected into the middle of a sequence.
661          */
662         bool save_poll = jtag_poll_get_enabled();
663
664         jtag_poll_set_enabled(false);
665
666         sprintf(buf, "ocd_process_reset %s", n->name);
667         retval = Jim_Eval(cmd_ctx->interp, buf);
668
669         jtag_poll_set_enabled(save_poll);
670
671         if (retval != JIM_OK) {
672                 Jim_MakeErrorMessage(cmd_ctx->interp);
673                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
674                 return ERROR_FAIL;
675         }
676
677         /* We want any events to be processed before the prompt */
678         retval = target_call_timer_callbacks_now();
679
680         for (target = all_targets; target; target = target->next) {
681                 target->type->check_reset(target);
682                 target->running_alg = false;
683         }
684
685         return retval;
686 }
687
688 static int identity_virt2phys(struct target *target,
689                 target_addr_t virtual, target_addr_t *physical)
690 {
691         *physical = virtual;
692         return ERROR_OK;
693 }
694
695 static int no_mmu(struct target *target, int *enabled)
696 {
697         *enabled = 0;
698         return ERROR_OK;
699 }
700
701 static int default_examine(struct target *target)
702 {
703         target_set_examined(target);
704         return ERROR_OK;
705 }
706
707 /* no check by default */
708 static int default_check_reset(struct target *target)
709 {
710         return ERROR_OK;
711 }
712
713 int target_examine_one(struct target *target)
714 {
715         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
716
717         int retval = target->type->examine(target);
718         if (retval != ERROR_OK)
719                 return retval;
720
721         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
722
723         return ERROR_OK;
724 }
725
726 static int jtag_enable_callback(enum jtag_event event, void *priv)
727 {
728         struct target *target = priv;
729
730         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
731                 return ERROR_OK;
732
733         jtag_unregister_event_callback(jtag_enable_callback, target);
734
735         return target_examine_one(target);
736 }
737
738 /* Targets that correctly implement init + examine, i.e.
739  * no communication with target during init:
740  *
741  * XScale
742  */
743 int target_examine(void)
744 {
745         int retval = ERROR_OK;
746         struct target *target;
747
748         for (target = all_targets; target; target = target->next) {
749                 /* defer examination, but don't skip it */
750                 if (!target->tap->enabled) {
751                         jtag_register_event_callback(jtag_enable_callback,
752                                         target);
753                         continue;
754                 }
755
756                 if (target->defer_examine)
757                         continue;
758
759                 retval = target_examine_one(target);
760                 if (retval != ERROR_OK)
761                         return retval;
762         }
763         return retval;
764 }
765
766 const char *target_type_name(struct target *target)
767 {
768         return target->type->name;
769 }
770
771 static int target_soft_reset_halt(struct target *target)
772 {
773         if (!target_was_examined(target)) {
774                 LOG_ERROR("Target not examined yet");
775                 return ERROR_FAIL;
776         }
777         if (!target->type->soft_reset_halt) {
778                 LOG_ERROR("Target %s does not support soft_reset_halt",
779                                 target_name(target));
780                 return ERROR_FAIL;
781         }
782         return target->type->soft_reset_halt(target);
783 }
784
785 /**
786  * Downloads a target-specific native code algorithm to the target,
787  * and executes it.  * Note that some targets may need to set up, enable,
788  * and tear down a breakpoint (hard or * soft) to detect algorithm
789  * termination, while others may support  lower overhead schemes where
790  * soft breakpoints embedded in the algorithm automatically terminate the
791  * algorithm.
792  *
793  * @param target used to run the algorithm
794  * @param arch_info target-specific description of the algorithm.
795  */
796 int target_run_algorithm(struct target *target,
797                 int num_mem_params, struct mem_param *mem_params,
798                 int num_reg_params, struct reg_param *reg_param,
799                 uint32_t entry_point, uint32_t exit_point,
800                 int timeout_ms, void *arch_info)
801 {
802         int retval = ERROR_FAIL;
803
804         if (!target_was_examined(target)) {
805                 LOG_ERROR("Target not examined yet");
806                 goto done;
807         }
808         if (!target->type->run_algorithm) {
809                 LOG_ERROR("Target type '%s' does not support %s",
810                                 target_type_name(target), __func__);
811                 goto done;
812         }
813
814         target->running_alg = true;
815         retval = target->type->run_algorithm(target,
816                         num_mem_params, mem_params,
817                         num_reg_params, reg_param,
818                         entry_point, exit_point, timeout_ms, arch_info);
819         target->running_alg = false;
820
821 done:
822         return retval;
823 }
824
825 /**
826  * Executes a target-specific native code algorithm and leaves it running.
827  *
828  * @param target used to run the algorithm
829  * @param arch_info target-specific description of the algorithm.
830  */
831 int target_start_algorithm(struct target *target,
832                 int num_mem_params, struct mem_param *mem_params,
833                 int num_reg_params, struct reg_param *reg_params,
834                 uint32_t entry_point, uint32_t exit_point,
835                 void *arch_info)
836 {
837         int retval = ERROR_FAIL;
838
839         if (!target_was_examined(target)) {
840                 LOG_ERROR("Target not examined yet");
841                 goto done;
842         }
843         if (!target->type->start_algorithm) {
844                 LOG_ERROR("Target type '%s' does not support %s",
845                                 target_type_name(target), __func__);
846                 goto done;
847         }
848         if (target->running_alg) {
849                 LOG_ERROR("Target is already running an algorithm");
850                 goto done;
851         }
852
853         target->running_alg = true;
854         retval = target->type->start_algorithm(target,
855                         num_mem_params, mem_params,
856                         num_reg_params, reg_params,
857                         entry_point, exit_point, arch_info);
858
859 done:
860         return retval;
861 }
862
863 /**
864  * Waits for an algorithm started with target_start_algorithm() to complete.
865  *
866  * @param target used to run the algorithm
867  * @param arch_info target-specific description of the algorithm.
868  */
869 int target_wait_algorithm(struct target *target,
870                 int num_mem_params, struct mem_param *mem_params,
871                 int num_reg_params, struct reg_param *reg_params,
872                 uint32_t exit_point, int timeout_ms,
873                 void *arch_info)
874 {
875         int retval = ERROR_FAIL;
876
877         if (!target->type->wait_algorithm) {
878                 LOG_ERROR("Target type '%s' does not support %s",
879                                 target_type_name(target), __func__);
880                 goto done;
881         }
882         if (!target->running_alg) {
883                 LOG_ERROR("Target is not running an algorithm");
884                 goto done;
885         }
886
887         retval = target->type->wait_algorithm(target,
888                         num_mem_params, mem_params,
889                         num_reg_params, reg_params,
890                         exit_point, timeout_ms, arch_info);
891         if (retval != ERROR_TARGET_TIMEOUT)
892                 target->running_alg = false;
893
894 done:
895         return retval;
896 }
897
898 /**
899  * Streams data to a circular buffer on target intended for consumption by code
900  * running asynchronously on target.
901  *
902  * This is intended for applications where target-specific native code runs
903  * on the target, receives data from the circular buffer, does something with
904  * it (most likely writing it to a flash memory), and advances the circular
905  * buffer pointer.
906  *
907  * This assumes that the helper algorithm has already been loaded to the target,
908  * but has not been started yet. Given memory and register parameters are passed
909  * to the algorithm.
910  *
911  * The buffer is defined by (buffer_start, buffer_size) arguments and has the
912  * following format:
913  *
914  *     [buffer_start + 0, buffer_start + 4):
915  *         Write Pointer address (aka head). Written and updated by this
916  *         routine when new data is written to the circular buffer.
917  *     [buffer_start + 4, buffer_start + 8):
918  *         Read Pointer address (aka tail). Updated by code running on the
919  *         target after it consumes data.
920  *     [buffer_start + 8, buffer_start + buffer_size):
921  *         Circular buffer contents.
922  *
923  * See contrib/loaders/flash/stm32f1x.S for an example.
924  *
925  * @param target used to run the algorithm
926  * @param buffer address on the host where data to be sent is located
927  * @param count number of blocks to send
928  * @param block_size size in bytes of each block
929  * @param num_mem_params count of memory-based params to pass to algorithm
930  * @param mem_params memory-based params to pass to algorithm
931  * @param num_reg_params count of register-based params to pass to algorithm
932  * @param reg_params memory-based params to pass to algorithm
933  * @param buffer_start address on the target of the circular buffer structure
934  * @param buffer_size size of the circular buffer structure
935  * @param entry_point address on the target to execute to start the algorithm
936  * @param exit_point address at which to set a breakpoint to catch the
937  *     end of the algorithm; can be 0 if target triggers a breakpoint itself
938  */
939
940 int target_run_flash_async_algorithm(struct target *target,
941                 const uint8_t *buffer, uint32_t count, int block_size,
942                 int num_mem_params, struct mem_param *mem_params,
943                 int num_reg_params, struct reg_param *reg_params,
944                 uint32_t buffer_start, uint32_t buffer_size,
945                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
946 {
947         int retval;
948         int timeout = 0;
949
950         const uint8_t *buffer_orig = buffer;
951
952         /* Set up working area. First word is write pointer, second word is read pointer,
953          * rest is fifo data area. */
954         uint32_t wp_addr = buffer_start;
955         uint32_t rp_addr = buffer_start + 4;
956         uint32_t fifo_start_addr = buffer_start + 8;
957         uint32_t fifo_end_addr = buffer_start + buffer_size;
958
959         uint32_t wp = fifo_start_addr;
960         uint32_t rp = fifo_start_addr;
961
962         /* validate block_size is 2^n */
963         assert(!block_size || !(block_size & (block_size - 1)));
964
965         retval = target_write_u32(target, wp_addr, wp);
966         if (retval != ERROR_OK)
967                 return retval;
968         retval = target_write_u32(target, rp_addr, rp);
969         if (retval != ERROR_OK)
970                 return retval;
971
972         /* Start up algorithm on target and let it idle while writing the first chunk */
973         retval = target_start_algorithm(target, num_mem_params, mem_params,
974                         num_reg_params, reg_params,
975                         entry_point,
976                         exit_point,
977                         arch_info);
978
979         if (retval != ERROR_OK) {
980                 LOG_ERROR("error starting target flash write algorithm");
981                 return retval;
982         }
983
984         while (count > 0) {
985
986                 retval = target_read_u32(target, rp_addr, &rp);
987                 if (retval != ERROR_OK) {
988                         LOG_ERROR("failed to get read pointer");
989                         break;
990                 }
991
992                 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
993                         (size_t) (buffer - buffer_orig), count, wp, rp);
994
995                 if (rp == 0) {
996                         LOG_ERROR("flash write algorithm aborted by target");
997                         retval = ERROR_FLASH_OPERATION_FAILED;
998                         break;
999                 }
1000
1001                 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
1002                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
1003                         break;
1004                 }
1005
1006                 /* Count the number of bytes available in the fifo without
1007                  * crossing the wrap around. Make sure to not fill it completely,
1008                  * because that would make wp == rp and that's the empty condition. */
1009                 uint32_t thisrun_bytes;
1010                 if (rp > wp)
1011                         thisrun_bytes = rp - wp - block_size;
1012                 else if (rp > fifo_start_addr)
1013                         thisrun_bytes = fifo_end_addr - wp;
1014                 else
1015                         thisrun_bytes = fifo_end_addr - wp - block_size;
1016
1017                 if (thisrun_bytes == 0) {
1018                         /* Throttle polling a bit if transfer is (much) faster than flash
1019                          * programming. The exact delay shouldn't matter as long as it's
1020                          * less than buffer size / flash speed. This is very unlikely to
1021                          * run when using high latency connections such as USB. */
1022                         alive_sleep(10);
1023
1024                         /* to stop an infinite loop on some targets check and increment a timeout
1025                          * this issue was observed on a stellaris using the new ICDI interface */
1026                         if (timeout++ >= 500) {
1027                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1028                                 return ERROR_FLASH_OPERATION_FAILED;
1029                         }
1030                         continue;
1031                 }
1032
1033                 /* reset our timeout */
1034                 timeout = 0;
1035
1036                 /* Limit to the amount of data we actually want to write */
1037                 if (thisrun_bytes > count * block_size)
1038                         thisrun_bytes = count * block_size;
1039
1040                 /* Write data to fifo */
1041                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1042                 if (retval != ERROR_OK)
1043                         break;
1044
1045                 /* Update counters and wrap write pointer */
1046                 buffer += thisrun_bytes;
1047                 count -= thisrun_bytes / block_size;
1048                 wp += thisrun_bytes;
1049                 if (wp >= fifo_end_addr)
1050                         wp = fifo_start_addr;
1051
1052                 /* Store updated write pointer to target */
1053                 retval = target_write_u32(target, wp_addr, wp);
1054                 if (retval != ERROR_OK)
1055                         break;
1056
1057                 /* Avoid GDB timeouts */
1058                 keep_alive();
1059         }
1060
1061         if (retval != ERROR_OK) {
1062                 /* abort flash write algorithm on target */
1063                 target_write_u32(target, wp_addr, 0);
1064         }
1065
1066         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1067                         num_reg_params, reg_params,
1068                         exit_point,
1069                         10000,
1070                         arch_info);
1071
1072         if (retval2 != ERROR_OK) {
1073                 LOG_ERROR("error waiting for target flash write algorithm");
1074                 retval = retval2;
1075         }
1076
1077         if (retval == ERROR_OK) {
1078                 /* check if algorithm set rp = 0 after fifo writer loop finished */
1079                 retval = target_read_u32(target, rp_addr, &rp);
1080                 if (retval == ERROR_OK && rp == 0) {
1081                         LOG_ERROR("flash write algorithm aborted by target");
1082                         retval = ERROR_FLASH_OPERATION_FAILED;
1083                 }
1084         }
1085
1086         return retval;
1087 }
1088
1089 int target_read_memory(struct target *target,
1090                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1091 {
1092         if (!target_was_examined(target)) {
1093                 LOG_ERROR("Target not examined yet");
1094                 return ERROR_FAIL;
1095         }
1096         if (!target->type->read_memory) {
1097                 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1098                 return ERROR_FAIL;
1099         }
1100         return target->type->read_memory(target, address, size, count, buffer);
1101 }
1102
1103 int target_read_phys_memory(struct target *target,
1104                 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1105 {
1106         if (!target_was_examined(target)) {
1107                 LOG_ERROR("Target not examined yet");
1108                 return ERROR_FAIL;
1109         }
1110         if (!target->type->read_phys_memory) {
1111                 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1112                 return ERROR_FAIL;
1113         }
1114         return target->type->read_phys_memory(target, address, size, count, buffer);
1115 }
1116
1117 int target_write_memory(struct target *target,
1118                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1119 {
1120         if (!target_was_examined(target)) {
1121                 LOG_ERROR("Target not examined yet");
1122                 return ERROR_FAIL;
1123         }
1124         if (!target->type->write_memory) {
1125                 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1126                 return ERROR_FAIL;
1127         }
1128         return target->type->write_memory(target, address, size, count, buffer);
1129 }
1130
1131 int target_write_phys_memory(struct target *target,
1132                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1133 {
1134         if (!target_was_examined(target)) {
1135                 LOG_ERROR("Target not examined yet");
1136                 return ERROR_FAIL;
1137         }
1138         if (!target->type->write_phys_memory) {
1139                 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1140                 return ERROR_FAIL;
1141         }
1142         return target->type->write_phys_memory(target, address, size, count, buffer);
1143 }
1144
1145 int target_add_breakpoint(struct target *target,
1146                 struct breakpoint *breakpoint)
1147 {
1148         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1149                 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1150                 return ERROR_TARGET_NOT_HALTED;
1151         }
1152         return target->type->add_breakpoint(target, breakpoint);
1153 }
1154
1155 int target_add_context_breakpoint(struct target *target,
1156                 struct breakpoint *breakpoint)
1157 {
1158         if (target->state != TARGET_HALTED) {
1159                 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1160                 return ERROR_TARGET_NOT_HALTED;
1161         }
1162         return target->type->add_context_breakpoint(target, breakpoint);
1163 }
1164
1165 int target_add_hybrid_breakpoint(struct target *target,
1166                 struct breakpoint *breakpoint)
1167 {
1168         if (target->state != TARGET_HALTED) {
1169                 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1170                 return ERROR_TARGET_NOT_HALTED;
1171         }
1172         return target->type->add_hybrid_breakpoint(target, breakpoint);
1173 }
1174
1175 int target_remove_breakpoint(struct target *target,
1176                 struct breakpoint *breakpoint)
1177 {
1178         return target->type->remove_breakpoint(target, breakpoint);
1179 }
1180
1181 int target_add_watchpoint(struct target *target,
1182                 struct watchpoint *watchpoint)
1183 {
1184         if (target->state != TARGET_HALTED) {
1185                 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1186                 return ERROR_TARGET_NOT_HALTED;
1187         }
1188         return target->type->add_watchpoint(target, watchpoint);
1189 }
1190 int target_remove_watchpoint(struct target *target,
1191                 struct watchpoint *watchpoint)
1192 {
1193         return target->type->remove_watchpoint(target, watchpoint);
1194 }
1195 int target_hit_watchpoint(struct target *target,
1196                 struct watchpoint **hit_watchpoint)
1197 {
1198         if (target->state != TARGET_HALTED) {
1199                 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1200                 return ERROR_TARGET_NOT_HALTED;
1201         }
1202
1203         if (target->type->hit_watchpoint == NULL) {
1204                 /* For backward compatible, if hit_watchpoint is not implemented,
1205                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1206                  * information. */
1207                 return ERROR_FAIL;
1208         }
1209
1210         return target->type->hit_watchpoint(target, hit_watchpoint);
1211 }
1212
1213 const char *target_get_gdb_arch(struct target *target)
1214 {
1215         if (target->type->get_gdb_arch == NULL)
1216                 return NULL;
1217         return target->type->get_gdb_arch(target);
1218 }
1219
1220 int target_get_gdb_reg_list(struct target *target,
1221                 struct reg **reg_list[], int *reg_list_size,
1222                 enum target_register_class reg_class)
1223 {
1224         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1225 }
1226
1227 bool target_supports_gdb_connection(struct target *target)
1228 {
1229         /*
1230          * based on current code, we can simply exclude all the targets that
1231          * don't provide get_gdb_reg_list; this could change with new targets.
1232          */
1233         return !!target->type->get_gdb_reg_list;
1234 }
1235
1236 int target_step(struct target *target,
1237                 int current, target_addr_t address, int handle_breakpoints)
1238 {
1239         return target->type->step(target, current, address, handle_breakpoints);
1240 }
1241
1242 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1243 {
1244         if (target->state != TARGET_HALTED) {
1245                 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1246                 return ERROR_TARGET_NOT_HALTED;
1247         }
1248         return target->type->get_gdb_fileio_info(target, fileio_info);
1249 }
1250
1251 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1252 {
1253         if (target->state != TARGET_HALTED) {
1254                 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1255                 return ERROR_TARGET_NOT_HALTED;
1256         }
1257         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1258 }
1259
1260 int target_profiling(struct target *target, uint32_t *samples,
1261                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1262 {
1263         if (target->state != TARGET_HALTED) {
1264                 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1265                 return ERROR_TARGET_NOT_HALTED;
1266         }
1267         return target->type->profiling(target, samples, max_num_samples,
1268                         num_samples, seconds);
1269 }
1270
1271 /**
1272  * Reset the @c examined flag for the given target.
1273  * Pure paranoia -- targets are zeroed on allocation.
1274  */
1275 static void target_reset_examined(struct target *target)
1276 {
1277         target->examined = false;
1278 }
1279
1280 static int handle_target(void *priv);
1281
1282 static int target_init_one(struct command_context *cmd_ctx,
1283                 struct target *target)
1284 {
1285         target_reset_examined(target);
1286
1287         struct target_type *type = target->type;
1288         if (type->examine == NULL)
1289                 type->examine = default_examine;
1290
1291         if (type->check_reset == NULL)
1292                 type->check_reset = default_check_reset;
1293
1294         assert(type->init_target != NULL);
1295
1296         int retval = type->init_target(cmd_ctx, target);
1297         if (ERROR_OK != retval) {
1298                 LOG_ERROR("target '%s' init failed", target_name(target));
1299                 return retval;
1300         }
1301
1302         /* Sanity-check MMU support ... stub in what we must, to help
1303          * implement it in stages, but warn if we need to do so.
1304          */
1305         if (type->mmu) {
1306                 if (type->virt2phys == NULL) {
1307                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1308                         type->virt2phys = identity_virt2phys;
1309                 }
1310         } else {
1311                 /* Make sure no-MMU targets all behave the same:  make no
1312                  * distinction between physical and virtual addresses, and
1313                  * ensure that virt2phys() is always an identity mapping.
