Ferdinand Postema <ferdinand@postema.eu> fix warnings
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t fa526_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &fa526_target,
103         &feroceon_target,
104         &xscale_target,
105         &cortexm3_target,
106         &cortexa8_target,
107         &arm11_target,
108         &mips_m4k_target,
109         &avr_target,
110         NULL,
111 };
112
113 target_t *all_targets = NULL;
114 target_event_callback_t *target_event_callbacks = NULL;
115 target_timer_callback_t *target_timer_callbacks = NULL;
116
117 const Jim_Nvp nvp_assert[] = {
118         { .name = "assert", NVP_ASSERT },
119         { .name = "deassert", NVP_DEASSERT },
120         { .name = "T", NVP_ASSERT },
121         { .name = "F", NVP_DEASSERT },
122         { .name = "t", NVP_ASSERT },
123         { .name = "f", NVP_DEASSERT },
124         { .name = NULL, .value = -1 }
125 };
126
127 const Jim_Nvp nvp_error_target[] = {
128         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
129         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
130         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
131         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
132         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
133         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
134         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
135         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
136         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
137         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
138         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
139         { .value = -1, .name = NULL }
140 };
141
142 const char *target_strerror_safe(int err)
143 {
144         const Jim_Nvp *n;
145
146         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
147         if (n->name == NULL) {
148                 return "unknown";
149         } else {
150                 return n->name;
151         }
152 }
153
154 static const Jim_Nvp nvp_target_event[] = {
155         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
156         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
157
158         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
159         { .value = TARGET_EVENT_HALTED, .name = "halted" },
160         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
161         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
162         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
163
164         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
165         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
166
167         /* historical name */
168
169         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
170
171         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
172         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
174         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
175         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
176         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
177         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
178         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
179         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
180         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
181
182         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
183         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
184
185         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
186         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
187
188         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
189         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
190
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
192         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
193
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
195         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
196
197         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
198         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
199         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
200
201         { .name = NULL, .value = -1 }
202 };
203
204 const Jim_Nvp nvp_target_state[] = {
205         { .name = "unknown", .value = TARGET_UNKNOWN },
206         { .name = "running", .value = TARGET_RUNNING },
207         { .name = "halted",  .value = TARGET_HALTED },
208         { .name = "reset",   .value = TARGET_RESET },
209         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
210         { .name = NULL, .value = -1 },
211 };
212
213 const Jim_Nvp nvp_target_debug_reason [] = {
214         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
215         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
216         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
217         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
218         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
219         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
220         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
221         { .name = NULL, .value = -1 },
222 };
223
224 const Jim_Nvp nvp_target_endian[] = {
225         { .name = "big",    .value = TARGET_BIG_ENDIAN },
226         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
227         { .name = "be",     .value = TARGET_BIG_ENDIAN },
228         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
229         { .name = NULL,     .value = -1 },
230 };
231
232 const Jim_Nvp nvp_reset_modes[] = {
233         { .name = "unknown", .value = RESET_UNKNOWN },
234         { .name = "run"    , .value = RESET_RUN },
235         { .name = "halt"   , .value = RESET_HALT },
236         { .name = "init"   , .value = RESET_INIT },
237         { .name = NULL     , .value = -1 },
238 };
239
240 const char *
241 target_state_name( target_t *t )
242 {
243         const char *cp;
244         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
245         if( !cp ){
246                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
247                 cp = "(*BUG*unknown*BUG*)";
248         }
249         return cp;
250 }
251
252 static int max_target_number(void)
253 {
254         target_t *t;
255         int x;
256
257         x = -1;
258         t = all_targets;
259         while (t) {
260                 if (x < t->target_number) {
261                         x = (t->target_number) + 1;
262                 }
263                 t = t->next;
264         }
265         return x;
266 }
267
268 /* determine the number of the new target */
269 static int new_target_number(void)
270 {
271         target_t *t;
272         int x;
273
274         /* number is 0 based */
275         x = -1;
276         t = all_targets;
277         while (t) {
278                 if (x < t->target_number) {
279                         x = t->target_number;
280                 }
281                 t = t->next;
282         }
283         return x + 1;
284 }
285
286 static int target_continuous_poll = 1;
287
288 /* read a uint32_t from a buffer in target memory endianness */
289 uint32_t target_buffer_get_u32(target_t *target, const uint8_t *buffer)
290 {
291         if (target->endianness == TARGET_LITTLE_ENDIAN)
292                 return le_to_h_u32(buffer);
293         else
294                 return be_to_h_u32(buffer);
295 }
296
297 /* read a uint16_t from a buffer in target memory endianness */
298 uint16_t target_buffer_get_u16(target_t *target, const uint8_t *buffer)
299 {
300         if (target->endianness == TARGET_LITTLE_ENDIAN)
301                 return le_to_h_u16(buffer);
302         else
303                 return be_to_h_u16(buffer);
304 }
305
306 /* read a uint8_t from a buffer in target memory endianness */
307 uint8_t target_buffer_get_u8(target_t *target, const uint8_t *buffer)
308 {
309         return *buffer & 0x0ff;
310 }
311
312 /* write a uint32_t to a buffer in target memory endianness */
313 void target_buffer_set_u32(target_t *target, uint8_t *buffer, uint32_t value)
314 {
315         if (target->endianness == TARGET_LITTLE_ENDIAN)
316                 h_u32_to_le(buffer, value);
317         else
318                 h_u32_to_be(buffer, value);
319 }
320
321 /* write a uint16_t to a buffer in target memory endianness */
322 void target_buffer_set_u16(target_t *target, uint8_t *buffer, uint16_t value)
323 {
324         if (target->endianness == TARGET_LITTLE_ENDIAN)
325                 h_u16_to_le(buffer, value);
326         else
327                 h_u16_to_be(buffer, value);
328 }
329
330 /* write a uint8_t to a buffer in target memory endianness */
331 void target_buffer_set_u8(target_t *target, uint8_t *buffer, uint8_t value)
332 {
333         *buffer = value;
334 }
335
336 /* return a pointer to a configured target; id is name or number */
337 target_t *get_target(const char *id)
338 {
339         target_t *target;
340
341         /* try as tcltarget name */
342         for (target = all_targets; target; target = target->next) {
343                 if (target->cmd_name == NULL)
344                         continue;
345                 if (strcmp(id, target->cmd_name) == 0)
346                         return target;
347         }
348
349         /* no match, try as number */
350         unsigned num;
351         if (parse_uint(id, &num) != ERROR_OK)
352                 return NULL;
353
354         for (target = all_targets; target; target = target->next) {
355                 if (target->target_number == (int)num)
356                         return target;
357         }
358
359         return NULL;
360 }
361
362 /* returns a pointer to the n-th configured target */
363 static target_t *get_target_by_num(int num)
364 {
365         target_t *target = all_targets;
366
367         while (target) {
368                 if (target->target_number == num) {
369                         return target;
370                 }
371                 target = target->next;
372         }
373
374         return NULL;
375 }
376
377 int get_num_by_target(target_t *query_target)
378 {
379         return query_target->target_number;
380 }
381
382 target_t* get_current_target(command_context_t *cmd_ctx)
383 {
384         target_t *target = get_target_by_num(cmd_ctx->current_target);
385
386         if (target == NULL)
387         {
388                 LOG_ERROR("BUG: current_target out of bounds");
389                 exit(-1);
390         }
391
392         return target;
393 }
394
395 int target_poll(struct target_s *target)
396 {
397         /* We can't poll until after examine */
398         if (!target_was_examined(target))
399         {
400                 /* Fail silently lest we pollute the log */
401                 return ERROR_FAIL;
402         }
403         return target->type->poll(target);
404 }
405
406 int target_halt(struct target_s *target)
407 {
408         /* We can't poll until after examine */
409         if (!target_was_examined(target))
410         {
411                 LOG_ERROR("Target not examined yet");
412                 return ERROR_FAIL;
413         }
414         return target->type->halt(target);
415 }
416
417 int target_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
418 {
419         int retval;
420
421         /* We can't poll until after examine */
422         if (!target_was_examined(target))
423         {
424                 LOG_ERROR("Target not examined yet");
425                 return ERROR_FAIL;
426         }
427
428         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
429          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
430          * the application.
431          */
432         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
433                 return retval;
434
435         return retval;
436 }
437
438 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
439 {
440         char buf[100];
441         int retval;
442         Jim_Nvp *n;
443         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
444         if (n->name == NULL) {
445                 LOG_ERROR("invalid reset mode");
446                 return ERROR_FAIL;
447         }
448
449         /* disable polling during reset to make reset event scripts
450          * more predictable, i.e. dr/irscan & pathmove in events will
451          * not have JTAG operations injected into the middle of a sequence.
452          */
453         int save_poll = target_continuous_poll;
454         target_continuous_poll = 0;
455
456         sprintf(buf, "ocd_process_reset %s", n->name);
457         retval = Jim_Eval(interp, buf);
458
459         target_continuous_poll = save_poll;
460
461         if (retval != JIM_OK) {
462                 Jim_PrintErrorMessage(interp);
463                 return ERROR_FAIL;
464         }
465
466         /* We want any events to be processed before the prompt */
467         retval = target_call_timer_callbacks_now();
468
469         return retval;
470 }
471
472 static int default_virt2phys(struct target_s *target, uint32_t virtual, uint32_t *physical)
473 {
474         *physical = virtual;
475         return ERROR_OK;
476 }
477
478 static int default_mmu(struct target_s *target, int *enabled)
479 {
480         *enabled = 0;
481         return ERROR_OK;
482 }
483
484 static int default_examine(struct target_s *target)
485 {
486         target_set_examined(target);
487         return ERROR_OK;
488 }
489
490 int target_examine_one(struct target_s *target)
491 {
492         return target->type->examine(target);
493 }
494
495 static int jtag_enable_callback(enum jtag_event event, void *priv)
496 {
497         target_t *target = priv;
498
499         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
500                 return ERROR_OK;
501
502         jtag_unregister_event_callback(jtag_enable_callback, target);
503         return target_examine_one(target);
504 }
505
506
507 /* Targets that correctly implement init + examine, i.e.
508  * no communication with target during init:
509  *
510  * XScale
511  */
512 int target_examine(void)
513 {
514         int retval = ERROR_OK;
515         target_t *target;
516
517         for (target = all_targets; target; target = target->next)
518         {
519                 /* defer examination, but don't skip it */
520                 if (!target->tap->enabled) {
521                         jtag_register_event_callback(jtag_enable_callback,
522                                         target);
523                         continue;
524                 }
525                 if ((retval = target_examine_one(target)) != ERROR_OK)
526                         return retval;
527         }
528         return retval;
529 }
530 const char *target_get_name(struct target_s *target)
531 {
532         return target->type->name;
533 }
534
535 static int target_write_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
536 {
537         if (!target_was_examined(target))
538         {
539                 LOG_ERROR("Target not examined yet");
540                 return ERROR_FAIL;
541         }
542         return target->type->write_memory_imp(target, address, size, count, buffer);
543 }
544
545 static int target_read_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
546 {
547         if (!target_was_examined(target))
548         {
549                 LOG_ERROR("Target not examined yet");
550                 return ERROR_FAIL;
551         }
552         return target->type->read_memory_imp(target, address, size, count, buffer);
553 }
554
555 static int target_soft_reset_halt_imp(struct target_s *target)
556 {
557         if (!target_was_examined(target))
558         {
559                 LOG_ERROR("Target not examined yet");
560                 return ERROR_FAIL;
561         }
562         return target->type->soft_reset_halt_imp(target);
563 }
564
565 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
566 {
567         if (!target_was_examined(target))
568         {
569                 LOG_ERROR("Target not examined yet");
570                 return ERROR_FAIL;
571         }
572         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
573 }
574
575 int target_read_memory(struct target_s *target,
576                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
577 {
578         return target->type->read_memory(target, address, size, count, buffer);
579 }
580
581 int target_write_memory(struct target_s *target,
582                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
583 {
584         return target->type->write_memory(target, address, size, count, buffer);
585 }
586 int target_bulk_write_memory(struct target_s *target,
587                 uint32_t address, uint32_t count, uint8_t *buffer)
588 {
589         return target->type->bulk_write_memory(target, address, count, buffer);
590 }
591
592 int target_add_breakpoint(struct target_s *target,
593                 struct breakpoint_s *breakpoint)
594 {
595         return target->type->add_breakpoint(target, breakpoint);
596 }
597 int target_remove_breakpoint(struct target_s *target,
598                 struct breakpoint_s *breakpoint)
599 {
600         return target->type->remove_breakpoint(target, breakpoint);
601 }
602
603 int target_add_watchpoint(struct target_s *target,
604                 struct watchpoint_s *watchpoint)
605 {
606         return target->type->add_watchpoint(target, watchpoint);
607 }
608 int target_remove_watchpoint(struct target_s *target,
609                 struct watchpoint_s *watchpoint)
610 {
611         return target->type->remove_watchpoint(target, watchpoint);
612 }
613
614 int target_get_gdb_reg_list(struct target_s *target,
615                 struct reg_s **reg_list[], int *reg_list_size)
616 {
617         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
618 }
619 int target_step(struct target_s *target,
620                 int current, uint32_t address, int handle_breakpoints)
621 {
622         return target->type->step(target, current, address, handle_breakpoints);
623 }
624
625
626 int target_run_algorithm(struct target_s *target,
627                 int num_mem_params, mem_param_t *mem_params,
628                 int num_reg_params, reg_param_t *reg_param,
629                 uint32_t entry_point, uint32_t exit_point,
630                 int timeout_ms, void *arch_info)
631 {
632         return target->type->run_algorithm(target,
633                         num_mem_params, mem_params, num_reg_params, reg_param,
634                         entry_point, exit_point, timeout_ms, arch_info);
635 }
636
637 /// @returns @c true if the target has been examined.
638 bool target_was_examined(struct target_s *target)
639 {
640         return target->type->examined;
641 }
642 /// Sets the @c examined flag for the given target.
643 void target_set_examined(struct target_s *target)
644 {
645         target->type->examined = true;
646 }
647 // Reset the @c examined flag for the given target.
