fixed gaffe for default examine implementation
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55
56 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         FILE *script;
224         struct command_context_s *cmd_ctx = priv;
225         
226         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
227         {
228                 target_unregister_event_callback(target_init_handler, priv);
229
230                 script = open_file_from_path(target->reset_script, "r");
231                 if (!script)
232                 {
233                         LOG_ERROR("couldn't open script file %s", target->reset_script);
234                                 return ERROR_OK;
235                 }
236
237                 LOG_INFO("executing reset script '%s'", target->reset_script);
238                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
239                 fclose(script);
240
241                 jtag_execute_queue();
242         }
243         
244         return ERROR_OK;
245 }
246
247 int target_run_and_halt_handler(void *priv)
248 {
249         target_t *target = priv;
250         
251         target_halt(target);
252         
253         return ERROR_OK;
254 }
255
256 int target_poll(struct target_s *target)
257 {
258         /* We can't poll until after examine */
259         if (!target->type->examined)
260         {
261                 /* Fail silently lest we pollute the log */
262                 return ERROR_FAIL;
263         }
264         return target->type->poll(target);
265 }
266
267 int target_halt(struct target_s *target)
268 {
269         /* We can't poll until after examine */
270         if (!target->type->examined)
271         {
272                 LOG_ERROR("Target not examined yet");
273                 return ERROR_FAIL;
274         }
275         return target->type->halt(target);
276 }
277
278 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
279 {
280         /* We can't poll until after examine */
281         if (!target->type->examined)
282         {
283                 LOG_ERROR("Target not examined yet");
284                 return ERROR_FAIL;
285         }
286         return target->type->resume(target, current, address, handle_breakpoints, debug_execution);
287 }
288
289
290 int target_process_reset(struct command_context_s *cmd_ctx)
291 {
292         int retval = ERROR_OK;
293         target_t *target;
294         struct timeval timeout, now;
295
296         jtag->speed(jtag_speed);
297
298         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
299                 return retval;
300         
301         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
302                 return retval;
303         
304         /* prepare reset_halt where necessary */
305         target = targets;
306         while (target)
307         {
308                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
309                 {
310                         switch (target->reset_mode)
311                         {
312                                 case RESET_HALT:
313                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
314                                         target->reset_mode = RESET_RUN_AND_HALT;
315                                         break;
316                                 case RESET_INIT:
317                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
318                                         target->reset_mode = RESET_RUN_AND_INIT;
319                                         break;
320                                 default:
321                                         break;
322                         } 
323                 }
324                 target = target->next;
325         }
326         
327         target = targets;
328         while (target)
329         {
330                 /* we have no idea what state the target is in, so we
331                  * have to drop working areas
332                  */
333                 target_free_all_working_areas_restore(target, 0);
334                 target->type->assert_reset(target);
335                 target = target->next;
336         }
337         if ((retval = jtag_execute_queue()) != ERROR_OK)
338         {
339                 LOG_WARNING("JTAG communication failed asserting reset.");
340                 retval = ERROR_OK;
341         }
342         
343         /* request target halt if necessary, and schedule further action */
344         target = targets;
345         while (target)
346         {
347                 switch (target->reset_mode)
348                 {
349                         case RESET_RUN:
350                                 /* nothing to do if target just wants to be run */
351                                 break;
352                         case RESET_RUN_AND_HALT:
353                                 /* schedule halt */
354                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
355                                 break;
356                         case RESET_RUN_AND_INIT:
357                                 /* schedule halt */
358                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
359                                 target_register_event_callback(target_init_handler, cmd_ctx);
360                                 break;
361                         case RESET_HALT:
362                                 target_halt(target);
363                                 break;
364                         case RESET_INIT:
365                                 target_halt(target);
366                                 target_register_event_callback(target_init_handler, cmd_ctx);
367                                 break;
368                         default:
369                                 LOG_ERROR("BUG: unknown target->reset_mode");
370                 }
371                 target = target->next;
372         }
373         
374         if ((retval = jtag_execute_queue()) != ERROR_OK)
375         {
376                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
377                 retval = ERROR_OK;              
378         }
379         
380         target = targets;
381         while (target)
382         {
383                 target->type->deassert_reset(target);
384                 target = target->next;
385         }
386         
387         if ((retval = jtag_execute_queue()) != ERROR_OK)
388         {
389                 LOG_WARNING("JTAG communication failed while deasserting reset.");
390                 retval = ERROR_OK;
391         }
392         
393         LOG_DEBUG("Waiting for halted stated as approperiate");
394         
395         /* Wait for reset to complete, maximum 5 seconds. */    
396         gettimeofday(&timeout, NULL);
397         timeval_add_time(&timeout, 5, 0);
398         for(;;)
399         {
400                 gettimeofday(&now, NULL);
401                 
402                 target_call_timer_callbacks_now();
403                 
404                 target = targets;
405                 while (target)
406                 {
407                         LOG_DEBUG("Polling target");
408                         target_poll(target);
409                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
410                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
411                                         (target->reset_mode == RESET_HALT) ||
412                                         (target->reset_mode == RESET_INIT))
413                         {
414                                 if (target->state != TARGET_HALTED)
415                                 {
416                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
417                                         {
418                                                 LOG_USER("Timed out waiting for halt after reset");
419                                                 goto done;
420                                         }
421                                         /* this will send alive messages on e.g. GDB remote protocol. */
422                                         usleep(500*1000); 
423                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
424                                         goto again;
425                                 }
426                         }
427                         target = target->next;
428                 }
429                 /* All targets we're waiting for are halted */
430                 break;
431                 
432                 again:;
433         }
434         done:
435         
436         
437         /* We want any events to be processed before the prompt */
438         target_call_timer_callbacks_now();
439
440         /* if we timed out we need to unregister these handlers */
441         target = targets;
442         while (target)
443         {
444                 target_unregister_timer_callback(target_run_and_halt_handler, target);
445                 target = target->next;
446         }
447         target_unregister_event_callback(target_init_handler, cmd_ctx);
448                                 
449         
450         jtag->speed(jtag_speed_post_reset);
451         
452         return retval;
453 }
454
455 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
456 {
457         *physical = virtual;
458         return ERROR_OK;
459 }
460
461 static int default_mmu(struct target_s *target, int *enabled)
462 {
463         *enabled = 0;
464         return ERROR_OK;
465 }
466
467 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
468 {
469         target->type->examined = 1;
470         return ERROR_OK;
471 }
472
473
474 /* Targets that correctly implement init+examine, i.e.
