compile with cygwin (32-bit)
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
47
48 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
49 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
50
51 /* targets */
52 extern struct target_type arm7tdmi_target;
53 extern struct target_type arm720t_target;
54 extern struct target_type arm9tdmi_target;
55 extern struct target_type arm920t_target;
56 extern struct target_type arm966e_target;
57 extern struct target_type arm926ejs_target;
58 extern struct target_type fa526_target;
59 extern struct target_type feroceon_target;
60 extern struct target_type dragonite_target;
61 extern struct target_type xscale_target;
62 extern struct target_type cortexm3_target;
63 extern struct target_type cortexa8_target;
64 extern struct target_type arm11_target;
65 extern struct target_type mips_m4k_target;
66 extern struct target_type avr_target;
67
68 struct target_type *target_types[] =
69 {
70         &arm7tdmi_target,
71         &arm9tdmi_target,
72         &arm920t_target,
73         &arm720t_target,
74         &arm966e_target,
75         &arm926ejs_target,
76         &fa526_target,
77         &feroceon_target,
78         &dragonite_target,
79         &xscale_target,
80         &cortexm3_target,
81         &cortexa8_target,
82         &arm11_target,
83         &mips_m4k_target,
84         &avr_target,
85         NULL,
86 };
87
88 struct target *all_targets = NULL;
89 struct target_event_callback *target_event_callbacks = NULL;
90 struct target_timer_callback *target_timer_callbacks = NULL;
91
92 const Jim_Nvp nvp_assert[] = {
93         { .name = "assert", NVP_ASSERT },
94         { .name = "deassert", NVP_DEASSERT },
95         { .name = "T", NVP_ASSERT },
96         { .name = "F", NVP_DEASSERT },
97         { .name = "t", NVP_ASSERT },
98         { .name = "f", NVP_DEASSERT },
99         { .name = NULL, .value = -1 }
100 };
101
102 const Jim_Nvp nvp_error_target[] = {
103         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
104         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
105         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
106         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
107         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
108         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
109         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
110         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
111         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
112         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
113         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
114         { .value = -1, .name = NULL }
115 };
116
117 const char *target_strerror_safe(int err)
118 {
119         const Jim_Nvp *n;
120
121         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
122         if (n->name == NULL) {
123                 return "unknown";
124         } else {
125                 return n->name;
126         }
127 }
128
129 static const Jim_Nvp nvp_target_event[] = {
130         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
131         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
132
133         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
134         { .value = TARGET_EVENT_HALTED, .name = "halted" },
135         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
136         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
137         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
138
139         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
140         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
141
142         /* historical name */
143
144         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
145
146         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
147         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
148         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
149         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
150         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
151         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
152         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
153         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
154         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
155         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
156
157         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
158         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
159
160         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
161         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
162
163         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
164         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
165
166         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
167         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
168
169         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
170         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
171
172         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
173         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
174         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
175
176         { .name = NULL, .value = -1 }
177 };
178
179 const Jim_Nvp nvp_target_state[] = {
180         { .name = "unknown", .value = TARGET_UNKNOWN },
181         { .name = "running", .value = TARGET_RUNNING },
182         { .name = "halted",  .value = TARGET_HALTED },
183         { .name = "reset",   .value = TARGET_RESET },
184         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
185         { .name = NULL, .value = -1 },
186 };
187
188 const Jim_Nvp nvp_target_debug_reason [] = {
189         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
190         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
191         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
192         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
193         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
194         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
195         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
196         { .name = NULL, .value = -1 },
197 };
198
199 const Jim_Nvp nvp_target_endian[] = {
200         { .name = "big",    .value = TARGET_BIG_ENDIAN },
201         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
202         { .name = "be",     .value = TARGET_BIG_ENDIAN },
203         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
204         { .name = NULL,     .value = -1 },
205 };
206
207 const Jim_Nvp nvp_reset_modes[] = {
208         { .name = "unknown", .value = RESET_UNKNOWN },
209         { .name = "run"    , .value = RESET_RUN },
210         { .name = "halt"   , .value = RESET_HALT },
211         { .name = "init"   , .value = RESET_INIT },
212         { .name = NULL     , .value = -1 },
213 };
214
215 const char *
216 target_state_name( struct target *t )
217 {
218         const char *cp;
219         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
220         if( !cp ){
221                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
222                 cp = "(*BUG*unknown*BUG*)";
223         }
224         return cp;
225 }
226
227 /* determine the number of the new target */
228 static int new_target_number(void)
229 {
230         struct target *t;
231         int x;
232
233         /* number is 0 based */
234         x = -1;
235         t = all_targets;
236         while (t) {
237                 if (x < t->target_number) {
238                         x = t->target_number;
239                 }
240                 t = t->next;
241         }
242         return x + 1;
243 }
244
245 /* read a uint32_t from a buffer in target memory endianness */