1314                  */
1315                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1316                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1317
1318                 type->mmu = no_mmu;
1319                 type->write_phys_memory = type->write_memory;
1320                 type->read_phys_memory = type->read_memory;
1321                 type->virt2phys = identity_virt2phys;
1322         }
1323
1324         if (target->type->read_buffer == NULL)
1325                 target->type->read_buffer = target_read_buffer_default;
1326
1327         if (target->type->write_buffer == NULL)
1328                 target->type->write_buffer = target_write_buffer_default;
1329
1330         if (target->type->get_gdb_fileio_info == NULL)
1331                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1332
1333         if (target->type->gdb_fileio_end == NULL)
1334                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1335
1336         if (target->type->profiling == NULL)
1337                 target->type->profiling = target_profiling_default;
1338
1339         return ERROR_OK;
1340 }
1341
1342 static int target_init(struct command_context *cmd_ctx)
1343 {
1344         struct target *target;
1345         int retval;
1346
1347         for (target = all_targets; target; target = target->next) {
1348                 retval = target_init_one(cmd_ctx, target);
1349                 if (ERROR_OK != retval)
1350                         return retval;
1351         }
1352
1353         if (!all_targets)
1354                 return ERROR_OK;
1355
1356         retval = target_register_user_commands(cmd_ctx);
1357         if (ERROR_OK != retval)
1358                 return retval;
1359
1360         retval = target_register_timer_callback(&handle_target,
1361                         polling_interval, TARGET_TIMER_TYPE_PERIODIC, cmd_ctx->interp);
1362         if (ERROR_OK != retval)
1363                 return retval;
1364
1365         return ERROR_OK;
1366 }
1367
1368 COMMAND_HANDLER(handle_target_init_command)
1369 {
1370         int retval;
1371
1372         if (CMD_ARGC != 0)
1373                 return ERROR_COMMAND_SYNTAX_ERROR;
1374
1375         static bool target_initialized;
1376         if (target_initialized) {
1377                 LOG_INFO("'target init' has already been called");
1378                 return ERROR_OK;
1379         }
1380         target_initialized = true;
1381
1382         retval = command_run_line(CMD_CTX, "init_targets");
1383         if (ERROR_OK != retval)
1384                 return retval;
1385
1386         retval = command_run_line(CMD_CTX, "init_target_events");
1387         if (ERROR_OK != retval)
1388                 return retval;
1389
1390         retval = command_run_line(CMD_CTX, "init_board");
1391         if (ERROR_OK != retval)
1392                 return retval;
1393
1394         LOG_DEBUG("Initializing targets...");
1395         return target_init(CMD_CTX);
1396 }
1397
1398 int target_register_event_callback(int (*callback)(struct target *target,
1399                 enum target_event event, void *priv), void *priv)
1400 {
1401         struct target_event_callback **callbacks_p = &target_event_callbacks;
1402
1403         if (callback == NULL)
1404                 return ERROR_COMMAND_SYNTAX_ERROR;
1405
1406         if (*callbacks_p) {
1407                 while ((*callbacks_p)->next)
1408                         callbacks_p = &((*callbacks_p)->next);
1409                 callbacks_p = &((*callbacks_p)->next);
1410         }
1411
1412         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1413         (*callbacks_p)->callback = callback;
1414         (*callbacks_p)->priv = priv;
1415         (*callbacks_p)->next = NULL;
1416
1417         return ERROR_OK;
1418 }
1419
1420 int target_register_reset_callback(int (*callback)(struct target *target,
1421                 enum target_reset_mode reset_mode, void *priv), void *priv)
1422 {
1423         struct target_reset_callback *entry;
1424
1425         if (callback == NULL)
1426                 return ERROR_COMMAND_SYNTAX_ERROR;
1427
1428         entry = malloc(sizeof(struct target_reset_callback));
1429         if (entry == NULL) {
1430                 LOG_ERROR("error allocating buffer for reset callback entry");
1431                 return ERROR_COMMAND_SYNTAX_ERROR;
1432         }
1433
1434         entry->callback = callback;
1435         entry->priv = priv;
1436         list_add(&entry->list, &target_reset_callback_list);
1437
1438
1439         return ERROR_OK;
1440 }
1441
1442 int target_register_trace_callback(int (*callback)(struct target *target,
1443                 size_t len, uint8_t *data, void *priv), void *priv)
1444 {
1445         struct target_trace_callback *entry;
1446
1447         if (callback == NULL)
1448                 return ERROR_COMMAND_SYNTAX_ERROR;
1449
1450         entry = malloc(sizeof(struct target_trace_callback));
1451         if (entry == NULL) {
1452                 LOG_ERROR("error allocating buffer for trace callback entry");
1453                 return ERROR_COMMAND_SYNTAX_ERROR;
1454         }
1455
1456         entry->callback = callback;
1457         entry->priv = priv;
1458         list_add(&entry->list, &target_trace_callback_list);
1459
1460
1461         return ERROR_OK;
1462 }
1463
1464 int target_register_timer_callback(int (*callback)(void *priv),
1465                 unsigned int time_ms, enum target_timer_type type, void *priv)
1466 {
1467         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1468
1469         if (callback == NULL)
1470                 return ERROR_COMMAND_SYNTAX_ERROR;
1471
1472         if (*callbacks_p) {
1473                 while ((*callbacks_p)->next)
1474                         callbacks_p = &((*callbacks_p)->next);
1475                 callbacks_p = &((*callbacks_p)->next);
1476         }
1477
1478         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1479         (*callbacks_p)->callback = callback;
1480         (*callbacks_p)->type = type;
1481         (*callbacks_p)->time_ms = time_ms;
1482         (*callbacks_p)->removed = false;
1483
1484         gettimeofday(&(*callbacks_p)->when, NULL);
1485         timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1486
1487         (*callbacks_p)->priv = priv;
1488         (*callbacks_p)->next = NULL;
1489
1490         return ERROR_OK;
1491 }
1492
1493 int target_unregister_event_callback(int (*callback)(struct target *target,
1494                 enum target_event event, void *priv), void *priv)
1495 {
1496         struct target_event_callback **p = &target_event_callbacks;
1497         struct target_event_callback *c = target_event_callbacks;
1498
1499         if (callback == NULL)
1500                 return ERROR_COMMAND_SYNTAX_ERROR;
1501
1502         while (c) {
1503                 struct target_event_callback *next = c->next;
1504                 if ((c->callback == callback) && (c->priv == priv)) {
1505                         *p = next;
1506                         free(c);
1507                         return ERROR_OK;
1508                 } else
1509                         p = &(c->next);
1510                 c = next;
1511         }
1512
1513         return ERROR_OK;
1514 }
1515
1516 int target_unregister_reset_callback(int (*callback)(struct target *target,
1517                 enum target_reset_mode reset_mode, void *priv), void *priv)
1518 {
1519         struct target_reset_callback *entry;
1520
1521         if (callback == NULL)
1522                 return ERROR_COMMAND_SYNTAX_ERROR;
1523
1524         list_for_each_entry(entry, &target_reset_callback_list, list) {
1525                 if (entry->callback == callback && entry->priv == priv) {
1526                         list_del(&entry->list);
1527                         free(entry);
1528                         break;
1529                 }
1530         }
1531
1532         return ERROR_OK;
1533 }
1534
1535 int target_unregister_trace_callback(int (*callback)(struct target *target,
1536                 size_t len, uint8_t *data, void *priv), void *priv)
1537 {
1538         struct target_trace_callback *entry;
1539
1540         if (callback == NULL)
1541                 return ERROR_COMMAND_SYNTAX_ERROR;
1542
1543         list_for_each_entry(entry, &target_trace_callback_list, list) {
1544                 if (entry->callback == callback && entry->priv == priv) {
1545                         list_del(&entry->list);
1546                         free(entry);
1547                         break;
1548                 }
1549         }
1550
1551         return ERROR_OK;
1552 }
1553
1554 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1555 {
1556         if (callback == NULL)
1557                 return ERROR_COMMAND_SYNTAX_ERROR;
1558
1559         for (struct target_timer_callback *c = target_timer_callbacks;
1560              c; c = c->next) {
1561                 if ((c->callback == callback) && (c->priv == priv)) {
1562                         c->removed = true;
1563                         return ERROR_OK;
1564                 }
1565         }
1566
1567         return ERROR_FAIL;
1568 }
1569
1570 int target_call_event_callbacks(struct target *target, enum target_event event)
1571 {
1572         struct target_event_callback *callback = target_event_callbacks;
1573         struct target_event_callback *next_callback;
1574
1575         if (event == TARGET_EVENT_HALTED) {
1576                 /* execute early halted first */
1577                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1578         }
1579
1580         LOG_DEBUG("target event %i (%s)", event,
1581                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1582
1583         target_handle_event(target, event);
1584
1585         while (callback) {
1586                 next_callback = callback->next;
1587                 callback->callback(target, event, callback->priv);
1588                 callback = next_callback;
1589         }
1590
1591         return ERROR_OK;
1592 }
1593
1594 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1595 {
1596         struct target_reset_callback *callback;
1597
1598         LOG_DEBUG("target reset %i (%s)", reset_mode,
1599                         Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1600
1601         list_for_each_entry(callback, &target_reset_callback_list, list)
1602                 callback->callback(target, reset_mode, callback->priv);
1603
1604         return ERROR_OK;
1605 }
1606
1607 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1608 {
1609         struct target_trace_callback *callback;
1610
1611         list_for_each_entry(callback, &target_trace_callback_list, list)
1612                 callback->callback(target, len, data, callback->priv);
1613
1614         return ERROR_OK;
1615 }
1616
1617 static int target_timer_callback_periodic_restart(
1618                 struct target_timer_callback *cb, struct timeval *now)
1619 {
1620         cb->when = *now;
1621         timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1622         return ERROR_OK;
1623 }
1624
1625 static int target_call_timer_callback(struct target_timer_callback *cb,
1626                 struct timeval *now)
1627 {
1628         cb->callback(cb->priv);
1629
1630         if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
1631                 return target_timer_callback_periodic_restart(cb, now);
1632
1633         return target_unregister_timer_callback(cb->callback, cb->priv);
1634 }
1635
1636 static int target_call_timer_callbacks_check_time(int checktime)
1637 {
1638         static bool callback_processing;
1639
1640         /* Do not allow nesting */
1641         if (callback_processing)
1642                 return ERROR_OK;
1643
1644         callback_processing = true;
1645
1646         keep_alive();
1647
1648         struct timeval now;
1649         gettimeofday(&now, NULL);
1650
1651         /* Store an address of the place containing a pointer to the
1652          * next item; initially, that's a standalone "root of the
1653          * list" variable. */
1654         struct target_timer_callback **callback = &target_timer_callbacks;
1655         while (*callback) {
1656                 if ((*callback)->removed) {
1657                         struct target_timer_callback *p = *callback;
1658                         *callback = (*callback)->next;
1659                         free(p);
1660                         continue;
1661                 }
1662
1663                 bool call_it = (*callback)->callback &&
1664                         ((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
1665                          timeval_compare(&now, &(*callback)->when) >= 0);
1666
1667                 if (call_it)
1668                         target_call_timer_callback(*callback, &now);
1669
1670                 callback = &(*callback)->next;
1671         }
1672
1673         callback_processing = false;
1674         return ERROR_OK;
1675 }
1676
1677 int target_call_timer_callbacks(void)
1678 {
1679         return target_call_timer_callbacks_check_time(1);
1680 }
1681
1682 /* invoke periodic callbacks immediately */
1683 int target_call_timer_callbacks_now(void)
1684 {
1685         return target_call_timer_callbacks_check_time(0);
1686 }
1687
1688 /* Prints the working area layout for debug purposes */
1689 static void print_wa_layout(struct target *target)
1690 {
1691         struct working_area *c = target->working_areas;
1692
1693         while (c) {
1694                 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1695                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1696                         c->address, c->address + c->size - 1, c->size);
1697                 c = c->next;
1698         }
1699 }
1700
1701 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1702 static void target_split_working_area(struct working_area *area, uint32_t size)
1703 {
1704         assert(area->free); /* Shouldn't split an allocated area */
1705         assert(size <= area->size); /* Caller should guarantee this */
1706
1707         /* Split only if not already the right size */
1708         if (size < area->size) {
1709                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1710
1711                 if (new_wa == NULL)
1712                         return;
1713
1714                 new_wa->next = area->next;
1715                 new_wa->size = area->size - size;
1716                 new_wa->address = area->address + size;
1717                 new_wa->backup = NULL;
1718                 new_wa->user = NULL;
1719                 new_wa->free = true;
1720
1721                 area->next = new_wa;
1722                 area->size = size;
1723
1724                 /* If backup memory was allocated to this area, it has the wrong size
1725                  * now so free it and it will be reallocated if/when needed */
1726                 if (area->backup) {
1727                         free(area->backup);
1728                         area->backup = NULL;
1729                 }
1730         }
1731 }
1732
1733 /* Merge all adjacent free areas into one */
1734 static void target_merge_working_areas(struct target *target)
1735 {
1736         struct working_area *c = target->working_areas;
1737
1738         while (c && c->next) {
1739                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1740
1741                 /* Find two adjacent free areas */
1742                 if (c->free && c->next->free) {
1743                         /* Merge the last into the first */
1744                         c->size += c->next->size;
1745
1746                         /* Remove the last */
1747                         struct working_area *to_be_freed = c->next;
1748                         c->next = c->next->next;
1749                         if (to_be_freed->backup)
1750                                 free(to_be_freed->backup);
1751                         free(to_be_freed);
1752
1753                         /* If backup memory was allocated to the remaining area, it's has
1754                          * the wrong size now */
1755                         if (c->backup) {
1756                                 free(c->backup);
1757                                 c->backup = NULL;
1758                         }
1759                 } else {
1760                         c = c->next;
1761                 }
1762         }
1763 }
1764
1765 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1766 {
1767         /* Reevaluate working area address based on MMU state*/
1768         if (target->working_areas == NULL) {
1769                 int retval;
1770                 int enabled;
1771
1772                 retval = target->type->mmu(target, &enabled);
1773                 if (retval != ERROR_OK)
1774                         return retval;
1775
1776                 if (!enabled) {
1777                         if (target->working_area_phys_spec) {
1778                                 LOG_DEBUG("MMU disabled, using physical "
1779                                         "address for working memory " TARGET_ADDR_FMT,
1780                                         target->working_area_phys);
1781                                 target->working_area = target->working_area_phys;
1782                         } else {
1783                                 LOG_ERROR("No working memory available. "
1784                                         "Specify -work-area-phys to target.");
1785                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1786                         }
1787                 } else {
1788                         if (target->working_area_virt_spec) {
1789                                 LOG_DEBUG("MMU enabled, using virtual "
1790                                         "address for working memory " TARGET_ADDR_FMT,
1791                                         target->working_area_virt);
1792                                 target->working_area = target->working_area_virt;
1793                         } else {
1794                                 LOG_ERROR("No working memory available. "
1795                                         "Specify -work-area-virt to target.");
1796                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1797                         }
1798                 }
1799
1800                 /* Set up initial working area on first call */
1801                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1802                 if (new_wa) {
1803                         new_wa->next = NULL;
1804                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1805                         new_wa->address = target->working_area;
1806                         new_wa->backup = NULL;
1807                         new_wa->user = NULL;
1808                         new_wa->free = true;
1809                 }
1810
1811                 target->working_areas = new_wa;
1812         }
1813
1814         /* only allocate multiples of 4 byte */
1815         if (size % 4)
1816                 size = (size + 3) & (~3UL);
1817
1818         struct working_area *c = target->working_areas;
1819
1820         /* Find the first large enough working area */
1821         while (c) {
1822                 if (c->free && c->size >= size)
1823                         break;
1824                 c = c->next;
1825         }
1826
1827         if (c == NULL)
1828                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1829
1830         /* Split the working area into the requested size */
1831         target_split_working_area(c, size);
1832
1833         LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1834                           size, c->address);
1835
1836         if (target->backup_working_area) {
1837                 if (c->backup == NULL) {
1838                         c->backup = malloc(c->size);
1839                         if (c->backup == NULL)
1840                                 return ERROR_FAIL;
1841                 }
1842
1843                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1844                 if (retval != ERROR_OK)
1845                         return retval;
1846         }
1847
1848         /* mark as used, and return the new (reused) area */
1849         c->free = false;
1850         *area = c;
1851
1852         /* user pointer */
1853         c->user = area;
1854
1855         print_wa_layout(target);
1856
1857         return ERROR_OK;
1858 }
1859
1860 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1861 {
1862         int retval;
1863
1864         retval = target_alloc_working_area_try(target, size, area);
1865         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1866                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1867         return retval;
1868
1869 }
1870
1871 static int target_restore_working_area(struct target *target, struct working_area *area)
1872 {
1873         int retval = ERROR_OK;
1874
1875         if (target->backup_working_area && area->backup != NULL) {
1876                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1877                 if (retval != ERROR_OK)
1878                         LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1879                                         area->size, area->address);
1880         }
1881
1882         return retval;
1883 }
1884
1885 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1886 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1887 {
1888         int retval = ERROR_OK;
1889
1890         if (area->free)
1891                 return retval;
1892
1893         if (restore) {
1894                 retval = target_restore_working_area(target, area);
1895                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1896                 if (retval != ERROR_OK)
1897                         return retval;
1898         }
1899
1900         area->free = true;
1901
1902         LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1903                         area->size, area->address);
1904
1905         /* mark user pointer invalid */
1906         /* TODO: Is this really safe? It points to some previous caller's memory.
1907          * How could we know that the area pointer is still in that place and not
1908          * some other vital data? What's the purpose of this, anyway? */
1909         *area->user = NULL;
1910         area->user = NULL;
1911
1912         target_merge_working_areas(target);
1913
1914         print_wa_layout(target);
1915
1916         return retval;
1917 }
1918
1919 int target_free_working_area(struct target *target, struct working_area *area)
1920 {
1921         return target_free_working_area_restore(target, area, 1);
1922 }
1923
1924 /* free resources and restore memory, if restoring memory fails,
1925  * free up resources anyway
1926  */
1927 static void target_free_all_working_areas_restore(struct target *target, int restore)
1928 {
1929         struct working_area *c = target->working_areas;
1930
1931         LOG_DEBUG("freeing all working areas");
1932
1933         /* Loop through all areas, restoring the allocated ones and marking them as free */
1934         while (c) {
1935                 if (!c->free) {
1936                         if (restore)
1937                                 target_restore_working_area(target, c);
1938                         c->free = true;
1939                         *c->user = NULL; /* Same as above */
1940                         c->user = NULL;
1941                 }
1942                 c = c->next;
1943         }
1944
1945         /* Run a merge pass to combine all areas into one */
1946         target_merge_working_areas(target);
1947
1948         print_wa_layout(target);
1949 }
1950
1951 void target_free_all_working_areas(struct target *target)
1952 {
1953         target_free_all_working_areas_restore(target, 1);
1954
1955         /* Now we have none or only one working area marked as free */
1956         if (target->working_areas) {
1957                 /* Free the last one to allow on-the-fly moving and resizing */
1958                 free(target->working_areas->backup);
1959                 free(target->working_areas);
1960                 target->working_areas = NULL;
1961         }
1962 }
1963
1964 /* Find the largest number of bytes that can be allocated */
1965 uint32_t target_get_working_area_avail(struct target *target)
1966 {
1967         struct working_area *c = target->working_areas;
1968         uint32_t max_size = 0;
1969
1970         if (c == NULL)
1971                 return target->working_area_size;
1972
1973         while (c) {
1974                 if (c->free && max_size < c->size)
1975                         max_size = c->size;
1976
1977                 c = c->next;
1978         }
1979
1980         return max_size;
1981 }
1982
1983 static void target_destroy(struct target *target)
1984 {
1985         if (target->type->deinit_target)
1986                 target->type->deinit_target(target);
1987
1988         if (target->semihosting)
1989                 free(target->semihosting);
1990
1991         jtag_unregister_event_callback(jtag_enable_callback, target);
1992
1993         struct target_event_action *teap = target->event_action;
1994         while (teap) {
1995                 struct target_event_action *next = teap->next;
1996                 Jim_DecrRefCount(teap->interp, teap->body);
1997                 free(teap);
1998                 teap = next;
1999         }
2000
2001         target_free_all_working_areas(target);
2002
2003         /* release the targets SMP list */
2004         if (target->smp) {
2005                 struct target_list *head = target->head;
2006                 while (head != NULL) {
2007                         struct target_list *pos = head->next;
2008                         head->target->smp = 0;
2009                         free(head);
2010                         head = pos;
2011                 }
2012                 target->smp = 0;
2013         }
2014
2015         free(target->gdb_port_override);
2016         free(target->type);
2017         free(target->trace_info);
2018         free(target->fileio_info);
2019         free(target->cmd_name);
2020         free(target);
2021 }
2022
2023 void target_quit(void)
2024 {
2025         struct target_event_callback *pe = target_event_callbacks;
2026         while (pe) {
2027                 struct target_event_callback *t = pe->next;
2028                 free(pe);
2029                 pe = t;
2030         }
2031         target_event_callbacks = NULL;
2032
2033         struct target_timer_callback *pt = target_timer_callbacks;
2034         while (pt) {
2035                 struct target_timer_callback *t = pt->next;
2036                 free(pt);
2037                 pt = t;
2038         }
2039         target_timer_callbacks = NULL;
2040
2041         for (struct target *target = all_targets; target;) {
2042                 struct target *tmp;
2043
2044                 tmp = target->next;
2045                 target_destroy(target);
2046                 target = tmp;
2047         }
2048
2049         all_targets = NULL;
2050 }
2051
2052 int target_arch_state(struct target *target)
2053 {
2054         int retval;
2055         if (target == NULL) {
2056                 LOG_WARNING("No target has been configured");
2057                 return ERROR_OK;
2058         }
2059
2060         if (target->state != TARGET_HALTED)
2061                 return ERROR_OK;
2062
2063         retval = target->type->arch_state(target);
2064         return retval;
2065 }
2066
2067 static int target_get_gdb_fileio_info_default(struct target *target,
2068                 struct gdb_fileio_info *fileio_info)
2069 {
2070         /* If target does not support semi-hosting function, target
2071            has no need to provide .get_gdb_fileio_info callback.