475  * no communication with target during init:
476  * 
477  * XScale 
478  */
479 int target_examine(struct command_context_s *cmd_ctx)
480 {
481         int retval = ERROR_OK;
482         target_t *target = targets;
483         while (target)
484         {
485                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
486                         return retval;
487                 target = target->next;
488         }
489         return retval;
490 }
491
492
493 int target_init(struct command_context_s *cmd_ctx)
494 {
495         target_t *target = targets;
496         
497         while (target)
498         {
499                 target->type->examined = 0;
500                 if (target->type->examine == NULL)
501                 {
502                         target->type->examine = default_examine;
503                 }
504                 
505                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
506                 {
507                         LOG_ERROR("target '%s' init failed", target->type->name);
508                         exit(-1);
509                 }
510                 
511                 /* Set up default functions if none are provided by target */
512                 if (target->type->virt2phys == NULL)
513                 {
514                         target->type->virt2phys = default_virt2phys;
515                 }
516                 if (target->type->mmu == NULL)
517                 {
518                         target->type->mmu = default_mmu;
519                 }
520                 target = target->next;
521         }
522         
523         if (targets)
524         {
525                 target_register_user_commands(cmd_ctx);
526                 target_register_timer_callback(handle_target, 100, 1, NULL);
527         }
528                 
529         return ERROR_OK;
530 }
531
532 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
533 {
534         target_event_callback_t **callbacks_p = &target_event_callbacks;
535         
536         if (callback == NULL)
537         {
538                 return ERROR_INVALID_ARGUMENTS;
539         }
540         
541         if (*callbacks_p)
542         {
543                 while ((*callbacks_p)->next)
544                         callbacks_p = &((*callbacks_p)->next);
545                 callbacks_p = &((*callbacks_p)->next);
546         }
547         
548         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
549         (*callbacks_p)->callback = callback;
550         (*callbacks_p)->priv = priv;
551         (*callbacks_p)->next = NULL;
552         
553         return ERROR_OK;
554 }
555
556 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
557 {
558         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
559         struct timeval now;
560         
561         if (callback == NULL)
562         {
563                 return ERROR_INVALID_ARGUMENTS;
564         }
565         
566         if (*callbacks_p)
567         {
568                 while ((*callbacks_p)->next)
569                         callbacks_p = &((*callbacks_p)->next);
570                 callbacks_p = &((*callbacks_p)->next);
571         }
572         
573         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
574         (*callbacks_p)->callback = callback;
575         (*callbacks_p)->periodic = periodic;
576         (*callbacks_p)->time_ms = time_ms;
577         
578         gettimeofday(&now, NULL);
579         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
580         time_ms -= (time_ms % 1000);
581         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
582         if ((*callbacks_p)->when.tv_usec > 1000000)
583         {
584                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
585                 (*callbacks_p)->when.tv_sec += 1;
586         }
587         
588         (*callbacks_p)->priv = priv;
589         (*callbacks_p)->next = NULL;
590         
591         return ERROR_OK;
592 }
593
594 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
595 {
596         target_event_callback_t **p = &target_event_callbacks;
597         target_event_callback_t *c = target_event_callbacks;
598         
599         if (callback == NULL)
600         {
601                 return ERROR_INVALID_ARGUMENTS;
602         }
603                 
604         while (c)
605         {
606                 target_event_callback_t *next = c->next;
607                 if ((c->callback == callback) && (c->priv == priv))
608                 {
609                         *p = next;
610                         free(c);
611                         return ERROR_OK;
612                 }
613                 else
614                         p = &(c->next);
615                 c = next;
616         }
617         
618         return ERROR_OK;
619 }
620
621 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
622 {
623         target_timer_callback_t **p = &target_timer_callbacks;
624         target_timer_callback_t *c = target_timer_callbacks;
625         
626         if (callback == NULL)
627         {
628                 return ERROR_INVALID_ARGUMENTS;
629         }
630                 
631         while (c)
632         {
633                 target_timer_callback_t *next = c->next;
634                 if ((c->callback == callback) && (c->priv == priv))
635                 {
636                         *p = next;
637                         free(c);
638                         return ERROR_OK;
639                 }
640                 else
641                         p = &(c->next);
642                 c = next;
643         }
644         
645         return ERROR_OK;
646 }
647
648 int target_call_event_callbacks(target_t *target, enum target_event event)
649 {
650         target_event_callback_t *callback = target_event_callbacks;
651         target_event_callback_t *next_callback;
652         
653         LOG_DEBUG("target event %i", event);
654         
655         while (callback)
656         {
657                 next_callback = callback->next;
658                 callback->callback(target, event, callback->priv);
659                 callback = next_callback;
660         }
661         
662         return ERROR_OK;
663 }
664
665 static int target_call_timer_callbacks_check_time(int checktime)
666 {
667         target_timer_callback_t *callback = target_timer_callbacks;
668         target_timer_callback_t *next_callback;
669         struct timeval now;
670
671         gettimeofday(&now, NULL);
672         
673         while (callback)
674         {
675                 next_callback = callback->next;
676                 
677                 if ((!checktime&&callback->periodic)||
678                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
679                                                 || (now.tv_sec > callback->when.tv_sec)))
680                 {
681                         callback->callback(callback->priv);
682                         if (callback->periodic)
683                         {
684                                 int time_ms = callback->time_ms;
685                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
686                                 time_ms -= (time_ms % 1000);
687                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
688                                 if (callback->when.tv_usec > 1000000)
689                                 {
690                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
691                                         callback->when.tv_sec += 1;
692                                 }
693                         }
694                         else
695                                 target_unregister_timer_callback(callback->callback, callback->priv);
696                 }
697                         
698                 callback = next_callback;
699         }
700         
701         return ERROR_OK;
702 }
703
704 int target_call_timer_callbacks()
705 {
706         return target_call_timer_callbacks_check_time(1);
707 }
708
709 /* invoke periodic callbacks immediately */
710 int target_call_timer_callbacks_now()
711 {
712         return target_call_timer_callbacks(0);
713 }
714
715
716 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
717 {
718         working_area_t *c = target->working_areas;
719         working_area_t *new_wa = NULL;
720         
721         /* Reevaluate working area address based on MMU state*/
722         if (target->working_areas == NULL)
723         {
724                 int retval;
725                 int enabled;
726                 retval = target->type->mmu(target, &enabled);
727                 if (retval != ERROR_OK)
728                 {
729                         return retval;
730                 }
731                 if (enabled)
732                 {
733                         target->working_area = target->working_area_virt;
734                 }
735                 else
736                 {
737                         target->working_area = target->working_area_phys;
738                 }
739         }
740         
741         /* only allocate multiples of 4 byte */
742         if (size % 4)
743         {
744                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
745                 size = CEIL(size, 4);
746         }
747         
748         /* see if there's already a matching working area */
749         while (c)
750         {
751                 if ((c->free) && (c->size == size))
752                 {
753                         new_wa = c;
754                         break;
755                 }
756                 c = c->next;
757         }
758         
759         /* if not, allocate a new one */
760         if (!new_wa)
761         {
762                 working_area_t **p = &target->working_areas;
763                 u32 first_free = target->working_area;
764                 u32 free_size = target->working_area_size;
765                 
766                 LOG_DEBUG("allocating new working area");
767                 
768                 c = target->working_areas;
769                 while (c)
770                 {
771                         first_free += c->size;
772                         free_size -= c->size;
773                         p = &c->next;
774                         c = c->next;
775                 }
776                 
777                 if (free_size < size)
778                 {
779                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
780                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
781                 }
782                 
783                 new_wa = malloc(sizeof(working_area_t));
784                 new_wa->next = NULL;
785                 new_wa->size = size;
786                 new_wa->address = first_free;
787                 
788                 if (target->backup_working_area)
789                 {
790                         new_wa->backup = malloc(new_wa->size);
791                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
792                 }
793                 else
794                 {
795                         new_wa->backup = NULL;
796                 }