246 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
247 {
248         if (target->endianness == TARGET_LITTLE_ENDIAN)
249                 return le_to_h_u32(buffer);
250         else
251                 return be_to_h_u32(buffer);
252 }
253
254 /* read a uint16_t from a buffer in target memory endianness */
255 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
256 {
257         if (target->endianness == TARGET_LITTLE_ENDIAN)
258                 return le_to_h_u16(buffer);
259         else
260                 return be_to_h_u16(buffer);
261 }
262
263 /* read a uint8_t from a buffer in target memory endianness */
264 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
265 {
266         return *buffer & 0x0ff;
267 }
268
269 /* write a uint32_t to a buffer in target memory endianness */
270 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
271 {
272         if (target->endianness == TARGET_LITTLE_ENDIAN)
273                 h_u32_to_le(buffer, value);
274         else
275                 h_u32_to_be(buffer, value);
276 }
277
278 /* write a uint16_t to a buffer in target memory endianness */
279 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
280 {
281         if (target->endianness == TARGET_LITTLE_ENDIAN)
282                 h_u16_to_le(buffer, value);
283         else
284                 h_u16_to_be(buffer, value);
285 }
286
287 /* write a uint8_t to a buffer in target memory endianness */
288 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
289 {
290         *buffer = value;
291 }
292
293 /* return a pointer to a configured target; id is name or number */
294 struct target *get_target(const char *id)
295 {
296         struct target *target;
297
298         /* try as tcltarget name */
299         for (target = all_targets; target; target = target->next) {
300                 if (target->cmd_name == NULL)
301                         continue;
302                 if (strcmp(id, target->cmd_name) == 0)
303                         return target;
304         }
305
306         /* It's OK to remove this fallback sometime after August 2010 or so */
307
308         /* no match, try as number */
309         unsigned num;
310         if (parse_uint(id, &num) != ERROR_OK)
311                 return NULL;
312
313         for (target = all_targets; target; target = target->next) {
314                 if (target->target_number == (int)num) {
315                         LOG_WARNING("use '%s' as target identifier, not '%u'",
316                                         target->cmd_name, num);
317                         return target;
318                 }
319         }
320
321         return NULL;
322 }
323
324 /* returns a pointer to the n-th configured target */
325 static struct target *get_target_by_num(int num)
326 {
327         struct target *target = all_targets;
328
329         while (target) {
330                 if (target->target_number == num) {
331                         return target;
332                 }
333                 target = target->next;
334         }
335
336         return NULL;
337 }
338
339 struct target* get_current_target(struct command_context *cmd_ctx)
340 {
341         struct target *target = get_target_by_num(cmd_ctx->current_target);
342
343         if (target == NULL)
344         {
345                 LOG_ERROR("BUG: current_target out of bounds");
346                 exit(-1);
347         }
348
349         return target;
350 }
351
352 int target_poll(struct target *target)
353 {
354         int retval;
355
356         /* We can't poll until after examine */
357         if (!target_was_examined(target))
358         {
359                 /* Fail silently lest we pollute the log */
360                 return ERROR_FAIL;
361         }
362
363         retval = target->type->poll(target);
364         if (retval != ERROR_OK)
365                 return retval;
366
367         if (target->halt_issued)
368         {
369                 if (target->state == TARGET_HALTED)
370                 {
371                         target->halt_issued = false;
372                 } else
373                 {
374                         long long t = timeval_ms() - target->halt_issued_time;
375                         if (t>1000)
376                         {
377                                 target->halt_issued = false;
378                                 LOG_INFO("Halt timed out, wake up GDB.");
379                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
380                         }
381                 }
382         }
383
384         return ERROR_OK;
385 }
386
387 int target_halt(struct target *target)
388 {
389         int retval;
390         /* We can't poll until after examine */
391         if (!target_was_examined(target))
392         {
393                 LOG_ERROR("Target not examined yet");
394                 return ERROR_FAIL;
395         }
396
397         retval = target->type->halt(target);
398         if (retval != ERROR_OK)
399                 return retval;
400
401         target->halt_issued = true;
402         target->halt_issued_time = timeval_ms();
403
404         return ERROR_OK;
405 }
406
407 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
408 {
409         int retval;
410
411         /* We can't poll until after examine */
412         if (!target_was_examined(target))
413         {
414                 LOG_ERROR("Target not examined yet");
415                 return ERROR_FAIL;
416         }
417
418         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
419          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
420          * the application.
421          */
422         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
423                 return retval;
424
425         return retval;
426 }
427
428 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
429 {
430         char buf[100];
431         int retval;
432         Jim_Nvp *n;
433         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
434         if (n->name == NULL) {
435                 LOG_ERROR("invalid reset mode");
436                 return ERROR_FAIL;
437         }
438
439         /* disable polling during reset to make reset event scripts
440          * more predictable, i.e. dr/irscan & pathmove in events will
441          * not have JTAG operations injected into the middle of a sequence.
442          */
443         bool save_poll = jtag_poll_get_enabled();
444
445         jtag_poll_set_enabled(false);
446
447         sprintf(buf, "ocd_process_reset %s", n->name);
448         retval = Jim_Eval(interp, buf);
449
450         jtag_poll_set_enabled(save_poll);
451
452         if (retval != JIM_OK) {
453                 Jim_PrintErrorMessage(interp);
454                 return ERROR_FAIL;
455         }
456
457         /* We want any events to be processed before the prompt */
458         retval = target_call_timer_callbacks_now();
459
460         return retval;
461 }
462
463 static int identity_virt2phys(struct target *target,
464                 uint32_t virtual, uint32_t *physical)
465 {
466         *physical = virtual;
467         return ERROR_OK;
468 }
469
470 static int no_mmu(struct target *target, int *enabled)
471 {
472         *enabled = 0;
473         return ERROR_OK;
474 }
475
476 static int default_examine(struct target *target)
477 {
478         target_set_examined(target);
479         return ERROR_OK;
480 }
481
482 int target_examine_one(struct target *target)
483 {
484         return target->type->examine(target);
485 }
486
487 static int jtag_enable_callback(enum jtag_event event, void *priv)
488 {
489         struct target *target = priv;
490
491         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
492                 return ERROR_OK;
493
494         jtag_unregister_event_callback(jtag_enable_callback, target);
495         return target_examine_one(target);
496 }
497
498
499 /* Targets that correctly implement init + examine, i.e.