648 void target_reset_examined(struct target_s *target)
649 {
650         target->type->examined = false;
651 }
652
653
654 int target_init(struct command_context_s *cmd_ctx)
655 {
656         target_t *target = all_targets;
657         int retval;
658
659         while (target)
660         {
661                 target_reset_examined(target);
662                 if (target->type->examine == NULL)
663                 {
664                         target->type->examine = default_examine;
665                 }
666
667                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
668                 {
669                         LOG_ERROR("target '%s' init failed", target_get_name(target));
670                         return retval;
671                 }
672
673                 /* Set up default functions if none are provided by target */
674                 if (target->type->virt2phys == NULL)
675                 {
676                         target->type->virt2phys = default_virt2phys;
677                 }
678                 target->type->virt2phys = default_virt2phys;
679                 /* a non-invasive way(in terms of patches) to add some code that
680                  * runs before the type->write/read_memory implementation
681                  */
682                 target->type->write_memory_imp = target->type->write_memory;
683                 target->type->write_memory = target_write_memory_imp;
684                 target->type->read_memory_imp = target->type->read_memory;
685                 target->type->read_memory = target_read_memory_imp;
686                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
687                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
688                 target->type->run_algorithm_imp = target->type->run_algorithm;
689                 target->type->run_algorithm = target_run_algorithm_imp;
690
691                 if (target->type->mmu == NULL)
692                 {
693                         target->type->mmu = default_mmu;
694                 }
695                 target = target->next;
696         }
697
698         if (all_targets)
699         {
700                 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
701                         return retval;
702                 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
703                         return retval;
704         }
705
706         return ERROR_OK;
707 }
708
709 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
710 {
711         target_event_callback_t **callbacks_p = &target_event_callbacks;
712
713         if (callback == NULL)
714         {
715                 return ERROR_INVALID_ARGUMENTS;
716         }
717
718         if (*callbacks_p)
719         {
720                 while ((*callbacks_p)->next)
721                         callbacks_p = &((*callbacks_p)->next);
722                 callbacks_p = &((*callbacks_p)->next);
723         }
724
725         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
726         (*callbacks_p)->callback = callback;
727         (*callbacks_p)->priv = priv;
728         (*callbacks_p)->next = NULL;
729
730         return ERROR_OK;
731 }
732
733 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
734 {
735         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
736         struct timeval now;
737
738         if (callback == NULL)
739         {
740                 return ERROR_INVALID_ARGUMENTS;
741         }
742
743         if (*callbacks_p)
744         {
745                 while ((*callbacks_p)->next)
746                         callbacks_p = &((*callbacks_p)->next);
747                 callbacks_p = &((*callbacks_p)->next);
748         }
749
750         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
751         (*callbacks_p)->callback = callback;
752         (*callbacks_p)->periodic = periodic;
753         (*callbacks_p)->time_ms = time_ms;
754
755         gettimeofday(&now, NULL);
756         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
757         time_ms -= (time_ms % 1000);
758         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
759         if ((*callbacks_p)->when.tv_usec > 1000000)
760         {
761                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
762                 (*callbacks_p)->when.tv_sec += 1;
763         }
764
765         (*callbacks_p)->priv = priv;
766         (*callbacks_p)->next = NULL;
767
768         return ERROR_OK;
769 }
770
771 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
772 {
773         target_event_callback_t **p = &target_event_callbacks;
774         target_event_callback_t *c = target_event_callbacks;
775
776         if (callback == NULL)
777         {
778                 return ERROR_INVALID_ARGUMENTS;
779         }
780
781         while (c)
782         {
783                 target_event_callback_t *next = c->next;
784                 if ((c->callback == callback) && (c->priv == priv))
785                 {
786                         *p = next;
787                         free(c);
788                         return ERROR_OK;
789                 }
790                 else
791                         p = &(c->next);
792                 c = next;
793         }
794
795         return ERROR_OK;
796 }
797
798 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
799 {
800         target_timer_callback_t **p = &target_timer_callbacks;
801         target_timer_callback_t *c = target_timer_callbacks;
802
803         if (callback == NULL)
804         {
805                 return ERROR_INVALID_ARGUMENTS;
806         }
807
808         while (c)
809         {
810                 target_timer_callback_t *next = c->next;
811                 if ((c->callback == callback) && (c->priv == priv))
812                 {
813                         *p = next;
814                         free(c);
815                         return ERROR_OK;
816                 }
817                 else
818                         p = &(c->next);
819                 c = next;
820         }
821
822         return ERROR_OK;
823 }
824
825 int target_call_event_callbacks(target_t *target, enum target_event event)
826 {
827         target_event_callback_t *callback = target_event_callbacks;
828         target_event_callback_t *next_callback;
829
830         if (event == TARGET_EVENT_HALTED)
831         {
832                 /* execute early halted first */
833                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
834         }
835
836         LOG_DEBUG("target event %i (%s)",
837                           event,
838                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
839
840         target_handle_event(target, event);
841
842         while (callback)
843         {
844                 next_callback = callback->next;
845                 callback->callback(target, event, callback->priv);
846                 callback = next_callback;
847         }
848
849         return ERROR_OK;
850 }
851
852 static int target_timer_callback_periodic_restart(
853                 target_timer_callback_t *cb, struct timeval *now)
854 {
855         int time_ms = cb->time_ms;
856         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
857         time_ms -= (time_ms % 1000);
858         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
859         if (cb->when.tv_usec > 1000000)
860         {
861                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
862                 cb->when.tv_sec += 1;
863         }
864         return ERROR_OK;
865 }
866
867 static int target_call_timer_callback(target_timer_callback_t *cb,
868                 struct timeval *now)
869 {
870         cb->callback(cb->priv);
871
872         if (cb->periodic)
873                 return target_timer_callback_periodic_restart(cb, now);
874
875         return target_unregister_timer_callback(cb->callback, cb->priv);
876 }
877
878 static int target_call_timer_callbacks_check_time(int checktime)
879 {
880         keep_alive();
881
882         struct timeval now;
883         gettimeofday(&now, NULL);
884
885         target_timer_callback_t *callback = target_timer_callbacks;
886         while (callback)
887         {
888                 // cleaning up may unregister and free this callback
889                 target_timer_callback_t *next_callback = callback->next;
890
891                 bool call_it = callback->callback &&
892                         ((!checktime && callback->periodic) ||
893                           now.tv_sec > callback->when.tv_sec ||
894                          (now.tv_sec == callback->when.tv_sec &&
895                           now.tv_usec >= callback->when.tv_usec));
896
897                 if (call_it)
898                 {
899                         int retval = target_call_timer_callback(callback, &now);
900                         if (retval != ERROR_OK)
901                                 return retval;
902                 }
903
904                 callback = next_callback;
905         }
906
907         return ERROR_OK;
908 }
909
910 int target_call_timer_callbacks(void)
911 {
912         return target_call_timer_callbacks_check_time(1);
913 }
914
915 /* invoke periodic callbacks immediately */
916 int target_call_timer_callbacks_now(void)
917 {
918         return target_call_timer_callbacks_check_time(0);
919 }
920
921 int target_alloc_working_area(struct target_s *target, uint32_t size, working_area_t **area)
922 {
923         working_area_t *c = target->working_areas;
924         working_area_t *new_wa = NULL;
925
926         /* Reevaluate working area address based on MMU state*/
927         if (target->working_areas == NULL)
928         {
929                 int retval;
930                 int enabled;
931                 retval = target->type->mmu(target, &enabled);
932                 if (retval != ERROR_OK)
933                 {
934                         return retval;
935                 }
936                 if (enabled)
937                 {
938                         target->working_area = target->working_area_virt;
939                 }
940                 else
941                 {
942                         target->working_area = target->working_area_phys;
943                 }
944         }
945
946         /* only allocate multiples of 4 byte */
947         if (size % 4)
948         {
949                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
950                 size = (size + 3) & (~3);
951         }
952
953         /* see if there's already a matching working area */
954         while (c)
955         {
956                 if ((c->free) && (c->size == size))
957                 {
958                         new_wa = c;
959                         break;
960                 }
961                 c = c->next;
962         }
963
964         /* if not, allocate a new one */
965         if (!new_wa)
966         {
967                 working_area_t **p = &target->working_areas;
968                 uint32_t first_free = target->working_area;
969                 uint32_t free_size = target->working_area_size;
970
971                 LOG_DEBUG("allocating new working area");
972
973                 c = target->working_areas;
974                 while (c)
975                 {
976                         first_free += c->size;
977                         free_size -= c->size;
978                         p = &c->next;
979                         c = c->next;
980                 }
981
982                 if (free_size < size)
983                 {
984                         LOG_WARNING("not enough working area available(requested %u, free %u)",
985                                     (unsigned)(size), (unsigned)(free_size));
986                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
987                 }
988
989                 new_wa = malloc(sizeof(working_area_t));
990                 new_wa->next = NULL;
991                 new_wa->size = size;
992                 new_wa->address = first_free;
993
994                 if (target->backup_working_area)
995                 {
996                         int retval;
997                         new_wa->backup = malloc(new_wa->size);
998                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
999                         {
1000                                 free(new_wa->backup);
1001                                 free(new_wa);
1002                                 return retval;
1003                         }
1004                 }
1005                 else
1006                 {
1007                         new_wa->backup = NULL;
1008                 }
1009
1010                 /* put new entry in list */
1011                 *p = new_wa;
1012         }
1013
1014         /* mark as used, and return the new (reused) area */
1015         new_wa->free = 0;
1016         *area = new_wa;
1017
1018         /* user pointer */
1019         new_wa->user = area;
1020
1021         return ERROR_OK;
1022 }
1023
1024 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
1025 {
1026         if (area->free)
1027                 return ERROR_OK;
1028
1029         if (restore && target->backup_working_area)
1030         {
1031                 int retval;
1032                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1033                         return retval;
1034         }
1035
1036         area->free = 1;
1037
1038         /* mark user pointer invalid */
1039         *area->user = NULL;
1040         area->user = NULL;
1041
1042         return ERROR_OK;
1043 }
1044
1045 int target_free_working_area(struct target_s *target, working_area_t *area)
1046 {
1047         return target_free_working_area_restore(target, area, 1);
1048 }
1049
1050 /* free resources and restore memory, if restoring memory fails,
1051  * free up resources anyway
1052  */
1053 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1054 {
1055         working_area_t *c = target->working_areas;
1056
1057         while (c)
1058         {
1059                 working_area_t *next = c->next;
1060                 target_free_working_area_restore(target, c, restore);
1061
1062                 if (c->backup)
1063                         free(c->backup);
1064
1065                 free(c);
1066
1067                 c = next;
1068         }
1069
1070         target->working_areas = NULL;
1071 }
1072
1073 void target_free_all_working_areas(struct target_s *target)
1074 {
1075         target_free_all_working_areas_restore(target, 1);
1076 }
1077
1078 int target_register_commands(struct command_context_s *cmd_ctx)
1079 {
1080
1081         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1082
1083
1084
1085
1086         register_jim(cmd_ctx, "target", jim_target, "configure target");
1087
1088         return ERROR_OK;
1089 }
1090
1091 int target_arch_state(struct target_s *target)
1092 {
1093         int retval;
1094         if (target == NULL)
1095         {
1096                 LOG_USER("No target has been configured");
1097                 return ERROR_OK;
1098         }
1099
1100         LOG_USER("target state: %s", target_state_name( target ));
1101
1102         if (target->state != TARGET_HALTED)
1103                 return ERROR_OK;
1104
1105         retval = target->type->arch_state(target);
1106         return retval;
1107 }
1108
1109 /* Single aligned words are guaranteed to use 16 or 32 bit access
1110  * mode respectively, otherwise data is handled as quickly as
1111  * possible
1112  */
1113 int target_write_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1114 {
1115         int retval;
1116         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1117                   (int)size, (unsigned)address);
1118
1119         if (!target_was_examined(target))
1120         {
1121                 LOG_ERROR("Target not examined yet");
1122                 return ERROR_FAIL;
1123         }
1124
1125         if (size == 0) {
1126                 return ERROR_OK;
1127         }
1128
1129         if ((address + size - 1) < address)
1130         {
1131                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1132                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1133                                   (unsigned)address,
1134                                   (unsigned)size);
1135                 return ERROR_FAIL;
1136         }
1137
1138         if (((address % 2) == 0) && (size == 2))
1139         {
1140                 return target_write_memory(target, address, 2, 1, buffer);
1141         }
1142
1143         /* handle unaligned head bytes */
1144         if (address % 4)
1145         {
1146                 uint32_t unaligned = 4 - (address % 4);
1147
1148                 if (unaligned > size)
1149                         unaligned = size;
1150
1151                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1152                         return retval;
1153
1154                 buffer += unaligned;
1155                 address += unaligned;
1156                 size -= unaligned;
1157         }
1158
1159         /* handle aligned words */
1160         if (size >= 4)
1161         {
1162                 int aligned = size - (size % 4);
1163
1164                 /* use bulk writes above a certain limit. This may have to be changed */
1165                 if (aligned > 128)
1166                 {
1167                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1168                                 return retval;
1169                 }
1170                 else
1171                 {
1172                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1173                                 return retval;
1174                 }
1175
1176                 buffer += aligned;
1177                 address += aligned;
1178                 size -= aligned;
1179         }
1180
1181         /* handle tail writes of less than 4 bytes */
1182         if (size > 0)
1183         {
1184                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1185                         return retval;
1186         }
1187
1188         return ERROR_OK;
1189 }
1190
1191 /* Single aligned words are guaranteed to use 16 or 32 bit access
1192  * mode respectively, otherwise data is handled as quickly as
1193  * possible
1194  */
1195 int target_read_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1196 {
1197         int retval;
1198         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1199                           (int)size, (unsigned)address);
1200
1201         if (!target_was_examined(target))
1202         {
1203                 LOG_ERROR("Target not examined yet");
1204                 return ERROR_FAIL;
1205         }
1206
1207         if (size == 0) {
1208                 return ERROR_OK;
1209         }
1210
1211         if ((address + size - 1) < address)
1212         {
1213                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1214                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1215                                   address,
1216                                   size);
1217                 return ERROR_FAIL;
1218         }
1219
1220         if (((address % 2) == 0) && (size == 2))
1221         {
1222                 return target_read_memory(target, address, 2, 1, buffer);
1223         }
1224
1225         /* handle unaligned head bytes */
1226         if (address % 4)
1227         {
1228                 uint32_t unaligned = 4 - (address % 4);
1229
1230                 if (unaligned > size)
1231                         unaligned = size;
1232
1233                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1234                         return retval;
1235
1236                 buffer += unaligned;
1237                 address += unaligned;
1238                 size -= unaligned;
1239         }
1240
1241         /* handle aligned words */
1242         if (size >= 4)
1243         {
1244                 int aligned = size - (size % 4);
1245
1246                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1247                         return retval;
1248
1249                 buffer += aligned;
1250                 address += aligned;
1251                 size -= aligned;
1252         }
1253
1254         /* handle tail writes of less than 4 bytes */
1255         if (size > 0)
1256         {
1257                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1258                         return retval;
1259         }
1260
1261         return ERROR_OK;
1262 }
1263
1264 int target_checksum_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* crc)
1265 {
1266         uint8_t *buffer;
1267         int retval;
1268         uint32_t i;
1269         uint32_t checksum = 0;
1270         if (!target_was_examined(target))
1271         {
1272                 LOG_ERROR("Target not examined yet");
1273                 return ERROR_FAIL;
1274         }
1275
1276         if ((retval = target->type->checksum_memory(target, address,
1277                 size, &checksum)) != ERROR_OK)
1278         {
1279                 buffer = malloc(size);
1280                 if (buffer == NULL)
1281                 {
1282                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1283                         return ERROR_INVALID_ARGUMENTS;
1284                 }
1285                 retval = target_read_buffer(target, address, size, buffer);
1286                 if (retval != ERROR_OK)
1287                 {
1288                         free(buffer);
1289                         return retval;
1290                 }
1291
1292                 /* convert to target endianess */
1293                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1294                 {
1295                         uint32_t target_data;
1296                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1297                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1298                 }
1299
1300                 retval = image_calculate_checksum(buffer, size, &checksum);
1301                 free(buffer);
1302         }
1303
1304         *crc = checksum;
1305
1306         return retval;
1307 }
1308
1309 int target_blank_check_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* blank)
1310 {
1311         int retval;
1312         if (!target_was_examined(target))
1313         {
1314                 LOG_ERROR("Target not examined yet");
1315                 return ERROR_FAIL;
1316         }
1317
1318         if (target->type->blank_check_memory == 0)
1319                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1320
1321         retval = target->type->blank_check_memory(target, address, size, blank);
1322
1323         return retval;
1324 }
1325
1326 int target_read_u32(struct target_s *target, uint32_t address, uint32_t *value)
1327 {