2072            It just return ERROR_FAIL and gdb_server will return "Txx"
2073            as target halted every time.  */
2074         return ERROR_FAIL;
2075 }
2076
2077 static int target_gdb_fileio_end_default(struct target *target,
2078                 int retcode, int fileio_errno, bool ctrl_c)
2079 {
2080         return ERROR_OK;
2081 }
2082
2083 static int target_profiling_default(struct target *target, uint32_t *samples,
2084                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2085 {
2086         struct timeval timeout, now;
2087
2088         gettimeofday(&timeout, NULL);
2089         timeval_add_time(&timeout, seconds, 0);
2090
2091         LOG_INFO("Starting profiling. Halting and resuming the"
2092                         " target as often as we can...");
2093
2094         uint32_t sample_count = 0;
2095         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2096         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2097
2098         int retval = ERROR_OK;
2099         for (;;) {
2100                 target_poll(target);
2101                 if (target->state == TARGET_HALTED) {
2102                         uint32_t t = buf_get_u32(reg->value, 0, 32);
2103                         samples[sample_count++] = t;
2104                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
2105                         retval = target_resume(target, 1, 0, 0, 0);
2106                         target_poll(target);
2107                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2108                 } else if (target->state == TARGET_RUNNING) {
2109                         /* We want to quickly sample the PC. */
2110                         retval = target_halt(target);
2111                 } else {
2112                         LOG_INFO("Target not halted or running");
2113                         retval = ERROR_OK;
2114                         break;
2115                 }
2116
2117                 if (retval != ERROR_OK)
2118                         break;
2119
2120                 gettimeofday(&now, NULL);
2121                 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2122                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2123                         break;
2124                 }
2125         }
2126
2127         *num_samples = sample_count;
2128         return retval;
2129 }
2130
2131 /* Single aligned words are guaranteed to use 16 or 32 bit access
2132  * mode respectively, otherwise data is handled as quickly as
2133  * possible
2134  */
2135 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2136 {
2137         LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2138                           size, address);
2139
2140         if (!target_was_examined(target)) {
2141                 LOG_ERROR("Target not examined yet");
2142                 return ERROR_FAIL;
2143         }
2144
2145         if (size == 0)
2146                 return ERROR_OK;
2147
2148         if ((address + size - 1) < address) {
2149                 /* GDB can request this when e.g. PC is 0xfffffffc */
2150                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2151                                   address,
2152                                   size);
2153                 return ERROR_FAIL;
2154         }
2155
2156         return target->type->write_buffer(target, address, size, buffer);
2157 }
2158
2159 static int target_write_buffer_default(struct target *target,
2160         target_addr_t address, uint32_t count, const uint8_t *buffer)
2161 {
2162         uint32_t size;
2163
2164         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2165          * will have something to do with the size we leave to it. */
2166         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2167                 if (address & size) {
2168                         int retval = target_write_memory(target, address, size, 1, buffer);
2169                         if (retval != ERROR_OK)
2170                                 return retval;
2171                         address += size;
2172                         count -= size;
2173                         buffer += size;
2174                 }
2175         }
2176
2177         /* Write the data with as large access size as possible. */
2178         for (; size > 0; size /= 2) {
2179                 uint32_t aligned = count - count % size;
2180                 if (aligned > 0) {
2181                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2182                         if (retval != ERROR_OK)
2183                                 return retval;
2184                         address += aligned;
2185                         count -= aligned;
2186                         buffer += aligned;
2187                 }
2188         }
2189
2190         return ERROR_OK;
2191 }
2192
2193 /* Single aligned words are guaranteed to use 16 or 32 bit access
2194  * mode respectively, otherwise data is handled as quickly as
2195  * possible
2196  */
2197 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2198 {
2199         LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2200                           size, address);
2201
2202         if (!target_was_examined(target)) {
2203                 LOG_ERROR("Target not examined yet");
2204                 return ERROR_FAIL;
2205         }
2206
2207         if (size == 0)
2208                 return ERROR_OK;
2209
2210         if ((address + size - 1) < address) {
2211                 /* GDB can request this when e.g. PC is 0xfffffffc */
2212                 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2213                                   address,
2214                                   size);
2215                 return ERROR_FAIL;
2216         }
2217
2218         return target->type->read_buffer(target, address, size, buffer);
2219 }
2220
2221 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2222 {
2223         uint32_t size;
2224
2225         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2226          * will have something to do with the size we leave to it. */
2227         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2228                 if (address & size) {
2229                         int retval = target_read_memory(target, address, size, 1, buffer);
2230                         if (retval != ERROR_OK)
2231                                 return retval;
2232                         address += size;
2233                         count -= size;
2234                         buffer += size;
2235                 }
2236         }
2237
2238         /* Read the data with as large access size as possible. */
2239         for (; size > 0; size /= 2) {
2240                 uint32_t aligned = count - count % size;
2241                 if (aligned > 0) {
2242                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2243                         if (retval != ERROR_OK)
2244                                 return retval;
2245                         address += aligned;
2246                         count -= aligned;
2247                         buffer += aligned;
2248                 }
2249         }
2250
2251         return ERROR_OK;
2252 }
2253
2254 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2255 {
2256         uint8_t *buffer;
2257         int retval;
2258         uint32_t i;
2259         uint32_t checksum = 0;
2260         if (!target_was_examined(target)) {
2261                 LOG_ERROR("Target not examined yet");
2262                 return ERROR_FAIL;
2263         }
2264
2265         retval = target->type->checksum_memory(target, address, size, &checksum);
2266         if (retval != ERROR_OK) {
2267                 buffer = malloc(size);
2268                 if (buffer == NULL) {
2269                         LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2270                         return ERROR_COMMAND_SYNTAX_ERROR;
2271                 }
2272                 retval = target_read_buffer(target, address, size, buffer);
2273                 if (retval != ERROR_OK) {
2274                         free(buffer);
2275                         return retval;
2276                 }
2277
2278                 /* convert to target endianness */
2279                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2280                         uint32_t target_data;
2281                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2282                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2283                 }
2284
2285                 retval = image_calculate_checksum(buffer, size, &checksum);
2286                 free(buffer);
2287         }
2288
2289         *crc = checksum;
2290
2291         return retval;
2292 }
2293
2294 int target_blank_check_memory(struct target *target,
2295         struct target_memory_check_block *blocks, int num_blocks,
2296         uint8_t erased_value)
2297 {
2298         if (!target_was_examined(target)) {
2299                 LOG_ERROR("Target not examined yet");
2300                 return ERROR_FAIL;
2301         }
2302
2303         if (target->type->blank_check_memory == NULL)
2304                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2305
2306         return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2307 }
2308
2309 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2310 {
2311         uint8_t value_buf[8];
2312         if (!target_was_examined(target)) {
2313                 LOG_ERROR("Target not examined yet");
2314                 return ERROR_FAIL;
2315         }
2316
2317         int retval = target_read_memory(target, address, 8, 1, value_buf);
2318
2319         if (retval == ERROR_OK) {
2320                 *value = target_buffer_get_u64(target, value_buf);
2321                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2322                                   address,
2323                                   *value);
2324         } else {
2325                 *value = 0x0;
2326                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2327                                   address);
2328         }
2329
2330         return retval;
2331 }
2332
2333 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2334 {
2335         uint8_t value_buf[4];
2336         if (!target_was_examined(target)) {
2337                 LOG_ERROR("Target not examined yet");
2338                 return ERROR_FAIL;
2339         }
2340
2341         int retval = target_read_memory(target, address, 4, 1, value_buf);
2342
2343         if (retval == ERROR_OK) {
2344                 *value = target_buffer_get_u32(target, value_buf);
2345                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2346                                   address,
2347                                   *value);
2348         } else {
2349                 *value = 0x0;
2350                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2351                                   address);
2352         }
2353
2354         return retval;
2355 }
2356
2357 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2358 {
2359         uint8_t value_buf[2];
2360         if (!target_was_examined(target)) {
2361                 LOG_ERROR("Target not examined yet");
2362                 return ERROR_FAIL;
2363         }
2364
2365         int retval = target_read_memory(target, address, 2, 1, value_buf);
2366
2367         if (retval == ERROR_OK) {
2368                 *value = target_buffer_get_u16(target, value_buf);
2369                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2370                                   address,
2371                                   *value);
2372         } else {
2373                 *value = 0x0;
2374                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2375                                   address);
2376         }
2377
2378         return retval;
2379 }
2380
2381 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2382 {
2383         if (!target_was_examined(target)) {
2384                 LOG_ERROR("Target not examined yet");
2385                 return ERROR_FAIL;
2386         }
2387
2388         int retval = target_read_memory(target, address, 1, 1, value);
2389
2390         if (retval == ERROR_OK) {
2391                 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2392                                   address,
2393                                   *value);
2394         } else {
2395                 *value = 0x0;
2396                 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2397                                   address);
2398         }
2399
2400         return retval;
2401 }
2402
2403 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2404 {
2405         int retval;
2406         uint8_t value_buf[8];
2407         if (!target_was_examined(target)) {
2408                 LOG_ERROR("Target not examined yet");
2409                 return ERROR_FAIL;
2410         }
2411
2412         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2413                           address,
2414                           value);
2415
2416         target_buffer_set_u64(target, value_buf, value);
2417         retval = target_write_memory(target, address, 8, 1, value_buf);
2418         if (retval != ERROR_OK)
2419                 LOG_DEBUG("failed: %i", retval);
2420
2421         return retval;
2422 }
2423
2424 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2425 {
2426         int retval;
2427         uint8_t value_buf[4];
2428         if (!target_was_examined(target)) {
2429                 LOG_ERROR("Target not examined yet");
2430                 return ERROR_FAIL;
2431         }
2432
2433         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2434                           address,
2435                           value);
2436
2437         target_buffer_set_u32(target, value_buf, value);
2438         retval = target_write_memory(target, address, 4, 1, value_buf);
2439         if (retval != ERROR_OK)
2440                 LOG_DEBUG("failed: %i", retval);
2441
2442         return retval;
2443 }
2444
2445 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2446 {
2447         int retval;
2448         uint8_t value_buf[2];
2449         if (!target_was_examined(target)) {
2450                 LOG_ERROR("Target not examined yet");
2451                 return ERROR_FAIL;
2452         }
2453
2454         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2455                           address,
2456                           value);
2457
2458         target_buffer_set_u16(target, value_buf, value);
2459         retval = target_write_memory(target, address, 2, 1, value_buf);
2460         if (retval != ERROR_OK)
2461                 LOG_DEBUG("failed: %i", retval);
2462
2463         return retval;
2464 }
2465
2466 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2467 {
2468         int retval;
2469         if (!target_was_examined(target)) {
2470                 LOG_ERROR("Target not examined yet");
2471                 return ERROR_FAIL;
2472         }
2473
2474         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2475                           address, value);
2476
2477         retval = target_write_memory(target, address, 1, 1, &value);
2478         if (retval != ERROR_OK)
2479                 LOG_DEBUG("failed: %i", retval);
2480
2481         return retval;
2482 }
2483
2484 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2485 {
2486         int retval;
2487         uint8_t value_buf[8];
2488         if (!target_was_examined(target)) {
2489                 LOG_ERROR("Target not examined yet");
2490                 return ERROR_FAIL;
2491         }
2492
2493         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2494                           address,
2495                           value);
2496
2497         target_buffer_set_u64(target, value_buf, value);
2498         retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2499         if (retval != ERROR_OK)
2500                 LOG_DEBUG("failed: %i", retval);
2501
2502         return retval;
2503 }
2504
2505 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2506 {
2507         int retval;
2508         uint8_t value_buf[4];
2509         if (!target_was_examined(target)) {
2510                 LOG_ERROR("Target not examined yet");
2511                 return ERROR_FAIL;
2512         }
2513
2514         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2515                           address,
2516                           value);
2517
2518         target_buffer_set_u32(target, value_buf, value);
2519         retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2520         if (retval != ERROR_OK)
2521                 LOG_DEBUG("failed: %i", retval);
2522
2523         return retval;
2524 }
2525
2526 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2527 {
2528         int retval;
2529         uint8_t value_buf[2];
2530         if (!target_was_examined(target)) {
2531                 LOG_ERROR("Target not examined yet");
2532                 return ERROR_FAIL;
2533         }
2534
2535         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2536                           address,
2537                           value);
2538
2539         target_buffer_set_u16(target, value_buf, value);
2540         retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2541         if (retval != ERROR_OK)
2542                 LOG_DEBUG("failed: %i", retval);
2543
2544         return retval;
2545 }
2546
2547 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2548 {
2549         int retval;
2550         if (!target_was_examined(target)) {
2551                 LOG_ERROR("Target not examined yet");
2552                 return ERROR_FAIL;
2553         }
2554
2555         LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2556                           address, value);
2557
2558         retval = target_write_phys_memory(target, address, 1, 1, &value);
2559         if (retval != ERROR_OK)
2560                 LOG_DEBUG("failed: %i", retval);
2561
2562         return retval;
2563 }
2564
2565 static int find_target(struct command_context *cmd_ctx, const char *name)
2566 {
2567         struct target *target = get_target(name);
2568         if (target == NULL) {
2569                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2570                 return ERROR_FAIL;
2571         }
2572         if (!target->tap->enabled) {
2573                 LOG_USER("Target: TAP %s is disabled, "
2574                          "can't be the current target\n",
2575                          target->tap->dotted_name);
2576                 return ERROR_FAIL;
2577         }
2578
2579         cmd_ctx->current_target = target;
2580         if (cmd_ctx->current_target_override)
2581                 cmd_ctx->current_target_override = target;
2582
2583         return ERROR_OK;
2584 }
2585
2586
2587 COMMAND_HANDLER(handle_targets_command)
2588 {
2589         int retval = ERROR_OK;
2590         if (CMD_ARGC == 1) {
2591                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2592                 if (retval == ERROR_OK) {
2593                         /* we're done! */
2594                         return retval;
2595                 }
2596         }
2597
2598         struct target *target = all_targets;
2599         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2600         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2601         while (target) {
2602                 const char *state;
2603                 char marker = ' ';
2604
2605                 if (target->tap->enabled)
2606                         state = target_state_name(target);
2607                 else
2608                         state = "tap-disabled";
2609
2610                 if (CMD_CTX->current_target == target)
2611                         marker = '*';
2612
2613                 /* keep columns lined up to match the headers above */
2614                 command_print(CMD_CTX,
2615                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2616                                 target->target_number,
2617                                 marker,
2618                                 target_name(target),
2619                                 target_type_name(target),
2620                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2621                                         target->endianness)->name,
2622                                 target->tap->dotted_name,
2623                                 state);
2624                 target = target->next;
2625         }
2626
2627         return retval;
2628 }
2629
2630 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2631
2632 static int powerDropout;
2633 static int srstAsserted;
2634
2635 static int runPowerRestore;
2636 static int runPowerDropout;
2637 static int runSrstAsserted;
2638 static int runSrstDeasserted;
2639
2640 static int sense_handler(void)
2641 {
2642         static int prevSrstAsserted;
2643         static int prevPowerdropout;
2644
2645         int retval = jtag_power_dropout(&powerDropout);
2646         if (retval != ERROR_OK)
2647                 return retval;
2648
2649         int powerRestored;
2650         powerRestored = prevPowerdropout && !powerDropout;
2651         if (powerRestored)
2652                 runPowerRestore = 1;
2653
2654         int64_t current = timeval_ms();
2655         static int64_t lastPower;
2656         bool waitMore = lastPower + 2000 > current;
2657         if (powerDropout && !waitMore) {
2658                 runPowerDropout = 1;
2659                 lastPower = current;
2660         }
2661
2662         retval = jtag_srst_asserted(&srstAsserted);
2663         if (retval != ERROR_OK)
2664                 return retval;
2665
2666         int srstDeasserted;
2667         srstDeasserted = prevSrstAsserted && !srstAsserted;
2668
2669         static int64_t lastSrst;
2670         waitMore = lastSrst + 2000 > current;
2671         if (srstDeasserted && !waitMore) {
2672                 runSrstDeasserted = 1;
2673                 lastSrst = current;
2674         }
2675
2676         if (!prevSrstAsserted && srstAsserted)
2677                 runSrstAsserted = 1;
2678
2679         prevSrstAsserted = srstAsserted;
2680         prevPowerdropout = powerDropout;
2681
2682         if (srstDeasserted || powerRestored) {
2683                 /* Other than logging the event we can't do anything here.
2684                  * Issuing a reset is a particularly bad idea as we might
2685                  * be inside a reset already.
2686                  */
2687         }
2688
2689         return ERROR_OK;
2690 }
2691
2692 /* process target state changes */
2693 static int handle_target(void *priv)
2694 {
2695         Jim_Interp *interp = (Jim_Interp *)priv;
2696         int retval = ERROR_OK;
2697
2698         if (!is_jtag_poll_safe()) {
2699                 /* polling is disabled currently */
2700                 return ERROR_OK;
2701         }
2702
2703         /* we do not want to recurse here... */
2704         static int recursive;
2705         if (!recursive) {
2706                 recursive = 1;
2707                 sense_handler();
2708                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2709                  * We need to avoid an infinite loop/recursion here and we do that by
2710                  * clearing the flags after running these events.
2711                  */
2712                 int did_something = 0;
2713                 if (runSrstAsserted) {
2714                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2715                         Jim_Eval(interp, "srst_asserted");
2716                         did_something = 1;
2717                 }
2718                 if (runSrstDeasserted) {
2719                         Jim_Eval(interp, "srst_deasserted");
2720                         did_something = 1;
2721                 }
2722                 if (runPowerDropout) {
2723                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2724                         Jim_Eval(interp, "power_dropout");
2725                         did_something = 1;
2726                 }
2727                 if (runPowerRestore) {
2728                         Jim_Eval(interp, "power_restore");
2729                         did_something = 1;
2730                 }
2731
2732                 if (did_something) {
2733                         /* clear detect flags */
2734                         sense_handler();
2735                 }
2736
2737                 /* clear action flags */
2738
2739                 runSrstAsserted = 0;
2740                 runSrstDeasserted = 0;
2741                 runPowerRestore = 0;
2742                 runPowerDropout = 0;
2743
2744                 recursive = 0;
2745         }
2746
2747         /* Poll targets for state changes unless that's globally disabled.
2748          * Skip targets that are currently disabled.
2749          */
2750         for (struct target *target = all_targets;
2751                         is_jtag_poll_safe() && target;
2752                         target = target->next) {
2753
2754                 if (!target_was_examined(target))
2755                         continue;
2756
2757                 if (!target->tap->enabled)
2758                         continue;
2759
2760                 if (target->backoff.times > target->backoff.count) {
2761                         /* do not poll this time as we failed previously */
2762                         target->backoff.count++;
2763                         continue;
2764                 }
2765                 target->backoff.count = 0;
2766
2767                 /* only poll target if we've got power and srst isn't asserted */
2768                 if (!powerDropout && !srstAsserted) {
2769                         /* polling may fail silently until the target has been examined */
2770                         retval = target_poll(target);
2771                         if (retval != ERROR_OK) {
2772                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2773                                 if (target->backoff.times * polling_interval < 5000) {
2774                                         target->backoff.times *= 2;
2775                                         target->backoff.times++;
2776                                 }
2777
2778                                 /* Tell GDB to halt the debugger. This allows the user to
2779                                  * run monitor commands to handle the situation.
2780                                  */
2781                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2782                         }
2783                         if (target->backoff.times > 0) {
2784                                 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2785                                 target_reset_examined(target);
2786                                 retval = target_examine_one(target);
2787                                 /* Target examination could have failed due to unstable connection,
2788                                  * but we set the examined flag anyway to repoll it later */
2789                                 if (retval != ERROR_OK) {
2790                                         target->examined = true;
2791                                         LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2792                                                  target->backoff.times * polling_interval);
2793                                         return retval;
2794                                 }
2795                         }
2796
2797                         /* Since we succeeded, we reset backoff count */
2798                         target->backoff.times = 0;
2799                 }
2800         }
2801
2802         return retval;
2803 }
2804
2805 COMMAND_HANDLER(handle_reg_command)
2806 {
2807         struct target *target;
2808         struct reg *reg = NULL;
2809         unsigned count = 0;
2810         char *value;
2811
2812         LOG_DEBUG("-");
2813
2814         target = get_current_target(CMD_CTX);
2815
2816         /* list all available registers for the current target */
2817         if (CMD_ARGC == 0) {
2818                 struct reg_cache *cache = target->reg_cache;
2819
2820                 count = 0;
2821                 while (cache) {
2822                         unsigned i;
2823
2824                         command_print(CMD_CTX, "===== %s", cache->name);
2825
2826                         for (i = 0, reg = cache->reg_list;
2827                                         i < cache->num_regs;
2828                                         i++, reg++, count++) {
2829                                 if (reg->exist == false)
2830                                         continue;
2831                                 /* only print cached values if they are valid */
2832                                 if (reg->valid) {
2833                                         value = buf_to_str(reg->value,
2834                                                         reg->size, 16);
2835                                         command_print(CMD_CTX,
2836                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2837                                                         count, reg->name,
2838                                                         reg->size, value,
2839                                                         reg->dirty
2840                                                                 ? " (dirty)"
2841                                                                 : "");
2842                                         free(value);
2843                                 } else {
2844                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2845                                                           count, reg->name,
2846                                                           reg->size) ;
2847                                 }
2848                         }
2849                         cache = cache->next;
2850                 }
2851
2852                 return ERROR_OK;
2853         }
2854
2855         /* access a single register by its ordinal number */
2856         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2857                 unsigned num;
2858                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2859
2860                 struct reg_cache *cache = target->reg_cache;
2861                 count = 0;
2862                 while (cache) {
2863                         unsigned i;
2864                         for (i = 0; i < cache->num_regs; i++) {
2865                                 if (count++ == num) {
2866                                         reg = &cache->reg_list[i];
2867                                         break;
2868                                 }
2869                         }
2870                         if (reg)
2871                                 break;
2872                         cache = cache->next;
2873                 }
2874
2875                 if (!reg) {
2876                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2877                                         "has only %i registers (0 - %i)", num, count, count - 1);
2878                         return ERROR_OK;
2879                 }
2880         } else {
2881                 /* access a single register by its name */
2882                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2883
2884                 if (!reg)
2885                         goto not_found;
2886         }
2887
2888         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2889
2890         if (!reg->exist)
2891                 goto not_found;
2892
2893         /* display a register */
2894         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2895                         && (CMD_ARGV[1][0] <= '9')))) {
2896                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2897                         reg->valid = 0;
2898
2899                 if (reg->valid == 0)
2900                         reg->type->get(reg);
2901                 value = buf_to_str(reg->value, reg->size, 16);
2902                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2903                 free(value);
2904                 return ERROR_OK;
2905         }
2906
2907         /* set register value */
2908         if (CMD_ARGC == 2) {
2909                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2910                 if (buf == NULL)
2911                         return ERROR_FAIL;
2912                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2913
2914                 reg->type->set(reg, buf);
2915
2916                 value = buf_to_str(reg->value, reg->size, 16);
2917                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2918                 free(value);
2919
2920                 free(buf);
2921
2922                 return ERROR_OK;
2923         }
2924
2925         return ERROR_COMMAND_SYNTAX_ERROR;
2926
2927 not_found:
2928         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2929         return ERROR_OK;
2930 }
2931
2932 COMMAND_HANDLER(handle_poll_command)
2933 {
2934         int retval = ERROR_OK;
2935         struct target *target = get_current_target(CMD_CTX);
2936
2937         if (CMD_ARGC == 0) {
2938                 command_print(CMD_CTX, "background polling: %s",
2939                                 jtag_poll_get_enabled() ? "on" : "off");
2940                 command_print(CMD_CTX, "TAP: %s (%s)",
2941                                 target->tap->dotted_name,
2942                                 target->tap->enabled ? "enabled" : "disabled");
2943                 if (!target->tap->enabled)
2944                         return ERROR_OK;
2945                 retval = target_poll(target);
2946                 if (retval != ERROR_OK)
2947                         return retval;
2948                 retval = target_arch_state(target);
2949                 if (retval != ERROR_OK)
2950                         return retval;
2951         } else if (CMD_ARGC == 1) {
2952                 bool enable;
2953                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2954                 jtag_poll_set_enabled(enable);
2955         } else
2956                 return ERROR_COMMAND_SYNTAX_ERROR;
2957
2958         return retval;
2959 }
2960
2961 COMMAND_HANDLER(handle_wait_halt_command)
2962 {
2963         if (CMD_ARGC > 1)
2964                 return ERROR_COMMAND_SYNTAX_ERROR;
2965
2966         unsigned ms = DEFAULT_HALT_TIMEOUT;
2967         if (1 == CMD_ARGC) {
2968                 int retval = parse_uint(CMD_ARGV[0], &ms);
2969                 if (ERROR_OK != retval)
2970                         return ERROR_COMMAND_SYNTAX_ERROR;
2971         }
2972
2973         struct target *target = get_current_target(CMD_CTX);
2974         return target_wait_state(target, TARGET_HALTED, ms);
2975 }
2976
2977 /* wait for target state to change. The trick here is to have a low
2978  * latency for short waits and not to suck up all the CPU time
2979  * on longer waits.