500  * no communication with target during init:
501  *
502  * XScale
503  */
504 int target_examine(void)
505 {
506         int retval = ERROR_OK;
507         struct target *target;
508
509         for (target = all_targets; target; target = target->next)
510         {
511                 /* defer examination, but don't skip it */
512                 if (!target->tap->enabled) {
513                         jtag_register_event_callback(jtag_enable_callback,
514                                         target);
515                         continue;
516                 }
517                 if ((retval = target_examine_one(target)) != ERROR_OK)
518                         return retval;
519         }
520         return retval;
521 }
522 const char *target_get_name(struct target *target)
523 {
524         return target->type->name;
525 }
526
527 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
528 {
529         if (!target_was_examined(target))
530         {
531                 LOG_ERROR("Target not examined yet");
532                 return ERROR_FAIL;
533         }
534         return target->type->write_memory_imp(target, address, size, count, buffer);
535 }
536
537 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
538 {
539         if (!target_was_examined(target))
540         {
541                 LOG_ERROR("Target not examined yet");
542                 return ERROR_FAIL;
543         }
544         return target->type->read_memory_imp(target, address, size, count, buffer);
545 }
546
547 static int target_soft_reset_halt_imp(struct target *target)
548 {
549         if (!target_was_examined(target))
550         {
551                 LOG_ERROR("Target not examined yet");
552                 return ERROR_FAIL;
553         }
554         if (!target->type->soft_reset_halt_imp) {
555                 LOG_ERROR("Target %s does not support soft_reset_halt",
556                                 target->cmd_name);
557                 return ERROR_FAIL;
558         }
559         return target->type->soft_reset_halt_imp(target);
560 }
561
562 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
563 {
564         if (!target_was_examined(target))
565         {
566                 LOG_ERROR("Target not examined yet");
567                 return ERROR_FAIL;
568         }
569         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
570 }
571
572 int target_read_memory(struct target *target,
573                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
574 {
575         return target->type->read_memory(target, address, size, count, buffer);
576 }
577
578 int target_read_phys_memory(struct target *target,
579                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
580 {
581         return target->type->read_phys_memory(target, address, size, count, buffer);
582 }
583
584 int target_write_memory(struct target *target,
585                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
586 {
587         return target->type->write_memory(target, address, size, count, buffer);
588 }
589
590 int target_write_phys_memory(struct target *target,
591                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
592 {
593         return target->type->write_phys_memory(target, address, size, count, buffer);
594 }
595
596 int target_bulk_write_memory(struct target *target,
597                 uint32_t address, uint32_t count, uint8_t *buffer)
598 {
599         return target->type->bulk_write_memory(target, address, count, buffer);
600 }
601
602 int target_add_breakpoint(struct target *target,
603                 struct breakpoint *breakpoint)
604 {
605         return target->type->add_breakpoint(target, breakpoint);
606 }
607 int target_remove_breakpoint(struct target *target,
608                 struct breakpoint *breakpoint)
609 {
610         return target->type->remove_breakpoint(target, breakpoint);
611 }
612
613 int target_add_watchpoint(struct target *target,
614                 struct watchpoint *watchpoint)
615 {
616         return target->type->add_watchpoint(target, watchpoint);
617 }
618 int target_remove_watchpoint(struct target *target,
619                 struct watchpoint *watchpoint)
620 {
621         return target->type->remove_watchpoint(target, watchpoint);
622 }
623
624 int target_get_gdb_reg_list(struct target *target,
625                 struct reg **reg_list[], int *reg_list_size)
626 {
627         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
628 }
629 int target_step(struct target *target,
630                 int current, uint32_t address, int handle_breakpoints)
631 {
632         return target->type->step(target, current, address, handle_breakpoints);
633 }
634
635
636 int target_run_algorithm(struct target *target,
637                 int num_mem_params, struct mem_param *mem_params,
638                 int num_reg_params, struct reg_param *reg_param,
639                 uint32_t entry_point, uint32_t exit_point,
640                 int timeout_ms, void *arch_info)
641 {
642         return target->type->run_algorithm(target,
643                         num_mem_params, mem_params, num_reg_params, reg_param,
644                         entry_point, exit_point, timeout_ms, arch_info);
645 }
646
647 /// @returns @c true if the target has been examined.
648 bool target_was_examined(struct target *target)
649 {
650         return target->type->examined;
651 }
652 /// Sets the @c examined flag for the given target.
653 void target_set_examined(struct target *target)
654 {
655         target->type->examined = true;
656 }
657 // Reset the @c examined flag for the given target.