1328         uint8_t value_buf[4];
1329         if (!target_was_examined(target))
1330         {
1331                 LOG_ERROR("Target not examined yet");
1332                 return ERROR_FAIL;
1333         }
1334
1335         int retval = target_read_memory(target, address, 4, 1, value_buf);
1336
1337         if (retval == ERROR_OK)
1338         {
1339                 *value = target_buffer_get_u32(target, value_buf);
1340                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1341                                   address,
1342                                   *value);
1343         }
1344         else
1345         {
1346                 *value = 0x0;
1347                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1348                                   address);
1349         }
1350
1351         return retval;
1352 }
1353
1354 int target_read_u16(struct target_s *target, uint32_t address, uint16_t *value)
1355 {
1356         uint8_t value_buf[2];
1357         if (!target_was_examined(target))
1358         {
1359                 LOG_ERROR("Target not examined yet");
1360                 return ERROR_FAIL;
1361         }
1362
1363         int retval = target_read_memory(target, address, 2, 1, value_buf);
1364
1365         if (retval == ERROR_OK)
1366         {
1367                 *value = target_buffer_get_u16(target, value_buf);
1368                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1369                                   address,
1370                                   *value);
1371         }
1372         else
1373         {
1374                 *value = 0x0;
1375                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1376                                   address);
1377         }
1378
1379         return retval;
1380 }
1381
1382 int target_read_u8(struct target_s *target, uint32_t address, uint8_t *value)
1383 {
1384         int retval = target_read_memory(target, address, 1, 1, value);
1385         if (!target_was_examined(target))
1386         {
1387                 LOG_ERROR("Target not examined yet");
1388                 return ERROR_FAIL;
1389         }
1390
1391         if (retval == ERROR_OK)
1392         {
1393                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1394                                   address,
1395                                   *value);
1396         }
1397         else
1398         {
1399                 *value = 0x0;
1400                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1401                                   address);
1402         }
1403
1404         return retval;
1405 }
1406
1407 int target_write_u32(struct target_s *target, uint32_t address, uint32_t value)
1408 {
1409         int retval;
1410         uint8_t value_buf[4];
1411         if (!target_was_examined(target))
1412         {
1413                 LOG_ERROR("Target not examined yet");
1414                 return ERROR_FAIL;
1415         }
1416
1417         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1418                           address,
1419                           value);
1420
1421         target_buffer_set_u32(target, value_buf, value);
1422         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1423         {
1424                 LOG_DEBUG("failed: %i", retval);
1425         }
1426
1427         return retval;
1428 }
1429
1430 int target_write_u16(struct target_s *target, uint32_t address, uint16_t value)
1431 {
1432         int retval;
1433         uint8_t value_buf[2];
1434         if (!target_was_examined(target))
1435         {
1436                 LOG_ERROR("Target not examined yet");
1437                 return ERROR_FAIL;
1438         }
1439
1440         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1441                           address,
1442                           value);
1443
1444         target_buffer_set_u16(target, value_buf, value);
1445         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1446         {
1447                 LOG_DEBUG("failed: %i", retval);
1448         }
1449
1450         return retval;
1451 }
1452
1453 int target_write_u8(struct target_s *target, uint32_t address, uint8_t value)
1454 {
1455         int retval;
1456         if (!target_was_examined(target))
1457         {
1458                 LOG_ERROR("Target not examined yet");
1459                 return ERROR_FAIL;
1460         }
1461
1462         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1463                           address, value);
1464
1465         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1466         {
1467                 LOG_DEBUG("failed: %i", retval);
1468         }
1469
1470         return retval;
1471 }
1472
1473 int target_register_user_commands(struct command_context_s *cmd_ctx)
1474 {
1475         int retval = ERROR_OK;
1476
1477
1478         /* script procedures */
1479         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1480         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1481         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1482
1483         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1484                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1485
1486         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1487                         "loads active fast load image to current target - mainly for profiling purposes");
1488
1489
1490         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1491         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1492         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1493         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1494         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1495         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1496         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1497         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run | halt | init] - default is run");
1498         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1499
1500         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1501         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1502         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1503
1504         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1505         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1506         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1507
1508         register_command(cmd_ctx,  NULL, "bp",
1509                         handle_bp_command, COMMAND_EXEC,
1510                         "list or set breakpoint [<address> <length> [hw]]");
1511         register_command(cmd_ctx,  NULL, "rbp",
1512                         handle_rbp_command, COMMAND_EXEC,
1513                         "remove breakpoint <address>");
1514         register_command(cmd_ctx,  NULL, "wp",
1515                         handle_wp_command, COMMAND_EXEC,
1516                         "list or set watchpoint "
1517                                 "[<address> <length> <r/w/a> [value] [mask]]");
1518         register_command(cmd_ctx,  NULL, "rwp",
1519                         handle_rwp_command, COMMAND_EXEC,
1520                         "remove watchpoint <address>");
1521
1522         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1523         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1524         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1525         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1526
1527         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1528                 return retval;
1529         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1530                 return retval;
1531
1532         return retval;
1533 }
1534
1535 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1536 {
1537         target_t *target = all_targets;
1538
1539         if (argc == 1)
1540         {
1541                 target = get_target(args[0]);
1542                 if (target == NULL) {
1543                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
1544                         goto DumpTargets;
1545                 }
1546                 if (!target->tap->enabled) {
1547                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1548                                         "can't be the current target\n",
1549                                         target->tap->dotted_name);
1550                         return ERROR_FAIL;
1551                 }
1552
1553                 cmd_ctx->current_target = target->target_number;
1554                 return ERROR_OK;
1555         }
1556 DumpTargets:
1557
1558         target = all_targets;
1559         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1560         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1561         while (target)
1562         {
1563                 const char *state;
1564                 char marker = ' ';
1565
1566                 if (target->tap->enabled)
1567                         state = target_state_name( target );
1568                 else
1569                         state = "tap-disabled";
1570
1571                 if (cmd_ctx->current_target == target->target_number)
1572                         marker = '*';
1573
1574                 /* keep columns lined up to match the headers above */
1575                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1576                                           target->target_number,
1577                                           marker,
1578                                           target->cmd_name,
1579                                           target_get_name(target),
1580                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1581                                                                 target->endianness)->name,
1582                                           target->tap->dotted_name,
1583                                           state);
1584                 target = target->next;
1585         }
1586
1587         return ERROR_OK;
1588 }
1589
1590 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1591
1592 static int powerDropout;
1593 static int srstAsserted;
1594
1595 static int runPowerRestore;
1596 static int runPowerDropout;
1597 static int runSrstAsserted;
1598 static int runSrstDeasserted;
1599
1600 static int sense_handler(void)
1601 {
1602         static int prevSrstAsserted = 0;
1603         static int prevPowerdropout = 0;
1604
1605         int retval;
1606         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1607                 return retval;
1608
1609         int powerRestored;
1610         powerRestored = prevPowerdropout && !powerDropout;
1611         if (powerRestored)
1612         {
1613                 runPowerRestore = 1;
1614         }
1615
1616         long long current = timeval_ms();
1617         static long long lastPower = 0;
1618         int waitMore = lastPower + 2000 > current;
1619         if (powerDropout && !waitMore)
1620         {
1621                 runPowerDropout = 1;
1622                 lastPower = current;
1623         }
1624
1625         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1626                 return retval;
1627
1628         int srstDeasserted;
1629         srstDeasserted = prevSrstAsserted && !srstAsserted;
1630
1631         static long long lastSrst = 0;
1632         waitMore = lastSrst + 2000 > current;
1633         if (srstDeasserted && !waitMore)
1634         {
1635                 runSrstDeasserted = 1;
1636                 lastSrst = current;
1637         }
1638
1639         if (!prevSrstAsserted && srstAsserted)
1640         {
1641                 runSrstAsserted = 1;
1642         }
1643
1644         prevSrstAsserted = srstAsserted;
1645         prevPowerdropout = powerDropout;
1646
1647         if (srstDeasserted || powerRestored)
1648         {
1649                 /* Other than logging the event we can't do anything here.
1650                  * Issuing a reset is a particularly bad idea as we might
1651                  * be inside a reset already.
1652                  */
1653         }
1654
1655         return ERROR_OK;
1656 }
1657
1658 /* process target state changes */
1659 int handle_target(void *priv)
1660 {
1661         int retval = ERROR_OK;
1662
1663         /* we do not want to recurse here... */
1664         static int recursive = 0;
1665         if (! recursive)
1666         {
1667                 recursive = 1;
1668                 sense_handler();
1669                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1670                  * We need to avoid an infinite loop/recursion here and we do that by
1671                  * clearing the flags after running these events.
1672                  */
1673                 int did_something = 0;
1674                 if (runSrstAsserted)
1675                 {
1676                         Jim_Eval(interp, "srst_asserted");
1677                         did_something = 1;
1678                 }
1679                 if (runSrstDeasserted)
1680                 {
1681                         Jim_Eval(interp, "srst_deasserted");
1682                         did_something = 1;
1683                 }
1684                 if (runPowerDropout)
1685                 {
1686                         Jim_Eval(interp, "power_dropout");
1687                         did_something = 1;
1688                 }
1689                 if (runPowerRestore)
1690                 {
1691                         Jim_Eval(interp, "power_restore");
1692                         did_something = 1;
1693                 }
1694
1695                 if (did_something)
1696                 {
1697                         /* clear detect flags */
1698                         sense_handler();
1699                 }
1700
1701                 /* clear action flags */
1702
1703                 runSrstAsserted = 0;
1704                 runSrstDeasserted = 0;
1705                 runPowerRestore = 0;
1706                 runPowerDropout = 0;
1707
1708                 recursive = 0;
1709         }
1710
1711         /* Poll targets for state changes unless that's globally disabled.
1712          * Skip targets that are currently disabled.
1713          */
1714         for (target_t *target = all_targets;
1715                         target_continuous_poll && target;
1716                         target = target->next)
1717         {
1718                 if (!target->tap->enabled)
1719                         continue;
1720
1721                 /* only poll target if we've got power and srst isn't asserted */
1722                 if (!powerDropout && !srstAsserted)
1723                 {
1724                         /* polling may fail silently until the target has been examined */
1725                         if ((retval = target_poll(target)) != ERROR_OK)
1726                                 return retval;
1727                 }
1728         }
1729
1730         return retval;
1731 }
1732
1733 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1734 {
1735         target_t *target;
1736         reg_t *reg = NULL;
1737         int count = 0;
1738         char *value;
1739
1740         LOG_DEBUG("-");
1741
1742         target = get_current_target(cmd_ctx);
1743
1744         /* list all available registers for the current target */
1745         if (argc == 0)
1746         {
1747                 reg_cache_t *cache = target->reg_cache;
1748
1749                 count = 0;
1750                 while (cache)
1751                 {
1752                         int i;
1753
1754                         for (i = 0, reg = cache->reg_list;
1755                                         i < cache->num_regs;
1756                                         i++, reg++, count++)
1757                         {
1758                                 /* only print cached values if they are valid */
1759                                 if (reg->valid) {
1760                                         value = buf_to_str(reg->value,
1761                                                         reg->size, 16);
1762                                         command_print(cmd_ctx,
1763                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1764                                                         count, reg->name,
1765                                                         reg->size, value,
1766                                                         reg->dirty
1767                                                                 ? " (dirty)"
1768                                                                 : "");
1769                                         free(value);
1770                                 } else {
1771                                         command_print(cmd_ctx, "(%i) %s (/%" PRIu32 ")",
1772                                                           count, reg->name,
1773                                                           reg->size) ;
1774                                 }
1775                         }
1776                         cache = cache->next;
1777                 }
1778
1779                 return ERROR_OK;
1780         }
1781
1782         /* access a single register by its ordinal number */
1783         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1784         {
1785                 unsigned num;
1786                 int retval = parse_uint(args[0], &num);
1787                 if (ERROR_OK != retval)
1788                         return ERROR_COMMAND_SYNTAX_ERROR;
1789
1790                 reg_cache_t *cache = target->reg_cache;
1791                 count = 0;
1792                 while (cache)
1793                 {
1794                         int i;
1795                         for (i = 0; i < cache->num_regs; i++)
1796                         {
1797                                 if (count++ == (int)num)
1798                                 {
1799                                         reg = &cache->reg_list[i];
1800                                         break;
1801                                 }
1802                         }
1803                         if (reg)
1804                                 break;
1805                         cache = cache->next;
1806                 }
1807
1808                 if (!reg)
1809                 {
1810                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1811                         return ERROR_OK;
1812                 }
1813         } else /* access a single register by its name */
1814         {
1815                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1816
1817                 if (!reg)
1818                 {
1819                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1820                         return ERROR_OK;
1821                 }
1822         }
1823
1824         /* display a register */
1825         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1826         {
1827                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1828                         reg->valid = 0;
1829
1830                 if (reg->valid == 0)
1831                 {
1832                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1833                         arch_type->get(reg);
1834                 }
1835                 value = buf_to_str(reg->value, reg->size, 16);
1836                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1837                 free(value);
1838                 return ERROR_OK;
1839         }
1840
1841         /* set register value */
1842         if (argc == 2)
1843         {
1844                 uint8_t *buf = malloc(CEIL(reg->size, 8));
1845                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1846
1847                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1848                 arch_type->set(reg, buf);
1849
1850                 value = buf_to_str(reg->value, reg->size, 16);
1851                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1852                 free(value);
1853
1854                 free(buf);
1855
1856                 return ERROR_OK;
1857         }
1858
1859         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1860
1861         return ERROR_OK;
1862 }
1863
1864 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1865 {
1866         int retval = ERROR_OK;
1867         target_t *target = get_current_target(cmd_ctx);
1868
1869         if (argc == 0)
1870         {
1871                 command_print(cmd_ctx, "background polling: %s",
1872                                 target_continuous_poll ?  "on" : "off");
1873                 command_print(cmd_ctx, "TAP: %s (%s)",
1874                                 target->tap->dotted_name,
1875                                 target->tap->enabled ? "enabled" : "disabled");
1876                 if (!target->tap->enabled)
1877                         return ERROR_OK;
1878                 if ((retval = target_poll(target)) != ERROR_OK)
1879                         return retval;
1880                 if ((retval = target_arch_state(target)) != ERROR_OK)
1881                         return retval;
1882
1883         }
1884         else if (argc == 1)
1885         {
1886                 if (strcmp(args[0], "on") == 0)
1887                 {
1888                         target_continuous_poll = 1;
1889                 }
1890                 else if (strcmp(args[0], "off") == 0)
1891                 {
1892                         target_continuous_poll = 0;
1893                 }
1894                 else
1895                 {
1896                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1897                 }
1898         } else
1899         {
1900                 return ERROR_COMMAND_SYNTAX_ERROR;
1901         }
1902
1903         return retval;
1904 }
1905
1906 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1907 {
1908         if (argc > 1)
1909                 return ERROR_COMMAND_SYNTAX_ERROR;
1910
1911         unsigned ms = 5000;
1912         if (1 == argc)
1913         {
1914                 int retval = parse_uint(args[0], &ms);
1915                 if (ERROR_OK != retval)
1916                 {
1917                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1918                         return ERROR_COMMAND_SYNTAX_ERROR;
1919                 }
1920                 // convert seconds (given) to milliseconds (needed)
1921                 ms *= 1000;
1922         }
1923
1924         target_t *target = get_current_target(cmd_ctx);
1925         return target_wait_state(target, TARGET_HALTED, ms);
1926 }
1927
1928 /* wait for target state to change. The trick here is to have a low
1929  * latency for short waits and not to suck up all the CPU time
1930  * on longer waits.