2980  *
2981  * After 500ms, keep_alive() is invoked
2982  */
2983 int target_wait_state(struct target *target, enum target_state state, int ms)
2984 {
2985         int retval;
2986         int64_t then = 0, cur;
2987         bool once = true;
2988
2989         for (;;) {
2990                 retval = target_poll(target);
2991                 if (retval != ERROR_OK)
2992                         return retval;
2993                 if (target->state == state)
2994                         break;
2995                 cur = timeval_ms();
2996                 if (once) {
2997                         once = false;
2998                         then = timeval_ms();
2999                         LOG_DEBUG("waiting for target %s...",
3000                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3001                 }
3002
3003                 if (cur-then > 500)
3004                         keep_alive();
3005
3006                 if ((cur-then) > ms) {
3007                         LOG_ERROR("timed out while waiting for target %s",
3008                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3009                         return ERROR_FAIL;
3010                 }
3011         }
3012
3013         return ERROR_OK;
3014 }
3015
3016 COMMAND_HANDLER(handle_halt_command)
3017 {
3018         LOG_DEBUG("-");
3019
3020         struct target *target = get_current_target(CMD_CTX);
3021
3022         target->verbose_halt_msg = true;
3023
3024         int retval = target_halt(target);
3025         if (ERROR_OK != retval)
3026                 return retval;
3027
3028         if (CMD_ARGC == 1) {
3029                 unsigned wait_local;
3030                 retval = parse_uint(CMD_ARGV[0], &wait_local);
3031                 if (ERROR_OK != retval)
3032                         return ERROR_COMMAND_SYNTAX_ERROR;
3033                 if (!wait_local)
3034                         return ERROR_OK;
3035         }
3036
3037         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3038 }
3039
3040 COMMAND_HANDLER(handle_soft_reset_halt_command)
3041 {
3042         struct target *target = get_current_target(CMD_CTX);
3043
3044         LOG_USER("requesting target halt and executing a soft reset");
3045
3046         target_soft_reset_halt(target);
3047
3048         return ERROR_OK;
3049 }
3050
3051 COMMAND_HANDLER(handle_reset_command)
3052 {
3053         if (CMD_ARGC > 1)
3054                 return ERROR_COMMAND_SYNTAX_ERROR;
3055
3056         enum target_reset_mode reset_mode = RESET_RUN;
3057         if (CMD_ARGC == 1) {
3058                 const Jim_Nvp *n;
3059                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3060                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3061                         return ERROR_COMMAND_SYNTAX_ERROR;
3062                 reset_mode = n->value;
3063         }
3064
3065         /* reset *all* targets */
3066         return target_process_reset(CMD_CTX, reset_mode);
3067 }
3068
3069
3070 COMMAND_HANDLER(handle_resume_command)
3071 {
3072         int current = 1;
3073         if (CMD_ARGC > 1)
3074                 return ERROR_COMMAND_SYNTAX_ERROR;
3075
3076         struct target *target = get_current_target(CMD_CTX);
3077
3078         /* with no CMD_ARGV, resume from current pc, addr = 0,
3079          * with one arguments, addr = CMD_ARGV[0],
3080          * handle breakpoints, not debugging */
3081         target_addr_t addr = 0;
3082         if (CMD_ARGC == 1) {
3083                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3084                 current = 0;
3085         }
3086
3087         return target_resume(target, current, addr, 1, 0);
3088 }
3089
3090 COMMAND_HANDLER(handle_step_command)
3091 {
3092         if (CMD_ARGC > 1)
3093                 return ERROR_COMMAND_SYNTAX_ERROR;
3094
3095         LOG_DEBUG("-");
3096
3097         /* with no CMD_ARGV, step from current pc, addr = 0,
3098          * with one argument addr = CMD_ARGV[0],
3099          * handle breakpoints, debugging */
3100         target_addr_t addr = 0;
3101         int current_pc = 1;
3102         if (CMD_ARGC == 1) {
3103                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3104                 current_pc = 0;
3105         }
3106
3107         struct target *target = get_current_target(CMD_CTX);
3108
3109         return target->type->step(target, current_pc, addr, 1);
3110 }
3111
3112 static void handle_md_output(struct command_context *cmd_ctx,
3113                 struct target *target, target_addr_t address, unsigned size,
3114                 unsigned count, const uint8_t *buffer)
3115 {
3116         const unsigned line_bytecnt = 32;
3117         unsigned line_modulo = line_bytecnt / size;
3118
3119         char output[line_bytecnt * 4 + 1];
3120         unsigned output_len = 0;
3121
3122         const char *value_fmt;
3123         switch (size) {
3124         case 8:
3125                 value_fmt = "%16.16"PRIx64" ";
3126                 break;
3127         case 4:
3128                 value_fmt = "%8.8"PRIx64" ";
3129                 break;
3130         case 2:
3131                 value_fmt = "%4.4"PRIx64" ";
3132                 break;
3133         case 1:
3134                 value_fmt = "%2.2"PRIx64" ";
3135                 break;
3136         default:
3137                 /* "can't happen", caller checked */
3138                 LOG_ERROR("invalid memory read size: %u", size);
3139                 return;
3140         }
3141
3142         for (unsigned i = 0; i < count; i++) {
3143                 if (i % line_modulo == 0) {
3144                         output_len += snprintf(output + output_len,
3145                                         sizeof(output) - output_len,
3146                                         TARGET_ADDR_FMT ": ",
3147                                         (address + (i * size)));
3148                 }
3149
3150                 uint64_t value = 0;
3151                 const uint8_t *value_ptr = buffer + i * size;
3152                 switch (size) {
3153                 case 8:
3154                         value = target_buffer_get_u64(target, value_ptr);
3155                         break;
3156                 case 4:
3157                         value = target_buffer_get_u32(target, value_ptr);
3158                         break;
3159                 case 2:
3160                         value = target_buffer_get_u16(target, value_ptr);
3161                         break;
3162                 case 1:
3163                         value = *value_ptr;
3164                 }
3165                 output_len += snprintf(output + output_len,
3166                                 sizeof(output) - output_len,
3167                                 value_fmt, value);
3168
3169                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3170                         command_print(cmd_ctx, "%s", output);
3171                         output_len = 0;
3172                 }
3173         }
3174 }
3175
3176 COMMAND_HANDLER(handle_md_command)
3177 {
3178         if (CMD_ARGC < 1)
3179                 return ERROR_COMMAND_SYNTAX_ERROR;
3180
3181         unsigned size = 0;
3182         switch (CMD_NAME[2]) {
3183         case 'd':
3184                 size = 8;
3185                 break;
3186         case 'w':
3187                 size = 4;
3188                 break;
3189         case 'h':
3190                 size = 2;
3191                 break;
3192         case 'b':
3193                 size = 1;
3194                 break;
3195         default:
3196                 return ERROR_COMMAND_SYNTAX_ERROR;
3197         }
3198
3199         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3200         int (*fn)(struct target *target,
3201                         target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3202         if (physical) {
3203                 CMD_ARGC--;
3204                 CMD_ARGV++;
3205                 fn = target_read_phys_memory;
3206         } else
3207                 fn = target_read_memory;
3208         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3209                 return ERROR_COMMAND_SYNTAX_ERROR;
3210
3211         target_addr_t address;
3212         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3213
3214         unsigned count = 1;
3215         if (CMD_ARGC == 2)
3216                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3217
3218         uint8_t *buffer = calloc(count, size);
3219         if (buffer == NULL) {
3220                 LOG_ERROR("Failed to allocate md read buffer");
3221                 return ERROR_FAIL;
3222         }
3223
3224         struct target *target = get_current_target(CMD_CTX);
3225         int retval = fn(target, address, size, count, buffer);
3226         if (ERROR_OK == retval)
3227                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3228
3229         free(buffer);
3230
3231         return retval;
3232 }
3233
3234 typedef int (*target_write_fn)(struct target *target,
3235                 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3236
3237 static int target_fill_mem(struct target *target,
3238                 target_addr_t address,
3239                 target_write_fn fn,
3240                 unsigned data_size,
3241                 /* value */
3242                 uint64_t b,
3243                 /* count */
3244                 unsigned c)
3245 {
3246         /* We have to write in reasonably large chunks to be able
3247          * to fill large memory areas with any sane speed */
3248         const unsigned chunk_size = 16384;
3249         uint8_t *target_buf = malloc(chunk_size * data_size);
3250         if (target_buf == NULL) {
3251                 LOG_ERROR("Out of memory");
3252                 return ERROR_FAIL;
3253         }
3254
3255         for (unsigned i = 0; i < chunk_size; i++) {
3256                 switch (data_size) {
3257                 case 8:
3258                         target_buffer_set_u64(target, target_buf + i * data_size, b);
3259                         break;
3260                 case 4:
3261                         target_buffer_set_u32(target, target_buf + i * data_size, b);
3262                         break;
3263                 case 2:
3264                         target_buffer_set_u16(target, target_buf + i * data_size, b);
3265                         break;
3266                 case 1:
3267                         target_buffer_set_u8(target, target_buf + i * data_size, b);
3268                         break;
3269                 default:
3270                         exit(-1);
3271                 }
3272         }
3273
3274         int retval = ERROR_OK;
3275
3276         for (unsigned x = 0; x < c; x += chunk_size) {
3277                 unsigned current;
3278                 current = c - x;
3279                 if (current > chunk_size)
3280                         current = chunk_size;
3281                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3282                 if (retval != ERROR_OK)
3283                         break;
3284                 /* avoid GDB timeouts */
3285                 keep_alive();
3286         }
3287         free(target_buf);
3288
3289         return retval;
3290 }
3291
3292
3293 COMMAND_HANDLER(handle_mw_command)
3294 {
3295         if (CMD_ARGC < 2)
3296                 return ERROR_COMMAND_SYNTAX_ERROR;
3297         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3298         target_write_fn fn;
3299         if (physical) {
3300                 CMD_ARGC--;
3301                 CMD_ARGV++;
3302                 fn = target_write_phys_memory;
3303         } else
3304                 fn = target_write_memory;
3305         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3306                 return ERROR_COMMAND_SYNTAX_ERROR;
3307
3308         target_addr_t address;
3309         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3310
3311         target_addr_t value;
3312         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3313
3314         unsigned count = 1;
3315         if (CMD_ARGC == 3)
3316                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3317
3318         struct target *target = get_current_target(CMD_CTX);
3319         unsigned wordsize;
3320         switch (CMD_NAME[2]) {
3321                 case 'd':
3322                         wordsize = 8;
3323                         break;
3324                 case 'w':
3325                         wordsize = 4;
3326                         break;
3327                 case 'h':
3328                         wordsize = 2;
3329                         break;
3330                 case 'b':
3331                         wordsize = 1;
3332                         break;
3333                 default:
3334                         return ERROR_COMMAND_SYNTAX_ERROR;
3335         }
3336
3337         return target_fill_mem(target, address, fn, wordsize, value, count);
3338 }
3339
3340 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3341                 target_addr_t *min_address, target_addr_t *max_address)
3342 {
3343         if (CMD_ARGC < 1 || CMD_ARGC > 5)
3344                 return ERROR_COMMAND_SYNTAX_ERROR;
3345
3346         /* a base address isn't always necessary,
3347          * default to 0x0 (i.e. don't relocate) */
3348         if (CMD_ARGC >= 2) {
3349                 target_addr_t addr;
3350                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3351                 image->base_address = addr;
3352                 image->base_address_set = 1;
3353         } else
3354                 image->base_address_set = 0;
3355
3356         image->start_address_set = 0;
3357
3358         if (CMD_ARGC >= 4)
3359                 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3360         if (CMD_ARGC == 5) {
3361                 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3362                 /* use size (given) to find max (required) */
3363                 *max_address += *min_address;
3364         }
3365
3366         if (*min_address > *max_address)
3367                 return ERROR_COMMAND_SYNTAX_ERROR;
3368
3369         return ERROR_OK;
3370 }
3371
3372 COMMAND_HANDLER(handle_load_image_command)
3373 {
3374         uint8_t *buffer;
3375         size_t buf_cnt;
3376         uint32_t image_size;
3377         target_addr_t min_address = 0;
3378         target_addr_t max_address = -1;
3379         int i;
3380         struct image image;
3381
3382         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3383                         &image, &min_address, &max_address);
3384         if (ERROR_OK != retval)
3385                 return retval;
3386
3387         struct target *target = get_current_target(CMD_CTX);
3388
3389         struct duration bench;
3390         duration_start(&bench);
3391
3392         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3393                 return ERROR_FAIL;
3394
3395         image_size = 0x0;
3396         retval = ERROR_OK;
3397         for (i = 0; i < image.num_sections; i++) {
3398                 buffer = malloc(image.sections[i].size);
3399                 if (buffer == NULL) {
3400                         command_print(CMD_CTX,
3401                                                   "error allocating buffer for section (%d bytes)",
3402                                                   (int)(image.sections[i].size));
3403                         retval = ERROR_FAIL;
3404                         break;
3405                 }
3406
3407                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3408                 if (retval != ERROR_OK) {
3409                         free(buffer);
3410                         break;
3411                 }
3412
3413                 uint32_t offset = 0;
3414                 uint32_t length = buf_cnt;
3415
3416                 /* DANGER!!! beware of unsigned comparision here!!! */
3417
3418                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3419                                 (image.sections[i].base_address < max_address)) {
3420
3421                         if (image.sections[i].base_address < min_address) {
3422                                 /* clip addresses below */
3423                                 offset += min_address-image.sections[i].base_address;
3424                                 length -= offset;
3425                         }
3426
3427                         if (image.sections[i].base_address + buf_cnt > max_address)
3428                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3429
3430                         retval = target_write_buffer(target,
3431                                         image.sections[i].base_address + offset, length, buffer + offset);
3432                         if (retval != ERROR_OK) {
3433                                 free(buffer);
3434                                 break;
3435                         }
3436                         image_size += length;
3437                         command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3438                                         (unsigned int)length,
3439                                         image.sections[i].base_address + offset);
3440                 }
3441
3442                 free(buffer);
3443         }
3444
3445         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3446                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3447                                 "in %fs (%0.3f KiB/s)", image_size,
3448                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3449         }
3450
3451         image_close(&image);
3452
3453         return retval;
3454
3455 }
3456
3457 COMMAND_HANDLER(handle_dump_image_command)
3458 {
3459         struct fileio *fileio;
3460         uint8_t *buffer;
3461         int retval, retvaltemp;
3462         target_addr_t address, size;
3463         struct duration bench;
3464         struct target *target = get_current_target(CMD_CTX);
3465
3466         if (CMD_ARGC != 3)
3467                 return ERROR_COMMAND_SYNTAX_ERROR;
3468
3469         COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3470         COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3471
3472         uint32_t buf_size = (size > 4096) ? 4096 : size;
3473         buffer = malloc(buf_size);
3474         if (!buffer)
3475                 return ERROR_FAIL;
3476
3477         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3478         if (retval != ERROR_OK) {
3479                 free(buffer);
3480                 return retval;
3481         }
3482
3483         duration_start(&bench);
3484
3485         while (size > 0) {
3486                 size_t size_written;
3487                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3488                 retval = target_read_buffer(target, address, this_run_size, buffer);
3489                 if (retval != ERROR_OK)
3490                         break;
3491
3492                 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3493                 if (retval != ERROR_OK)
3494                         break;
3495
3496                 size -= this_run_size;
3497                 address += this_run_size;
3498         }
3499
3500         free(buffer);
3501
3502         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3503                 size_t filesize;
3504                 retval = fileio_size(fileio, &filesize);
3505                 if (retval != ERROR_OK)
3506                         return retval;
3507                 command_print(CMD_CTX,
3508                                 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3509                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3510         }
3511
3512         retvaltemp = fileio_close(fileio);
3513         if (retvaltemp != ERROR_OK)
3514                 return retvaltemp;
3515
3516         return retval;
3517 }
3518
3519 enum verify_mode {
3520         IMAGE_TEST = 0,
3521         IMAGE_VERIFY = 1,
3522         IMAGE_CHECKSUM_ONLY = 2
3523 };
3524
3525 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3526 {
3527         uint8_t *buffer;
3528         size_t buf_cnt;
3529         uint32_t image_size;
3530         int i;
3531         int retval;
3532         uint32_t checksum = 0;
3533         uint32_t mem_checksum = 0;
3534
3535         struct image image;
3536
3537         struct target *target = get_current_target(CMD_CTX);
3538
3539         if (CMD_ARGC < 1)
3540                 return ERROR_COMMAND_SYNTAX_ERROR;
3541
3542         if (!target) {
3543                 LOG_ERROR("no target selected");
3544                 return ERROR_FAIL;
3545         }
3546
3547         struct duration bench;
3548         duration_start(&bench);
3549
3550         if (CMD_ARGC >= 2) {
3551                 target_addr_t addr;
3552                 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3553                 image.base_address = addr;
3554                 image.base_address_set = 1;
3555         } else {
3556                 image.base_address_set = 0;
3557                 image.base_address = 0x0;
3558         }
3559
3560         image.start_address_set = 0;
3561
3562         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3563         if (retval != ERROR_OK)
3564                 return retval;
3565
3566         image_size = 0x0;
3567         int diffs = 0;
3568         retval = ERROR_OK;
3569         for (i = 0; i < image.num_sections; i++) {
3570                 buffer = malloc(image.sections[i].size);
3571                 if (buffer == NULL) {
3572                         command_print(CMD_CTX,
3573                                         "error allocating buffer for section (%d bytes)",
3574                                         (int)(image.sections[i].size));
3575                         break;
3576                 }
3577                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3578                 if (retval != ERROR_OK) {
3579                         free(buffer);
3580                         break;
3581                 }
3582
3583                 if (verify >= IMAGE_VERIFY) {
3584                         /* calculate checksum of image */
3585                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3586                         if (retval != ERROR_OK) {
3587                                 free(buffer);
3588                                 break;
3589                         }
3590
3591                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3592                         if (retval != ERROR_OK) {
3593                                 free(buffer);
3594                                 break;
3595                         }
3596                         if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3597                                 LOG_ERROR("checksum mismatch");
3598                                 free(buffer);
3599                                 retval = ERROR_FAIL;
3600                                 goto done;
3601                         }
3602                         if (checksum != mem_checksum) {
3603                                 /* failed crc checksum, fall back to a binary compare */
3604                                 uint8_t *data;
3605
3606                                 if (diffs == 0)
3607                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3608
3609                                 data = malloc(buf_cnt);
3610
3611                                 /* Can we use 32bit word accesses? */
3612                                 int size = 1;
3613                                 int count = buf_cnt;
3614                                 if ((count % 4) == 0) {
3615                                         size *= 4;
3616                                         count /= 4;
3617                                 }
3618                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3619                                 if (retval == ERROR_OK) {
3620                                         uint32_t t;
3621                                         for (t = 0; t < buf_cnt; t++) {
3622                                                 if (data[t] != buffer[t]) {
3623                                                         command_print(CMD_CTX,
3624                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3625                                                                                   diffs,
3626                                                                                   (unsigned)(t + image.sections[i].base_address),
3627                                                                                   data[t],
3628                                                                                   buffer[t]);
3629                                                         if (diffs++ >= 127) {
3630                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3631                                                                 free(data);
3632                                                                 free(buffer);
3633                                                                 goto done;
3634                                                         }
3635                                                 }
3636                                                 keep_alive();
3637                                         }
3638                                 }
3639                                 free(data);
3640                         }
3641                 } else {
3642                         command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3643                                                   image.sections[i].base_address,
3644                                                   buf_cnt);
3645                 }
3646
3647                 free(buffer);
3648                 image_size += buf_cnt;
3649         }
3650         if (diffs > 0)
3651                 command_print(CMD_CTX, "No more differences found.");
3652 done:
3653         if (diffs > 0)
3654                 retval = ERROR_FAIL;
3655         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3656                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3657                                 "in %fs (%0.3f KiB/s)", image_size,
3658                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3659         }
3660
3661         image_close(&image);
3662
3663         return retval;
3664 }
3665
3666 COMMAND_HANDLER(handle_verify_image_checksum_command)
3667 {
3668         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3669 }
3670
3671 COMMAND_HANDLER(handle_verify_image_command)
3672 {
3673         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3674 }
3675
3676 COMMAND_HANDLER(handle_test_image_command)
3677 {
3678         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3679 }
3680
3681 static int handle_bp_command_list(struct command_context *cmd_ctx)
3682 {
3683         struct target *target = get_current_target(cmd_ctx);
3684         struct breakpoint *breakpoint = target->breakpoints;
3685         while (breakpoint) {
3686                 if (breakpoint->type == BKPT_SOFT) {
3687                         char *buf = buf_to_str(breakpoint->orig_instr,
3688                                         breakpoint->length, 16);
3689                         command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3690                                         breakpoint->address,
3691                                         breakpoint->length,
3692                                         breakpoint->set, buf);
3693                         free(buf);
3694                 } else {
3695                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3696                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3697                                                         breakpoint->asid,
3698                                                         breakpoint->length, breakpoint->set);
3699                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3700                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3701                                                         breakpoint->address,
3702                                                         breakpoint->length, breakpoint->set);
3703                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3704                                                         breakpoint->asid);
3705                         } else
3706                                 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3707                                                         breakpoint->address,
3708                                                         breakpoint->length, breakpoint->set);
3709                 }
3710
3711                 breakpoint = breakpoint->next;
3712         }
3713         return ERROR_OK;
3714 }
3715
3716 static int handle_bp_command_set(struct command_context *cmd_ctx,
3717                 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3718 {
3719         struct target *target = get_current_target(cmd_ctx);
3720         int retval;
3721
3722         if (asid == 0) {
3723                 retval = breakpoint_add(target, addr, length, hw);
3724                 /* error is always logged in breakpoint_add(), do not print it again */
3725                 if (ERROR_OK == retval)
3726                         command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3727
3728         } else if (addr == 0) {
3729                 if (target->type->add_context_breakpoint == NULL) {
3730                         LOG_ERROR("Context breakpoint not available");
3731                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3732                 }
3733                 retval = context_breakpoint_add(target, asid, length, hw);
3734                 /* error is always logged in context_breakpoint_add(), do not print it again */
3735                 if (ERROR_OK == retval)
3736                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3737
3738         } else {
3739                 if (target->type->add_hybrid_breakpoint == NULL) {
3740                         LOG_ERROR("Hybrid breakpoint not available");
3741                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3742                 }
3743                 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3744                 /* error is always logged in hybrid_breakpoint_add(), do not print it again */
3745                 if (ERROR_OK == retval)
3746                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3747         }
3748         return retval;
3749 }
3750
3751 COMMAND_HANDLER(handle_bp_command)
3752 {
3753         target_addr_t addr;
3754         uint32_t asid;
3755         uint32_t length;
3756         int hw = BKPT_SOFT;
3757
3758         switch (CMD_ARGC) {
3759                 case 0:
3760                         return handle_bp_command_list(CMD_CTX);
3761
3762                 case 2:
3763                         asid = 0;
3764                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3765                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3766                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3767
3768                 case 3:
3769                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3770                                 hw = BKPT_HARD;
3771                                 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3772                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3773                                 asid = 0;
3774                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3775                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3776                                 hw = BKPT_HARD;
3777                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3778                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3779                                 addr = 0;
3780                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3781                         }
3782                         /* fallthrough */
3783                 case 4:
3784                         hw = BKPT_HARD;
3785                         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3786                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3787                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3788                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3789
3790                 default:
3791                         return ERROR_COMMAND_SYNTAX_ERROR;
3792         }
3793 }
3794
3795 COMMAND_HANDLER(handle_rbp_command)
3796 {
3797         if (CMD_ARGC != 1)
3798                 return ERROR_COMMAND_SYNTAX_ERROR;
3799
3800         target_addr_t addr;
3801         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3802
3803         struct target *target = get_current_target(CMD_CTX);
3804         breakpoint_remove(target, addr);
3805
3806         return ERROR_OK;
3807 }
3808
3809 COMMAND_HANDLER(handle_wp_command)
3810 {
3811         struct target *target = get_current_target(CMD_CTX);
3812
3813         if (CMD_ARGC == 0) {
3814                 struct watchpoint *watchpoint = target->watchpoints;
3815
3816                 while (watchpoint) {
3817                         command_print(CMD_CTX, "address: " TARGET_ADDR_FMT
3818                                         ", len: 0x%8.8" PRIx32
3819                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3820                                         ", mask: 0x%8.8" PRIx32,
3821                                         watchpoint->address,
3822                                         watchpoint->length,
3823                                         (int)watchpoint->rw,
3824                                         watchpoint->value,
3825                                         watchpoint->mask);
3826                         watchpoint = watchpoint->next;
3827                 }
3828                 return ERROR_OK;
3829         }
3830
3831         enum watchpoint_rw type = WPT_ACCESS;
3832         uint32_t addr = 0;
3833         uint32_t length = 0;
3834         uint32_t data_value = 0x0;
3835         uint32_t data_mask = 0xffffffff;
3836
3837         switch (CMD_ARGC) {
3838         case 5:
3839                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3840                 /* fall through */
3841         case 4:
3842                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3843                 /* fall through */
3844         case 3:
3845                 switch (CMD_ARGV[2][0]) {
3846                 case 'r':
3847                         type = WPT_READ;
3848                         break;
3849                 case 'w':
3850                         type = WPT_WRITE;
3851                         break;
3852                 case 'a':
3853                         type = WPT_ACCESS;
3854                         break;
3855                 default:
3856                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3857                         return ERROR_COMMAND_SYNTAX_ERROR;
3858                 }
3859                 /* fall through */
3860         case 2:
3861                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3862                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3863                 break;
3864
3865         default:
3866                 return ERROR_COMMAND_SYNTAX_ERROR;
3867         }
3868
3869         int retval = watchpoint_add(target, addr, length, type,
3870                         data_value, data_mask);
3871         if (ERROR_OK != retval)
3872                 LOG_ERROR("Failure setting watchpoints");
3873
3874         return retval;
3875 }
3876
3877 COMMAND_HANDLER(handle_rwp_command)
3878 {
3879         if (CMD_ARGC != 1)
3880                 return ERROR_COMMAND_SYNTAX_ERROR;
3881
3882         uint32_t addr;
3883         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3884
3885         struct target *target = get_current_target(CMD_CTX);
3886         watchpoint_remove(target, addr);
3887
3888         return ERROR_OK;
3889 }
3890
3891 /**
3892  * Translate a virtual address to a physical address.