658 void target_reset_examined(struct target *target)
659 {
660         target->type->examined = false;
661 }
662
663
664
665 static int default_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
666 {
667         LOG_ERROR("Not implemented: %s", __func__);
668         return ERROR_FAIL;
669 }
670
671 static int default_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
672 {
673         LOG_ERROR("Not implemented: %s", __func__);
674         return ERROR_FAIL;
675 }
676
677 static int arm_cp_check(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm)
678 {
679         /* basic check */
680         if (!target_was_examined(target))
681         {
682                 LOG_ERROR("Target not examined yet");
683                 return ERROR_FAIL;
684         }
685
686         if ((cpnum <0) || (cpnum > 15))
687         {
688                 LOG_ERROR("Illegal co-processor %d", cpnum);
689                 return ERROR_FAIL;
690         }
691
692         if (op1 > 7)
693         {
694                 LOG_ERROR("Illegal op1");
695                 return ERROR_FAIL;
696         }
697
698         if (op2 > 7)
699         {
700                 LOG_ERROR("Illegal op2");
701                 return ERROR_FAIL;
702         }
703
704         if (CRn > 15)
705         {
706                 LOG_ERROR("Illegal CRn");
707                 return ERROR_FAIL;
708         }
709
710         if (CRm > 15)
711         {
712                 LOG_ERROR("Illegal CRm");
713                 return ERROR_FAIL;
714         }
715
716         return ERROR_OK;
717 }
718
719 int target_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
720 {
721         int retval;
722
723         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
724         if (retval != ERROR_OK)
725                 return retval;
726
727         return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value);
728 }
729
730 int target_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
731 {
732         int retval;
733
734         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
735         if (retval != ERROR_OK)
736                 return retval;
737
738         return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value);
739 }
740
741 static int
742 err_read_phys_memory(struct target *target, uint32_t address,
743                 uint32_t size, uint32_t count, uint8_t *buffer)
744 {
745         LOG_ERROR("Not implemented: %s", __func__);
746         return ERROR_FAIL;
747 }
748
749 static int
750 err_write_phys_memory(struct target *target, uint32_t address,
751                 uint32_t size, uint32_t count, uint8_t *buffer)
752 {
753         LOG_ERROR("Not implemented: %s", __func__);
754         return ERROR_FAIL;
755 }
756
757 int target_init(struct command_context *cmd_ctx)
758 {
759         struct target *target;
760         int retval;
761
762         for (target = all_targets; target; target = target->next) {
763                 struct target_type *type = target->type;
764
765                 target_reset_examined(target);
766                 if (target->type->examine == NULL)
767                 {
768                         target->type->examine = default_examine;
769                 }
770
771                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
772                 {
773                         LOG_ERROR("target '%s' init failed", target_get_name(target));
774                         return retval;
775                 }
776
777                 /**
778                  * @todo MCR/MRC are ARM-specific; don't require them in
779                  * all targets, or for ARMs without coprocessors.
780                  */
781                 if (target->type->mcr == NULL)
782                 {
783                         target->type->mcr = default_mcr;
784                 } else
785                 {
786                         /* FIX! multiple targets will generally register global commands
787                          * multiple times. Only register this one if *one* of the
788                          * targets need the command. Hmm... make it a command on the
789                          * Jim Tcl target object?
790                          */
791                         register_jim(cmd_ctx, "mcr", jim_mcrmrc, "write coprocessor <cpnum> <op1> <op2> <CRn> <CRm> <value>");
792                 }
793
794                 if (target->type->mrc == NULL)
795                 {
796                         target->type->mrc = default_mrc;
797                 } else
798                 {
799                         register_jim(cmd_ctx, "mrc", jim_mcrmrc, "read coprocessor <cpnum> <op1> <op2> <CRn> <CRm>");
800                 }
801
802
803                 /**
804                  * @todo get rid of those *memory_imp() methods, now that all
805                  * callers are using target_*_memory() accessors ... and make
806                  * sure the "physical" paths handle the same issues.
807                  */
808
809                 /* a non-invasive way(in terms of patches) to add some code that
810                  * runs before the type->write/read_memory implementation
811                  */
812                 target->type->write_memory_imp = target->type->write_memory;
813                 target->type->write_memory = target_write_memory_imp;
814                 target->type->read_memory_imp = target->type->read_memory;
815                 target->type->read_memory = target_read_memory_imp;
816                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
817                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
818                 target->type->run_algorithm_imp = target->type->run_algorithm;
819                 target->type->run_algorithm = target_run_algorithm_imp;
820
821                 /* Sanity-check MMU support ... stub in what we must, to help
822                  * implement it in stages, but warn if we need to do so.
823                  */
824                 if (type->mmu) {
825                         if (type->write_phys_memory == NULL) {
826                                 LOG_ERROR("type '%s' is missing %s",
827                                                 type->name,
828                                                 "write_phys_memory");
829                                 type->write_phys_memory = err_write_phys_memory;
830                         }
831                         if (type->read_phys_memory == NULL) {
832                                 LOG_ERROR("type '%s' is missing %s",
833                                                 type->name,
834                                                 "read_phys_memory");
835                                 type->read_phys_memory = err_read_phys_memory;
836                         }
837                         if (type->virt2phys == NULL) {
838                                 LOG_ERROR("type '%s' is missing %s",
839                                                 type->name,
840                                                 "virt2phys");
841                                 type->virt2phys = identity_virt2phys;
842                         }
843
844                 /* Make sure no-MMU targets all behave the same:  make no
845                  * distinction between physical and virtual addresses, and
846                  * ensure that virt2phys() is always an identity mapping.