1931  *
1932  * After 500ms, keep_alive() is invoked
1933  */
1934 int target_wait_state(target_t *target, enum target_state state, int ms)
1935 {
1936         int retval;
1937         long long then = 0, cur;
1938         int once = 1;
1939
1940         for (;;)
1941         {
1942                 if ((retval = target_poll(target)) != ERROR_OK)
1943                         return retval;
1944                 if (target->state == state)
1945                 {
1946                         break;
1947                 }
1948                 cur = timeval_ms();
1949                 if (once)
1950                 {
1951                         once = 0;
1952                         then = timeval_ms();
1953                         LOG_DEBUG("waiting for target %s...",
1954                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1955                 }
1956
1957                 if (cur-then > 500)
1958                 {
1959                         keep_alive();
1960                 }
1961
1962                 if ((cur-then) > ms)
1963                 {
1964                         LOG_ERROR("timed out while waiting for target %s",
1965                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1966                         return ERROR_FAIL;
1967                 }
1968         }
1969
1970         return ERROR_OK;
1971 }
1972
1973 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1974 {
1975         LOG_DEBUG("-");
1976
1977         target_t *target = get_current_target(cmd_ctx);
1978         int retval = target_halt(target);
1979         if (ERROR_OK != retval)
1980                 return retval;
1981
1982         if (argc == 1)
1983         {
1984                 unsigned wait;
1985                 retval = parse_uint(args[0], &wait);
1986                 if (ERROR_OK != retval)
1987                         return ERROR_COMMAND_SYNTAX_ERROR;
1988                 if (!wait)
1989                         return ERROR_OK;
1990         }
1991
1992         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1993 }
1994
1995 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1996 {
1997         target_t *target = get_current_target(cmd_ctx);
1998
1999         LOG_USER("requesting target halt and executing a soft reset");
2000
2001         target->type->soft_reset_halt(target);
2002
2003         return ERROR_OK;
2004 }
2005
2006 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2007 {
2008         if (argc > 1)
2009                 return ERROR_COMMAND_SYNTAX_ERROR;
2010
2011         enum target_reset_mode reset_mode = RESET_RUN;
2012         if (argc == 1)
2013         {
2014                 const Jim_Nvp *n;
2015                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
2016                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2017                         return ERROR_COMMAND_SYNTAX_ERROR;
2018                 }
2019                 reset_mode = n->value;
2020         }
2021
2022         /* reset *all* targets */
2023         return target_process_reset(cmd_ctx, reset_mode);
2024 }
2025
2026
2027 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2028 {
2029         int current = 1;
2030         if (argc > 1)
2031                 return ERROR_COMMAND_SYNTAX_ERROR;
2032
2033         target_t *target = get_current_target(cmd_ctx);
2034         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2035
2036         /* with no args, resume from current pc, addr = 0,
2037          * with one arguments, addr = args[0],
2038          * handle breakpoints, not debugging */
2039         uint32_t addr = 0;
2040         if (argc == 1)
2041         {
2042                 int retval = parse_u32(args[0], &addr);
2043                 if (ERROR_OK != retval)
2044                         return retval;
2045                 current = 0;
2046         }
2047
2048         return target_resume(target, current, addr, 1, 0);
2049 }
2050
2051 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2052 {
2053         if (argc > 1)
2054                 return ERROR_COMMAND_SYNTAX_ERROR;
2055
2056         LOG_DEBUG("-");
2057
2058         /* with no args, step from current pc, addr = 0,
2059          * with one argument addr = args[0],
2060          * handle breakpoints, debugging */
2061         uint32_t addr = 0;
2062         int current_pc = 1;
2063         if (argc == 1)
2064         {
2065                 int retval = parse_u32(args[0], &addr);
2066                 if (ERROR_OK != retval)
2067                         return retval;
2068                 current_pc = 0;
2069         }
2070
2071         target_t *target = get_current_target(cmd_ctx);
2072
2073         return target->type->step(target, current_pc, addr, 1);
2074 }
2075
2076 static void handle_md_output(struct command_context_s *cmd_ctx,
2077                 struct target_s *target, uint32_t address, unsigned size,
2078                 unsigned count, const uint8_t *buffer)
2079 {
2080         const unsigned line_bytecnt = 32;
2081         unsigned line_modulo = line_bytecnt / size;
2082
2083         char output[line_bytecnt * 4 + 1];
2084         unsigned output_len = 0;
2085
2086         const char *value_fmt;
2087         switch (size) {
2088         case 4: value_fmt = "%8.8x "; break;
2089         case 2: value_fmt = "%4.2x "; break;
2090         case 1: value_fmt = "%2.2x "; break;
2091         default:
2092                 LOG_ERROR("invalid memory read size: %u", size);
2093                 exit(-1);
2094         }
2095
2096         for (unsigned i = 0; i < count; i++)
2097         {
2098                 if (i % line_modulo == 0)
2099                 {
2100                         output_len += snprintf(output + output_len,
2101                                         sizeof(output) - output_len,
2102                                         "0x%8.8x: ",
2103                                         (unsigned)(address + (i*size)));
2104                 }
2105
2106                 uint32_t value = 0;
2107                 const uint8_t *value_ptr = buffer + i * size;
2108                 switch (size) {
2109                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2110                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2111                 case 1: value = *value_ptr;
2112                 }
2113                 output_len += snprintf(output + output_len,
2114                                 sizeof(output) - output_len,
2115                                 value_fmt, value);
2116
2117                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2118                 {
2119                         command_print(cmd_ctx, "%s", output);
2120                         output_len = 0;
2121                 }
2122         }
2123 }
2124
2125 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2126 {
2127         if (argc < 1)
2128                 return ERROR_COMMAND_SYNTAX_ERROR;
2129
2130         unsigned size = 0;
2131         switch (cmd[2]) {
2132         case 'w': size = 4; break;
2133         case 'h': size = 2; break;
2134         case 'b': size = 1; break;
2135         default: return ERROR_COMMAND_SYNTAX_ERROR;
2136         }
2137
2138         uint32_t address;
2139         int retval = parse_u32(args[0], &address);
2140         if (ERROR_OK != retval)
2141                 return retval;
2142
2143         unsigned count = 1;
2144         if (argc == 2)
2145         {
2146                 retval = parse_uint(args[1], &count);
2147                 if (ERROR_OK != retval)
2148                         return retval;
2149         }
2150
2151         uint8_t *buffer = calloc(count, size);
2152
2153         target_t *target = get_current_target(cmd_ctx);
2154         retval = target_read_memory(target,
2155                                 address, size, count, buffer);
2156         if (ERROR_OK == retval)
2157                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2158
2159         free(buffer);
2160
2161         return retval;
2162 }
2163
2164 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2165 {
2166          if ((argc < 2) || (argc > 3))
2167                 return ERROR_COMMAND_SYNTAX_ERROR;
2168
2169         uint32_t address;
2170         int retval = parse_u32(args[0], &address);
2171         if (ERROR_OK != retval)
2172                 return retval;
2173
2174         uint32_t value;
2175         retval = parse_u32(args[1], &value);
2176         if (ERROR_OK != retval)
2177                 return retval;
2178
2179         unsigned count = 1;
2180         if (argc == 3)
2181         {
2182                 retval = parse_uint(args[2], &count);
2183                 if (ERROR_OK != retval)
2184                         return retval;
2185         }
2186
2187         target_t *target = get_current_target(cmd_ctx);
2188         unsigned wordsize;
2189         uint8_t value_buf[4];
2190         switch (cmd[2])
2191         {
2192                 case 'w':
2193                         wordsize = 4;
2194                         target_buffer_set_u32(target, value_buf, value);
2195                         break;
2196                 case 'h':
2197                         wordsize = 2;
2198                         target_buffer_set_u16(target, value_buf, value);
2199                         break;
2200                 case 'b':
2201                         wordsize = 1;
2202                         value_buf[0] = value;
2203                         break;
2204                 default:
2205                         return ERROR_COMMAND_SYNTAX_ERROR;
2206         }
2207         for (unsigned i = 0; i < count; i++)
2208         {
2209                 retval = target_write_memory(target,
2210                                 address + i * wordsize, wordsize, 1, value_buf);
2211                 if (ERROR_OK != retval)
2212                         return retval;
2213                 keep_alive();
2214         }
2215
2216         return ERROR_OK;
2217
2218 }
2219
2220 static int parse_load_image_command_args(char **args, int argc,
2221                 image_t *image, uint32_t *min_address, uint32_t *max_address)
2222 {
2223         if (argc < 1 || argc > 5)
2224                 return ERROR_COMMAND_SYNTAX_ERROR;
2225
2226         /* a base address isn't always necessary,
2227          * default to 0x0 (i.e. don't relocate) */
2228         if (argc >= 2)
2229         {
2230                 uint32_t addr;
2231                 int retval = parse_u32(args[1], &addr);
2232                 if (ERROR_OK != retval)
2233                         return ERROR_COMMAND_SYNTAX_ERROR;
2234                 image->base_address = addr;
2235                 image->base_address_set = 1;
2236         }
2237         else
2238                 image->base_address_set = 0;
2239
2240         image->start_address_set = 0;
2241
2242         if (argc >= 4)
2243         {
2244                 int retval = parse_u32(args[3], min_address);
2245                 if (ERROR_OK != retval)
2246                         return ERROR_COMMAND_SYNTAX_ERROR;
2247         }
2248         if (argc == 5)
2249         {
2250                 int retval = parse_u32(args[4], max_address);
2251                 if (ERROR_OK != retval)
2252                         return ERROR_COMMAND_SYNTAX_ERROR;
2253                 // use size (given) to find max (required)
2254                 *max_address += *min_address;
2255         }
2256
2257         if (*min_address > *max_address)
2258                 return ERROR_COMMAND_SYNTAX_ERROR;
2259
2260         return ERROR_OK;
2261 }
2262
2263 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2264 {
2265         uint8_t *buffer;
2266         uint32_t buf_cnt;
2267         uint32_t image_size;
2268         uint32_t min_address = 0;
2269         uint32_t max_address = 0xffffffff;
2270         int i;
2271         int retvaltemp;
2272
2273         image_t image;
2274
2275         duration_t duration;
2276         char *duration_text;
2277
2278         int retval = parse_load_image_command_args(args, argc,
2279                         &image, &min_address, &max_address);
2280         if (ERROR_OK != retval)
2281                 return retval;
2282
2283         target_t *target = get_current_target(cmd_ctx);
2284         duration_start_measure(&duration);
2285
2286         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2287         {
2288                 return ERROR_OK;
2289         }
2290
2291         image_size = 0x0;
2292         retval = ERROR_OK;
2293         for (i = 0; i < image.num_sections; i++)
2294         {
2295                 buffer = malloc(image.sections[i].size);
2296                 if (buffer == NULL)
2297                 {
2298                         command_print(cmd_ctx,
2299                                                   "error allocating buffer for section (%d bytes)",
2300                                                   (int)(image.sections[i].size));
2301                         break;
2302                 }
2303
2304                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2305                 {
2306                         free(buffer);
2307                         break;
2308                 }
2309
2310                 uint32_t offset = 0;
2311                 uint32_t length = buf_cnt;
2312
2313                 /* DANGER!!! beware of unsigned comparision here!!! */
2314
2315                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2316                                 (image.sections[i].base_address < max_address))
2317                 {
2318                         if (image.sections[i].base_address < min_address)
2319                         {
2320                                 /* clip addresses below */
2321                                 offset += min_address-image.sections[i].base_address;
2322                                 length -= offset;
2323                         }
2324
2325                         if (image.sections[i].base_address + buf_cnt > max_address)
2326                         {
2327                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2328                         }
2329
2330                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2331                         {
2332                                 free(buffer);
2333                                 break;
2334                         }
2335                         image_size += length;
2336                         command_print(cmd_ctx, "%u byte written at address 0x%8.8" PRIx32 "",
2337                                                   (unsigned int)length,
2338                                                   image.sections[i].base_address + offset);
2339                 }
2340
2341                 free(buffer);
2342         }
2343
2344         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2345         {
2346                 image_close(&image);
2347                 return retvaltemp;
2348         }
2349
2350         if (retval == ERROR_OK)
2351         {
2352                 command_print(cmd_ctx, "downloaded %u byte in %s",
2353                                           (unsigned int)image_size,
2354                                           duration_text);
2355         }
2356         free(duration_text);
2357
2358         image_close(&image);
2359
2360         return retval;
2361
2362 }
2363
2364 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2365 {
2366         fileio_t fileio;
2367
2368         uint8_t buffer[560];
2369         int retvaltemp;
2370
2371         duration_t duration;
2372         char *duration_text;
2373
2374         target_t *target = get_current_target(cmd_ctx);
2375
2376         if (argc != 3)
2377         {
2378                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2379                 return ERROR_OK;
2380         }
2381
2382         uint32_t address;
2383         int retval = parse_u32(args[1], &address);
2384         if (ERROR_OK != retval)
2385                 return retval;
2386
2387         uint32_t size;
2388         retval = parse_u32(args[2], &size);
2389         if (ERROR_OK != retval)
2390                 return retval;
2391
2392         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2393         {
2394                 return ERROR_OK;
2395         }
2396
2397         duration_start_measure(&duration);
2398
2399         while (size > 0)
2400         {
2401                 uint32_t size_written;
2402                 uint32_t this_run_size = (size > 560) ? 560 : size;
2403
2404                 retval = target_read_buffer(target, address, this_run_size, buffer);
2405                 if (retval != ERROR_OK)
2406                 {
2407                         break;
2408                 }
2409
2410                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2411                 if (retval != ERROR_OK)
2412                 {
2413                         break;
2414                 }
2415
2416                 size -= this_run_size;
2417                 address += this_run_size;
2418         }
2419
2420         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2421                 return retvaltemp;
2422
2423         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2424                 return retvaltemp;
2425
2426         if (retval == ERROR_OK)
2427         {
2428                 command_print(cmd_ctx, "dumped %lld byte in %s",
2429                                 fileio.size, duration_text);
2430                 free(duration_text);
2431         }
2432
2433         return retval;
2434 }
2435
2436 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2437 {
2438         uint8_t *buffer;
2439         uint32_t buf_cnt;
2440         uint32_t image_size;
2441         int i;
2442         int retval, retvaltemp;
2443         uint32_t checksum = 0;
2444         uint32_t mem_checksum = 0;
2445
2446         image_t image;
2447
2448         duration_t duration;
2449         char *duration_text;
2450
2451         target_t *target = get_current_target(cmd_ctx);
2452
2453         if (argc < 1)
2454         {
2455                 return ERROR_COMMAND_SYNTAX_ERROR;
2456         }
2457
2458         if (!target)
2459         {
2460                 LOG_ERROR("no target selected");
2461                 return ERROR_FAIL;
2462         }
2463
2464         duration_start_measure(&duration);
2465
2466         if (argc >= 2)
2467         {
2468                 uint32_t addr;
2469                 retval = parse_u32(args[1], &addr);
2470                 if (ERROR_OK != retval)
2471                         return ERROR_COMMAND_SYNTAX_ERROR;
2472                 image.base_address = addr;
2473                 image.base_address_set = 1;
2474         }
2475         else
2476         {
2477                 image.base_address_set = 0;
2478                 image.base_address = 0x0;
2479         }
2480
2481         image.start_address_set = 0;
2482
2483         if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2484         {
2485                 return retval;
2486         }
2487
2488         image_size = 0x0;
2489         retval = ERROR_OK;
2490         for (i = 0; i < image.num_sections; i++)
2491         {
2492                 buffer = malloc(image.sections[i].size);
2493                 if (buffer == NULL)
2494                 {
2495                         command_print(cmd_ctx,
2496                                                   "error allocating buffer for section (%d bytes)",
2497                                                   (int)(image.sections[i].size));
2498                         break;
2499                 }
2500                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2501                 {
2502                         free(buffer);
2503                         break;
2504                 }
2505
2506                 if (verify)
2507                 {
2508                         /* calculate checksum of image */
2509                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2510
2511                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2512                         if (retval != ERROR_OK)
2513                         {
2514                                 free(buffer);
2515                                 break;
2516                         }
2517
2518                         if (checksum != mem_checksum)
2519                         {
2520                                 /* failed crc checksum, fall back to a binary compare */
2521                                 uint8_t *data;