797                 
798                 /* put new entry in list */
799                 *p = new_wa;
800         }
801         
802         /* mark as used, and return the new (reused) area */
803         new_wa->free = 0;
804         *area = new_wa;
805         
806         /* user pointer */
807         new_wa->user = area;
808         
809         return ERROR_OK;
810 }
811
812 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
813 {
814         if (area->free)
815                 return ERROR_OK;
816         
817         if (restore&&target->backup_working_area)
818                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
819         
820         area->free = 1;
821         
822         /* mark user pointer invalid */
823         *area->user = NULL;
824         area->user = NULL;
825         
826         return ERROR_OK;
827 }
828
829 int target_free_working_area(struct target_s *target, working_area_t *area)
830 {
831         return target_free_working_area_restore(target, area, 1);
832 }
833
834 int target_free_all_working_areas_restore(struct target_s *target, int restore)
835 {
836         working_area_t *c = target->working_areas;
837
838         while (c)
839         {
840                 working_area_t *next = c->next;
841                 target_free_working_area_restore(target, c, restore);
842                 
843                 if (c->backup)
844                         free(c->backup);
845                 
846                 free(c);
847                 
848                 c = next;
849         }
850         
851         target->working_areas = NULL;
852         
853         return ERROR_OK;
854 }
855
856 int target_free_all_working_areas(struct target_s *target)
857 {
858         return target_free_all_working_areas_restore(target, 1); 
859 }
860
861 int target_register_commands(struct command_context_s *cmd_ctx)
862 {
863         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
864         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
865         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
866         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
867         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
868         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
869         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
870
871         return ERROR_OK;
872 }
873
874 int target_arch_state(struct target_s *target)
875 {
876         int retval;
877         if (target==NULL)
878         {
879                 LOG_USER("No target has been configured");
880                 return ERROR_OK;
881         }
882         
883         LOG_USER("target state: %s", target_state_strings[target->state]);
884         
885         if (target->state!=TARGET_HALTED)
886                 return ERROR_OK;
887         
888         retval=target->type->arch_state(target);
889         return retval;
890 }
891
892 /* Single aligned words are guaranteed to use 16 or 32 bit access 
893  * mode respectively, otherwise data is handled as quickly as 
894  * possible
895  */
896 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
897 {
898         int retval;
899         
900         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
901         
902         if (((address % 2) == 0) && (size == 2))
903         {
904                 return target->type->write_memory(target, address, 2, 1, buffer);
905         }
906         
907         /* handle unaligned head bytes */
908         if (address % 4)
909         {
910                 int unaligned = 4 - (address % 4);
911                 
912                 if (unaligned > size)
913                         unaligned = size;
914
915                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
916                         return retval;
917                 
918                 buffer += unaligned;
919                 address += unaligned;
920                 size -= unaligned;
921         }
922                 
923         /* handle aligned words */
924         if (size >= 4)
925         {
926                 int aligned = size - (size % 4);
927         
928                 /* use bulk writes above a certain limit. This may have to be changed */
929                 if (aligned > 128)
930                 {
931                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
932                                 return retval;
933                 }
934                 else
935                 {
936                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
937                                 return retval;
938                 }
939                 
940                 buffer += aligned;
941                 address += aligned;
942                 size -= aligned;
943         }
944         
945         /* handle tail writes of less than 4 bytes */
946         if (size > 0)
947         {
948                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
949                         return retval;
950         }
951         
952         return ERROR_OK;
953 }
954
955
956 /* Single aligned words are guaranteed to use 16 or 32 bit access 
957  * mode respectively, otherwise data is handled as quickly as 
958  * possible
959  */
960 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
961 {
962         int retval;
963         
964         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
965         
966         if (((address % 2) == 0) && (size == 2))
967         {
968                 return target->type->read_memory(target, address, 2, 1, buffer);
969         }
970         
971         /* handle unaligned head bytes */
972         if (address % 4)
973         {
974                 int unaligned = 4 - (address % 4);
975                 
976                 if (unaligned > size)
977                         unaligned = size;
978
979                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
980                         return retval;
981                 
982                 buffer += unaligned;
983                 address += unaligned;
984                 size -= unaligned;
985         }
986                 
987         /* handle aligned words */
988         if (size >= 4)
989         {
990                 int aligned = size - (size % 4);
991         
992                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
993                         return retval;
994                 
995                 buffer += aligned;
996                 address += aligned;
997                 size -= aligned;
998         }
999         
1000         /* handle tail writes of less than 4 bytes */
1001         if (size > 0)
1002         {
1003                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1004                         return retval;
1005         }
1006         
1007         return ERROR_OK;
1008 }
1009
1010 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1011 {
1012         u8 *buffer;
1013         int retval;
1014         int i;
1015         u32 checksum = 0;
1016         
1017         if ((retval = target->type->checksum_memory(target, address,
1018                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1019         {
1020                 buffer = malloc(size);
1021                 if (buffer == NULL)
1022                 {
1023                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1024                         return ERROR_INVALID_ARGUMENTS;
1025                 }
1026                 retval = target_read_buffer(target, address, size, buffer);
1027                 if (retval != ERROR_OK)
1028                 {
1029                         free(buffer);
1030                         return retval;
1031                 }
1032
1033                 /* convert to target endianess */
1034                 for (i = 0; i < (size/sizeof(u32)); i++)
1035                 {
1036                         u32 target_data;
1037                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1038                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1039                 }
1040
1041                 retval = image_calculate_checksum( buffer, size, &checksum );
1042                 free(buffer);
1043         }
1044         
1045         *crc = checksum;
1046         
1047         return retval;
1048 }
1049
1050 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1051 {
1052         u8 value_buf[4];
1053
1054         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1055         
1056         if (retval == ERROR_OK)
1057         {
1058                 *value = target_buffer_get_u32(target, value_buf);
1059                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1060         }
1061         else
1062         {
1063                 *value = 0x0;
1064                 LOG_DEBUG("address: 0x%8.8x failed", address);
1065         }
1066         
1067         return retval;
1068 }
1069
1070 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1071 {
1072         u8 value_buf[2];
1073         
1074         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1075         
1076         if (retval == ERROR_OK)
1077         {
1078                 *value = target_buffer_get_u16(target, value_buf);
1079                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1080         }
1081         else
1082         {
1083                 *value = 0x0;
1084                 LOG_DEBUG("address: 0x%8.8x failed", address);
1085         }
1086         
1087         return retval;
1088 }
1089
1090 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1091 {
1092         int retval = target->type->read_memory(target, address, 1, 1, value);
1093
1094         if (retval == ERROR_OK)
1095         {
1096                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1097         }
1098         else
1099         {
1100                 *value = 0x0;
1101                 LOG_DEBUG("address: 0x%8.8x failed", address);
1102         }
1103         
1104         return retval;
1105 }
1106
1107 int target_write_u32(struct target_s *target, u32 address, u32 value)
1108 {
1109         int retval;
1110         u8 value_buf[4];
1111
1112         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1113
1114         target_buffer_set_u32(target, value_buf, value);        
1115         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1116         {
1117                 LOG_DEBUG("failed: %i", retval);
1118         }
1119         
1120         return retval;
1121 }
1122
1123 int target_write_u16(struct target_s *target, u32 address, u16 value)
1124 {
1125         int retval;
1126         u8 value_buf[2];
1127         
1128         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1129
1130         target_buffer_set_u16(target, value_buf, value);        
1131         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1132         {
1133                 LOG_DEBUG("failed: %i", retval);
1134         }
1135         
1136         return retval;
1137 }
1138
1139 int target_write_u8(struct target_s *target, u32 address, u8 value)
1140 {
1141         int retval;
1142         
1143         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1144