847                  */
848                 } else {
849                         if (type->write_phys_memory
850                                         || type->read_phys_memory
851                                         || type->virt2phys)
852                                 LOG_WARNING("type '%s' has broken MMU hooks",
853                                                 type->name);
854
855                         type->mmu = no_mmu;
856                         type->write_phys_memory = type->write_memory;
857                         type->read_phys_memory = type->read_memory;
858                         type->virt2phys = identity_virt2phys;
859                 }
860         }
861
862         if (all_targets)
863         {
864                 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
865                         return retval;
866                 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
867                         return retval;
868         }
869
870         return ERROR_OK;
871 }
872
873 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
874 {
875         struct target_event_callback **callbacks_p = &target_event_callbacks;
876
877         if (callback == NULL)
878         {
879                 return ERROR_INVALID_ARGUMENTS;
880         }
881
882         if (*callbacks_p)
883         {
884                 while ((*callbacks_p)->next)
885                         callbacks_p = &((*callbacks_p)->next);
886                 callbacks_p = &((*callbacks_p)->next);
887         }
888
889         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
890         (*callbacks_p)->callback = callback;
891         (*callbacks_p)->priv = priv;
892         (*callbacks_p)->next = NULL;
893
894         return ERROR_OK;
895 }
896
897 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
898 {
899         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
900         struct timeval now;
901
902         if (callback == NULL)
903         {
904                 return ERROR_INVALID_ARGUMENTS;
905         }
906
907         if (*callbacks_p)
908         {
909                 while ((*callbacks_p)->next)
910                         callbacks_p = &((*callbacks_p)->next);
911                 callbacks_p = &((*callbacks_p)->next);
912         }
913
914         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
915         (*callbacks_p)->callback = callback;
916         (*callbacks_p)->periodic = periodic;
917         (*callbacks_p)->time_ms = time_ms;
918
919         gettimeofday(&now, NULL);
920         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
921         time_ms -= (time_ms % 1000);
922         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
923         if ((*callbacks_p)->when.tv_usec > 1000000)
924         {
925                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
926                 (*callbacks_p)->when.tv_sec += 1;
927         }
928
929         (*callbacks_p)->priv = priv;
930         (*callbacks_p)->next = NULL;
931
932         return ERROR_OK;
933 }
934
935 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
936 {
937         struct target_event_callback **p = &target_event_callbacks;
938         struct target_event_callback *c = target_event_callbacks;
939
940         if (callback == NULL)
941         {
942                 return ERROR_INVALID_ARGUMENTS;
943         }
944
945         while (c)
946         {
947                 struct target_event_callback *next = c->next;
948                 if ((c->callback == callback) && (c->priv == priv))
949                 {
950                         *p = next;
951                         free(c);
952                         return ERROR_OK;
953                 }
954                 else
955                         p = &(c->next);
956                 c = next;
957         }
958
959         return ERROR_OK;
960 }
961
962 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
963 {
964         struct target_timer_callback **p = &target_timer_callbacks;
965         struct target_timer_callback *c = target_timer_callbacks;
966
967         if (callback == NULL)
968         {
969                 return ERROR_INVALID_ARGUMENTS;
970         }
971
972         while (c)
973         {
974                 struct target_timer_callback *next = c->next;
975                 if ((c->callback == callback) && (c->priv == priv))
976                 {
977                         *p = next;
978                         free(c);
979                         return ERROR_OK;
980                 }
981                 else
982                         p = &(c->next);
983                 c = next;
984         }
985
986         return ERROR_OK;
987 }
988
989 int target_call_event_callbacks(struct target *target, enum target_event event)
990 {
991         struct target_event_callback *callback = target_event_callbacks;
992         struct target_event_callback *next_callback;
993
994         if (event == TARGET_EVENT_HALTED)
995         {
996                 /* execute early halted first */
997                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
998         }
999
1000         LOG_DEBUG("target event %i (%s)",
1001                           event,
1002                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1003
1004         target_handle_event(target, event);
1005
1006         while (callback)
1007         {
1008                 next_callback = callback->next;
1009                 callback->callback(target, event, callback->priv);
1010                 callback = next_callback;
1011         }
1012
1013         return ERROR_OK;
1014 }
1015
1016 static int target_timer_callback_periodic_restart(
1017                 struct target_timer_callback *cb, struct timeval *now)
1018 {
1019         int time_ms = cb->time_ms;
1020         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1021         time_ms -= (time_ms % 1000);
1022         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1023         if (cb->when.tv_usec > 1000000)
1024         {
1025                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1026                 cb->when.tv_sec += 1;
1027         }
1028         return ERROR_OK;
1029 }
1030
1031 static int target_call_timer_callback(struct target_timer_callback *cb,
1032                 struct timeval *now)
1033 {
1034         cb->callback(cb->priv);
1035
1036         if (cb->periodic)
1037                 return target_timer_callback_periodic_restart(cb, now);
1038
1039         return target_unregister_timer_callback(cb->callback, cb->priv);
1040 }
1041
1042 static int target_call_timer_callbacks_check_time(int checktime)
1043 {
1044         keep_alive();
1045
1046         struct timeval now;
1047         gettimeofday(&now, NULL);
1048
1049         struct target_timer_callback *callback = target_timer_callbacks;
1050         while (callback)
1051         {
1052                 // cleaning up may unregister and free this callback
1053                 struct target_timer_callback *next_callback = callback->next;
1054
1055                 bool call_it = callback->callback &&
1056                         ((!checktime && callback->periodic) ||
1057                           now.tv_sec > callback->when.tv_sec ||
1058                          (now.tv_sec == callback->when.tv_sec &&
1059                           now.tv_usec >= callback->when.tv_usec));
1060
1061                 if (call_it)
1062                 {
1063                         int retval = target_call_timer_callback(callback, &now);
1064                         if (retval != ERROR_OK)
1065                                 return retval;
1066                 }