2522
2523                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2524
2525                                 data = (uint8_t*)malloc(buf_cnt);
2526
2527                                 /* Can we use 32bit word accesses? */
2528                                 int size = 1;
2529                                 int count = buf_cnt;
2530                                 if ((count % 4) == 0)
2531                                 {
2532                                         size *= 4;
2533                                         count /= 4;
2534                                 }
2535                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2536                                 if (retval == ERROR_OK)
2537                                 {
2538                                         uint32_t t;
2539                                         for (t = 0; t < buf_cnt; t++)
2540                                         {
2541                                                 if (data[t] != buffer[t])
2542                                                 {
2543                                                         command_print(cmd_ctx,
2544                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2545                                                                                   (unsigned)(t + image.sections[i].base_address),
2546                                                                                   data[t],
2547                                                                                   buffer[t]);
2548                                                         free(data);
2549                                                         free(buffer);
2550                                                         retval = ERROR_FAIL;
2551                                                         goto done;
2552                                                 }
2553                                                 if ((t%16384) == 0)
2554                                                 {
2555                                                         keep_alive();
2556                                                 }
2557                                         }
2558                                 }
2559
2560                                 free(data);
2561                         }
2562                 } else
2563                 {
2564                         command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
2565                                                   image.sections[i].base_address,
2566                                                   buf_cnt);
2567                 }
2568
2569                 free(buffer);
2570                 image_size += buf_cnt;
2571         }
2572 done:
2573
2574         if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2575         {
2576                 image_close(&image);
2577                 return retvaltemp;
2578         }
2579
2580         if (retval == ERROR_OK)
2581         {
2582                 command_print(cmd_ctx, "verified %u bytes in %s",
2583                                           (unsigned int)image_size,
2584                                           duration_text);
2585         }
2586         free(duration_text);
2587
2588         image_close(&image);
2589
2590         return retval;
2591 }
2592
2593 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2594 {
2595         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2596 }
2597
2598 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2599 {
2600         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2601 }
2602
2603 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2604 {
2605         target_t *target = get_current_target(cmd_ctx);
2606         breakpoint_t *breakpoint = target->breakpoints;
2607         while (breakpoint)
2608         {
2609                 if (breakpoint->type == BKPT_SOFT)
2610                 {
2611                         char* buf = buf_to_str(breakpoint->orig_instr,
2612                                         breakpoint->length, 16);
2613                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2614                                         breakpoint->address,
2615                                         breakpoint->length,
2616                                         breakpoint->set, buf);
2617                         free(buf);
2618                 }
2619                 else
2620                 {
2621                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2622                                                   breakpoint->address,
2623                                                   breakpoint->length, breakpoint->set);
2624                 }
2625
2626                 breakpoint = breakpoint->next;
2627         }
2628         return ERROR_OK;
2629 }
2630
2631 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2632                 uint32_t addr, uint32_t length, int hw)
2633 {
2634         target_t *target = get_current_target(cmd_ctx);
2635         int retval = breakpoint_add(target, addr, length, hw);
2636         if (ERROR_OK == retval)
2637                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2638         else
2639                 LOG_ERROR("Failure setting breakpoint");
2640         return retval;
2641 }
2642
2643 static int handle_bp_command(struct command_context_s *cmd_ctx,
2644                 char *cmd, char **args, int argc)
2645 {
2646         if (argc == 0)
2647                 return handle_bp_command_list(cmd_ctx);
2648
2649         if (argc < 2 || argc > 3)
2650         {
2651                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2652                 return ERROR_COMMAND_SYNTAX_ERROR;
2653         }
2654
2655         uint32_t addr;
2656         int retval = parse_u32(args[0], &addr);
2657         if (ERROR_OK != retval)
2658                 return retval;
2659
2660         uint32_t length;
2661         retval = parse_u32(args[1], &length);
2662         if (ERROR_OK != retval)
2663                 return retval;
2664
2665         int hw = BKPT_SOFT;
2666         if (argc == 3)
2667         {
2668                 if (strcmp(args[2], "hw") == 0)
2669                         hw = BKPT_HARD;
2670                 else
2671                         return ERROR_COMMAND_SYNTAX_ERROR;
2672         }
2673
2674         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2675 }
2676
2677 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2678 {
2679         if (argc != 1)
2680                 return ERROR_COMMAND_SYNTAX_ERROR;
2681
2682         uint32_t addr;
2683         int retval = parse_u32(args[0], &addr);
2684         if (ERROR_OK != retval)
2685                 return retval;
2686
2687         target_t *target = get_current_target(cmd_ctx);
2688         breakpoint_remove(target, addr);
2689
2690         return ERROR_OK;
2691 }
2692
2693 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2694 {
2695         target_t *target = get_current_target(cmd_ctx);
2696
2697         if (argc == 0)
2698         {
2699                 watchpoint_t *watchpoint = target->watchpoints;
2700
2701                 while (watchpoint)
2702                 {
2703                         command_print(cmd_ctx,
2704                                                   "address: 0x%8.8" PRIx32 ", len: 0x%8.8x, r/w/a: %i, value: 0x%8.8" PRIx32 ", mask: 0x%8.8" PRIx32 "",
2705                                                   watchpoint->address,
2706                                                   watchpoint->length,
2707                                                   (int)(watchpoint->rw),
2708                                                   watchpoint->value,
2709                                                   watchpoint->mask);
2710                         watchpoint = watchpoint->next;
2711                 }
2712                 return ERROR_OK;
2713         }
2714
2715         enum watchpoint_rw type = WPT_ACCESS;
2716         uint32_t addr = 0;
2717         uint32_t length = 0;
2718         uint32_t data_value = 0x0;
2719         uint32_t data_mask = 0xffffffff;
2720         int retval;
2721
2722         switch (argc)
2723         {
2724         case 5:
2725                 retval = parse_u32(args[4], &data_mask);
2726                 if (ERROR_OK != retval)
2727                         return retval;
2728                 // fall through
2729         case 4:
2730                 retval = parse_u32(args[3], &data_value);
2731                 if (ERROR_OK != retval)
2732                         return retval;
2733                 // fall through
2734         case 3:
2735                 switch (args[2][0])
2736                 {
2737                 case 'r':
2738                         type = WPT_READ;
2739                         break;
2740                 case 'w':
2741                         type = WPT_WRITE;
2742                         break;
2743                 case 'a':
2744                         type = WPT_ACCESS;
2745                         break;
2746                 default:
2747                         LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2748                         return ERROR_COMMAND_SYNTAX_ERROR;
2749                 }
2750                 // fall through
2751         case 2:
2752                 retval = parse_u32(args[1], &length);
2753                 if (ERROR_OK != retval)
2754                         return retval;
2755                 retval = parse_u32(args[0], &addr);
2756                 if (ERROR_OK != retval)
2757                         return retval;
2758                 break;
2759
2760         default:
2761                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2762                 return ERROR_COMMAND_SYNTAX_ERROR;
2763         }
2764
2765         retval = watchpoint_add(target, addr, length, type,
2766                         data_value, data_mask);
2767         if (ERROR_OK != retval)
2768                 LOG_ERROR("Failure setting watchpoints");
2769
2770         return retval;
2771 }
2772
2773 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2774 {
2775         if (argc != 1)
2776                 return ERROR_COMMAND_SYNTAX_ERROR;
2777
2778         uint32_t addr;
2779         int retval = parse_u32(args[0], &addr);
2780         if (ERROR_OK != retval)
2781                 return retval;
2782
2783         target_t *target = get_current_target(cmd_ctx);
2784         watchpoint_remove(target, addr);
2785
2786         return ERROR_OK;
2787 }
2788
2789
2790 /**
2791  * Translate a virtual address to a physical address.
2792  *
2793  * The low-level target implementation must have logged a detailed error
2794  * which is forwarded to telnet/GDB session.
2795  */
2796 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2797                 char *cmd, char **args, int argc)
2798 {
2799         if (argc != 1)
2800                 return ERROR_COMMAND_SYNTAX_ERROR;
2801
2802         uint32_t va;
2803         int retval = parse_u32(args[0], &va);
2804         if (ERROR_OK != retval)
2805                 return retval;
2806         uint32_t pa;
2807
2808         target_t *target = get_current_target(cmd_ctx);
2809         retval = target->type->virt2phys(target, va, &pa);
2810         if (retval == ERROR_OK)
2811                 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
2812
2813         return retval;
2814 }
2815
2816 static void writeData(FILE *f, const void *data, size_t len)
2817 {
2818         size_t written = fwrite(data, 1, len, f);
2819         if (written != len)
2820                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2821 }
2822
2823 static void writeLong(FILE *f, int l)
2824 {
2825         int i;
2826         for (i = 0; i < 4; i++)
2827         {
2828                 char c = (l >> (i*8))&0xff;
2829                 writeData(f, &c, 1);
2830         }
2831
2832 }
2833
2834 static void writeString(FILE *f, char *s)
2835 {
2836         writeData(f, s, strlen(s));
2837 }
2838
2839 /* Dump a gmon.out histogram file. */
2840 static void writeGmon(uint32_t *samples, uint32_t sampleNum, char *filename)
2841 {
2842         uint32_t i;
2843         FILE *f = fopen(filename, "w");
2844         if (f == NULL)
2845                 return;
2846         writeString(f, "gmon");
2847         writeLong(f, 0x00000001); /* Version */
2848         writeLong(f, 0); /* padding */
2849         writeLong(f, 0); /* padding */
2850         writeLong(f, 0); /* padding */
2851
2852         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2853         writeData(f, &zero, 1);
2854
2855         /* figure out bucket size */
2856         uint32_t min = samples[0];
2857         uint32_t max = samples[0];
2858         for (i = 0; i < sampleNum; i++)
2859         {
2860                 if (min > samples[i])
2861                 {
2862                         min = samples[i];
2863                 }
2864                 if (max < samples[i])
2865                 {
2866                         max = samples[i];
2867                 }
2868         }
2869
2870         int addressSpace = (max-min + 1);
2871
2872         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2873         uint32_t length = addressSpace;
2874         if (length > maxBuckets)
2875         {
2876                 length = maxBuckets;
2877         }
2878         int *buckets = malloc(sizeof(int)*length);
2879         if (buckets == NULL)
2880         {
2881                 fclose(f);
2882                 return;
2883         }
2884         memset(buckets, 0, sizeof(int)*length);
2885         for (i = 0; i < sampleNum;i++)
2886         {
2887                 uint32_t address = samples[i];
2888                 long long a = address-min;
2889                 long long b = length-1;
2890                 long long c = addressSpace-1;
2891                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2892                 buckets[index]++;
2893         }
2894
2895         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2896         writeLong(f, min);                      /* low_pc */
2897         writeLong(f, max);                      /* high_pc */
2898         writeLong(f, length);           /* # of samples */
2899         writeLong(f, 64000000);         /* 64MHz */
2900         writeString(f, "seconds");
2901         for (i = 0; i < (15-strlen("seconds")); i++)
2902                 writeData(f, &zero, 1);
2903         writeString(f, "s");
2904
2905         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2906
2907         char *data = malloc(2*length);
2908         if (data != NULL)
2909         {
2910                 for (i = 0; i < length;i++)
2911                 {
2912                         int val;
2913                         val = buckets[i];
2914                         if (val > 65535)
2915                         {
2916                                 val = 65535;
2917                         }
2918                         data[i*2]=val&0xff;
2919                         data[i*2 + 1]=(val >> 8)&0xff;
2920                 }
2921                 free(buckets);
2922                 writeData(f, data, length * 2);
2923                 free(data);
2924         } else
2925         {
2926                 free(buckets);
2927         }
2928
2929         fclose(f);
2930 }
2931
2932 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2933 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2934 {
2935         target_t *target = get_current_target(cmd_ctx);
2936         struct timeval timeout, now;
2937
2938         gettimeofday(&timeout, NULL);
2939         if (argc != 2)
2940         {
2941                 return ERROR_COMMAND_SYNTAX_ERROR;
2942         }
2943         unsigned offset;
2944         int retval = parse_uint(args[0], &offset);
2945         if (ERROR_OK != retval)
2946                 return retval;
2947
2948         timeval_add_time(&timeout, offset, 0);
2949
2950         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2951
2952         static const int maxSample = 10000;
2953         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
2954         if (samples == NULL)
2955                 return ERROR_OK;
2956
2957         int numSamples = 0;
2958         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2959         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2960
2961         for (;;)
2962         {
2963                 target_poll(target);
2964                 if (target->state == TARGET_HALTED)
2965                 {
2966                         uint32_t t=*((uint32_t *)reg->value);
2967                         samples[numSamples++]=t;
2968                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2969                         target_poll(target);
2970                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2971                 } else if (target->state == TARGET_RUNNING)
2972                 {
2973                         /* We want to quickly sample the PC. */
2974                         if ((retval = target_halt(target)) != ERROR_OK)
2975                         {
2976                                 free(samples);
2977                                 return retval;
2978                         }
2979                 } else
2980                 {
2981                         command_print(cmd_ctx, "Target not halted or running");
2982                         retval = ERROR_OK;
2983                         break;
2984                 }
2985                 if (retval != ERROR_OK)
2986                 {
2987                         break;
2988                 }
2989
2990                 gettimeofday(&now, NULL);
2991                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2992                 {
2993                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2994                         if ((retval = target_poll(target)) != ERROR_OK)
2995                         {
2996                                 free(samples);
2997                                 return retval;
2998                         }
2999                         if (target->state == TARGET_HALTED)
3000                         {
3001                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3002                         }
3003                         if ((retval = target_poll(target)) != ERROR_OK)
3004                         {
3005                                 free(samples);
3006                                 return retval;
3007                         }
3008                         writeGmon(samples, numSamples, args[1]);
3009                         command_print(cmd_ctx, "Wrote %s", args[1]);
3010                         break;
3011                 }
3012         }
3013         free(samples);
3014
3015         return ERROR_OK;
3016 }
3017
3018 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3019 {
3020         char *namebuf;
3021         Jim_Obj *nameObjPtr, *valObjPtr;
3022         int result;
3023
3024         namebuf = alloc_printf("%s(%d)", varname, idx);
3025         if (!namebuf)
3026                 return JIM_ERR;
3027
3028         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3029         valObjPtr = Jim_NewIntObj(interp, val);
3030         if (!nameObjPtr || !valObjPtr)
3031         {
3032                 free(namebuf);
3033                 return JIM_ERR;
3034         }
3035
3036         Jim_IncrRefCount(nameObjPtr);
3037         Jim_IncrRefCount(valObjPtr);
3038         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3039         Jim_DecrRefCount(interp, nameObjPtr);
3040         Jim_DecrRefCount(interp, valObjPtr);
3041         free(namebuf);
3042         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3043         return result;
3044 }
3045
3046 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3047 {
3048         command_context_t *context;
3049         target_t *target;
3050
3051         context = Jim_GetAssocData(interp, "context");
3052         if (context == NULL)
3053         {
3054                 LOG_ERROR("mem2array: no command context");
3055                 return JIM_ERR;
3056         }
3057         target = get_current_target(context);
3058         if (target == NULL)
3059         {
3060                 LOG_ERROR("mem2array: no current target");
3061                 return JIM_ERR;
3062         }
3063
3064         return  target_mem2array(interp, target, argc-1, argv + 1);
3065 }
3066
3067 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3068 {