3893  *
3894  * The low-level target implementation must have logged a detailed error
3895  * which is forwarded to telnet/GDB session.
3896  */
3897 COMMAND_HANDLER(handle_virt2phys_command)
3898 {
3899         if (CMD_ARGC != 1)
3900                 return ERROR_COMMAND_SYNTAX_ERROR;
3901
3902         target_addr_t va;
3903         COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3904         target_addr_t pa;
3905
3906         struct target *target = get_current_target(CMD_CTX);
3907         int retval = target->type->virt2phys(target, va, &pa);
3908         if (retval == ERROR_OK)
3909                 command_print(CMD_CTX, "Physical address " TARGET_ADDR_FMT "", pa);
3910
3911         return retval;
3912 }
3913
3914 static void writeData(FILE *f, const void *data, size_t len)
3915 {
3916         size_t written = fwrite(data, 1, len, f);
3917         if (written != len)
3918                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3919 }
3920
3921 static void writeLong(FILE *f, int l, struct target *target)
3922 {
3923         uint8_t val[4];
3924
3925         target_buffer_set_u32(target, val, l);
3926         writeData(f, val, 4);
3927 }
3928
3929 static void writeString(FILE *f, char *s)
3930 {
3931         writeData(f, s, strlen(s));
3932 }
3933
3934 typedef unsigned char UNIT[2];  /* unit of profiling */
3935
3936 /* Dump a gmon.out histogram file. */
3937 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3938                         uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3939 {
3940         uint32_t i;
3941         FILE *f = fopen(filename, "w");
3942         if (f == NULL)
3943                 return;
3944         writeString(f, "gmon");
3945         writeLong(f, 0x00000001, target); /* Version */
3946         writeLong(f, 0, target); /* padding */
3947         writeLong(f, 0, target); /* padding */
3948         writeLong(f, 0, target); /* padding */
3949
3950         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3951         writeData(f, &zero, 1);
3952
3953         /* figure out bucket size */
3954         uint32_t min;
3955         uint32_t max;
3956         if (with_range) {
3957                 min = start_address;
3958                 max = end_address;
3959         } else {
3960                 min = samples[0];
3961                 max = samples[0];
3962                 for (i = 0; i < sampleNum; i++) {
3963                         if (min > samples[i])
3964                                 min = samples[i];
3965                         if (max < samples[i])
3966                                 max = samples[i];
3967                 }
3968
3969                 /* max should be (largest sample + 1)
3970                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3971                 max++;
3972         }
3973
3974         int addressSpace = max - min;
3975         assert(addressSpace >= 2);
3976
3977         /* FIXME: What is the reasonable number of buckets?
3978          * The profiling result will be more accurate if there are enough buckets. */
3979         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3980         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3981         if (numBuckets > maxBuckets)
3982                 numBuckets = maxBuckets;
3983         int *buckets = malloc(sizeof(int) * numBuckets);
3984         if (buckets == NULL) {
3985                 fclose(f);
3986                 return;
3987         }
3988         memset(buckets, 0, sizeof(int) * numBuckets);
3989         for (i = 0; i < sampleNum; i++) {
3990                 uint32_t address = samples[i];
3991
3992                 if ((address < min) || (max <= address))
3993                         continue;
3994
3995                 long long a = address - min;
3996                 long long b = numBuckets;
3997                 long long c = addressSpace;
3998                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3999                 buckets[index_t]++;
4000         }
4001
4002         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
4003         writeLong(f, min, target);                      /* low_pc */
4004         writeLong(f, max, target);                      /* high_pc */
4005         writeLong(f, numBuckets, target);       /* # of buckets */
4006         float sample_rate = sampleNum / (duration_ms / 1000.0);
4007         writeLong(f, sample_rate, target);
4008         writeString(f, "seconds");
4009         for (i = 0; i < (15-strlen("seconds")); i++)
4010                 writeData(f, &zero, 1);
4011         writeString(f, "s");
4012
4013         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
4014
4015         char *data = malloc(2 * numBuckets);
4016         if (data != NULL) {
4017                 for (i = 0; i < numBuckets; i++) {
4018                         int val;
4019                         val = buckets[i];
4020                         if (val > 65535)
4021                                 val = 65535;
4022                         data[i * 2] = val&0xff;
4023                         data[i * 2 + 1] = (val >> 8) & 0xff;
4024                 }
4025                 free(buckets);
4026                 writeData(f, data, numBuckets * 2);
4027                 free(data);
4028         } else
4029                 free(buckets);
4030
4031         fclose(f);
4032 }
4033
4034 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4035  * which will be used as a random sampling of PC */
4036 COMMAND_HANDLER(handle_profile_command)
4037 {
4038         struct target *target = get_current_target(CMD_CTX);
4039
4040         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4041                 return ERROR_COMMAND_SYNTAX_ERROR;
4042
4043         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4044         uint32_t offset;
4045         uint32_t num_of_samples;
4046         int retval = ERROR_OK;
4047
4048         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4049
4050         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4051         if (samples == NULL) {
4052                 LOG_ERROR("No memory to store samples.");
4053                 return ERROR_FAIL;
4054         }
4055
4056         uint64_t timestart_ms = timeval_ms();
4057         /**
4058          * Some cores let us sample the PC without the
4059          * annoying halt/resume step; for example, ARMv7 PCSR.
4060          * Provide a way to use that more efficient mechanism.
4061          */
4062         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4063                                 &num_of_samples, offset);
4064         if (retval != ERROR_OK) {
4065                 free(samples);
4066                 return retval;
4067         }
4068         uint32_t duration_ms = timeval_ms() - timestart_ms;
4069
4070         assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4071
4072         retval = target_poll(target);
4073         if (retval != ERROR_OK) {
4074                 free(samples);
4075                 return retval;
4076         }
4077         if (target->state == TARGET_RUNNING) {
4078                 retval = target_halt(target);
4079                 if (retval != ERROR_OK) {
4080                         free(samples);
4081                         return retval;
4082                 }
4083         }
4084
4085         retval = target_poll(target);
4086         if (retval != ERROR_OK) {
4087                 free(samples);
4088                 return retval;
4089         }
4090
4091         uint32_t start_address = 0;
4092         uint32_t end_address = 0;
4093         bool with_range = false;
4094         if (CMD_ARGC == 4) {
4095                 with_range = true;
4096                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4097                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4098         }
4099
4100         write_gmon(samples, num_of_samples, CMD_ARGV[1],
4101                    with_range, start_address, end_address, target, duration_ms);
4102         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
4103
4104         free(samples);
4105         return retval;
4106 }
4107
4108 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4109 {
4110         char *namebuf;
4111         Jim_Obj *nameObjPtr, *valObjPtr;
4112         int result;
4113
4114         namebuf = alloc_printf("%s(%d)", varname, idx);
4115         if (!namebuf)
4116                 return JIM_ERR;
4117
4118         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4119         valObjPtr = Jim_NewIntObj(interp, val);
4120         if (!nameObjPtr || !valObjPtr) {
4121                 free(namebuf);
4122                 return JIM_ERR;
4123         }
4124
4125         Jim_IncrRefCount(nameObjPtr);
4126         Jim_IncrRefCount(valObjPtr);
4127         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4128         Jim_DecrRefCount(interp, nameObjPtr);
4129         Jim_DecrRefCount(interp, valObjPtr);
4130         free(namebuf);
4131         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4132         return result;
4133 }
4134
4135 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4136 {
4137         struct command_context *context;
4138         struct target *target;
4139
4140         context = current_command_context(interp);
4141         assert(context != NULL);
4142
4143         target = get_current_target(context);
4144         if (target == NULL) {
4145                 LOG_ERROR("mem2array: no current target");
4146                 return JIM_ERR;
4147         }
4148
4149         return target_mem2array(interp, target, argc - 1, argv + 1);
4150 }
4151
4152 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4153 {
4154         long l;
4155         uint32_t width;
4156         int len;
4157         uint32_t addr;
4158         uint32_t count;
4159         uint32_t v;
4160         const char *varname;
4161         const char *phys;
4162         bool is_phys;
4163         int  n, e, retval;
4164         uint32_t i;
4165
4166         /* argv[1] = name of array to receive the data
4167          * argv[2] = desired width
4168          * argv[3] = memory address
4169          * argv[4] = count of times to read
4170          */
4171
4172         if (argc < 4 || argc > 5) {
4173                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4174                 return JIM_ERR;
4175         }
4176         varname = Jim_GetString(argv[0], &len);
4177         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4178
4179         e = Jim_GetLong(interp, argv[1], &l);
4180         width = l;
4181         if (e != JIM_OK)
4182                 return e;
4183
4184         e = Jim_GetLong(interp, argv[2], &l);
4185         addr = l;
4186         if (e != JIM_OK)
4187                 return e;
4188         e = Jim_GetLong(interp, argv[3], &l);
4189         len = l;
4190         if (e != JIM_OK)
4191                 return e;
4192         is_phys = false;
4193         if (argc > 4) {
4194                 phys = Jim_GetString(argv[4], &n);
4195                 if (!strncmp(phys, "phys", n))
4196                         is_phys = true;
4197                 else
4198                         return JIM_ERR;
4199         }
4200         switch (width) {
4201                 case 8:
4202                         width = 1;
4203                         break;
4204                 case 16:
4205                         width = 2;
4206                         break;
4207                 case 32:
4208                         width = 4;
4209                         break;
4210                 default:
4211                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4212                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4213                         return JIM_ERR;
4214         }
4215         if (len == 0) {
4216                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4217                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4218                 return JIM_ERR;
4219         }
4220         if ((addr + (len * width)) < addr) {
4221                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4222                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4223                 return JIM_ERR;
4224         }
4225         /* absurd transfer size? */
4226         if (len > 65536) {
4227                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4228                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4229                 return JIM_ERR;
4230         }
4231
4232         if ((width == 1) ||
4233                 ((width == 2) && ((addr & 1) == 0)) ||
4234                 ((width == 4) && ((addr & 3) == 0))) {
4235                 /* all is well */
4236         } else {
4237                 char buf[100];
4238                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4239                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4240                                 addr,
4241                                 width);
4242                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4243                 return JIM_ERR;
4244         }
4245
4246         /* Transfer loop */
4247
4248         /* index counter */
4249         n = 0;
4250
4251         size_t buffersize = 4096;
4252         uint8_t *buffer = malloc(buffersize);
4253         if (buffer == NULL)
4254                 return JIM_ERR;
4255
4256         /* assume ok */
4257         e = JIM_OK;
4258         while (len) {
4259                 /* Slurp... in buffer size chunks */
4260
4261                 count = len; /* in objects.. */
4262                 if (count > (buffersize / width))
4263                         count = (buffersize / width);
4264
4265                 if (is_phys)
4266                         retval = target_read_phys_memory(target, addr, width, count, buffer);
4267                 else
4268                         retval = target_read_memory(target, addr, width, count, buffer);
4269                 if (retval != ERROR_OK) {
4270                         /* BOO !*/
4271                         LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4272                                           addr,
4273                                           width,
4274                                           count);
4275                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4276                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4277                         e = JIM_ERR;
4278                         break;
4279                 } else {
4280                         v = 0; /* shut up gcc */
4281                         for (i = 0; i < count ; i++, n++) {
4282                                 switch (width) {
4283                                         case 4:
4284                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
4285                                                 break;
4286                                         case 2:
4287                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
4288                                                 break;
4289                                         case 1:
4290                                                 v = buffer[i] & 0x0ff;
4291                                                 break;
4292                                 }
4293                                 new_int_array_element(interp, varname, n, v);
4294                         }
4295                         len -= count;
4296                         addr += count * width;
4297                 }
4298         }
4299
4300         free(buffer);
4301
4302         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4303
4304         return e;
4305 }
4306
4307 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4308 {
4309         char *namebuf;
4310         Jim_Obj *nameObjPtr, *valObjPtr;
4311         int result;
4312         long l;
4313
4314         namebuf = alloc_printf("%s(%d)", varname, idx);
4315         if (!namebuf)
4316                 return JIM_ERR;
4317
4318         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4319         if (!nameObjPtr) {
4320                 free(namebuf);
4321                 return JIM_ERR;
4322         }
4323
4324         Jim_IncrRefCount(nameObjPtr);
4325         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4326         Jim_DecrRefCount(interp, nameObjPtr);
4327         free(namebuf);
4328         if (valObjPtr == NULL)
4329                 return JIM_ERR;
4330
4331         result = Jim_GetLong(interp, valObjPtr, &l);
4332         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4333         *val = l;
4334         return result;
4335 }
4336
4337 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4338 {
4339         struct command_context *context;
4340         struct target *target;
4341
4342         context = current_command_context(interp);
4343         assert(context != NULL);
4344
4345         target = get_current_target(context);
4346         if (target == NULL) {
4347                 LOG_ERROR("array2mem: no current target");
4348                 return JIM_ERR;
4349         }
4350
4351         return target_array2mem(interp, target, argc-1, argv + 1);
4352 }
4353
4354 static int target_array2mem(Jim_Interp *interp, struct target *target,
4355                 int argc, Jim_Obj *const *argv)
4356 {
4357         long l;
4358         uint32_t width;
4359         int len;
4360         uint32_t addr;
4361         uint32_t count;
4362         uint32_t v;
4363         const char *varname;
4364         const char *phys;
4365         bool is_phys;
4366         int  n, e, retval;
4367         uint32_t i;
4368
4369         /* argv[1] = name of array to get the data
4370          * argv[2] = desired width
4371          * argv[3] = memory address
4372          * argv[4] = count to write
4373          */
4374         if (argc < 4 || argc > 5) {
4375                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4376                 return JIM_ERR;
4377         }
4378         varname = Jim_GetString(argv[0], &len);
4379         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4380
4381         e = Jim_GetLong(interp, argv[1], &l);
4382         width = l;
4383         if (e != JIM_OK)
4384                 return e;
4385
4386         e = Jim_GetLong(interp, argv[2], &l);
4387         addr = l;
4388         if (e != JIM_OK)
4389                 return e;
4390         e = Jim_GetLong(interp, argv[3], &l);
4391         len = l;
4392         if (e != JIM_OK)
4393                 return e;
4394         is_phys = false;
4395         if (argc > 4) {
4396                 phys = Jim_GetString(argv[4], &n);
4397                 if (!strncmp(phys, "phys", n))
4398                         is_phys = true;
4399                 else
4400                         return JIM_ERR;
4401         }
4402         switch (width) {
4403                 case 8:
4404                         width = 1;
4405                         break;
4406                 case 16:
4407                         width = 2;
4408                         break;
4409                 case 32:
4410                         width = 4;
4411                         break;
4412                 default:
4413                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4414                         Jim_AppendStrings(interp, Jim_GetResult(interp),
4415                                         "Invalid width param, must be 8/16/32", NULL);
4416                         return JIM_ERR;
4417         }
4418         if (len == 0) {
4419                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4420                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4421                                 "array2mem: zero width read?", NULL);
4422                 return JIM_ERR;
4423         }
4424         if ((addr + (len * width)) < addr) {
4425                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4426                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4427                                 "array2mem: addr + len - wraps to zero?", NULL);
4428                 return JIM_ERR;
4429         }
4430         /* absurd transfer size? */
4431         if (len > 65536) {
4432                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4433                 Jim_AppendStrings(interp, Jim_GetResult(interp),
4434                                 "array2mem: absurd > 64K item request", NULL);
4435                 return JIM_ERR;
4436         }
4437
4438         if ((width == 1) ||
4439                 ((width == 2) && ((addr & 1) == 0)) ||
4440                 ((width == 4) && ((addr & 3) == 0))) {
4441                 /* all is well */
4442         } else {
4443                 char buf[100];
4444                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4445                 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
4446                                 addr,
4447                                 width);
4448                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4449                 return JIM_ERR;
4450         }
4451
4452         /* Transfer loop */
4453
4454         /* index counter */
4455         n = 0;
4456         /* assume ok */
4457         e = JIM_OK;
4458
4459         size_t buffersize = 4096;
4460         uint8_t *buffer = malloc(buffersize);
4461         if (buffer == NULL)
4462                 return JIM_ERR;
4463
4464         while (len) {
4465                 /* Slurp... in buffer size chunks */
4466
4467                 count = len; /* in objects.. */
4468                 if (count > (buffersize / width))
4469                         count = (buffersize / width);
4470
4471                 v = 0; /* shut up gcc */
4472                 for (i = 0; i < count; i++, n++) {
4473                         get_int_array_element(interp, varname, n, &v);
4474                         switch (width) {
4475                         case 4:
4476                                 target_buffer_set_u32(target, &buffer[i * width], v);
4477                                 break;
4478                         case 2:
4479                                 target_buffer_set_u16(target, &buffer[i * width], v);
4480                                 break;
4481                         case 1:
4482                                 buffer[i] = v & 0x0ff;
4483                                 break;
4484                         }
4485                 }
4486                 len -= count;
4487
4488                 if (is_phys)
4489                         retval = target_write_phys_memory(target, addr, width, count, buffer);
4490                 else
4491                         retval = target_write_memory(target, addr, width, count, buffer);
4492                 if (retval != ERROR_OK) {
4493                         /* BOO !*/
4494                         LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRId32 ", cnt=%" PRId32 ", failed",
4495                                           addr,
4496                                           width,
4497                                           count);
4498                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4499                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4500                         e = JIM_ERR;
4501                         break;
4502                 }
4503                 addr += count * width;
4504         }
4505
4506         free(buffer);
4507
4508         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4509
4510         return e;
4511 }
4512
4513 /* FIX? should we propagate errors here rather than printing them
4514  * and continuing?