1067
1068                 callback = next_callback;
1069         }
1070
1071         return ERROR_OK;
1072 }
1073
1074 int target_call_timer_callbacks(void)
1075 {
1076         return target_call_timer_callbacks_check_time(1);
1077 }
1078
1079 /* invoke periodic callbacks immediately */
1080 int target_call_timer_callbacks_now(void)
1081 {
1082         return target_call_timer_callbacks_check_time(0);
1083 }
1084
1085 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1086 {
1087         struct working_area *c = target->working_areas;
1088         struct working_area *new_wa = NULL;
1089
1090         /* Reevaluate working area address based on MMU state*/
1091         if (target->working_areas == NULL)
1092         {
1093                 int retval;
1094                 int enabled;
1095
1096                 retval = target->type->mmu(target, &enabled);
1097                 if (retval != ERROR_OK)
1098                 {
1099                         return retval;
1100                 }
1101
1102                 if (!enabled) {
1103                         if (target->working_area_phys_spec) {
1104                                 LOG_DEBUG("MMU disabled, using physical "
1105                                         "address for working memory 0x%08x",
1106                                         (unsigned)target->working_area_phys);
1107                                 target->working_area = target->working_area_phys;
1108                         } else {
1109                                 LOG_ERROR("No working memory available. "
1110                                         "Specify -work-area-phys to target.");
1111                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1112                         }
1113                 } else {
1114                         if (target->working_area_virt_spec) {
1115                                 LOG_DEBUG("MMU enabled, using virtual "
1116                                         "address for working memory 0x%08x",
1117                                         (unsigned)target->working_area_virt);
1118                                 target->working_area = target->working_area_virt;
1119                         } else {
1120                                 LOG_ERROR("No working memory available. "
1121                                         "Specify -work-area-virt to target.");
1122                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1123                         }
1124                 }
1125         }
1126
1127         /* only allocate multiples of 4 byte */
1128         if (size % 4)
1129         {
1130                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1131                 size = (size + 3) & (~3);
1132         }
1133
1134         /* see if there's already a matching working area */
1135         while (c)
1136         {
1137                 if ((c->free) && (c->size == size))
1138                 {
1139                         new_wa = c;
1140                         break;
1141                 }
1142                 c = c->next;
1143         }
1144
1145         /* if not, allocate a new one */
1146         if (!new_wa)
1147         {
1148                 struct working_area **p = &target->working_areas;
1149                 uint32_t first_free = target->working_area;
1150                 uint32_t free_size = target->working_area_size;
1151
1152                 c = target->working_areas;
1153                 while (c)
1154                 {
1155                         first_free += c->size;
1156                         free_size -= c->size;
1157                         p = &c->next;
1158                         c = c->next;
1159                 }
1160
1161                 if (free_size < size)
1162                 {
1163                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1164                                     (unsigned)(size), (unsigned)(free_size));
1165                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1166                 }
1167
1168                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1169
1170                 new_wa = malloc(sizeof(struct working_area));
1171                 new_wa->next = NULL;
1172                 new_wa->size = size;
1173                 new_wa->address = first_free;
1174
1175                 if (target->backup_working_area)
1176                 {
1177                         int retval;
1178                         new_wa->backup = malloc(new_wa->size);
1179                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1180                         {
1181                                 free(new_wa->backup);
1182                                 free(new_wa);
1183                                 return retval;
1184                         }
1185                 }
1186                 else
1187                 {
1188                         new_wa->backup = NULL;
1189                 }
1190
1191                 /* put new entry in list */
1192                 *p = new_wa;
1193         }
1194
1195         /* mark as used, and return the new (reused) area */
1196         new_wa->free = 0;
1197         *area = new_wa;
1198
1199         /* user pointer */
1200         new_wa->user = area;
1201
1202         return ERROR_OK;
1203 }
1204
1205 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1206 {
1207         if (area->free)
1208                 return ERROR_OK;
1209
1210         if (restore && target->backup_working_area)
1211         {
1212                 int retval;
1213                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1214                         return retval;
1215         }
1216
1217         area->free = 1;
1218
1219         /* mark user pointer invalid */
1220         *area->user = NULL;
1221         area->user = NULL;
1222
1223         return ERROR_OK;
1224 }
1225
1226 int target_free_working_area(struct target *target, struct working_area *area)
1227 {
1228         return target_free_working_area_restore(target, area, 1);
1229 }
1230
1231 /* free resources and restore memory, if restoring memory fails,
1232  * free up resources anyway
1233  */
1234 void target_free_all_working_areas_restore(struct target *target, int restore)
1235 {
1236         struct working_area *c = target->working_areas;
1237
1238         while (c)
1239         {
1240                 struct working_area *next = c->next;
1241                 target_free_working_area_restore(target, c, restore);
1242
1243                 if (c->backup)
1244                         free(c->backup);
1245
1246                 free(c);
1247
1248                 c = next;
1249         }
1250
1251         target->working_areas = NULL;
1252 }
1253
1254 void target_free_all_working_areas(struct target *target)
1255 {
1256         target_free_all_working_areas_restore(target, 1);
1257 }
1258
1259 int target_arch_state(struct target *target)
1260 {
1261         int retval;
1262         if (target == NULL)
1263         {
1264                 LOG_USER("No target has been configured");
1265                 return ERROR_OK;
1266         }
1267
1268         LOG_USER("target state: %s", target_state_name( target ));
1269
1270         if (target->state != TARGET_HALTED)
1271                 return ERROR_OK;
1272
1273         retval = target->type->arch_state(target);
1274         return retval;
1275 }
1276
1277 /* Single aligned words are guaranteed to use 16 or 32 bit access
1278  * mode respectively, otherwise data is handled as quickly as
1279  * possible
1280  */
1281 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1282 {
1283         int retval;