3069         long l;
3070         uint32_t width;
3071         int len;
3072         uint32_t addr;
3073         uint32_t count;
3074         uint32_t v;
3075         const char *varname;
3076         uint8_t buffer[4096];
3077         int  n, e, retval;
3078         uint32_t i;
3079
3080         /* argv[1] = name of array to receive the data
3081          * argv[2] = desired width
3082          * argv[3] = memory address
3083          * argv[4] = count of times to read
3084          */
3085         if (argc != 4) {
3086                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3087                 return JIM_ERR;
3088         }
3089         varname = Jim_GetString(argv[0], &len);
3090         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3091
3092         e = Jim_GetLong(interp, argv[1], &l);
3093         width = l;
3094         if (e != JIM_OK) {
3095                 return e;
3096         }
3097
3098         e = Jim_GetLong(interp, argv[2], &l);
3099         addr = l;
3100         if (e != JIM_OK) {
3101                 return e;
3102         }
3103         e = Jim_GetLong(interp, argv[3], &l);
3104         len = l;
3105         if (e != JIM_OK) {
3106                 return e;
3107         }
3108         switch (width) {
3109                 case 8:
3110                         width = 1;
3111                         break;
3112                 case 16:
3113                         width = 2;
3114                         break;
3115                 case 32:
3116                         width = 4;
3117                         break;
3118                 default:
3119                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3120                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3121                         return JIM_ERR;
3122         }
3123         if (len == 0) {
3124                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3125                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3126                 return JIM_ERR;
3127         }
3128         if ((addr + (len * width)) < addr) {
3129                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3130                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3131                 return JIM_ERR;
3132         }
3133         /* absurd transfer size? */
3134         if (len > 65536) {
3135                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3136                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3137                 return JIM_ERR;
3138         }
3139
3140         if ((width == 1) ||
3141                 ((width == 2) && ((addr & 1) == 0)) ||
3142                 ((width == 4) && ((addr & 3) == 0))) {
3143                 /* all is well */
3144         } else {
3145                 char buf[100];
3146                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3147                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3148                                 addr,
3149                                 width);
3150                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3151                 return JIM_ERR;
3152         }
3153
3154         /* Transfer loop */
3155
3156         /* index counter */
3157         n = 0;
3158         /* assume ok */
3159         e = JIM_OK;
3160         while (len) {
3161                 /* Slurp... in buffer size chunks */
3162
3163                 count = len; /* in objects.. */
3164                 if (count > (sizeof(buffer)/width)) {
3165                         count = (sizeof(buffer)/width);
3166                 }
3167
3168                 retval = target_read_memory(target, addr, width, count, buffer);
3169                 if (retval != ERROR_OK) {
3170                         /* BOO !*/
3171                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3172                                           (unsigned int)addr,
3173                                           (int)width,
3174                                           (int)count);
3175                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3176                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3177                         e = JIM_ERR;
3178                         len = 0;
3179                 } else {
3180                         v = 0; /* shut up gcc */
3181                         for (i = 0 ;i < count ;i++, n++) {
3182                                 switch (width) {
3183                                         case 4:
3184                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3185                                                 break;
3186                                         case 2:
3187                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3188                                                 break;
3189                                         case 1:
3190                                                 v = buffer[i] & 0x0ff;
3191                                                 break;
3192                                 }
3193                                 new_int_array_element(interp, varname, n, v);
3194                         }
3195                         len -= count;
3196                 }
3197         }
3198
3199         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3200
3201         return JIM_OK;
3202 }
3203
3204 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3205 {
3206         char *namebuf;
3207         Jim_Obj *nameObjPtr, *valObjPtr;
3208         int result;
3209         long l;
3210
3211         namebuf = alloc_printf("%s(%d)", varname, idx);
3212         if (!namebuf)
3213                 return JIM_ERR;
3214
3215         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3216         if (!nameObjPtr)
3217         {
3218                 free(namebuf);
3219                 return JIM_ERR;
3220         }
3221
3222         Jim_IncrRefCount(nameObjPtr);
3223         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3224         Jim_DecrRefCount(interp, nameObjPtr);
3225         free(namebuf);
3226         if (valObjPtr == NULL)
3227                 return JIM_ERR;
3228
3229         result = Jim_GetLong(interp, valObjPtr, &l);
3230         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3231         *val = l;
3232         return result;
3233 }
3234
3235 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3236 {
3237         command_context_t *context;
3238         target_t *target;
3239
3240         context = Jim_GetAssocData(interp, "context");
3241         if (context == NULL) {
3242                 LOG_ERROR("array2mem: no command context");
3243                 return JIM_ERR;
3244         }
3245         target = get_current_target(context);
3246         if (target == NULL) {
3247                 LOG_ERROR("array2mem: no current target");
3248                 return JIM_ERR;
3249         }
3250
3251         return target_array2mem(interp,target, argc-1, argv + 1);
3252 }
3253
3254 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3255 {
3256         long l;
3257         uint32_t width;
3258         int len;
3259         uint32_t addr;
3260         uint32_t count;
3261         uint32_t v;
3262         const char *varname;
3263         uint8_t buffer[4096];
3264         int  n, e, retval;
3265         uint32_t i;
3266
3267         /* argv[1] = name of array to get the data
3268          * argv[2] = desired width
3269          * argv[3] = memory address
3270          * argv[4] = count to write
3271          */
3272         if (argc != 4) {
3273                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3274                 return JIM_ERR;
3275         }
3276         varname = Jim_GetString(argv[0], &len);
3277         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3278
3279         e = Jim_GetLong(interp, argv[1], &l);
3280         width = l;
3281         if (e != JIM_OK) {
3282                 return e;
3283         }
3284
3285         e = Jim_GetLong(interp, argv[2], &l);
3286         addr = l;
3287         if (e != JIM_OK) {
3288                 return e;
3289         }
3290         e = Jim_GetLong(interp, argv[3], &l);
3291         len = l;
3292         if (e != JIM_OK) {
3293                 return e;
3294         }
3295         switch (width) {
3296                 case 8:
3297                         width = 1;
3298                         break;
3299                 case 16:
3300                         width = 2;
3301                         break;
3302                 case 32:
3303                         width = 4;
3304                         break;
3305                 default:
3306                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3307                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3308                         return JIM_ERR;
3309         }
3310         if (len == 0) {
3311                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3312                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3313                 return JIM_ERR;
3314         }
3315         if ((addr + (len * width)) < addr) {
3316                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3317                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3318                 return JIM_ERR;
3319         }
3320         /* absurd transfer size? */
3321         if (len > 65536) {
3322                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3323                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3324                 return JIM_ERR;
3325         }
3326
3327         if ((width == 1) ||
3328                 ((width == 2) && ((addr & 1) == 0)) ||
3329                 ((width == 4) && ((addr & 3) == 0))) {
3330                 /* all is well */
3331         } else {
3332                 char buf[100];
3333                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3334                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3335                                 (unsigned int)addr,
3336                                 (int)width);
3337                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3338                 return JIM_ERR;
3339         }
3340
3341         /* Transfer loop */
3342
3343         /* index counter */
3344         n = 0;
3345         /* assume ok */
3346         e = JIM_OK;
3347         while (len) {
3348                 /* Slurp... in buffer size chunks */
3349
3350                 count = len; /* in objects.. */
3351                 if (count > (sizeof(buffer)/width)) {
3352                         count = (sizeof(buffer)/width);
3353                 }
3354
3355                 v = 0; /* shut up gcc */
3356                 for (i = 0 ;i < count ;i++, n++) {
3357                         get_int_array_element(interp, varname, n, &v);
3358                         switch (width) {
3359                         case 4:
3360                                 target_buffer_set_u32(target, &buffer[i*width], v);
3361                                 break;
3362                         case 2:
3363                                 target_buffer_set_u16(target, &buffer[i*width], v);
3364                                 break;
3365                         case 1:
3366                                 buffer[i] = v & 0x0ff;
3367                                 break;
3368                         }
3369                 }
3370                 len -= count;
3371
3372                 retval = target_write_memory(target, addr, width, count, buffer);
3373                 if (retval != ERROR_OK) {
3374                         /* BOO !*/
3375                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3376                                           (unsigned int)addr,
3377                                           (int)width,
3378                                           (int)count);
3379                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3380                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3381                         e = JIM_ERR;
3382                         len = 0;
3383                 }
3384         }
3385
3386         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3387
3388         return JIM_OK;
3389 }
3390
3391 void target_all_handle_event(enum target_event e)
3392 {
3393         target_t *target;
3394
3395         LOG_DEBUG("**all*targets: event: %d, %s",
3396                            (int)e,
3397                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3398
3399         target = all_targets;
3400         while (target) {
3401                 target_handle_event(target, e);
3402                 target = target->next;
3403         }
3404 }
3405
3406 void target_handle_event(target_t *target, enum target_event e)
3407 {
3408         target_event_action_t *teap;
3409         int done;
3410
3411         teap = target->event_action;
3412
3413         done = 0;
3414         while (teap) {
3415                 if (teap->event == e) {
3416                         done = 1;
3417                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3418                                            target->target_number,
3419                                            target->cmd_name,
3420                                            target_get_name(target),
3421                                            e,
3422                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3423                                            Jim_GetString(teap->body, NULL));
3424                         if (Jim_EvalObj(interp, teap->body) != JIM_OK)
3425                         {
3426                                 Jim_PrintErrorMessage(interp);
3427                         }
3428                 }
3429                 teap = teap->next;
3430         }
3431         if (!done) {
3432                 LOG_DEBUG("event: %d %s - no action",
3433                                    e,
3434                                    Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3435         }
3436 }
3437
3438 enum target_cfg_param {
3439         TCFG_TYPE,
3440         TCFG_EVENT,
3441         TCFG_WORK_AREA_VIRT,
3442         TCFG_WORK_AREA_PHYS,
3443         TCFG_WORK_AREA_SIZE,
3444         TCFG_WORK_AREA_BACKUP,
3445         TCFG_ENDIAN,
3446         TCFG_VARIANT,
3447         TCFG_CHAIN_POSITION,
3448 };
3449
3450 static Jim_Nvp nvp_config_opts[] = {
3451         { .name = "-type",             .value = TCFG_TYPE },
3452         { .name = "-event",            .value = TCFG_EVENT },
3453         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3454         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3455         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3456         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3457         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3458         { .name = "-variant",          .value = TCFG_VARIANT },
3459         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3460
3461         { .name = NULL, .value = -1 }
3462 };
3463
3464 static int target_configure(Jim_GetOptInfo *goi, target_t *target)
3465 {
3466         Jim_Nvp *n;
3467         Jim_Obj *o;
3468         jim_wide w;
3469         char *cp;
3470         int e;
3471
3472         /* parse config or cget options ... */
3473         while (goi->argc > 0) {
3474                 Jim_SetEmptyResult(goi->interp);
3475                 /* Jim_GetOpt_Debug(goi); */
3476
3477                 if (target->type->target_jim_configure) {
3478                         /* target defines a configure function */
3479                         /* target gets first dibs on parameters */
3480                         e = (*(target->type->target_jim_configure))(target, goi);
3481                         if (e == JIM_OK) {
3482                                 /* more? */
3483                                 continue;
3484                         }
3485                         if (e == JIM_ERR) {
3486                                 /* An error */
3487                                 return e;
3488                         }
3489                         /* otherwise we 'continue' below */
3490                 }
3491                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3492                 if (e != JIM_OK) {
3493                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3494                         return e;
3495                 }
3496                 switch (n->value) {
3497                 case TCFG_TYPE:
3498                         /* not setable */
3499                         if (goi->isconfigure) {
3500                                 Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name);
3501                                 return JIM_ERR;
3502                         } else {
3503                         no_params:
3504                                 if (goi->argc != 0) {
3505                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
3506                                         return JIM_ERR;
3507                                 }
3508                         }
3509                         Jim_SetResultString(goi->interp, target_get_name(target), -1);
3510                         /* loop for more */
3511                         break;
3512                 case TCFG_EVENT:
3513                         if (goi->argc == 0) {
3514                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3515                                 return JIM_ERR;
3516                         }
3517
3518                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3519                         if (e != JIM_OK) {
3520                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3521                                 return e;
3522                         }
3523
3524                         if (goi->isconfigure) {
3525                                 if (goi->argc != 1) {
3526                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3527                                         return JIM_ERR;
3528                                 }
3529                         } else {
3530                                 if (goi->argc != 0) {
3531                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3532                                         return JIM_ERR;
3533                                 }
3534                         }
3535
3536                         {
3537                                 target_event_action_t *teap;
3538
3539                                 teap = target->event_action;
3540                                 /* replace existing? */
3541                                 while (teap) {
3542                                         if (teap->event == (enum target_event)n->value) {
3543                                                 break;
3544                                         }
3545                                         teap = teap->next;
3546                                 }
3547
3548                                 if (goi->isconfigure) {
3549                                         if (teap == NULL) {
3550                                                 /* create new */
3551                                                 teap = calloc(1, sizeof(*teap));
3552                                         }
3553                                         teap->event = n->value;
3554                                         Jim_GetOpt_Obj(goi, &o);
3555                                         if (teap->body) {
3556                                                 Jim_DecrRefCount(interp, teap->body);
3557                                         }
3558                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3559                                         /*
3560                                          * FIXME:
3561                                          *     Tcl/TK - "tk events" have a nice feature.
3562                                          *     See the "BIND" command.
3563                                          *    We should support that here.
3564                                          *     You can specify %X and %Y in the event code.
3565                                          *     The idea is: %T - target name.
3566                                          *     The idea is: %N - target number
3567                                          *     The idea is: %E - event name.