1145         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1146         {
1147                 LOG_DEBUG("failed: %i", retval);
1148         }
1149         
1150         return retval;
1151 }
1152
1153 int target_register_user_commands(struct command_context_s *cmd_ctx)
1154 {
1155         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1156         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1157         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1158         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1159         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1160         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1161         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1162         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1163
1164         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1165         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1166         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1167         
1168         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1169         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1170         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1171         
1172         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1173         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1174         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1175         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1176         
1177         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1178         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1179         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1180         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1181         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1182         
1183         target_request_register_commands(cmd_ctx);
1184         trace_register_commands(cmd_ctx);
1185         
1186         return ERROR_OK;
1187 }
1188
1189 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1190 {
1191         target_t *target = targets;
1192         int count = 0;
1193         
1194         if (argc == 1)
1195         {
1196                 int num = strtoul(args[0], NULL, 0);
1197                 
1198                 while (target)
1199                 {
1200                         count++;
1201                         target = target->next;
1202                 }
1203                 
1204                 if (num < count)
1205                         cmd_ctx->current_target = num;
1206                 else
1207                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1208                         
1209                 return ERROR_OK;
1210         }
1211                 
1212         while (target)
1213         {
1214                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1215                 target = target->next;
1216         }
1217         
1218         return ERROR_OK;
1219 }
1220
1221 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1222 {
1223         int i;
1224         int found = 0;
1225         
1226         if (argc < 3)
1227         {
1228                 return ERROR_COMMAND_SYNTAX_ERROR;
1229         }
1230         
1231         /* search for the specified target */
1232         if (args[0] && (args[0][0] != 0))
1233         {
1234                 for (i = 0; target_types[i]; i++)
1235                 {
1236                         if (strcmp(args[0], target_types[i]->name) == 0)
1237                         {
1238                                 target_t **last_target_p = &targets;
1239                                 
1240                                 /* register target specific commands */
1241                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1242                                 {
1243                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1244                                         exit(-1);
1245                                 }
1246
1247                                 if (*last_target_p)
1248                                 {
1249                                         while ((*last_target_p)->next)
1250                                                 last_target_p = &((*last_target_p)->next);
1251                                         last_target_p = &((*last_target_p)->next);
1252                                 }
1253
1254                                 *last_target_p = malloc(sizeof(target_t));
1255                                 
1256                                 (*last_target_p)->type = target_types[i];
1257                                 
1258                                 if (strcmp(args[1], "big") == 0)
1259                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1260                                 else if (strcmp(args[1], "little") == 0)
1261                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1262                                 else
1263                                 {
1264                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1265                                         return ERROR_COMMAND_SYNTAX_ERROR;
1266                                 }
1267                                 
1268                                 /* what to do on a target reset */
1269                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1270                                 if (strcmp(args[2], "reset_halt") == 0)
1271                                         (*last_target_p)->reset_mode = RESET_HALT;
1272                                 else if (strcmp(args[2], "reset_run") == 0)
1273                                         (*last_target_p)->reset_mode = RESET_RUN;
1274                                 else if (strcmp(args[2], "reset_init") == 0)
1275                                         (*last_target_p)->reset_mode = RESET_INIT;
1276                                 else if (strcmp(args[2], "run_and_halt") == 0)
1277                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1278                                 else if (strcmp(args[2], "run_and_init") == 0)
1279                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1280                                 else
1281                                 {
1282                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1283                                         args--;
1284                                         argc++;
1285                                 }
1286                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1287                                 
1288                                 (*last_target_p)->reset_script = NULL;
1289                                 (*last_target_p)->post_halt_script = NULL;
1290                                 (*last_target_p)->pre_resume_script = NULL;
1291                                 (*last_target_p)->gdb_program_script = NULL;
1292                                 
1293                                 (*last_target_p)->working_area = 0x0;
1294                                 (*last_target_p)->working_area_size = 0x0;
1295                                 (*last_target_p)->working_areas = NULL;
1296                                 (*last_target_p)->backup_working_area = 0;
1297                                 
1298                                 (*last_target_p)->state = TARGET_UNKNOWN;
1299                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1300                                 (*last_target_p)->reg_cache = NULL;
1301                                 (*last_target_p)->breakpoints = NULL;
1302                                 (*last_target_p)->watchpoints = NULL;
1303                                 (*last_target_p)->next = NULL;
1304                                 (*last_target_p)->arch_info = NULL;
1305                                 
1306                                 /* initialize trace information */
1307                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1308                                 (*last_target_p)->trace_info->num_trace_points = 0;
1309                                 (*last_target_p)->trace_info->trace_points_size = 0;
1310                                 (*last_target_p)->trace_info->trace_points = NULL;
1311                                 (*last_target_p)->trace_info->trace_history_size = 0;
1312                                 (*last_target_p)->trace_info->trace_history = NULL;
1313                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1314                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1315                                 
1316                                 (*last_target_p)->dbgmsg = NULL;
1317                                 (*last_target_p)->dbg_msg_enabled = 0;
1318                                                                 
1319                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1320                                 
1321                                 found = 1;
1322                                 break;
1323                         }
1324                 }
1325         }
1326         
1327         /* no matching target found */
1328         if (!found)
1329         {
1330                 LOG_ERROR("target '%s' not found", args[0]);
1331                 return ERROR_COMMAND_SYNTAX_ERROR;
1332         }
1333
1334         return ERROR_OK;
1335 }
1336
1337 /* usage: target_script <target#> <event> <script_file> */
1338 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1339 {
1340         target_t *target = NULL;
1341         
1342         if (argc < 3)
1343         {
1344                 LOG_ERROR("incomplete target_script command");
1345                 return ERROR_COMMAND_SYNTAX_ERROR;
1346         }
1347         
1348         target = get_target_by_num(strtoul(args[0], NULL, 0));
1349         
1350         if (!target)
1351         {
1352                 return ERROR_COMMAND_SYNTAX_ERROR;
1353         }
1354         
1355         if (strcmp(args[1], "reset") == 0)
1356         {
1357                 if (target->reset_script)
1358                         free(target->reset_script);
1359                 target->reset_script = strdup(args[2]);
1360         }
1361         else if (strcmp(args[1], "post_halt") == 0)
1362         {
1363                 if (target->post_halt_script)
1364                         free(target->post_halt_script);
1365                 target->post_halt_script = strdup(args[2]);
1366         }
1367         else if (strcmp(args[1], "pre_resume") == 0)
1368         {
1369                 if (target->pre_resume_script)
1370                         free(target->pre_resume_script);
1371                 target->pre_resume_script = strdup(args[2]);
1372         }
1373         else if (strcmp(args[1], "gdb_program_config") == 0)
1374         {
1375                 if (target->gdb_program_script)
1376                         free(target->gdb_program_script);
1377                 target->gdb_program_script = strdup(args[2]);
1378         }
1379         else
1380         {
1381                 LOG_ERROR("unknown event type: '%s", args[1]);