1284         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1285                   (int)size, (unsigned)address);
1286
1287         if (!target_was_examined(target))
1288         {
1289                 LOG_ERROR("Target not examined yet");
1290                 return ERROR_FAIL;
1291         }
1292
1293         if (size == 0) {
1294                 return ERROR_OK;
1295         }
1296
1297         if ((address + size - 1) < address)
1298         {
1299                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1300                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1301                                   (unsigned)address,
1302                                   (unsigned)size);
1303                 return ERROR_FAIL;
1304         }
1305
1306         if (((address % 2) == 0) && (size == 2))
1307         {
1308                 return target_write_memory(target, address, 2, 1, buffer);
1309         }
1310
1311         /* handle unaligned head bytes */
1312         if (address % 4)
1313         {
1314                 uint32_t unaligned = 4 - (address % 4);
1315
1316                 if (unaligned > size)
1317                         unaligned = size;
1318
1319                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1320                         return retval;
1321
1322                 buffer += unaligned;
1323                 address += unaligned;
1324                 size -= unaligned;
1325         }
1326
1327         /* handle aligned words */
1328         if (size >= 4)
1329         {
1330                 int aligned = size - (size % 4);
1331
1332                 /* use bulk writes above a certain limit. This may have to be changed */
1333                 if (aligned > 128)
1334                 {
1335                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1336                                 return retval;
1337                 }
1338                 else
1339                 {
1340                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1341                                 return retval;
1342                 }
1343
1344                 buffer += aligned;
1345                 address += aligned;
1346                 size -= aligned;
1347         }
1348
1349         /* handle tail writes of less than 4 bytes */
1350         if (size > 0)
1351         {
1352                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1353                         return retval;
1354         }
1355
1356         return ERROR_OK;
1357 }
1358
1359 /* Single aligned words are guaranteed to use 16 or 32 bit access
1360  * mode respectively, otherwise data is handled as quickly as
1361  * possible
1362  */
1363 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1364 {
1365         int retval;
1366         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1367                           (int)size, (unsigned)address);
1368
1369         if (!target_was_examined(target))
1370         {
1371                 LOG_ERROR("Target not examined yet");
1372                 return ERROR_FAIL;
1373         }
1374
1375         if (size == 0) {
1376                 return ERROR_OK;
1377         }
1378
1379         if ((address + size - 1) < address)
1380         {
1381                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1382                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1383                                   address,
1384                                   size);
1385                 return ERROR_FAIL;
1386         }
1387
1388         if (((address % 2) == 0) && (size == 2))
1389         {
1390                 return target_read_memory(target, address, 2, 1, buffer);
1391         }
1392
1393         /* handle unaligned head bytes */
1394         if (address % 4)
1395         {
1396                 uint32_t unaligned = 4 - (address % 4);
1397
1398                 if (unaligned > size)
1399                         unaligned = size;
1400
1401                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1402                         return retval;
1403
1404                 buffer += unaligned;
1405                 address += unaligned;
1406                 size -= unaligned;
1407         }
1408
1409         /* handle aligned words */
1410         if (size >= 4)
1411         {
1412                 int aligned = size - (size % 4);
1413
1414                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1415                         return retval;
1416
1417                 buffer += aligned;
1418                 address += aligned;
1419                 size -= aligned;
1420         }
1421
1422         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1423         if(size >=2)
1424         {
1425                 int aligned = size - (size%2);
1426                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1427                 if (retval != ERROR_OK)
1428                         return retval;
1429
1430                 buffer += aligned;
1431                 address += aligned;
1432                 size -= aligned;
1433         }
1434         /* handle tail writes of less than 4 bytes */
1435         if (size > 0)
1436         {
1437                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1438                         return retval;
1439         }
1440
1441         return ERROR_OK;
1442 }
1443
1444 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1445 {
1446         uint8_t *buffer;
1447         int retval;
1448         uint32_t i;
1449         uint32_t checksum = 0;
1450         if (!target_was_examined(target))
1451         {
1452                 LOG_ERROR("Target not examined yet");
1453                 return ERROR_FAIL;
1454         }
1455
1456         if ((retval = target->type->checksum_memory(target, address,
1457                 size, &checksum)) != ERROR_OK)
1458         {
1459                 buffer = malloc(size);
1460                 if (buffer == NULL)
1461                 {
1462                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1463                         return ERROR_INVALID_ARGUMENTS;
1464                 }
1465                 retval = target_read_buffer(target, address, size, buffer);
1466                 if (retval != ERROR_OK)
1467                 {
1468                         free(buffer);
1469                         return retval;
1470                 }
1471
1472                 /* convert to target endianess */
1473                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1474                 {
1475                         uint32_t target_data;
1476                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1477                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1478                 }
1479
1480                 retval = image_calculate_checksum(buffer, size, &checksum);
1481                 free(buffer);
1482         }
1483
1484         *crc = checksum;
1485
1486         return retval;
1487 }
1488
1489 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1490 {
1491         int retval;
1492         if (!target_was_examined(target))
1493         {
1494                 LOG_ERROR("Target not examined yet");
1495                 return ERROR_FAIL;
1496         }
1497
1498         if (target->type->blank_check_memory == 0)
1499                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1500
1501         retval = target->type->blank_check_memory(target, address, size, blank);
1502
1503         return retval;
1504 }
1505
1506 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1507 {
1508         uint8_t value_buf[4];
1509         if (!target_was_examined(target))
1510         {