3568                                          */
3569                                         Jim_IncrRefCount(teap->body);
3570
3571                                         /* add to head of event list */
3572                                         teap->next = target->event_action;
3573                                         target->event_action = teap;
3574                                         Jim_SetEmptyResult(goi->interp);
3575                                 } else {
3576                                         /* get */
3577                                         if (teap == NULL) {
3578                                                 Jim_SetEmptyResult(goi->interp);
3579                                         } else {
3580                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3581                                         }
3582                                 }
3583                         }
3584                         /* loop for more */
3585                         break;
3586
3587                 case TCFG_WORK_AREA_VIRT:
3588                         if (goi->isconfigure) {
3589                                 target_free_all_working_areas(target);
3590                                 e = Jim_GetOpt_Wide(goi, &w);
3591                                 if (e != JIM_OK) {
3592                                         return e;
3593                                 }
3594                                 target->working_area_virt = w;
3595                         } else {
3596                                 if (goi->argc != 0) {
3597                                         goto no_params;
3598                                 }
3599                         }
3600                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3601                         /* loop for more */
3602                         break;
3603
3604                 case TCFG_WORK_AREA_PHYS:
3605                         if (goi->isconfigure) {
3606                                 target_free_all_working_areas(target);
3607                                 e = Jim_GetOpt_Wide(goi, &w);
3608                                 if (e != JIM_OK) {
3609                                         return e;
3610                                 }
3611                                 target->working_area_phys = w;
3612                         } else {
3613                                 if (goi->argc != 0) {
3614                                         goto no_params;
3615                                 }
3616                         }
3617                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3618                         /* loop for more */
3619                         break;
3620
3621                 case TCFG_WORK_AREA_SIZE:
3622                         if (goi->isconfigure) {
3623                                 target_free_all_working_areas(target);
3624                                 e = Jim_GetOpt_Wide(goi, &w);
3625                                 if (e != JIM_OK) {
3626                                         return e;
3627                                 }
3628                                 target->working_area_size = w;
3629                         } else {
3630                                 if (goi->argc != 0) {
3631                                         goto no_params;
3632                                 }
3633                         }
3634                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3635                         /* loop for more */
3636                         break;
3637
3638                 case TCFG_WORK_AREA_BACKUP:
3639                         if (goi->isconfigure) {
3640                                 target_free_all_working_areas(target);
3641                                 e = Jim_GetOpt_Wide(goi, &w);
3642                                 if (e != JIM_OK) {
3643                                         return e;
3644                                 }
3645                                 /* make this exactly 1 or 0 */
3646                                 target->backup_working_area = (!!w);
3647                         } else {
3648                                 if (goi->argc != 0) {
3649                                         goto no_params;
3650                                 }
3651                         }
3652                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3653                         /* loop for more e*/
3654                         break;
3655
3656                 case TCFG_ENDIAN:
3657                         if (goi->isconfigure) {
3658                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3659                                 if (e != JIM_OK) {
3660                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3661                                         return e;
3662                                 }
3663                                 target->endianness = n->value;
3664                         } else {
3665                                 if (goi->argc != 0) {
3666                                         goto no_params;
3667                                 }
3668                         }
3669                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3670                         if (n->name == NULL) {
3671                                 target->endianness = TARGET_LITTLE_ENDIAN;
3672                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3673                         }
3674                         Jim_SetResultString(goi->interp, n->name, -1);
3675                         /* loop for more */
3676                         break;
3677
3678                 case TCFG_VARIANT:
3679                         if (goi->isconfigure) {
3680                                 if (goi->argc < 1) {
3681                                         Jim_SetResult_sprintf(goi->interp,
3682                                                                                    "%s ?STRING?",
3683                                                                                    n->name);
3684                                         return JIM_ERR;
3685                                 }
3686                                 if (target->variant) {
3687                                         free((void *)(target->variant));
3688                                 }
3689                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3690                                 target->variant = strdup(cp);
3691                         } else {
3692                                 if (goi->argc != 0) {
3693                                         goto no_params;
3694                                 }
3695                         }
3696                         Jim_SetResultString(goi->interp, target->variant,-1);
3697                         /* loop for more */
3698                         break;
3699                 case TCFG_CHAIN_POSITION:
3700                         if (goi->isconfigure) {
3701                                 Jim_Obj *o;
3702                                 jtag_tap_t *tap;
3703                                 target_free_all_working_areas(target);
3704                                 e = Jim_GetOpt_Obj(goi, &o);
3705                                 if (e != JIM_OK) {
3706                                         return e;
3707                                 }
3708                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3709                                 if (tap == NULL) {
3710                                         return JIM_ERR;
3711                                 }
3712                                 /* make this exactly 1 or 0 */
3713                                 target->tap = tap;
3714                         } else {
3715                                 if (goi->argc != 0) {
3716                                         goto no_params;
3717                                 }
3718                         }
3719                         Jim_SetResultString(interp, target->tap->dotted_name, -1);
3720                         /* loop for more e*/
3721                         break;
3722                 }
3723         } /* while (goi->argc) */
3724
3725
3726                 /* done - we return */
3727         return JIM_OK;
3728 }
3729
3730 /** this is the 'tcl' handler for the target specific command */
3731 static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3732 {
3733         Jim_GetOptInfo goi;
3734         jim_wide a,b,c;
3735         int x,y,z;
3736         uint8_t  target_buf[32];
3737         Jim_Nvp *n;
3738         target_t *target;
3739         struct command_context_s *cmd_ctx;
3740         int e;
3741
3742         enum {
3743                 TS_CMD_CONFIGURE,
3744                 TS_CMD_CGET,
3745
3746                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3747                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3748                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3749                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3750                 TS_CMD_EXAMINE,
3751                 TS_CMD_POLL,
3752                 TS_CMD_RESET,
3753                 TS_CMD_HALT,
3754                 TS_CMD_WAITSTATE,
3755                 TS_CMD_EVENTLIST,
3756                 TS_CMD_CURSTATE,
3757                 TS_CMD_INVOKE_EVENT,
3758         };
3759
3760         static const Jim_Nvp target_options[] = {
3761                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3762                 { .name = "cget", .value = TS_CMD_CGET },
3763                 { .name = "mww", .value = TS_CMD_MWW },
3764                 { .name = "mwh", .value = TS_CMD_MWH },
3765                 { .name = "mwb", .value = TS_CMD_MWB },
3766                 { .name = "mdw", .value = TS_CMD_MDW },
3767                 { .name = "mdh", .value = TS_CMD_MDH },
3768                 { .name = "mdb", .value = TS_CMD_MDB },
3769                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3770                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3771                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3772                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3773
3774                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3775                 { .name = "arp_poll", .value = TS_CMD_POLL },
3776                 { .name = "arp_reset", .value = TS_CMD_RESET },
3777                 { .name = "arp_halt", .value = TS_CMD_HALT },
3778                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3779                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3780
3781                 { .name = NULL, .value = -1 },
3782         };
3783
3784         /* go past the "command" */
3785         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
3786
3787         target = Jim_CmdPrivData(goi.interp);
3788         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3789
3790         /* commands here are in an NVP table */
3791         e = Jim_GetOpt_Nvp(&goi, target_options, &n);
3792         if (e != JIM_OK) {
3793                 Jim_GetOpt_NvpUnknown(&goi, target_options, 0);
3794                 return e;
3795         }
3796         /* Assume blank result */
3797         Jim_SetEmptyResult(goi.interp);
3798
3799         switch (n->value) {
3800         case TS_CMD_CONFIGURE:
3801                 if (goi.argc < 2) {
3802                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3803                         return JIM_ERR;
3804                 }
3805                 goi.isconfigure = 1;
3806                 return target_configure(&goi, target);
3807         case TS_CMD_CGET:
3808                 // some things take params
3809                 if (goi.argc < 1) {
3810                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?");
3811                         return JIM_ERR;
3812                 }
3813                 goi.isconfigure = 0;
3814                 return target_configure(&goi, target);
3815                 break;
3816         case TS_CMD_MWW:
3817         case TS_CMD_MWH:
3818         case TS_CMD_MWB:
3819                 /* argv[0] = cmd
3820                  * argv[1] = address
3821                  * argv[2] = data
3822                  * argv[3] = optional count.
3823                  */
3824
3825                 if ((goi.argc == 2) || (goi.argc == 3)) {
3826                         /* all is well */
3827                 } else {
3828                 mwx_error:
3829                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name);
3830                         return JIM_ERR;
3831                 }
3832
3833                 e = Jim_GetOpt_Wide(&goi, &a);
3834                 if (e != JIM_OK) {
3835                         goto mwx_error;
3836                 }
3837
3838                 e = Jim_GetOpt_Wide(&goi, &b);
3839                 if (e != JIM_OK) {
3840                         goto mwx_error;
3841                 }
3842                 if (goi.argc == 3) {
3843                         e = Jim_GetOpt_Wide(&goi, &c);
3844                         if (e != JIM_OK) {
3845                                 goto mwx_error;
3846                         }
3847                 } else {
3848                         c = 1;
3849                 }
3850
3851                 switch (n->value) {
3852                 case TS_CMD_MWW:
3853                         target_buffer_set_u32(target, target_buf, b);
3854                         b = 4;
3855                         break;
3856                 case TS_CMD_MWH:
3857                         target_buffer_set_u16(target, target_buf, b);
3858                         b = 2;
3859                         break;
3860                 case TS_CMD_MWB:
3861                         target_buffer_set_u8(target, target_buf, b);
3862                         b = 1;
3863                         break;
3864                 }
3865                 for (x = 0 ; x < c ; x++) {
3866                         e = target_write_memory(target, a, b, 1, target_buf);
3867                         if (e != ERROR_OK) {
3868                                 Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e);
3869                                 return JIM_ERR;
3870                         }
3871                         /* b = width */
3872                         a = a + b;
3873                 }
3874                 return JIM_OK;
3875                 break;
3876
3877                 /* display */
3878         case TS_CMD_MDW:
3879         case TS_CMD_MDH:
3880         case TS_CMD_MDB:
3881                 /* argv[0] = command
3882                  * argv[1] = address
3883                  * argv[2] = optional count
3884                  */
3885                 if ((goi.argc == 2) || (goi.argc == 3)) {
3886                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name);
3887                         return JIM_ERR;
3888                 }
3889                 e = Jim_GetOpt_Wide(&goi, &a);
3890                 if (e != JIM_OK) {
3891                         return JIM_ERR;
3892                 }
3893                 if (goi.argc) {
3894                         e = Jim_GetOpt_Wide(&goi, &c);
3895                         if (e != JIM_OK) {
3896                                 return JIM_ERR;
3897                         }
3898                 } else {
3899                         c = 1;
3900                 }
3901                 b = 1; /* shut up gcc */
3902                 switch (n->value) {
3903                 case TS_CMD_MDW:
3904                         b =  4;
3905                         break;
3906                 case TS_CMD_MDH:
3907                         b = 2;
3908                         break;
3909                 case TS_CMD_MDB:
3910                         b = 1;
3911                         break;
3912                 }
3913
3914                 /* convert to "bytes" */
3915                 c = c * b;
3916                 /* count is now in 'BYTES' */
3917                 while (c > 0) {
3918                         y = c;
3919                         if (y > 16) {
3920                                 y = 16;
3921                         }
3922                         e = target_read_memory(target, a, b, y / b, target_buf);
3923                         if (e != ERROR_OK) {
3924                                 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
3925                                 return JIM_ERR;
3926                         }
3927
3928                         Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
3929                         switch (b) {
3930                         case 4:
3931                                 for (x = 0 ; (x < 16) && (x < y) ; x += 4) {
3932                                         z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
3933                                         Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
3934                                 }
3935                                 for (; (x < 16) ; x += 4) {
3936                                         Jim_fprintf(interp, interp->cookie_stdout, "         ");
3937                                 }
3938                                 break;
3939                         case 2:
3940                                 for (x = 0 ; (x < 16) && (x < y) ; x += 2) {
3941                                         z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
3942                                         Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
3943                                 }
3944                                 for (; (x < 16) ; x += 2) {
3945                                         Jim_fprintf(interp, interp->cookie_stdout, "     ");
3946                                 }
3947                                 break;
3948                         case 1:
3949                         default:
3950                                 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
3951                                         z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
3952                                         Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
3953                                 }
3954                                 for (; (x < 16) ; x += 1) {
3955                                         Jim_fprintf(interp, interp->cookie_stdout, "   ");
3956                                 }
3957                                 break;
3958                         }
3959                         /* ascii-ify the bytes */
3960                         for (x = 0 ; x < y ; x++) {
3961                                 if ((target_buf[x] >= 0x20) &&
3962                                         (target_buf[x] <= 0x7e)) {
3963                                         /* good */
3964                                 } else {
3965                                         /* smack it */
3966                                         target_buf[x] = '.';
3967                                 }
3968                         }
3969                         /* space pad  */
3970                         while (x < 16) {
3971                                 target_buf[x] = ' ';
3972                                 x++;
3973                         }
3974                         /* terminate */
3975                         target_buf[16] = 0;
3976                         /* print - with a newline */
3977                         Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
3978                         /* NEXT... */
3979                         c -= 16;
3980                         a += 16;
3981                 }
3982                 return JIM_OK;
3983         case TS_CMD_MEM2ARRAY:
3984                 return target_mem2array(goi.interp, target, goi.argc, goi.argv);
3985                 break;
3986         case TS_CMD_ARRAY2MEM:
3987                 return target_array2mem(goi.interp, target, goi.argc, goi.argv);
3988                 break;
3989         case TS_CMD_EXAMINE:
3990                 if (goi.argc) {
3991                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
3992                         return JIM_ERR;
3993                 }
3994                 if (!target->tap->enabled)
3995                         goto err_tap_disabled;
3996                 e = target->type->examine(target);
3997                 if (e != ERROR_OK) {
3998                         Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
3999                         return JIM_ERR;
4000                 }
4001                 return JIM_OK;
4002         case TS_CMD_POLL:
4003                 if (goi.argc) {
4004                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4005                         return JIM_ERR;
4006                 }
4007                 if (!target->tap->enabled)
4008                         goto err_tap_disabled;
4009                 if (!(target_was_examined(target))) {
4010                         e = ERROR_TARGET_NOT_EXAMINED;
4011                 } else {
4012                         e = target->type->poll(target);
4013                 }
4014                 if (e != ERROR_OK) {
4015                         Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4016                         return JIM_ERR;
4017                 } else {
4018                         return JIM_OK;
4019                 }
4020                 break;
4021         case TS_CMD_RESET:
4022                 if (goi.argc != 2) {
4023                         Jim_WrongNumArgs(interp, 2, argv, "t | f|assert | deassert BOOL");
4024                         return JIM_ERR;
4025                 }
4026                 e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4027                 if (e != JIM_OK) {
4028                         Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4029                         return e;
4030                 }
4031                 /* the halt or not param */
4032                 e = Jim_GetOpt_Wide(&goi, &a);
4033                 if (e != JIM_OK) {
4034                         return e;
4035                 }
4036                 if (!target->tap->enabled)
4037                         goto err_tap_disabled;
4038                 /* determine if we should halt or not. */
4039                 target->reset_halt = !!a;
4040                 /* When this happens - all workareas are invalid. */
4041                 target_free_all_working_areas_restore(target, 0);
4042
4043                 /* do the assert */
4044                 if (n->value == NVP_ASSERT) {
4045                         target->type->assert_reset(target);
4046                 } else {
4047                         target->type->deassert_reset(target);
4048                 }
4049                 return JIM_OK;
4050         case TS_CMD_HALT:
4051                 if (goi.argc) {
4052                         Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]");
4053                         return JIM_ERR;
4054                 }
4055                 if (!target->tap->enabled)
4056                         goto err_tap_disabled;
4057                 target->type->halt(target);
4058                 return JIM_OK;
4059         case TS_CMD_WAITSTATE:
4060                 /* params:  <name>  statename timeoutmsecs */
4061                 if (goi.argc != 2) {
4062                         Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name);
4063                         return JIM_ERR;
4064                 }
4065                 e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4066                 if (e != JIM_OK) {
4067                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4068                         return e;
4069                 }
4070                 e = Jim_GetOpt_Wide(&goi, &a);
4071                 if (e != JIM_OK) {
4072                         return e;
4073                 }
4074                 if (!target->tap->enabled)
4075                         goto err_tap_disabled;
4076                 e = target_wait_state(target, n->value, a);
4077                 if (e != ERROR_OK) {
4078                         Jim_SetResult_sprintf(goi.interp,
4079                                                                    "target: %s wait %s fails (%d) %s",
4080                                                                    target->cmd_name,
4081                                                                    n->name,
4082                                                                    e, target_strerror_safe(e));
4083                         return JIM_ERR;
4084                 } else {
4085                         return JIM_OK;
4086                 }
4087         case TS_CMD_EVENTLIST:
4088                 /* List for human, Events defined for this target.