1382                 return ERROR_COMMAND_SYNTAX_ERROR;
1383         }
1384         
1385         return ERROR_OK;
1386 }
1387
1388 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1389 {
1390         target_t *target = NULL;
1391         
1392         if (argc < 2)
1393         {
1394                 return ERROR_COMMAND_SYNTAX_ERROR;
1395         }
1396         
1397         target = get_target_by_num(strtoul(args[0], NULL, 0));
1398         if (!target)
1399         {
1400                 return ERROR_COMMAND_SYNTAX_ERROR;
1401         }
1402         
1403         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1404         
1405         return ERROR_OK;
1406 }
1407
1408 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1409 {
1410         target_t *target = NULL;
1411         
1412         if ((argc < 4) || (argc > 5))
1413         {
1414                 return ERROR_COMMAND_SYNTAX_ERROR;
1415         }
1416         
1417         target = get_target_by_num(strtoul(args[0], NULL, 0));
1418         if (!target)
1419         {
1420                 return ERROR_COMMAND_SYNTAX_ERROR;
1421         }
1422         target_free_all_working_areas(target);
1423         
1424         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1425         if (argc == 5)
1426         {
1427                 target->working_area_virt = strtoul(args[4], NULL, 0);
1428         }
1429         target->working_area_size = strtoul(args[2], NULL, 0);
1430         
1431         if (strcmp(args[3], "backup") == 0)
1432         {
1433                 target->backup_working_area = 1;
1434         }
1435         else if (strcmp(args[3], "nobackup") == 0)
1436         {
1437                 target->backup_working_area = 0;
1438         }
1439         else
1440         {
1441                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1442                 return ERROR_COMMAND_SYNTAX_ERROR;
1443         }
1444         
1445         return ERROR_OK;
1446 }
1447
1448
1449 /* process target state changes */
1450 int handle_target(void *priv)
1451 {
1452         target_t *target = targets;
1453         
1454         while (target)
1455         {
1456                 if (target_continous_poll)
1457                 {
1458                         /* polling may fail silently until the target has been examined */
1459                         target_poll(target);
1460                 }
1461         
1462                 target = target->next;
1463         }
1464         
1465         return ERROR_OK;
1466 }
1467
1468 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1469 {
1470         target_t *target;
1471         reg_t *reg = NULL;
1472         int count = 0;
1473         char *value;
1474         
1475         LOG_DEBUG("-");
1476         
1477         target = get_current_target(cmd_ctx);
1478         
1479         /* list all available registers for the current target */
1480         if (argc == 0)
1481         {
1482                 reg_cache_t *cache = target->reg_cache;
1483                 
1484                 count = 0;
1485                 while(cache)
1486                 {
1487                         int i;
1488                         for (i = 0; i < cache->num_regs; i++)
1489                         {
1490                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1491                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1492                                 free(value);
1493                         }
1494                         cache = cache->next;
1495                 }
1496                 
1497                 return ERROR_OK;
1498         }
1499         
1500         /* access a single register by its ordinal number */
1501         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1502         {
1503                 int num = strtoul(args[0], NULL, 0);
1504                 reg_cache_t *cache = target->reg_cache;
1505                 
1506                 count = 0;
1507                 while(cache)
1508                 {
1509                         int i;
1510                         for (i = 0; i < cache->num_regs; i++)
1511                         {
1512                                 if (count++ == num)
1513                                 {
1514                                         reg = &cache->reg_list[i];
1515                                         break;
1516                                 }
1517                         }
1518                         if (reg)
1519                                 break;
1520                         cache = cache->next;
1521                 }
1522                 
1523                 if (!reg)
1524                 {
1525                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1526                         return ERROR_OK;
1527                 }
1528         } else /* access a single register by its name */
1529         {
1530                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1531                 
1532                 if (!reg)
1533                 {
1534                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1535                         return ERROR_OK;
1536                 }
1537         }
1538
1539         /* display a register */
1540         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1541         {
1542                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1543                         reg->valid = 0;
1544                 
1545                 if (reg->valid == 0)
1546                 {
1547                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1548                         if (arch_type == NULL)
1549                         {
1550                                 LOG_ERROR("BUG: encountered unregistered arch type");
1551                                 return ERROR_OK;
1552                         }
1553                         arch_type->get(reg);
1554                 }
1555                 value = buf_to_str(reg->value, reg->size, 16);
1556                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1557                 free(value);
1558                 return ERROR_OK;
1559         }
1560         
1561         /* set register value */
1562         if (argc == 2)
1563         {
1564                 u8 *buf = malloc(CEIL(reg->size, 8));
1565                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1566
1567                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1568                 if (arch_type == NULL)
1569                 {
1570                         LOG_ERROR("BUG: encountered unregistered arch type");
1571                         return ERROR_OK;
1572                 }
1573                 
1574                 arch_type->set(reg, buf);
1575                 
1576                 value = buf_to_str(reg->value, reg->size, 16);
1577                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1578                 free(value);
1579                 
1580                 free(buf);
1581                 
1582                 return ERROR_OK;
1583         }
1584         
1585         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1586         
1587         return ERROR_OK;
1588 }
1589
1590 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1591
1592 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1593 {
1594         target_t *target = get_current_target(cmd_ctx);
1595
1596         if (argc == 0)
1597         {
1598                 target_poll(target);
1599                 target_arch_state(target);
1600         }
1601         else
1602         {
1603                 if (strcmp(args[0], "on") == 0)
1604                 {
1605                         target_continous_poll = 1;
1606                 }
1607                 else if (strcmp(args[0], "off") == 0)
1608                 {
1609                         target_continous_poll = 0;
1610                 }
1611                 else
1612                 {
1613                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1614                 }
1615         }
1616         
1617         
1618         return ERROR_OK;
1619 }
1620
1621 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1622 {
1623         int ms = 5000;
1624         
1625         if (argc > 0)
1626         {
1627                 char *end;
1628
1629                 ms = strtoul(args[0], &end, 0) * 1000;
1630                 if (*end)
1631                 {
1632                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1633                         return ERROR_OK;
1634                 }
1635         }
1636
1637         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1638 }
1639
1640 static void target_process_events(struct command_context_s *cmd_ctx)
1641 {
1642         target_t *target = get_current_target(cmd_ctx);
1643         target_poll(target);
1644         target_call_timer_callbacks_now();
1645 }
1646
1647 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1648 {
1649         int retval;
1650         struct timeval timeout, now;
1651         int once=1;
1652         gettimeofday(&timeout, NULL);
1653         timeval_add_time(&timeout, 0, ms * 1000);
1654         
1655         target_t *target = get_current_target(cmd_ctx);
1656         for (;;)
1657         {
1658                 if ((retval=target_poll(target))!=ERROR_OK)
1659                         return retval;
1660                 target_call_timer_callbacks_now();
1661                 if (target->state == state)
1662                 {
1663                         break;
1664                 }
1665                 if (once)
1666                 {
1667                         once=0;
1668                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1669                 }
1670                 
1671                 gettimeofday(&now, NULL);
1672                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1673                 {
1674                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1675                         break;
1676                 }
1677         }
1678         
1679         return ERROR_OK;
1680 }
1681
1682 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1683 {
1684         int retval;
1685         target_t *target = get_current_target(cmd_ctx);
1686
1687         LOG_DEBUG("-");
1688
1689         if ((retval = target_halt(target)) != ERROR_OK)
1690         {
1691                 return retval;
1692         }
1693         
1694         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1695 }
1696
1697                 
1698 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1699 {
1700         target_t *target = get_current_target(cmd_ctx);
1701         
1702         LOG_USER("requesting target halt and executing a soft reset");
1703         
1704         target->type->soft_reset_halt(target);
1705         
1706         return ERROR_OK;
1707 }
1708
1709 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1710 {
1711         target_t *target = get_current_target(cmd_ctx);
1712         enum target_reset_mode reset_mode = target->reset_mode;
1713         enum target_reset_mode save = target->reset_mode;
1714         
1715         LOG_DEBUG("-");