4515  */
4516 void target_handle_event(struct target *target, enum target_event e)
4517 {
4518         struct target_event_action *teap;
4519
4520         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4521                 if (teap->event == e) {
4522                         LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4523                                            target->target_number,
4524                                            target_name(target),
4525                                            target_type_name(target),
4526                                            e,
4527                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4528                                            Jim_GetString(teap->body, NULL));
4529
4530                         /* Override current target by the target an event
4531                          * is issued from (lot of scripts need it).
4532                          * Return back to previous override as soon
4533                          * as the handler processing is done */
4534                         struct command_context *cmd_ctx = current_command_context(teap->interp);
4535                         struct target *saved_target_override = cmd_ctx->current_target_override;
4536                         cmd_ctx->current_target_override = target;
4537
4538                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4539                                 Jim_MakeErrorMessage(teap->interp);
4540                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4541                         }
4542
4543                         cmd_ctx->current_target_override = saved_target_override;
4544                 }
4545         }
4546 }
4547
4548 /**
4549  * Returns true only if the target has a handler for the specified event.
4550  */
4551 bool target_has_event_action(struct target *target, enum target_event event)
4552 {
4553         struct target_event_action *teap;
4554
4555         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4556                 if (teap->event == event)
4557                         return true;
4558         }
4559         return false;
4560 }
4561
4562 enum target_cfg_param {
4563         TCFG_TYPE,
4564         TCFG_EVENT,
4565         TCFG_WORK_AREA_VIRT,
4566         TCFG_WORK_AREA_PHYS,
4567         TCFG_WORK_AREA_SIZE,
4568         TCFG_WORK_AREA_BACKUP,
4569         TCFG_ENDIAN,
4570         TCFG_COREID,
4571         TCFG_CHAIN_POSITION,
4572         TCFG_DBGBASE,
4573         TCFG_RTOS,
4574         TCFG_DEFER_EXAMINE,
4575         TCFG_GDB_PORT,
4576 };
4577
4578 static Jim_Nvp nvp_config_opts[] = {
4579         { .name = "-type",             .value = TCFG_TYPE },
4580         { .name = "-event",            .value = TCFG_EVENT },
4581         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4582         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4583         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4584         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4585         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4586         { .name = "-coreid",           .value = TCFG_COREID },
4587         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4588         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4589         { .name = "-rtos",             .value = TCFG_RTOS },
4590         { .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
4591         { .name = "-gdb-port",         .value = TCFG_GDB_PORT },
4592         { .name = NULL, .value = -1 }
4593 };
4594
4595 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4596 {
4597         Jim_Nvp *n;
4598         Jim_Obj *o;
4599         jim_wide w;
4600         int e;
4601
4602         /* parse config or cget options ... */
4603         while (goi->argc > 0) {
4604                 Jim_SetEmptyResult(goi->interp);
4605                 /* Jim_GetOpt_Debug(goi); */
4606
4607                 if (target->type->target_jim_configure) {
4608                         /* target defines a configure function */
4609                         /* target gets first dibs on parameters */
4610                         e = (*(target->type->target_jim_configure))(target, goi);
4611                         if (e == JIM_OK) {
4612                                 /* more? */
4613                                 continue;
4614                         }
4615                         if (e == JIM_ERR) {
4616                                 /* An error */
4617                                 return e;
4618                         }
4619                         /* otherwise we 'continue' below */
4620                 }
4621                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4622                 if (e != JIM_OK) {
4623                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4624                         return e;
4625                 }
4626                 switch (n->value) {
4627                 case TCFG_TYPE:
4628                         /* not setable */
4629                         if (goi->isconfigure) {
4630                                 Jim_SetResultFormatted(goi->interp,
4631                                                 "not settable: %s", n->name);
4632                                 return JIM_ERR;
4633                         } else {
4634 no_params:
4635                                 if (goi->argc != 0) {
4636                                         Jim_WrongNumArgs(goi->interp,
4637                                                         goi->argc, goi->argv,
4638                                                         "NO PARAMS");
4639                                         return JIM_ERR;
4640                                 }
4641                         }
4642                         Jim_SetResultString(goi->interp,
4643                                         target_type_name(target), -1);
4644                         /* loop for more */
4645                         break;
4646                 case TCFG_EVENT:
4647                         if (goi->argc == 0) {
4648                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4649                                 return JIM_ERR;
4650                         }
4651
4652                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4653                         if (e != JIM_OK) {
4654                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4655                                 return e;
4656                         }
4657
4658                         if (goi->isconfigure) {
4659                                 if (goi->argc != 1) {
4660                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4661                                         return JIM_ERR;
4662                                 }
4663                         } else {
4664                                 if (goi->argc != 0) {
4665                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4666                                         return JIM_ERR;
4667                                 }
4668                         }
4669
4670                         {
4671                                 struct target_event_action *teap;
4672
4673                                 teap = target->event_action;
4674                                 /* replace existing? */
4675                                 while (teap) {
4676                                         if (teap->event == (enum target_event)n->value)
4677                                                 break;
4678                                         teap = teap->next;
4679                                 }
4680
4681                                 if (goi->isconfigure) {
4682                                         bool replace = true;
4683                                         if (teap == NULL) {
4684                                                 /* create new */
4685                                                 teap = calloc(1, sizeof(*teap));
4686                                                 replace = false;
4687                                         }
4688                                         teap->event = n->value;
4689                                         teap->interp = goi->interp;
4690                                         Jim_GetOpt_Obj(goi, &o);
4691                                         if (teap->body)
4692                                                 Jim_DecrRefCount(teap->interp, teap->body);
4693                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4694                                         /*
4695                                          * FIXME:
4696                                          *     Tcl/TK - "tk events" have a nice feature.
4697                                          *     See the "BIND" command.
4698                                          *    We should support that here.
4699                                          *     You can specify %X and %Y in the event code.
4700                                          *     The idea is: %T - target name.
4701                                          *     The idea is: %N - target number
4702                                          *     The idea is: %E - event name.
4703                                          */
4704                                         Jim_IncrRefCount(teap->body);
4705
4706                                         if (!replace) {
4707                                                 /* add to head of event list */
4708                                                 teap->next = target->event_action;
4709                                                 target->event_action = teap;
4710                                         }
4711                                         Jim_SetEmptyResult(goi->interp);
4712                                 } else {
4713                                         /* get */
4714                                         if (teap == NULL)
4715                                                 Jim_SetEmptyResult(goi->interp);
4716                                         else
4717                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4718                                 }
4719                         }
4720                         /* loop for more */
4721                         break;
4722
4723                 case TCFG_WORK_AREA_VIRT:
4724                         if (goi->isconfigure) {
4725                                 target_free_all_working_areas(target);
4726                                 e = Jim_GetOpt_Wide(goi, &w);
4727                                 if (e != JIM_OK)
4728                                         return e;
4729                                 target->working_area_virt = w;
4730                                 target->working_area_virt_spec = true;
4731                         } else {
4732                                 if (goi->argc != 0)
4733                                         goto no_params;
4734                         }
4735                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4736                         /* loop for more */
4737                         break;
4738
4739                 case TCFG_WORK_AREA_PHYS:
4740                         if (goi->isconfigure) {
4741                                 target_free_all_working_areas(target);
4742                                 e = Jim_GetOpt_Wide(goi, &w);
4743                                 if (e != JIM_OK)
4744                                         return e;
4745                                 target->working_area_phys = w;
4746                                 target->working_area_phys_spec = true;
4747                         } else {
4748                                 if (goi->argc != 0)
4749                                         goto no_params;
4750                         }
4751                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4752                         /* loop for more */
4753                         break;
4754
4755                 case TCFG_WORK_AREA_SIZE:
4756                         if (goi->isconfigure) {
4757                                 target_free_all_working_areas(target);
4758                                 e = Jim_GetOpt_Wide(goi, &w);
4759                                 if (e != JIM_OK)
4760                                         return e;
4761                                 target->working_area_size = w;
4762                         } else {
4763                                 if (goi->argc != 0)
4764                                         goto no_params;
4765                         }
4766                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4767                         /* loop for more */
4768                         break;
4769
4770                 case TCFG_WORK_AREA_BACKUP:
4771                         if (goi->isconfigure) {
4772                                 target_free_all_working_areas(target);
4773                                 e = Jim_GetOpt_Wide(goi, &w);
4774                                 if (e != JIM_OK)
4775                                         return e;
4776                                 /* make this exactly 1 or 0 */
4777                                 target->backup_working_area = (!!w);
4778                         } else {
4779                                 if (goi->argc != 0)
4780                                         goto no_params;
4781                         }
4782                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4783                         /* loop for more e*/
4784                         break;
4785
4786
4787                 case TCFG_ENDIAN:
4788                         if (goi->isconfigure) {
4789                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4790                                 if (e != JIM_OK) {
4791                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4792                                         return e;
4793                                 }
4794                                 target->endianness = n->value;
4795                         } else {
4796                                 if (goi->argc != 0)
4797                                         goto no_params;
4798                         }
4799                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4800                         if (n->name == NULL) {
4801                                 target->endianness = TARGET_LITTLE_ENDIAN;
4802                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4803                         }
4804                         Jim_SetResultString(goi->interp, n->name, -1);
4805                         /* loop for more */
4806                         break;
4807
4808                 case TCFG_COREID:
4809                         if (goi->isconfigure) {
4810                                 e = Jim_GetOpt_Wide(goi, &w);
4811                                 if (e != JIM_OK)
4812                                         return e;
4813                                 target->coreid = (int32_t)w;
4814                         } else {
4815                                 if (goi->argc != 0)
4816                                         goto no_params;
4817                         }
4818                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4819                         /* loop for more */
4820                         break;
4821
4822                 case TCFG_CHAIN_POSITION:
4823                         if (goi->isconfigure) {
4824                                 Jim_Obj *o_t;
4825                                 struct jtag_tap *tap;
4826
4827                                 if (target->has_dap) {
4828                                         Jim_SetResultString(goi->interp,
4829                                                 "target requires -dap parameter instead of -chain-position!", -1);
4830                                         return JIM_ERR;
4831                                 }
4832
4833                                 target_free_all_working_areas(target);
4834                                 e = Jim_GetOpt_Obj(goi, &o_t);
4835                                 if (e != JIM_OK)
4836                                         return e;
4837                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4838                                 if (tap == NULL)
4839                                         return JIM_ERR;
4840                                 target->tap = tap;
4841                                 target->tap_configured = true;
4842                         } else {
4843                                 if (goi->argc != 0)
4844                                         goto no_params;
4845                         }
4846                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4847                         /* loop for more e*/
4848                         break;
4849                 case TCFG_DBGBASE:
4850                         if (goi->isconfigure) {
4851                                 e = Jim_GetOpt_Wide(goi, &w);
4852                                 if (e != JIM_OK)
4853                                         return e;
4854                                 target->dbgbase = (uint32_t)w;
4855                                 target->dbgbase_set = true;
4856                         } else {
4857                                 if (goi->argc != 0)
4858                                         goto no_params;
4859                         }
4860                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4861                         /* loop for more */
4862                         break;
4863                 case TCFG_RTOS:
4864                         /* RTOS */
4865                         {
4866                                 int result = rtos_create(goi, target);
4867                                 if (result != JIM_OK)
4868                                         return result;
4869                         }
4870                         /* loop for more */
4871                         break;
4872
4873                 case TCFG_DEFER_EXAMINE:
4874                         /* DEFER_EXAMINE */
4875                         target->defer_examine = true;
4876                         /* loop for more */
4877                         break;
4878
4879                 case TCFG_GDB_PORT:
4880                         if (goi->isconfigure) {
4881                                 const char *s;
4882                                 e = Jim_GetOpt_String(goi, &s, NULL);
4883                                 if (e != JIM_OK)
4884                                         return e;
4885                                 target->gdb_port_override = strdup(s);
4886                         } else {
4887                                 if (goi->argc != 0)
4888                                         goto no_params;
4889                         }
4890                         Jim_SetResultString(goi->interp, target->gdb_port_override ? : "undefined", -1);
4891                         /* loop for more */
4892                         break;
4893                 }
4894         } /* while (goi->argc) */
4895
4896
4897                 /* done - we return */
4898         return JIM_OK;
4899 }
4900
4901 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4902 {
4903         Jim_GetOptInfo goi;
4904
4905         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4906         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4907         if (goi.argc < 1) {
4908                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4909                                  "missing: -option ...");
4910                 return JIM_ERR;
4911         }
4912         struct target *target = Jim_CmdPrivData(goi.interp);
4913         return target_configure(&goi, target);
4914 }
4915
4916 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4917 {
4918         const char *cmd_name = Jim_GetString(argv[0], NULL);
4919
4920         Jim_GetOptInfo goi;
4921         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4922
4923         if (goi.argc < 2 || goi.argc > 4) {
4924                 Jim_SetResultFormatted(goi.interp,
4925                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4926                 return JIM_ERR;
4927         }
4928
4929         target_write_fn fn;
4930         fn = target_write_memory;
4931
4932         int e;
4933         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4934                 /* consume it */
4935                 struct Jim_Obj *obj;
4936                 e = Jim_GetOpt_Obj(&goi, &obj);
4937                 if (e != JIM_OK)
4938                         return e;
4939
4940                 fn = target_write_phys_memory;
4941         }
4942
4943         jim_wide a;
4944         e = Jim_GetOpt_Wide(&goi, &a);
4945         if (e != JIM_OK)
4946                 return e;
4947
4948         jim_wide b;
4949         e = Jim_GetOpt_Wide(&goi, &b);
4950         if (e != JIM_OK)
4951                 return e;
4952
4953         jim_wide c = 1;
4954         if (goi.argc == 1) {
4955                 e = Jim_GetOpt_Wide(&goi, &c);
4956                 if (e != JIM_OK)
4957                         return e;
4958         }
4959
4960         /* all args must be consumed */
4961         if (goi.argc != 0)
4962                 return JIM_ERR;
4963
4964         struct target *target = Jim_CmdPrivData(goi.interp);
4965         unsigned data_size;
4966         if (strcasecmp(cmd_name, "mww") == 0)
4967                 data_size = 4;
4968         else if (strcasecmp(cmd_name, "mwh") == 0)
4969                 data_size = 2;
4970         else if (strcasecmp(cmd_name, "mwb") == 0)
4971                 data_size = 1;
4972         else {
4973                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4974                 return JIM_ERR;
4975         }
4976
4977         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4978 }
4979
4980 /**
4981 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4982 *
4983 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4984 *         mdh [phys] <address> [<count>] - for 16 bit reads
4985 *         mdb [phys] <address> [<count>] - for  8 bit reads
4986 *
4987 *  Count defaults to 1.
4988 *
4989 *  Calls target_read_memory or target_read_phys_memory depending on
4990 *  the presence of the "phys" argument
4991 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4992 *  to int representation in base16.
4993 *  Also outputs read data in a human readable form using command_print
4994 *
4995 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4996 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4997 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4998 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4999 *  on success, with [<count>] number of elements.
5000 *
5001 *  In case of little endian target:
5002 *      Example1: "mdw 0x00000000"  returns "10123456"
5003 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
5004 *      Example3: "mdb 0x00000000" returns "56"
5005 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
5006 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
5007 **/
5008 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5009 {
5010         const char *cmd_name = Jim_GetString(argv[0], NULL);
5011
5012         Jim_GetOptInfo goi;
5013         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5014
5015         if ((goi.argc < 1) || (goi.argc > 3)) {
5016                 Jim_SetResultFormatted(goi.interp,
5017                                 "usage: %s [phys] <address> [<count>]", cmd_name);
5018                 return JIM_ERR;
5019         }
5020
5021         int (*fn)(struct target *target,
5022                         target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer);
5023         fn = target_read_memory;
5024
5025         int e;
5026         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
5027                 /* consume it */
5028                 struct Jim_Obj *obj;
5029                 e = Jim_GetOpt_Obj(&goi, &obj);
5030                 if (e != JIM_OK)
5031                         return e;
5032
5033                 fn = target_read_phys_memory;
5034         }
5035
5036         /* Read address parameter */
5037         jim_wide addr;
5038         e = Jim_GetOpt_Wide(&goi, &addr);
5039         if (e != JIM_OK)
5040                 return JIM_ERR;
5041
5042         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
5043         jim_wide count;
5044         if (goi.argc == 1) {
5045                 e = Jim_GetOpt_Wide(&goi, &count);
5046                 if (e != JIM_OK)
5047                         return JIM_ERR;
5048         } else
5049                 count = 1;
5050
5051         /* all args must be consumed */
5052         if (goi.argc != 0)
5053                 return JIM_ERR;
5054
5055         jim_wide dwidth = 1; /* shut up gcc */
5056         if (strcasecmp(cmd_name, "mdw") == 0)
5057                 dwidth = 4;
5058         else if (strcasecmp(cmd_name, "mdh") == 0)
5059                 dwidth = 2;
5060         else if (strcasecmp(cmd_name, "mdb") == 0)
5061                 dwidth = 1;
5062         else {
5063                 LOG_ERROR("command '%s' unknown: ", cmd_name);
5064                 return JIM_ERR;
5065         }
5066
5067         /* convert count to "bytes" */
5068         int bytes = count * dwidth;
5069
5070         struct target *target = Jim_CmdPrivData(goi.interp);
5071         uint8_t  target_buf[32];
5072         jim_wide x, y, z;
5073         while (bytes > 0) {
5074                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
5075
5076                 /* Try to read out next block */
5077                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
5078
5079                 if (e != ERROR_OK) {
5080                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
5081                         return JIM_ERR;
5082                 }
5083
5084                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
5085                 switch (dwidth) {
5086                 case 4:
5087                         for (x = 0; x < 16 && x < y; x += 4) {
5088                                 z = target_buffer_get_u32(target, &(target_buf[x]));
5089                                 command_print_sameline(NULL, "%08x ", (int)(z));
5090                         }
5091                         for (; (x < 16) ; x += 4)
5092                                 command_print_sameline(NULL, "         ");
5093                         break;
5094                 case 2:
5095                         for (x = 0; x < 16 && x < y; x += 2) {
5096                                 z = target_buffer_get_u16(target, &(target_buf[x]));
5097                                 command_print_sameline(NULL, "%04x ", (int)(z));
5098                         }
5099                         for (; (x < 16) ; x += 2)
5100                                 command_print_sameline(NULL, "     ");
5101                         break;
5102                 case 1:
5103                 default:
5104                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
5105                                 z = target_buffer_get_u8(target, &(target_buf[x]));
5106                                 command_print_sameline(NULL, "%02x ", (int)(z));
5107                         }
5108                         for (; (x < 16) ; x += 1)
5109                                 command_print_sameline(NULL, "   ");
5110                         break;
5111                 }
5112                 /* ascii-ify the bytes */
5113                 for (x = 0 ; x < y ; x++) {
5114                         if ((target_buf[x] >= 0x20) &&
5115                                 (target_buf[x] <= 0x7e)) {
5116                                 /* good */
5117                         } else {
5118                                 /* smack it */
5119                                 target_buf[x] = '.';
5120                         }
5121                 }
5122                 /* space pad  */
5123                 while (x < 16) {
5124                         target_buf[x] = ' ';
5125                         x++;
5126                 }
5127                 /* terminate */
5128                 target_buf[16] = 0;
5129                 /* print - with a newline */
5130                 command_print_sameline(NULL, "%s\n", target_buf);
5131                 /* NEXT... */
5132                 bytes -= 16;
5133                 addr += 16;
5134         }
5135         return JIM_OK;
5136 }
5137
5138 static int jim_target_mem2array(Jim_Interp *interp,
5139                 int argc, Jim_Obj *const *argv)
5140 {
5141         struct target *target = Jim_CmdPrivData(interp);
5142         return target_mem2array(interp, target, argc - 1, argv + 1);
5143 }
5144
5145 static int jim_target_array2mem(Jim_Interp *interp,
5146                 int argc, Jim_Obj *const *argv)
5147 {
5148         struct target *target = Jim_CmdPrivData(interp);
5149         return target_array2mem(interp, target, argc - 1, argv + 1);
5150 }
5151
5152 static int jim_target_tap_disabled(Jim_Interp *interp)
5153 {
5154         Jim_SetResultFormatted(interp, "[TAP is disabled]");
5155         return JIM_ERR;
5156 }
5157
5158 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5159 {
5160         bool allow_defer = false;
5161
5162         Jim_GetOptInfo goi;
5163         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5164         if (goi.argc > 1) {
5165                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5166                 Jim_SetResultFormatted(goi.interp,
5167                                 "usage: %s ['allow-defer']", cmd_name);
5168                 return JIM_ERR;
5169         }
5170         if (goi.argc > 0 &&
5171             strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5172                 /* consume it */
5173                 struct Jim_Obj *obj;
5174                 int e = Jim_GetOpt_Obj(&goi, &obj);
5175                 if (e != JIM_OK)
5176                         return e;
5177                 allow_defer = true;
5178         }
5179
5180         struct target *target = Jim_CmdPrivData(interp);
5181         if (!target->tap->enabled)
5182                 return jim_target_tap_disabled(interp);
5183
5184         if (allow_defer && target->defer_examine) {
5185                 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5186                 LOG_INFO("Use arp_examine command to examine it manually!");
5187                 return JIM_OK;
5188         }
5189
5190         int e = target->type->examine(target);
5191         if (e != ERROR_OK)
5192                 return JIM_ERR;
5193         return JIM_OK;
5194 }
5195
5196 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5197 {
5198         struct target *target = Jim_CmdPrivData(interp);
5199
5200         Jim_SetResultBool(interp, target_was_examined(target));
5201         return JIM_OK;
5202 }
5203
5204 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5205 {
5206         struct target *target = Jim_CmdPrivData(interp);
5207
5208         Jim_SetResultBool(interp, target->defer_examine);
5209         return JIM_OK;
5210 }
5211
5212 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5213 {
5214         if (argc != 1) {
5215                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5216                 return JIM_ERR;
5217         }
5218         struct target *target = Jim_CmdPrivData(interp);
5219
5220         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5221                 return JIM_ERR;
5222
5223         return JIM_OK;
5224 }
5225
5226 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5227 {
5228         if (argc != 1) {
5229                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5230                 return JIM_ERR;
5231         }
5232         struct target *target = Jim_CmdPrivData(interp);
5233         if (!target->tap->enabled)
5234                 return jim_target_tap_disabled(interp);
5235
5236         int e;
5237         if (!(target_was_examined(target)))
5238                 e = ERROR_TARGET_NOT_EXAMINED;
5239         else
5240                 e = target->type->poll(target);
5241         if (e != ERROR_OK)
5242                 return JIM_ERR;
5243         return JIM_OK;
5244 }
5245
5246 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5247 {
5248         Jim_GetOptInfo goi;
5249         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5250
5251         if (goi.argc != 2) {
5252                 Jim_WrongNumArgs(interp, 0, argv,
5253                                 "([tT]|[fF]|assert|deassert) BOOL");
5254                 return JIM_ERR;
5255         }
5256
5257         Jim_Nvp *n;
5258         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5259         if (e != JIM_OK) {
5260                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5261                 return e;
5262         }
5263         /* the halt or not param */
5264         jim_wide a;
5265         e = Jim_GetOpt_Wide(&goi, &a);
5266         if (e != JIM_OK)
5267                 return e;
5268
5269         struct target *target = Jim_CmdPrivData(goi.interp);
5270         if (!target->tap->enabled)
5271                 return jim_target_tap_disabled(interp);
5272
5273         if (!target->type->assert_reset || !target->type->deassert_reset) {
5274                 Jim_SetResultFormatted(interp,
5275                                 "No target-specific reset for %s",
5276                                 target_name(target));
5277                 return JIM_ERR;
5278         }
5279
5280         if (target->defer_examine)
5281                 target_reset_examined(target);
5282
5283         /* determine if we should halt or not. */
5284         target->reset_halt = !!a;
5285         /* When this happens - all workareas are invalid. */
5286         target_free_all_working_areas_restore(target, 0);
5287
5288         /* do the assert */
5289         if (n->value == NVP_ASSERT)
5290                 e = target->type->assert_reset(target);
5291         else
5292                 e = target->type->deassert_reset(target);
5293         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5294 }
5295
5296 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5297 {
5298         if (argc != 1) {
5299                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5300                 return JIM_ERR;
5301         }
5302         struct target *target = Jim_CmdPrivData(interp);
5303         if (!target->tap->enabled)
5304                 return jim_target_tap_disabled(interp);
5305         int e = target->type->halt(target);
5306         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5307 }
5308
5309 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5310 {
5311         Jim_GetOptInfo goi;
5312         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5313
5314         /* params:  <name>  statename timeoutmsecs */
5315         if (goi.argc != 2) {
5316                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5317                 Jim_SetResultFormatted(goi.interp,
5318                                 "%s <state_name> <timeout_in_msec>", cmd_name);
5319                 return JIM_ERR;
5320         }
5321
5322         Jim_Nvp *n;
5323         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5324         if (e != JIM_OK) {
5325                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5326                 return e;
5327         }
5328         jim_wide a;
5329         e = Jim_GetOpt_Wide(&goi, &a);
5330         if (e != JIM_OK)
5331                 return e;
5332         struct target *target = Jim_CmdPrivData(interp);
5333         if (!target->tap->enabled)
5334                 return jim_target_tap_disabled(interp);
5335
5336         e = target_wait_state(target, n->value, a);
5337         if (e != ERROR_OK) {
5338                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5339                 Jim_SetResultFormatted(goi.interp,
5340                                 "target: %s wait %s fails (%#s) %s",
5341                                 target_name(target), n->name,
5342                                 eObj, target_strerror_safe(e));
5343                 Jim_FreeNewObj(interp, eObj);
5344                 return JIM_ERR;
5345         }
5346         return JIM_OK;
5347 }
5348 /* List for human, Events defined for this target.