4089                  * scripts/programs should use 'name cget -event NAME'
4090                  */
4091                 {
4092                         target_event_action_t *teap;
4093                         teap = target->event_action;
4094                         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4095                                                    target->target_number,
4096                                                    target->cmd_name);
4097                         command_print(cmd_ctx, "%-25s | Body", "Event");
4098                         command_print(cmd_ctx, "------------------------- | ----------------------------------------");
4099                         while (teap) {
4100                                 command_print(cmd_ctx,
4101                                                            "%-25s | %s",
4102                                                            Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name,
4103                                                            Jim_GetString(teap->body, NULL));
4104                                 teap = teap->next;
4105                         }
4106                         command_print(cmd_ctx, "***END***");
4107                         return JIM_OK;
4108                 }
4109         case TS_CMD_CURSTATE:
4110                 if (goi.argc != 0) {
4111                         Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]");
4112                         return JIM_ERR;
4113                 }
4114                 Jim_SetResultString(goi.interp,
4115                                                         target_state_name( target ),
4116                                                         -1);
4117                 return JIM_OK;
4118         case TS_CMD_INVOKE_EVENT:
4119                 if (goi.argc != 1) {
4120                         Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name);
4121                         return JIM_ERR;
4122                 }
4123                 e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4124                 if (e != JIM_OK) {
4125                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4126                         return e;
4127                 }
4128                 target_handle_event(target, n->value);
4129                 return JIM_OK;
4130         }
4131         return JIM_ERR;
4132
4133 err_tap_disabled:
4134         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4135         return JIM_ERR;
4136 }
4137
4138 static int target_create(Jim_GetOptInfo *goi)
4139 {
4140         Jim_Obj *new_cmd;
4141         Jim_Cmd *cmd;
4142         const char *cp;
4143         char *cp2;
4144         int e;
4145         int x;
4146         target_t *target;
4147         struct command_context_s *cmd_ctx;
4148
4149         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4150         if (goi->argc < 3) {
4151                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4152                 return JIM_ERR;
4153         }
4154
4155         /* COMMAND */
4156         Jim_GetOpt_Obj(goi, &new_cmd);
4157         /* does this command exist? */
4158         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4159         if (cmd) {
4160                 cp = Jim_GetString(new_cmd, NULL);
4161                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4162                 return JIM_ERR;
4163         }
4164
4165         /* TYPE */
4166         e = Jim_GetOpt_String(goi, &cp2, NULL);
4167         cp = cp2;
4168         /* now does target type exist */
4169         for (x = 0 ; target_types[x] ; x++) {
4170                 if (0 == strcmp(cp, target_types[x]->name)) {
4171                         /* found */
4172                         break;
4173                 }
4174         }
4175         if (target_types[x] == NULL) {
4176                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4177                 for (x = 0 ; target_types[x] ; x++) {
4178                         if (target_types[x + 1]) {
4179                                 Jim_AppendStrings(goi->interp,
4180                                                                    Jim_GetResult(goi->interp),
4181                                                                    target_types[x]->name,
4182                                                                    ", ", NULL);
4183                         } else {
4184                                 Jim_AppendStrings(goi->interp,
4185                                                                    Jim_GetResult(goi->interp),
4186                                                                    " or ",
4187                                                                    target_types[x]->name,NULL);
4188                         }
4189                 }
4190                 return JIM_ERR;
4191         }
4192
4193         /* Create it */
4194         target = calloc(1,sizeof(target_t));
4195         /* set target number */
4196         target->target_number = new_target_number();
4197
4198         /* allocate memory for each unique target type */
4199         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4200
4201         memcpy(target->type, target_types[x], sizeof(target_type_t));
4202
4203         /* will be set by "-endian" */
4204         target->endianness = TARGET_ENDIAN_UNKNOWN;
4205
4206         target->working_area        = 0x0;
4207         target->working_area_size   = 0x0;
4208         target->working_areas       = NULL;
4209         target->backup_working_area = 0;
4210
4211         target->state               = TARGET_UNKNOWN;
4212         target->debug_reason        = DBG_REASON_UNDEFINED;
4213         target->reg_cache           = NULL;
4214         target->breakpoints         = NULL;
4215         target->watchpoints         = NULL;
4216         target->next                = NULL;
4217         target->arch_info           = NULL;
4218
4219         target->display             = 1;
4220
4221         /* initialize trace information */
4222         target->trace_info = malloc(sizeof(trace_t));
4223         target->trace_info->num_trace_points         = 0;
4224         target->trace_info->trace_points_size        = 0;
4225         target->trace_info->trace_points             = NULL;
4226         target->trace_info->trace_history_size       = 0;
4227         target->trace_info->trace_history            = NULL;
4228         target->trace_info->trace_history_pos        = 0;
4229         target->trace_info->trace_history_overflowed = 0;
4230
4231         target->dbgmsg          = NULL;
4232         target->dbg_msg_enabled = 0;
4233
4234         target->endianness = TARGET_ENDIAN_UNKNOWN;
4235
4236         /* Do the rest as "configure" options */
4237         goi->isconfigure = 1;
4238         e = target_configure(goi, target);
4239
4240         if (target->tap == NULL)
4241         {
4242                 Jim_SetResultString(interp, "-chain-position required when creating target", -1);
4243                 e = JIM_ERR;
4244         }
4245
4246         if (e != JIM_OK) {
4247                 free(target->type);
4248                 free(target);
4249                 return e;
4250         }
4251
4252         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4253                 /* default endian to little if not specified */
4254                 target->endianness = TARGET_LITTLE_ENDIAN;
4255         }
4256
4257         /* incase variant is not set */
4258         if (!target->variant)
4259                 target->variant = strdup("");
4260
4261         /* create the target specific commands */
4262         if (target->type->register_commands) {
4263                 (*(target->type->register_commands))(cmd_ctx);
4264         }
4265         if (target->type->target_create) {
4266                 (*(target->type->target_create))(target, goi->interp);
4267         }
4268
4269         /* append to end of list */
4270         {
4271                 target_t **tpp;
4272                 tpp = &(all_targets);
4273                 while (*tpp) {
4274                         tpp = &((*tpp)->next);
4275                 }
4276                 *tpp = target;
4277         }
4278
4279         cp = Jim_GetString(new_cmd, NULL);
4280         target->cmd_name = strdup(cp);
4281
4282         /* now - create the new target name command */
4283         e = Jim_CreateCommand(goi->interp,
4284                                                    /* name */
4285                                                    cp,
4286                                                    tcl_target_func, /* C function */
4287                                                    target, /* private data */
4288                                                    NULL); /* no del proc */
4289
4290         return e;
4291 }
4292
4293 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4294 {
4295         int x,r,e;
4296         jim_wide w;
4297         struct command_context_s *cmd_ctx;
4298         target_t *target;
4299         Jim_GetOptInfo goi;
4300         enum tcmd {
4301                 /* TG = target generic */
4302                 TG_CMD_CREATE,
4303                 TG_CMD_TYPES,
4304                 TG_CMD_NAMES,
4305                 TG_CMD_CURRENT,
4306                 TG_CMD_NUMBER,
4307                 TG_CMD_COUNT,
4308         };
4309         const char *target_cmds[] = {
4310                 "create", "types", "names", "current", "number",
4311                 "count",
4312                 NULL /* terminate */
4313         };
4314
4315         LOG_DEBUG("Target command params:");
4316         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4317
4318         cmd_ctx = Jim_GetAssocData(interp, "context");
4319
4320         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
4321
4322         if (goi.argc == 0) {
4323                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4324                 return JIM_ERR;
4325         }
4326
4327         /* Jim_GetOpt_Debug(&goi); */
4328         r = Jim_GetOpt_Enum(&goi, target_cmds, &x);
4329         if (r != JIM_OK) {
4330                 return r;
4331         }
4332
4333         switch (x) {
4334         default:
4335                 Jim_Panic(goi.interp,"Why am I here?");
4336                 return JIM_ERR;
4337         case TG_CMD_CURRENT:
4338                 if (goi.argc != 0) {
4339                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4340                         return JIM_ERR;
4341                 }
4342                 Jim_SetResultString(goi.interp, get_current_target(cmd_ctx)->cmd_name, -1);
4343                 return JIM_OK;
4344         case TG_CMD_TYPES:
4345                 if (goi.argc != 0) {
4346                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4347                         return JIM_ERR;
4348                 }
4349                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4350                 for (x = 0 ; target_types[x] ; x++) {
4351                         Jim_ListAppendElement(goi.interp,
4352                                                                    Jim_GetResult(goi.interp),
4353                                                                    Jim_NewStringObj(goi.interp, target_types[x]->name, -1));
4354                 }
4355                 return JIM_OK;
4356         case TG_CMD_NAMES:
4357                 if (goi.argc != 0) {
4358                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4359                         return JIM_ERR;
4360                 }
4361                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4362                 target = all_targets;
4363                 while (target) {
4364                         Jim_ListAppendElement(goi.interp,
4365                                                                    Jim_GetResult(goi.interp),
4366                                                                    Jim_NewStringObj(goi.interp, target->cmd_name, -1));
4367                         target = target->next;
4368                 }
4369                 return JIM_OK;
4370         case TG_CMD_CREATE:
4371                 if (goi.argc < 3) {
4372                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4373                         return JIM_ERR;
4374                 }
4375                 return target_create(&goi);
4376                 break;
4377         case TG_CMD_NUMBER:
4378                 if (goi.argc != 1) {
4379                         Jim_SetResult_sprintf(goi.interp, "expected: target number ?NUMBER?");
4380                         return JIM_ERR;
4381                 }
4382                 e = Jim_GetOpt_Wide(&goi, &w);
4383                 if (e != JIM_OK) {
4384                         return JIM_ERR;
4385                 }
4386                 {
4387                         target_t *t;
4388                         t = get_target_by_num(w);
4389                         if (t == NULL) {
4390                                 Jim_SetResult_sprintf(goi.interp,"Target: number %d does not exist", (int)(w));
4391                                 return JIM_ERR;
4392                         }
4393                         Jim_SetResultString(goi.interp, t->cmd_name, -1);
4394                         return JIM_OK;
4395                 }
4396         case TG_CMD_COUNT:
4397                 if (goi.argc != 0) {
4398                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "<no parameters>");
4399                         return JIM_ERR;
4400                 }
4401                 Jim_SetResult(goi.interp,
4402                                            Jim_NewIntObj(goi.interp, max_target_number()));
4403                 return JIM_OK;
4404         }
4405
4406         return JIM_ERR;
4407 }
4408
4409
4410 struct FastLoad
4411 {
4412         uint32_t address;
4413         uint8_t *data;
4414         int length;
4415
4416 };
4417
4418 static int fastload_num;
4419 static struct FastLoad *fastload;
4420
4421 static void free_fastload(void)
4422 {
4423         if (fastload != NULL)
4424         {
4425                 int i;
4426                 for (i = 0; i < fastload_num; i++)
4427                 {
4428                         if (fastload[i].data)
4429                                 free(fastload[i].data);
4430                 }
4431                 free(fastload);
4432                 fastload = NULL;
4433         }
4434 }
4435
4436
4437
4438
4439 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4440 {
4441         uint8_t *buffer;
4442         uint32_t buf_cnt;
4443         uint32_t image_size;
4444         uint32_t min_address = 0;
4445         uint32_t max_address = 0xffffffff;
4446         int i;
4447
4448         image_t image;
4449
4450         duration_t duration;
4451         char *duration_text;
4452
4453         int retval = parse_load_image_command_args(args, argc,
4454                         &image, &min_address, &max_address);
4455         if (ERROR_OK != retval)
4456                 return retval;
4457
4458         duration_start_measure(&duration);
4459
4460         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4461         {
4462                 return ERROR_OK;
4463         }
4464
4465         image_size = 0x0;
4466         retval = ERROR_OK;
4467         fastload_num = image.num_sections;
4468         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4469         if (fastload == NULL)
4470         {
4471                 image_close(&image);
4472                 return ERROR_FAIL;
4473         }
4474         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4475         for (i = 0; i < image.num_sections; i++)
4476         {
4477                 buffer = malloc(image.sections[i].size);
4478                 if (buffer == NULL)
4479                 {
4480                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)",
4481                                                   (int)(image.sections[i].size));
4482                         break;
4483                 }
4484
4485                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4486                 {
4487                         free(buffer);
4488                         break;
4489                 }
4490
4491                 uint32_t offset = 0;
4492                 uint32_t length = buf_cnt;
4493
4494
4495                 /* DANGER!!! beware of unsigned comparision here!!! */
4496
4497                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4498                                 (image.sections[i].base_address < max_address))
4499                 {
4500                         if (image.sections[i].base_address < min_address)
4501                         {
4502                                 /* clip addresses below */
4503                                 offset += min_address-image.sections[i].base_address;
4504                                 length -= offset;
4505                         }
4506
4507                         if (image.sections[i].base_address + buf_cnt > max_address)
4508                         {
4509                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4510                         }
4511
4512                         fastload[i].address = image.sections[i].base_address + offset;
4513                         fastload[i].data = malloc(length);
4514                         if (fastload[i].data == NULL)
4515                         {
4516                                 free(buffer);
4517                                 break;
4518                         }
4519                         memcpy(fastload[i].data, buffer + offset, length);
4520                         fastload[i].length = length;
4521
4522                         image_size += length;
4523                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x",
4524                                                   (unsigned int)length,
4525                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4526                 }
4527
4528                 free(buffer);
4529         }
4530
4531         duration_stop_measure(&duration, &duration_text);
4532         if (retval == ERROR_OK)
4533         {
4534                 command_print(cmd_ctx, "Loaded %u bytes in %s", (unsigned int)image_size, duration_text);
4535                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4536         }
4537         free(duration_text);
4538
4539         image_close(&image);
4540
4541         if (retval != ERROR_OK)
4542         {
4543                 free_fastload();
4544         }
4545
4546         return retval;
4547 }
4548
4549 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4550 {
4551         if (argc > 0)
4552                 return ERROR_COMMAND_SYNTAX_ERROR;
4553         if (fastload == NULL)
4554         {
4555                 LOG_ERROR("No image in memory");
4556                 return ERROR_FAIL;
4557         }
4558         int i;
4559         int ms = timeval_ms();
4560         int size = 0;
4561         int retval = ERROR_OK;
4562         for (i = 0; i < fastload_num;i++)
4563         {
4564                 target_t *target = get_current_target(cmd_ctx);
4565                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x",
4566                                           (unsigned int)(fastload[i].address),
4567                                           (unsigned int)(fastload[i].length));
4568                 if (retval == ERROR_OK)
4569                 {
4570                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4571                 }
4572                 size += fastload[i].length;
4573         }
4574         int after = timeval_ms();
4575         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4576         return retval;
4577 }
4578
4579
4580 /*
4581  * Local Variables:
4582  * c-basic-offset: 4
4583  * tab-width: 4
4584  * End:
4585  */