1716         
1717         if (argc >= 1)
1718         {
1719                 if (strcmp("run", args[0]) == 0)
1720                         reset_mode = RESET_RUN;
1721                 else if (strcmp("halt", args[0]) == 0)
1722                         reset_mode = RESET_HALT;
1723                 else if (strcmp("init", args[0]) == 0)
1724                         reset_mode = RESET_INIT;
1725                 else if (strcmp("run_and_halt", args[0]) == 0)
1726                 {
1727                         reset_mode = RESET_RUN_AND_HALT;
1728                         if (argc >= 2)
1729                         {
1730                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1731                         }
1732                 }
1733                 else if (strcmp("run_and_init", args[0]) == 0)
1734                 {
1735                         reset_mode = RESET_RUN_AND_INIT;
1736                         if (argc >= 2)
1737                         {
1738                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1739                         }
1740                 }
1741                 else
1742                 {
1743                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1744                         return ERROR_OK;
1745                 }
1746         }
1747         
1748         /* temporarily modify mode of current reset target */
1749         target->reset_mode = reset_mode;
1750
1751         /* reset *all* targets */
1752         target_process_reset(cmd_ctx);
1753         
1754         /* Restore default reset mode for this target */
1755     target->reset_mode = save;
1756         
1757         return ERROR_OK;
1758 }
1759
1760 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1761 {
1762         int retval;
1763         target_t *target = get_current_target(cmd_ctx);
1764         
1765         if (argc == 0)
1766                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1767         else if (argc == 1)
1768                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1769         else
1770         {
1771                 return ERROR_COMMAND_SYNTAX_ERROR;
1772         }
1773
1774         target_process_events(cmd_ctx);
1775         
1776         return retval;
1777 }
1778
1779 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1780 {
1781         target_t *target = get_current_target(cmd_ctx);
1782         
1783         LOG_DEBUG("-");
1784         
1785         if (argc == 0)
1786                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1787
1788         if (argc == 1)
1789                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1790         
1791         return ERROR_OK;
1792 }
1793
1794 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1795 {
1796         const int line_bytecnt = 32;
1797         int count = 1;
1798         int size = 4;
1799         u32 address = 0;
1800         int line_modulo;
1801         int i;
1802
1803         char output[128];
1804         int output_len;
1805
1806         int retval;
1807
1808         u8 *buffer;
1809         target_t *target = get_current_target(cmd_ctx);
1810
1811         if (argc < 1)
1812                 return ERROR_OK;
1813
1814         if (argc == 2)
1815                 count = strtoul(args[1], NULL, 0);
1816
1817         address = strtoul(args[0], NULL, 0);
1818         
1819
1820         switch (cmd[2])
1821         {
1822                 case 'w':
1823                         size = 4; line_modulo = line_bytecnt / 4;
1824                         break;
1825                 case 'h':
1826                         size = 2; line_modulo = line_bytecnt / 2;
1827                         break;
1828                 case 'b':
1829                         size = 1; line_modulo = line_bytecnt / 1;
1830                         break;
1831                 default:
1832                         return ERROR_OK;
1833         }
1834
1835         buffer = calloc(count, size);
1836         retval  = target->type->read_memory(target, address, size, count, buffer);
1837         if (retval == ERROR_OK)
1838         {
1839                 output_len = 0;
1840         
1841                 for (i = 0; i < count; i++)
1842                 {
1843                         if (i%line_modulo == 0)
1844                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1845                         
1846                         switch (size)
1847                         {
1848                                 case 4:
1849                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1850                                         break;
1851                                 case 2:
1852                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1853                                         break;
1854                                 case 1:
1855                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1856                                         break;
1857                         }
1858         
1859                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1860                         {
1861                                 command_print(cmd_ctx, output);
1862                                 output_len = 0;
1863                         }
1864                 }
1865         } else
1866         {
1867                 LOG_ERROR("Failure examining memory");
1868         }
1869
1870         free(buffer);
1871         
1872         return ERROR_OK;
1873 }
1874
1875 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1876 {
1877         u32 address = 0;
1878         u32 value = 0;
1879         int count = 1;
1880         int i;
1881         int wordsize;
1882         target_t *target = get_current_target(cmd_ctx);
1883         u8 value_buf[4];
1884
1885          if ((argc < 2) || (argc > 3))
1886                 return ERROR_COMMAND_SYNTAX_ERROR;
1887
1888         address = strtoul(args[0], NULL, 0);
1889         value = strtoul(args[1], NULL, 0);
1890         if (argc == 3)
1891                 count = strtoul(args[2], NULL, 0);
1892
1893
1894         switch (cmd[2])
1895         {
1896                 case 'w':
1897                         wordsize = 4;
1898                         target_buffer_set_u32(target, value_buf, value);
1899                         break;
1900                 case 'h':
1901                         wordsize = 2;
1902                         target_buffer_set_u16(target, value_buf, value);
1903                         break;
1904                 case 'b':
1905                         wordsize = 1;
1906                         value_buf[0] = value;
1907                         break;
1908                 default:
1909                         return ERROR_COMMAND_SYNTAX_ERROR;
1910         }
1911         for (i=0; i<count; i++)
1912         {
1913                 int retval;
1914                 switch (wordsize)
1915                 {
1916                         case 4:
1917                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1918                                 break;
1919                         case 2:
1920                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1921                                 break;
1922                         case 1:
1923                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
1924                         break;
1925                         default:
1926                         return ERROR_OK;
1927                 }
1928                 if (retval!=ERROR_OK)
1929                 {
1930                         return retval;
1931                 }
1932         }
1933
1934         return ERROR_OK;
1935
1936 }
1937
1938 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1939 {
1940         u8 *buffer;
1941         u32 buf_cnt;
1942         u32 image_size;
1943         int i;
1944         int retval;
1945
1946         image_t image;  
1947         
1948         duration_t duration;
1949         char *duration_text;
1950         
1951         target_t *target = get_current_target(cmd_ctx);
1952
1953         if (argc < 1)
1954         {
1955                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
1956                 return ERROR_OK;
1957         }
1958         
1959         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1960         if (argc >= 2)
1961         {
1962                 image.base_address_set = 1;
1963                 image.base_address = strtoul(args[1], NULL, 0);
1964         }
1965         else
1966         {
1967                 image.base_address_set = 0;
1968         }
1969         
1970         image.start_address_set = 0;
1971
1972         duration_start_measure(&duration);
1973         
1974         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1975         {
1976                 return ERROR_OK;
1977         }
1978         
1979         image_size = 0x0;
1980         retval = ERROR_OK;
1981         for (i = 0; i < image.num_sections; i++)
1982         {
1983                 buffer = malloc(image.sections[i].size);
1984                 if (buffer == NULL)
1985                 {
1986                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1987                         break;
1988                 }
1989                 
1990                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1991                 {
1992                         free(buffer);
1993                         break;
1994                 }
1995                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
1996                 {
1997                         free(buffer);
1998                         break;
1999                 }
2000                 image_size += buf_cnt;
2001                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2002                 
2003                 free(buffer);
2004         }
2005
2006         duration_stop_measure(&duration, &duration_text);
2007         if (retval==ERROR_OK)
2008         {
2009                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2010         }
2011         free(duration_text);
2012         
2013         image_close(&image);
2014
2015         return retval;
2016
2017 }
2018
2019 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2020 {
2021         fileio_t fileio;
2022         
2023         u32 address;
2024         u32 size;
2025         u8 buffer[560];
2026         int retval=ERROR_OK;
2027         
2028         duration_t duration;
2029         char *duration_text;
2030         
2031         target_t *target = get_current_target(cmd_ctx);
2032
2033         if (argc != 3)
2034         {
2035                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2036                 return ERROR_OK;
2037         }
2038
2039         address = strtoul(args[1], NULL, 0);
2040         size = strtoul(args[2], NULL, 0);
2041
2042         if ((address & 3) || (size & 3))
2043         {
2044                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2045                 return ERROR_OK;
2046         }
2047         
2048         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2049         {
2050                 return ERROR_OK;
2051         }
2052         