5349  * scripts/programs should use 'name cget -event NAME'
5350  */
5351 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5352 {
5353         struct command_context *cmd_ctx = current_command_context(interp);
5354         assert(cmd_ctx != NULL);
5355
5356         struct target *target = Jim_CmdPrivData(interp);
5357         struct target_event_action *teap = target->event_action;
5358         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
5359                                    target->target_number,
5360                                    target_name(target));
5361         command_print(cmd_ctx, "%-25s | Body", "Event");
5362         command_print(cmd_ctx, "------------------------- | "
5363                         "----------------------------------------");
5364         while (teap) {
5365                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5366                 command_print(cmd_ctx, "%-25s | %s",
5367                                 opt->name, Jim_GetString(teap->body, NULL));
5368                 teap = teap->next;
5369         }
5370         command_print(cmd_ctx, "***END***");
5371         return JIM_OK;
5372 }
5373 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5374 {
5375         if (argc != 1) {
5376                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5377                 return JIM_ERR;
5378         }
5379         struct target *target = Jim_CmdPrivData(interp);
5380         Jim_SetResultString(interp, target_state_name(target), -1);
5381         return JIM_OK;
5382 }
5383 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5384 {
5385         Jim_GetOptInfo goi;
5386         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5387         if (goi.argc != 1) {
5388                 const char *cmd_name = Jim_GetString(argv[0], NULL);
5389                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5390                 return JIM_ERR;
5391         }
5392         Jim_Nvp *n;
5393         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5394         if (e != JIM_OK) {
5395                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5396                 return e;
5397         }
5398         struct target *target = Jim_CmdPrivData(interp);
5399         target_handle_event(target, n->value);
5400         return JIM_OK;
5401 }
5402
5403 static const struct command_registration target_instance_command_handlers[] = {
5404         {
5405                 .name = "configure",
5406                 .mode = COMMAND_CONFIG,
5407                 .jim_handler = jim_target_configure,
5408                 .help  = "configure a new target for use",
5409                 .usage = "[target_attribute ...]",
5410         },
5411         {
5412                 .name = "cget",
5413                 .mode = COMMAND_ANY,
5414                 .jim_handler = jim_target_configure,
5415                 .help  = "returns the specified target attribute",
5416                 .usage = "target_attribute",
5417         },
5418         {
5419                 .name = "mww",
5420                 .mode = COMMAND_EXEC,
5421                 .jim_handler = jim_target_mw,
5422                 .help = "Write 32-bit word(s) to target memory",
5423                 .usage = "address data [count]",
5424         },
5425         {
5426                 .name = "mwh",
5427                 .mode = COMMAND_EXEC,
5428                 .jim_handler = jim_target_mw,
5429                 .help = "Write 16-bit half-word(s) to target memory",
5430                 .usage = "address data [count]",
5431         },
5432         {
5433                 .name = "mwb",
5434                 .mode = COMMAND_EXEC,
5435                 .jim_handler = jim_target_mw,
5436                 .help = "Write byte(s) to target memory",
5437                 .usage = "address data [count]",
5438         },
5439         {
5440                 .name = "mdw",
5441                 .mode = COMMAND_EXEC,
5442                 .jim_handler = jim_target_md,
5443                 .help = "Display target memory as 32-bit words",
5444                 .usage = "address [count]",
5445         },
5446         {
5447                 .name = "mdh",
5448                 .mode = COMMAND_EXEC,
5449                 .jim_handler = jim_target_md,
5450                 .help = "Display target memory as 16-bit half-words",
5451                 .usage = "address [count]",
5452         },
5453         {
5454                 .name = "mdb",
5455                 .mode = COMMAND_EXEC,
5456                 .jim_handler = jim_target_md,
5457                 .help = "Display target memory as 8-bit bytes",
5458                 .usage = "address [count]",
5459         },
5460         {
5461                 .name = "array2mem",
5462                 .mode = COMMAND_EXEC,
5463                 .jim_handler = jim_target_array2mem,
5464                 .help = "Writes Tcl array of 8/16/32 bit numbers "
5465                         "to target memory",
5466                 .usage = "arrayname bitwidth address count",
5467         },
5468         {
5469                 .name = "mem2array",
5470                 .mode = COMMAND_EXEC,
5471                 .jim_handler = jim_target_mem2array,
5472                 .help = "Loads Tcl array of 8/16/32 bit numbers "
5473                         "from target memory",
5474                 .usage = "arrayname bitwidth address count",
5475         },
5476         {
5477                 .name = "eventlist",
5478                 .mode = COMMAND_EXEC,
5479                 .jim_handler = jim_target_event_list,
5480                 .help = "displays a table of events defined for this target",
5481         },
5482         {
5483                 .name = "curstate",
5484                 .mode = COMMAND_EXEC,
5485                 .jim_handler = jim_target_current_state,
5486                 .help = "displays the current state of this target",
5487         },
5488         {
5489                 .name = "arp_examine",
5490                 .mode = COMMAND_EXEC,
5491                 .jim_handler = jim_target_examine,
5492                 .help = "used internally for reset processing",
5493                 .usage = "['allow-defer']",
5494         },
5495         {
5496                 .name = "was_examined",
5497                 .mode = COMMAND_EXEC,
5498                 .jim_handler = jim_target_was_examined,
5499                 .help = "used internally for reset processing",
5500         },
5501         {
5502                 .name = "examine_deferred",
5503                 .mode = COMMAND_EXEC,
5504                 .jim_handler = jim_target_examine_deferred,
5505                 .help = "used internally for reset processing",
5506         },
5507         {
5508                 .name = "arp_halt_gdb",
5509                 .mode = COMMAND_EXEC,
5510                 .jim_handler = jim_target_halt_gdb,
5511                 .help = "used internally for reset processing to halt GDB",
5512         },
5513         {
5514                 .name = "arp_poll",
5515                 .mode = COMMAND_EXEC,
5516                 .jim_handler = jim_target_poll,
5517                 .help = "used internally for reset processing",
5518         },
5519         {
5520                 .name = "arp_reset",
5521                 .mode = COMMAND_EXEC,
5522                 .jim_handler = jim_target_reset,
5523                 .help = "used internally for reset processing",
5524         },
5525         {
5526                 .name = "arp_halt",
5527                 .mode = COMMAND_EXEC,
5528                 .jim_handler = jim_target_halt,
5529                 .help = "used internally for reset processing",
5530         },
5531         {
5532                 .name = "arp_waitstate",
5533                 .mode = COMMAND_EXEC,
5534                 .jim_handler = jim_target_wait_state,
5535                 .help = "used internally for reset processing",
5536         },
5537         {
5538                 .name = "invoke-event",
5539                 .mode = COMMAND_EXEC,
5540                 .jim_handler = jim_target_invoke_event,
5541                 .help = "invoke handler for specified event",
5542                 .usage = "event_name",
5543         },
5544         COMMAND_REGISTRATION_DONE
5545 };
5546
5547 static int target_create(Jim_GetOptInfo *goi)
5548 {
5549         Jim_Obj *new_cmd;
5550         Jim_Cmd *cmd;
5551         const char *cp;
5552         int e;
5553         int x;
5554         struct target *target;
5555         struct command_context *cmd_ctx;
5556
5557         cmd_ctx = current_command_context(goi->interp);
5558         assert(cmd_ctx != NULL);
5559
5560         if (goi->argc < 3) {
5561                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5562                 return JIM_ERR;
5563         }
5564
5565         /* COMMAND */
5566         Jim_GetOpt_Obj(goi, &new_cmd);
5567         /* does this command exist? */
5568         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5569         if (cmd) {
5570                 cp = Jim_GetString(new_cmd, NULL);
5571                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5572                 return JIM_ERR;
5573         }
5574
5575         /* TYPE */
5576         e = Jim_GetOpt_String(goi, &cp, NULL);
5577         if (e != JIM_OK)
5578                 return e;
5579         struct transport *tr = get_current_transport();
5580         if (tr->override_target) {
5581                 e = tr->override_target(&cp);
5582                 if (e != ERROR_OK) {
5583                         LOG_ERROR("The selected transport doesn't support this target");
5584                         return JIM_ERR;
5585                 }
5586                 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5587         }
5588         /* now does target type exist */
5589         for (x = 0 ; target_types[x] ; x++) {
5590                 if (0 == strcmp(cp, target_types[x]->name)) {
5591                         /* found */
5592                         break;
5593                 }
5594
5595                 /* check for deprecated name */
5596                 if (target_types[x]->deprecated_name) {
5597                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5598                                 /* found */
5599                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5600                                 break;
5601                         }
5602                 }
5603         }
5604         if (target_types[x] == NULL) {
5605                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5606                 for (x = 0 ; target_types[x] ; x++) {
5607                         if (target_types[x + 1]) {
5608                                 Jim_AppendStrings(goi->interp,
5609                                                                    Jim_GetResult(goi->interp),
5610                                                                    target_types[x]->name,
5611                                                                    ", ", NULL);
5612                         } else {
5613                                 Jim_AppendStrings(goi->interp,
5614                                                                    Jim_GetResult(goi->interp),
5615                                                                    " or ",
5616                                                                    target_types[x]->name, NULL);
5617                         }
5618                 }
5619                 return JIM_ERR;
5620         }
5621
5622         /* Create it */
5623         target = calloc(1, sizeof(struct target));
5624         /* set target number */
5625         target->target_number = new_target_number();
5626         cmd_ctx->current_target = target;
5627
5628         /* allocate memory for each unique target type */
5629         target->type = calloc(1, sizeof(struct target_type));
5630
5631         memcpy(target->type, target_types[x], sizeof(struct target_type));
5632
5633         /* will be set by "-endian" */
5634         target->endianness = TARGET_ENDIAN_UNKNOWN;
5635
5636         /* default to first core, override with -coreid */
5637         target->coreid = 0;
5638
5639         target->working_area        = 0x0;
5640         target->working_area_size   = 0x0;
5641         target->working_areas       = NULL;
5642         target->backup_working_area = 0;
5643
5644         target->state               = TARGET_UNKNOWN;
5645         target->debug_reason        = DBG_REASON_UNDEFINED;
5646         target->reg_cache           = NULL;
5647         target->breakpoints         = NULL;
5648         target->watchpoints         = NULL;
5649         target->next                = NULL;
5650         target->arch_info           = NULL;
5651
5652         target->verbose_halt_msg        = true;
5653
5654         target->halt_issued                     = false;
5655
5656         /* initialize trace information */
5657         target->trace_info = calloc(1, sizeof(struct trace));
5658
5659         target->dbgmsg          = NULL;
5660         target->dbg_msg_enabled = 0;
5661
5662         target->endianness = TARGET_ENDIAN_UNKNOWN;
5663
5664         target->rtos = NULL;
5665         target->rtos_auto_detect = false;
5666
5667         target->gdb_port_override = NULL;
5668
5669         /* Do the rest as "configure" options */
5670         goi->isconfigure = 1;
5671         e = target_configure(goi, target);
5672
5673         if (e == JIM_OK) {
5674                 if (target->has_dap) {
5675                         if (!target->dap_configured) {
5676                                 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5677                                 e = JIM_ERR;
5678                         }
5679                 } else {
5680                         if (!target->tap_configured) {
5681                                 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5682                                 e = JIM_ERR;
5683                         }
5684                 }
5685                 /* tap must be set after target was configured */
5686                 if (target->tap == NULL)
5687                         e = JIM_ERR;
5688         }
5689
5690         if (e != JIM_OK) {
5691                 free(target->gdb_port_override);
5692                 free(target->type);
5693                 free(target);
5694                 return e;
5695         }
5696
5697         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5698                 /* default endian to little if not specified */
5699                 target->endianness = TARGET_LITTLE_ENDIAN;
5700         }
5701
5702         cp = Jim_GetString(new_cmd, NULL);
5703         target->cmd_name = strdup(cp);
5704
5705         if (target->type->target_create) {
5706                 e = (*(target->type->target_create))(target, goi->interp);
5707                 if (e != ERROR_OK) {
5708                         LOG_DEBUG("target_create failed");
5709                         free(target->gdb_port_override);
5710                         free(target->type);
5711                         free(target->cmd_name);
5712                         free(target);
5713                         return JIM_ERR;
5714                 }
5715         }
5716
5717         /* create the target specific commands */
5718         if (target->type->commands) {
5719                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5720                 if (ERROR_OK != e)
5721                         LOG_ERROR("unable to register '%s' commands", cp);
5722         }
5723
5724         /* append to end of list */
5725         {
5726                 struct target **tpp;
5727                 tpp = &(all_targets);
5728                 while (*tpp)
5729                         tpp = &((*tpp)->next);
5730                 *tpp = target;
5731         }
5732
5733         /* now - create the new target name command */
5734         const struct command_registration target_subcommands[] = {
5735                 {
5736                         .chain = target_instance_command_handlers,
5737                 },
5738                 {
5739                         .chain = target->type->commands,
5740                 },
5741                 COMMAND_REGISTRATION_DONE
5742         };
5743         const struct command_registration target_commands[] = {
5744                 {
5745                         .name = cp,
5746                         .mode = COMMAND_ANY,
5747                         .help = "target command group",
5748                         .usage = "",
5749                         .chain = target_subcommands,
5750                 },
5751                 COMMAND_REGISTRATION_DONE
5752         };
5753         e = register_commands(cmd_ctx, NULL, target_commands);
5754         if (ERROR_OK != e)
5755                 return JIM_ERR;
5756
5757         struct command *c = command_find_in_context(cmd_ctx, cp);
5758         assert(c);
5759         command_set_handler_data(c, target);
5760
5761         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5762 }
5763
5764 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5765 {
5766         if (argc != 1) {
5767                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5768                 return JIM_ERR;
5769         }
5770         struct command_context *cmd_ctx = current_command_context(interp);
5771         assert(cmd_ctx != NULL);
5772
5773         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5774         return JIM_OK;
5775 }
5776
5777 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5778 {
5779         if (argc != 1) {
5780                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5781                 return JIM_ERR;
5782         }
5783         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5784         for (unsigned x = 0; NULL != target_types[x]; x++) {
5785                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5786                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5787         }
5788         return JIM_OK;
5789 }
5790
5791 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5792 {
5793         if (argc != 1) {
5794                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5795                 return JIM_ERR;
5796         }
5797         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5798         struct target *target = all_targets;
5799         while (target) {
5800                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5801                         Jim_NewStringObj(interp, target_name(target), -1));
5802                 target = target->next;
5803         }
5804         return JIM_OK;
5805 }
5806
5807 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5808 {
5809         int i;
5810         const char *targetname;
5811         int retval, len;
5812         struct target *target = (struct target *) NULL;
5813         struct target_list *head, *curr, *new;
5814         curr = (struct target_list *) NULL;
5815         head = (struct target_list *) NULL;
5816
5817         retval = 0;
5818         LOG_DEBUG("%d", argc);
5819         /* argv[1] = target to associate in smp
5820          * argv[2] = target to assoicate in smp
5821          * argv[3] ...