2053         duration_start_measure(&duration);
2054         
2055         while (size > 0)
2056         {
2057                 u32 size_written;
2058                 u32 this_run_size = (size > 560) ? 560 : size;
2059                 
2060                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2061                 if (retval != ERROR_OK)
2062                 {
2063                         break;
2064                 }
2065                 
2066                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2067                 if (retval != ERROR_OK)
2068                 {
2069                         break;
2070                 }
2071                 
2072                 size -= this_run_size;
2073                 address += this_run_size;
2074         }
2075
2076         fileio_close(&fileio);
2077
2078         duration_stop_measure(&duration, &duration_text);
2079         if (retval==ERROR_OK)
2080         {
2081                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2082         }
2083         free(duration_text);
2084         
2085         return ERROR_OK;
2086 }
2087
2088 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2089 {
2090         u8 *buffer;
2091         u32 buf_cnt;
2092         u32 image_size;
2093         int i;
2094         int retval;
2095         u32 checksum = 0;
2096         u32 mem_checksum = 0;
2097
2098         image_t image;  
2099         
2100         duration_t duration;
2101         char *duration_text;
2102         
2103         target_t *target = get_current_target(cmd_ctx);
2104         
2105         if (argc < 1)
2106         {
2107                 return ERROR_COMMAND_SYNTAX_ERROR;
2108         }
2109         
2110         if (!target)
2111         {
2112                 LOG_ERROR("no target selected");
2113                 return ERROR_FAIL;
2114         }
2115         
2116         duration_start_measure(&duration);
2117         
2118         if (argc >= 2)
2119         {
2120                 image.base_address_set = 1;
2121                 image.base_address = strtoul(args[1], NULL, 0);
2122         }
2123         else
2124         {
2125                 image.base_address_set = 0;
2126                 image.base_address = 0x0;
2127         }
2128
2129         image.start_address_set = 0;
2130
2131         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2132         {
2133                 return retval;
2134         }
2135         
2136         image_size = 0x0;
2137         retval=ERROR_OK;
2138         for (i = 0; i < image.num_sections; i++)
2139         {
2140                 buffer = malloc(image.sections[i].size);
2141                 if (buffer == NULL)
2142                 {
2143                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2144                         break;
2145                 }
2146                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2147                 {
2148                         free(buffer);
2149                         break;
2150                 }
2151                 
2152                 /* calculate checksum of image */
2153                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2154                 
2155                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2156                 if( retval != ERROR_OK )
2157                 {
2158                         free(buffer);
2159                         break;
2160                 }
2161                 
2162                 if( checksum != mem_checksum )
2163                 {
2164                         /* failed crc checksum, fall back to a binary compare */
2165                         u8 *data;
2166                         
2167                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2168                         
2169                         data = (u8*)malloc(buf_cnt);
2170                         
2171                         /* Can we use 32bit word accesses? */
2172                         int size = 1;
2173                         int count = buf_cnt;
2174                         if ((count % 4) == 0)
2175                         {
2176                                 size *= 4;
2177                                 count /= 4;
2178                         }
2179                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2180                         if (retval == ERROR_OK)
2181                         {
2182                                 int t;
2183                                 for (t = 0; t < buf_cnt; t++)
2184                                 {
2185                                         if (data[t] != buffer[t])
2186                                         {
2187                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2188                                                 free(data);
2189                                                 free(buffer);
2190                                                 retval=ERROR_FAIL;
2191                                                 goto done;
2192                                         }
2193                                 }
2194                         }
2195                         
2196                         free(data);
2197                 }
2198                 
2199                 free(buffer);
2200                 image_size += buf_cnt;
2201         }
2202 done:   
2203         duration_stop_measure(&duration, &duration_text);
2204         if (retval==ERROR_OK)
2205         {
2206                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2207         }
2208         free(duration_text);
2209         
2210         image_close(&image);
2211         
2212         return retval;
2213 }
2214
2215 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2216 {
2217         int retval;
2218         target_t *target = get_current_target(cmd_ctx);
2219
2220         if (argc == 0)
2221         {
2222                 breakpoint_t *breakpoint = target->breakpoints;
2223
2224                 while (breakpoint)
2225                 {
2226                         if (breakpoint->type == BKPT_SOFT)
2227                         {
2228                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2229                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2230                                 free(buf);
2231                         }
2232                         else
2233                         {
2234                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2235                         }
2236                         breakpoint = breakpoint->next;
2237                 }
2238         }
2239         else if (argc >= 2)
2240         {
2241                 int hw = BKPT_SOFT;
2242                 u32 length = 0;
2243
2244                 length = strtoul(args[1], NULL, 0);
2245                 
2246                 if (argc >= 3)
2247                         if (strcmp(args[2], "hw") == 0)
2248                                 hw = BKPT_HARD;
2249
2250                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2251                 {
2252                         LOG_ERROR("Failure setting breakpoints");
2253                 }
2254                 else
2255                 {
2256                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2257                 }
2258         }
2259         else
2260         {
2261                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2262         }
2263
2264         return ERROR_OK;
2265 }
2266
2267 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2268 {
2269         target_t *target = get_current_target(cmd_ctx);
2270
2271         if (argc > 0)
2272                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2273
2274         return ERROR_OK;
2275 }
2276
2277 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2278 {
2279         target_t *target = get_current_target(cmd_ctx);
2280         int retval;
2281
2282         if (argc == 0)
2283         {
2284                 watchpoint_t *watchpoint = target->watchpoints;
2285
2286                 while (watchpoint)
2287                 {
2288                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2289                         watchpoint = watchpoint->next;
2290                 }
2291         } 
2292         else if (argc >= 2)
2293         {
2294                 enum watchpoint_rw type = WPT_ACCESS;
2295                 u32 data_value = 0x0;
2296                 u32 data_mask = 0xffffffff;
2297                 
2298                 if (argc >= 3)
2299                 {
2300                         switch(args[2][0])
2301                         {
2302                                 case 'r':
2303                                         type = WPT_READ;
2304                                         break;
2305                                 case 'w':
2306                                         type = WPT_WRITE;
2307                                         break;
2308                                 case 'a':
2309                                         type = WPT_ACCESS;
2310                                         break;
2311                                 default:
2312                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2313                                         return ERROR_OK;
2314                         }
2315                 }
2316                 if (argc >= 4)
2317                 {
2318                         data_value = strtoul(args[3], NULL, 0);
2319                 }
2320                 if (argc >= 5)
2321                 {
2322                         data_mask = strtoul(args[4], NULL, 0);
2323                 }
2324                 
2325                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2326                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2327                 {
2328                         LOG_ERROR("Failure setting breakpoints");
2329                 }
2330         }
2331         else
2332         {
2333                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2334         }
2335                 
2336         return ERROR_OK;
2337 }
2338
2339 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2340 {
2341         target_t *target = get_current_target(cmd_ctx);
2342
2343         if (argc > 0)
2344                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2345         
2346         return ERROR_OK;
2347 }
2348
2349 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2350 {
2351         int retval;
2352         target_t *target = get_current_target(cmd_ctx);
2353         u32 va;
2354         u32 pa;
2355
2356         if (argc != 1)
2357         {
2358                 return ERROR_COMMAND_SYNTAX_ERROR;
2359         }
2360         va = strtoul(args[0], NULL, 0);
2361
2362         retval = target->type->virt2phys(target, va, &pa);
2363         if (retval == ERROR_OK)
2364         {
2365                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2366         }
2367         else
2368         {
2369                 /* lower levels will have logged a detailed error which is 
2370                  * forwarded to telnet/GDB session.  