5822          */
5823
5824         for (i = 1; i < argc; i++) {
5825
5826                 targetname = Jim_GetString(argv[i], &len);
5827                 target = get_target(targetname);
5828                 LOG_DEBUG("%s ", targetname);
5829                 if (target) {
5830                         new = malloc(sizeof(struct target_list));
5831                         new->target = target;
5832                         new->next = (struct target_list *)NULL;
5833                         if (head == (struct target_list *)NULL) {
5834                                 head = new;
5835                                 curr = head;
5836                         } else {
5837                                 curr->next = new;
5838                                 curr = new;
5839                         }
5840                 }
5841         }
5842         /*  now parse the list of cpu and put the target in smp mode*/
5843         curr = head;
5844
5845         while (curr != (struct target_list *)NULL) {
5846                 target = curr->target;
5847                 target->smp = 1;
5848                 target->head = head;
5849                 curr = curr->next;
5850         }
5851
5852         if (target && target->rtos)
5853                 retval = rtos_smp_init(head->target);
5854
5855         return retval;
5856 }
5857
5858
5859 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5860 {
5861         Jim_GetOptInfo goi;
5862         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5863         if (goi.argc < 3) {
5864                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5865                         "<name> <target_type> [<target_options> ...]");
5866                 return JIM_ERR;
5867         }
5868         return target_create(&goi);
5869 }
5870
5871 static const struct command_registration target_subcommand_handlers[] = {
5872         {
5873                 .name = "init",
5874                 .mode = COMMAND_CONFIG,
5875                 .handler = handle_target_init_command,
5876                 .help = "initialize targets",
5877         },
5878         {
5879                 .name = "create",
5880                 .mode = COMMAND_CONFIG,
5881                 .jim_handler = jim_target_create,
5882                 .usage = "name type '-chain-position' name [options ...]",
5883                 .help = "Creates and selects a new target",
5884         },
5885         {
5886                 .name = "current",
5887                 .mode = COMMAND_ANY,
5888                 .jim_handler = jim_target_current,
5889                 .help = "Returns the currently selected target",
5890         },
5891         {
5892                 .name = "types",
5893                 .mode = COMMAND_ANY,
5894                 .jim_handler = jim_target_types,
5895                 .help = "Returns the available target types as "
5896                                 "a list of strings",
5897         },
5898         {
5899                 .name = "names",
5900                 .mode = COMMAND_ANY,
5901                 .jim_handler = jim_target_names,
5902                 .help = "Returns the names of all targets as a list of strings",
5903         },
5904         {
5905                 .name = "smp",
5906                 .mode = COMMAND_ANY,
5907                 .jim_handler = jim_target_smp,
5908                 .usage = "targetname1 targetname2 ...",
5909                 .help = "gather several target in a smp list"
5910         },
5911
5912         COMMAND_REGISTRATION_DONE
5913 };
5914
5915 struct FastLoad {
5916         target_addr_t address;
5917         uint8_t *data;
5918         int length;
5919
5920 };
5921
5922 static int fastload_num;
5923 static struct FastLoad *fastload;
5924
5925 static void free_fastload(void)
5926 {
5927         if (fastload != NULL) {
5928                 int i;
5929                 for (i = 0; i < fastload_num; i++) {
5930                         if (fastload[i].data)
5931                                 free(fastload[i].data);
5932                 }
5933                 free(fastload);
5934                 fastload = NULL;
5935         }
5936 }
5937
5938 COMMAND_HANDLER(handle_fast_load_image_command)
5939 {
5940         uint8_t *buffer;
5941         size_t buf_cnt;
5942         uint32_t image_size;
5943         target_addr_t min_address = 0;
5944         target_addr_t max_address = -1;
5945         int i;
5946
5947         struct image image;
5948
5949         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5950                         &image, &min_address, &max_address);
5951         if (ERROR_OK != retval)
5952                 return retval;
5953
5954         struct duration bench;
5955         duration_start(&bench);
5956
5957         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5958         if (retval != ERROR_OK)
5959                 return retval;
5960
5961         image_size = 0x0;
5962         retval = ERROR_OK;
5963         fastload_num = image.num_sections;
5964         fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5965         if (fastload == NULL) {
5966                 command_print(CMD_CTX, "out of memory");
5967                 image_close(&image);
5968                 return ERROR_FAIL;
5969         }
5970         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5971         for (i = 0; i < image.num_sections; i++) {
5972                 buffer = malloc(image.sections[i].size);
5973                 if (buffer == NULL) {
5974                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5975                                                   (int)(image.sections[i].size));
5976                         retval = ERROR_FAIL;
5977                         break;
5978                 }
5979
5980                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5981                 if (retval != ERROR_OK) {
5982                         free(buffer);
5983                         break;
5984                 }
5985
5986                 uint32_t offset = 0;
5987                 uint32_t length = buf_cnt;
5988
5989                 /* DANGER!!! beware of unsigned comparision here!!! */
5990
5991                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5992                                 (image.sections[i].base_address < max_address)) {
5993                         if (image.sections[i].base_address < min_address) {
5994                                 /* clip addresses below */
5995                                 offset += min_address-image.sections[i].base_address;
5996                                 length -= offset;
5997                         }
5998
5999                         if (image.sections[i].base_address + buf_cnt > max_address)
6000                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
6001
6002                         fastload[i].address = image.sections[i].base_address + offset;
6003                         fastload[i].data = malloc(length);
6004                         if (fastload[i].data == NULL) {
6005                                 free(buffer);
6006                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
6007                                                           length);
6008                                 retval = ERROR_FAIL;
6009                                 break;
6010                         }
6011                         memcpy(fastload[i].data, buffer + offset, length);
6012                         fastload[i].length = length;
6013
6014                         image_size += length;
6015                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
6016                                                   (unsigned int)length,
6017                                                   ((unsigned int)(image.sections[i].base_address + offset)));
6018                 }
6019
6020                 free(buffer);
6021         }
6022
6023         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
6024                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
6025                                 "in %fs (%0.3f KiB/s)", image_size,
6026                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
6027
6028                 command_print(CMD_CTX,
6029                                 "WARNING: image has not been loaded to target!"
6030                                 "You can issue a 'fast_load' to finish loading.");
6031         }
6032
6033         image_close(&image);
6034
6035         if (retval != ERROR_OK)
6036                 free_fastload();
6037
6038         return retval;
6039 }
6040
6041 COMMAND_HANDLER(handle_fast_load_command)
6042 {
6043         if (CMD_ARGC > 0)
6044                 return ERROR_COMMAND_SYNTAX_ERROR;
6045         if (fastload == NULL) {
6046                 LOG_ERROR("No image in memory");
6047                 return ERROR_FAIL;
6048         }
6049         int i;
6050         int64_t ms = timeval_ms();
6051         int size = 0;
6052         int retval = ERROR_OK;
6053         for (i = 0; i < fastload_num; i++) {
6054                 struct target *target = get_current_target(CMD_CTX);
6055                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
6056                                           (unsigned int)(fastload[i].address),
6057                                           (unsigned int)(fastload[i].length));
6058                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
6059                 if (retval != ERROR_OK)
6060                         break;
6061                 size += fastload[i].length;
6062         }
6063         if (retval == ERROR_OK) {
6064                 int64_t after = timeval_ms();
6065                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
6066         }
6067         return retval;
6068 }
6069
6070 static const struct command_registration target_command_handlers[] = {
6071         {
6072                 .name = "targets",
6073                 .handler = handle_targets_command,
6074                 .mode = COMMAND_ANY,
6075                 .help = "change current default target (one parameter) "
6076                         "or prints table of all targets (no parameters)",
6077                 .usage = "[target]",
6078         },
6079         {
6080                 .name = "target",
6081                 .mode = COMMAND_CONFIG,
6082                 .help = "configure target",
6083
6084                 .chain = target_subcommand_handlers,
6085         },
6086         COMMAND_REGISTRATION_DONE
6087 };
6088
6089 int target_register_commands(struct command_context *cmd_ctx)
6090 {
6091         return register_commands(cmd_ctx, NULL, target_command_handlers);
6092 }
6093
6094 static bool target_reset_nag = true;
6095
6096 bool get_target_reset_nag(void)
6097 {
6098         return target_reset_nag;
6099 }
6100
6101 COMMAND_HANDLER(handle_target_reset_nag)
6102 {
6103         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6104                         &target_reset_nag, "Nag after each reset about options to improve "
6105                         "performance");
6106 }
6107
6108 COMMAND_HANDLER(handle_ps_command)
6109 {
6110         struct target *target = get_current_target(CMD_CTX);
6111         char *display;
6112         if (target->state != TARGET_HALTED) {
6113                 LOG_INFO("target not halted !!");
6114                 return ERROR_OK;
6115         }
6116
6117         if ((target->rtos) && (target->rtos->type)
6118                         && (target->rtos->type->ps_command)) {
6119                 display = target->rtos->type->ps_command(target);
6120                 command_print(CMD_CTX, "%s", display);
6121                 free(display);
6122                 return ERROR_OK;
6123         } else {
6124                 LOG_INFO("failed");
6125                 return ERROR_TARGET_FAILURE;
6126         }
6127 }
6128
6129 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
6130 {
6131         if (text != NULL)
6132                 command_print_sameline(cmd_ctx, "%s", text);
6133         for (int i = 0; i < size; i++)
6134                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
6135         command_print(cmd_ctx, " ");
6136 }
6137
6138 COMMAND_HANDLER(handle_test_mem_access_command)
6139 {
6140         struct target *target = get_current_target(CMD_CTX);
6141         uint32_t test_size;
6142         int retval = ERROR_OK;
6143
6144         if (target->state != TARGET_HALTED) {
6145                 LOG_INFO("target not halted !!");
6146                 return ERROR_FAIL;
6147         }
6148
6149         if (CMD_ARGC != 1)
6150                 return ERROR_COMMAND_SYNTAX_ERROR;
6151
6152         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6153
6154         /* Test reads */
6155         size_t num_bytes = test_size + 4;
6156
6157         struct working_area *wa = NULL;
6158         retval = target_alloc_working_area(target, num_bytes, &wa);
6159         if (retval != ERROR_OK) {
6160                 LOG_ERROR("Not enough working area");
6161                 return ERROR_FAIL;
6162         }
6163
6164         uint8_t *test_pattern = malloc(num_bytes);
6165
6166         for (size_t i = 0; i < num_bytes; i++)
6167                 test_pattern[i] = rand();
6168
6169         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6170         if (retval != ERROR_OK) {
6171                 LOG_ERROR("Test pattern write failed");
6172                 goto out;
6173         }
6174
6175         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6176                 for (int size = 1; size <= 4; size *= 2) {
6177                         for (int offset = 0; offset < 4; offset++) {
6178                                 uint32_t count = test_size / size;
6179                                 size_t host_bufsiz = (count + 2) * size + host_offset;
6180                                 uint8_t *read_ref = malloc(host_bufsiz);
6181                                 uint8_t *read_buf = malloc(host_bufsiz);
6182
6183                                 for (size_t i = 0; i < host_bufsiz; i++) {
6184                                         read_ref[i] = rand();
6185                                         read_buf[i] = read_ref[i];
6186                                 }
6187                                 command_print_sameline(CMD_CTX,
6188                                                 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6189                                                 size, offset, host_offset ? "un" : "");
6190
6191                                 struct duration bench;
6192                                 duration_start(&bench);
6193
6194                                 retval = target_read_memory(target, wa->address + offset, size, count,
6195                                                 read_buf + size + host_offset);
6196
6197                                 duration_measure(&bench);
6198
6199                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6200                                         command_print(CMD_CTX, "Unsupported alignment");
6201                                         goto next;
6202                                 } else if (retval != ERROR_OK) {
6203                                         command_print(CMD_CTX, "Memory read failed");
6204                                         goto next;
6205                                 }
6206
6207                                 /* replay on host */
6208                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6209
6210                                 /* check result */
6211                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
6212                                 if (result == 0) {
6213                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6214                                                         duration_elapsed(&bench),
6215                                                         duration_kbps(&bench, count * size));
6216                                 } else {
6217                                         command_print(CMD_CTX, "Compare failed");
6218                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
6219                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
6220                                 }
6221 next:
6222                                 free(read_ref);
6223                                 free(read_buf);
6224                         }
6225                 }
6226         }
6227
6228 out:
6229         free(test_pattern);
6230
6231         if (wa != NULL)
6232                 target_free_working_area(target, wa);
6233
6234         /* Test writes */
6235         num_bytes = test_size + 4 + 4 + 4;
6236
6237         retval = target_alloc_working_area(target, num_bytes, &wa);
6238         if (retval != ERROR_OK) {
6239                 LOG_ERROR("Not enough working area");
6240                 return ERROR_FAIL;
6241         }
6242
6243         test_pattern = malloc(num_bytes);
6244
6245         for (size_t i = 0; i < num_bytes; i++)
6246                 test_pattern[i] = rand();
6247
6248         for (int host_offset = 0; host_offset <= 1; host_offset++) {
6249                 for (int size = 1; size <= 4; size *= 2) {
6250                         for (int offset = 0; offset < 4; offset++) {
6251                                 uint32_t count = test_size / size;
6252                                 size_t host_bufsiz = count * size + host_offset;
6253                                 uint8_t *read_ref = malloc(num_bytes);
6254                                 uint8_t *read_buf = malloc(num_bytes);
6255                                 uint8_t *write_buf = malloc(host_bufsiz);
6256
6257                                 for (size_t i = 0; i < host_bufsiz; i++)
6258                                         write_buf[i] = rand();
6259                                 command_print_sameline(CMD_CTX,
6260                                                 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6261                                                 size, offset, host_offset ? "un" : "");
6262
6263                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6264                                 if (retval != ERROR_OK) {
6265                                         command_print(CMD_CTX, "Test pattern write failed");
6266                                         goto nextw;
6267                                 }
6268
6269                                 /* replay on host */
6270                                 memcpy(read_ref, test_pattern, num_bytes);
6271                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6272
6273                                 struct duration bench;
6274                                 duration_start(&bench);
6275
6276                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
6277                                                 write_buf + host_offset);
6278
6279                                 duration_measure(&bench);
6280
6281                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6282                                         command_print(CMD_CTX, "Unsupported alignment");
6283                                         goto nextw;
6284                                 } else if (retval != ERROR_OK) {
6285                                         command_print(CMD_CTX, "Memory write failed");
6286                                         goto nextw;
6287                                 }
6288
6289                                 /* read back */
6290                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6291                                 if (retval != ERROR_OK) {
6292                                         command_print(CMD_CTX, "Test pattern write failed");
6293                                         goto nextw;
6294                                 }
6295
6296                                 /* check result */
6297                                 int result = memcmp(read_ref, read_buf, num_bytes);
6298                                 if (result == 0) {
6299                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
6300                                                         duration_elapsed(&bench),
6301                                                         duration_kbps(&bench, count * size));
6302                                 } else {
6303                                         command_print(CMD_CTX, "Compare failed");
6304                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
6305                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
6306                                 }
6307 nextw:
6308                                 free(read_ref);
6309                                 free(read_buf);
6310                         }
6311                 }
6312         }
6313
6314         free(test_pattern);
6315
6316         if (wa != NULL)
6317                 target_free_working_area(target, wa);
6318         return retval;
6319 }
6320
6321 static const struct command_registration target_exec_command_handlers[] = {
6322         {
6323                 .name = "fast_load_image",
6324                 .handler = handle_fast_load_image_command,
6325                 .mode = COMMAND_ANY,
6326                 .help = "Load image into server memory for later use by "
6327                         "fast_load; primarily for profiling",
6328                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6329                         "[min_address [max_length]]",
6330         },
6331         {
6332                 .name = "fast_load",
6333                 .handler = handle_fast_load_command,
6334                 .mode = COMMAND_EXEC,
6335                 .help = "loads active fast load image to current target "
6336                         "- mainly for profiling purposes",
6337                 .usage = "",
6338         },
6339         {
6340                 .name = "profile",
6341                 .handler = handle_profile_command,
6342                 .mode = COMMAND_EXEC,
6343                 .usage = "seconds filename [start end]",
6344                 .help = "profiling samples the CPU PC",
6345         },
6346         /** @todo don't register virt2phys() unless target supports it */
6347         {
6348                 .name = "virt2phys",
6349                 .handler = handle_virt2phys_command,
6350                 .mode = COMMAND_ANY,
6351                 .help = "translate a virtual address into a physical address",
6352                 .usage = "virtual_address",
6353         },
6354         {
6355                 .name = "reg",
6356                 .handler = handle_reg_command,
6357                 .mode = COMMAND_EXEC,
6358                 .help = "display (reread from target with \"force\") or set a register; "
6359                         "with no arguments, displays all registers and their values",
6360                 .usage = "[(register_number|register_name) [(value|'force')]]",
6361         },
6362         {
6363                 .name = "poll",
6364                 .handler = handle_poll_command,
6365                 .mode = COMMAND_EXEC,
6366                 .help = "poll target state; or reconfigure background polling",
6367                 .usage = "['on'|'off']",
6368         },
6369         {
6370                 .name = "wait_halt",
6371                 .handler = handle_wait_halt_command,
6372                 .mode = COMMAND_EXEC,
6373                 .help = "wait up to the specified number of milliseconds "
6374                         "(default 5000) for a previously requested halt",
6375                 .usage = "[milliseconds]",
6376         },
6377         {
6378                 .name = "halt",
6379                 .handler = handle_halt_command,
6380                 .mode = COMMAND_EXEC,
6381                 .help = "request target to halt, then wait up to the specified"
6382                         "number of milliseconds (default 5000) for it to complete",
6383                 .usage = "[milliseconds]",
6384         },
6385         {
6386                 .name = "resume",
6387                 .handler = handle_resume_command,
6388                 .mode = COMMAND_EXEC,
6389                 .help = "resume target execution from current PC or address",
6390                 .usage = "[address]",
6391         },
6392         {
6393                 .name = "reset",
6394                 .handler = handle_reset_command,
6395                 .mode = COMMAND_EXEC,
6396                 .usage = "[run|halt|init]",
6397                 .help = "Reset all targets into the specified mode."
6398                         "Default reset mode is run, if not given.",
6399         },
6400         {
6401                 .name = "soft_reset_halt",
6402                 .handler = handle_soft_reset_halt_command,
6403                 .mode = COMMAND_EXEC,
6404                 .usage = "",
6405                 .help = "halt the target and do a soft reset",
6406         },
6407         {
6408                 .name = "step",
6409                 .handler = handle_step_command,
6410                 .mode = COMMAND_EXEC,
6411                 .help = "step one instruction from current PC or address",
6412                 .usage = "[address]",
6413         },
6414         {
6415                 .name = "mdd",
6416                 .handler = handle_md_command,
6417                 .mode = COMMAND_EXEC,
6418                 .help = "display memory words",
6419                 .usage = "['phys'] address [count]",
6420         },
6421         {
6422                 .name = "mdw",
6423                 .handler = handle_md_command,
6424                 .mode = COMMAND_EXEC,
6425                 .help = "display memory words",
6426                 .usage = "['phys'] address [count]",
6427         },
6428         {
6429                 .name = "mdh",
6430                 .handler = handle_md_command,
6431                 .mode = COMMAND_EXEC,
6432                 .help = "display memory half-words",
6433                 .usage = "['phys'] address [count]",
6434         },
6435         {
6436                 .name = "mdb",
6437                 .handler = handle_md_command,
6438                 .mode = COMMAND_EXEC,
6439                 .help = "display memory bytes",
6440                 .usage = "['phys'] address [count]",
6441         },
6442         {
6443                 .name = "mwd",
6444                 .handler = handle_mw_command,
6445                 .mode = COMMAND_EXEC,
6446                 .help = "write memory word",
6447                 .usage = "['phys'] address value [count]",
6448         },
6449         {
6450                 .name = "mww",
6451                 .handler = handle_mw_command,
6452                 .mode = COMMAND_EXEC,
6453                 .help = "write memory word",
6454                 .usage = "['phys'] address value [count]",
6455         },
6456         {
6457                 .name = "mwh",
6458                 .handler = handle_mw_command,
6459                 .mode = COMMAND_EXEC,
6460                 .help = "write memory half-word",
6461                 .usage = "['phys'] address value [count]",
6462         },
6463         {
6464                 .name = "mwb",
6465                 .handler = handle_mw_command,
6466                 .mode = COMMAND_EXEC,
6467                 .help = "write memory byte",
6468                 .usage = "['phys'] address value [count]",
6469         },
6470         {
6471                 .name = "bp",
6472                 .handler = handle_bp_command,
6473                 .mode = COMMAND_EXEC,
6474                 .help = "list or set hardware or software breakpoint",
6475                 .usage = "<address> [<asid>] <length> ['hw'|'hw_ctx']",
6476         },
6477         {
6478                 .name = "rbp",
6479                 .handler = handle_rbp_command,
6480                 .mode = COMMAND_EXEC,
6481                 .help = "remove breakpoint",
6482                 .usage = "address",
6483         },
6484         {
6485                 .name = "wp",
6486                 .handler = handle_wp_command,
6487                 .mode = COMMAND_EXEC,
6488                 .help = "list (no params) or create watchpoints",
6489                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6490         },
6491         {
6492                 .name = "rwp",
6493                 .handler = handle_rwp_command,
6494                 .mode = COMMAND_EXEC,
6495                 .help = "remove watchpoint",
6496                 .usage = "address",
6497         },
6498         {
6499                 .name = "load_image",
6500                 .handler = handle_load_image_command,
6501                 .mode = COMMAND_EXEC,
6502                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6503                         "[min_address] [max_length]",
6504         },
6505         {
6506                 .name = "dump_image",
6507                 .handler = handle_dump_image_command,
6508                 .mode = COMMAND_EXEC,
6509                 .usage = "filename address size",
6510         },
6511         {
6512                 .name = "verify_image_checksum",
6513                 .handler = handle_verify_image_checksum_command,
6514                 .mode = COMMAND_EXEC,
6515                 .usage = "filename [offset [type]]",
6516         },
6517         {
6518                 .name = "verify_image",
6519                 .handler = handle_verify_image_command,
6520                 .mode = COMMAND_EXEC,
6521                 .usage = "filename [offset [type]]",
6522         },
6523         {
6524                 .name = "test_image",
6525                 .handler = handle_test_image_command,
6526                 .mode = COMMAND_EXEC,
6527                 .usage = "filename [offset [type]]",
6528         },
6529         {
6530                 .name = "mem2array",
6531                 .mode = COMMAND_EXEC,
6532                 .jim_handler = jim_mem2array,
6533                 .help = "read 8/16/32 bit memory and return as a TCL array "
6534                         "for script processing",
6535                 .usage = "arrayname bitwidth address count",
6536         },
6537         {
6538                 .name = "array2mem",
6539                 .mode = COMMAND_EXEC,
6540                 .jim_handler = jim_array2mem,
6541                 .help = "convert a TCL array to memory locations "
6542                         "and write the 8/16/32 bit values",
6543                 .usage = "arrayname bitwidth address count",
6544         },
6545         {
6546                 .name = "reset_nag",
6547                 .handler = handle_target_reset_nag,
6548                 .mode = COMMAND_ANY,
6549                 .help = "Nag after each reset about options that could have been "
6550                                 "enabled to improve performance. ",
6551                 .usage = "['enable'|'disable']",
6552         },
6553         {
6554                 .name = "ps",
6555                 .handler = handle_ps_command,
6556                 .mode = COMMAND_EXEC,
6557                 .help = "list all tasks ",
6558                 .usage = " ",
6559         },
6560         {
6561                 .name = "test_mem_access",
6562                 .handler = handle_test_mem_access_command,
6563                 .mode = COMMAND_EXEC,
6564                 .help = "Test the target's memory access functions",
6565                 .usage = "size",
6566         },
6567
6568         COMMAND_REGISTRATION_DONE
6569 };
6570 static int target_register_user_commands(struct command_context *cmd_ctx)
6571 {
6572         int retval = ERROR_OK;
6573         retval = target_request_register_commands(cmd_ctx);
6574         if (retval != ERROR_OK)
6575                 return retval;
6576
6577         retval = trace_register_commands(cmd_ctx);
6578         if (retval != ERROR_OK)
6579                 return retval;
6580
6581
6582         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6583 }