2371                  */
2372         }
2373         return retval;
2374 }
2375 static void writeLong(FILE *f, int l)
2376 {
2377         int i;
2378         for (i=0; i<4; i++)
2379         {
2380                 char c=(l>>(i*8))&0xff;
2381                 fwrite(&c, 1, 1, f); 
2382         }
2383         
2384 }
2385 static void writeString(FILE *f, char *s)
2386 {
2387         fwrite(s, 1, strlen(s), f); 
2388 }
2389
2390
2391
2392 // Dump a gmon.out histogram file.
2393 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2394 {
2395         int i;
2396         FILE *f=fopen(filename, "w");
2397         if (f==NULL)
2398                 return;
2399         fwrite("gmon", 1, 4, f);
2400         writeLong(f, 0x00000001); // Version
2401         writeLong(f, 0); // padding
2402         writeLong(f, 0); // padding
2403         writeLong(f, 0); // padding
2404                                 
2405         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2406
2407         // figure out bucket size
2408         u32 min=samples[0];
2409         u32 max=samples[0];
2410         for (i=0; i<sampleNum; i++)
2411         {
2412                 if (min>samples[i])
2413                 {
2414                         min=samples[i];
2415                 }
2416                 if (max<samples[i])
2417                 {
2418                         max=samples[i];
2419                 }
2420         }
2421
2422         int addressSpace=(max-min+1);
2423         
2424         static int const maxBuckets=256*1024; // maximum buckets.
2425         int length=addressSpace;
2426         if (length > maxBuckets)
2427         {
2428                 length=maxBuckets; 
2429         }
2430         int *buckets=malloc(sizeof(int)*length);
2431         if (buckets==NULL)
2432         {
2433                 fclose(f);
2434                 return;
2435         }
2436         memset(buckets, 0, sizeof(int)*length);
2437         for (i=0; i<sampleNum;i++)
2438         {
2439                 u32 address=samples[i];
2440                 long long a=address-min;
2441                 long long b=length-1;
2442                 long long c=addressSpace-1;
2443                 int index=(a*b)/c; // danger!!!! int32 overflows 
2444                 buckets[index]++;
2445         }
2446         
2447         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2448         writeLong(f, min);                                      // low_pc
2449         writeLong(f, max);              // high_pc
2450         writeLong(f, length);           // # of samples
2451         writeLong(f, 64000000);                         // 64MHz
2452         writeString(f, "seconds");
2453         for (i=0; i<(15-strlen("seconds")); i++)
2454         {
2455                 fwrite("", 1, 1, f);  // padding
2456         }
2457         writeString(f, "s");
2458                 
2459 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2460         
2461         char *data=malloc(2*length);
2462         if (data!=NULL)
2463         {
2464                 for (i=0; i<length;i++)
2465                 {
2466                         int val;
2467                         val=buckets[i];
2468                         if (val>65535)
2469                         {
2470                                 val=65535;
2471                         }
2472                         data[i*2]=val&0xff;
2473                         data[i*2+1]=(val>>8)&0xff;
2474                 }
2475                 free(buckets);
2476                 fwrite(data, 1, length*2, f);
2477                 free(data);
2478         } else
2479         {
2480                 free(buckets);
2481         }
2482
2483         fclose(f);
2484 }
2485
2486 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2487 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2488 {
2489         target_t *target = get_current_target(cmd_ctx);
2490         struct timeval timeout, now;
2491         
2492         gettimeofday(&timeout, NULL);
2493         if (argc!=2)
2494         {
2495                 return ERROR_COMMAND_SYNTAX_ERROR;
2496         }
2497         char *end;
2498         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2499         if (*end) 
2500         {
2501                 return ERROR_OK;
2502         }
2503         
2504         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2505
2506         static const int maxSample=10000;
2507         u32 *samples=malloc(sizeof(u32)*maxSample);
2508         if (samples==NULL)
2509                 return ERROR_OK;
2510         
2511         int numSamples=0;
2512         int retval=ERROR_OK;
2513         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2514         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2515         
2516         for (;;)
2517         {
2518                 target_poll(target);
2519                 if (target->state == TARGET_HALTED)
2520                 {
2521                         u32 t=*((u32 *)reg->value);
2522                         samples[numSamples++]=t;
2523                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2524                         target_poll(target);
2525                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2526                 } else if (target->state == TARGET_RUNNING)
2527                 {
2528                         // We want to quickly sample the PC.
2529                         target_halt(target);
2530                 } else
2531                 {
2532                         command_print(cmd_ctx, "Target not halted or running");
2533                         retval=ERROR_OK;
2534                         break;
2535                 }
2536                 if (retval!=ERROR_OK)
2537                 {
2538                         break;
2539                 }
2540                 
2541                 gettimeofday(&now, NULL);
2542                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2543                 {
2544                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2545                         target_poll(target);
2546                         if (target->state == TARGET_HALTED)
2547                         {
2548                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2549                         }
2550                         target_poll(target);
2551                         writeGmon(samples, numSamples, args[1]);
2552                         command_print(cmd_ctx, "Wrote %s", args[1]);
2553                         break;
2554                 }
2555         }
2556         free(samples);
2557         
2558         return ERROR_OK;
2559 }
2560