1511                 LOG_ERROR("Target not examined yet");
1512                 return ERROR_FAIL;
1513         }
1514
1515         int retval = target_read_memory(target, address, 4, 1, value_buf);
1516
1517         if (retval == ERROR_OK)
1518         {
1519                 *value = target_buffer_get_u32(target, value_buf);
1520                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1521                                   address,
1522                                   *value);
1523         }
1524         else
1525         {
1526                 *value = 0x0;
1527                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1528                                   address);
1529         }
1530
1531         return retval;
1532 }
1533
1534 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1535 {
1536         uint8_t value_buf[2];
1537         if (!target_was_examined(target))
1538         {
1539                 LOG_ERROR("Target not examined yet");
1540                 return ERROR_FAIL;
1541         }
1542
1543         int retval = target_read_memory(target, address, 2, 1, value_buf);
1544
1545         if (retval == ERROR_OK)
1546         {
1547                 *value = target_buffer_get_u16(target, value_buf);
1548                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1549                                   address,
1550                                   *value);
1551         }
1552         else
1553         {
1554                 *value = 0x0;
1555                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1556                                   address);
1557         }
1558
1559         return retval;
1560 }
1561
1562 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1563 {
1564         int retval = target_read_memory(target, address, 1, 1, value);
1565         if (!target_was_examined(target))
1566         {
1567                 LOG_ERROR("Target not examined yet");
1568                 return ERROR_FAIL;
1569         }
1570
1571         if (retval == ERROR_OK)
1572         {
1573                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1574                                   address,
1575                                   *value);
1576         }
1577         else
1578         {
1579                 *value = 0x0;
1580                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1581                                   address);
1582         }
1583
1584         return retval;
1585 }
1586
1587 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1588 {
1589         int retval;
1590         uint8_t value_buf[4];
1591         if (!target_was_examined(target))
1592         {
1593                 LOG_ERROR("Target not examined yet");
1594                 return ERROR_FAIL;
1595         }
1596
1597         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1598                           address,
1599                           value);
1600
1601         target_buffer_set_u32(target, value_buf, value);
1602         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1603         {
1604                 LOG_DEBUG("failed: %i", retval);
1605         }
1606
1607         return retval;
1608 }
1609
1610 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1611 {
1612         int retval;
1613         uint8_t value_buf[2];
1614         if (!target_was_examined(target))
1615         {
1616                 LOG_ERROR("Target not examined yet");
1617                 return ERROR_FAIL;
1618         }
1619
1620         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1621                           address,
1622                           value);
1623
1624         target_buffer_set_u16(target, value_buf, value);
1625         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1626         {
1627                 LOG_DEBUG("failed: %i", retval);
1628         }
1629
1630         return retval;
1631 }
1632
1633 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1634 {
1635         int retval;
1636         if (!target_was_examined(target))
1637         {
1638                 LOG_ERROR("Target not examined yet");
1639                 return ERROR_FAIL;
1640         }
1641
1642         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1643                           address, value);
1644
1645         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1646         {
1647                 LOG_DEBUG("failed: %i", retval);
1648         }
1649
1650         return retval;
1651 }
1652
1653 COMMAND_HANDLER(handle_targets_command)
1654 {
1655         struct target *target = all_targets;
1656
1657         if (argc == 1)
1658         {
1659                 target = get_target(args[0]);
1660                 if (target == NULL) {
1661                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
1662                         goto DumpTargets;
1663                 }
1664                 if (!target->tap->enabled) {
1665                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1666                                         "can't be the current target\n",
1667                                         target->tap->dotted_name);
1668                         return ERROR_FAIL;
1669                 }
1670
1671                 cmd_ctx->current_target = target->target_number;
1672                 return ERROR_OK;
1673         }
1674 DumpTargets:
1675
1676         target = all_targets;
1677         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1678         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1679         while (target)
1680         {
1681                 const char *state;
1682                 char marker = ' ';
1683
1684                 if (target->tap->enabled)
1685                         state = target_state_name( target );
1686                 else
1687                         state = "tap-disabled";
1688
1689                 if (cmd_ctx->current_target == target->target_number)
1690                         marker = '*';
1691
1692                 /* keep columns lined up to match the headers above */
1693                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1694                                           target->target_number,
1695                                           marker,
1696                                           target->cmd_name,
1697                                           target_get_name(target),
1698                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1699                                                                 target->endianness)->name,
1700                                           target->tap->dotted_name,
1701                                           state);
1702                 target = target->next;
1703         }
1704
1705         return ERROR_OK;
1706 }
1707
1708 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1709
1710 static int powerDropout;
1711 static int srstAsserted;
1712
1713 static int runPowerRestore;
1714 static int runPowerDropout;
1715 static int runSrstAsserted;
1716 static int runSrstDeasserted;
1717
1718 static int sense_handler(void)
1719 {
1720         static int prevSrstAsserted = 0;
1721         static int prevPowerdropout = 0;
1722
1723         int retval;
1724         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1725                 return retval;
1726
1727         int powerRestored;
1728         powerRestored = prevPowerdropout && !powerDropout;
1729         if (powerRestored)
1730         {
1731                 runPowerRestore = 1;
1732         }
1733
1734         long long current = timeval_ms();
1735         static long long lastPower = 0;
1736         int waitMore = lastPower + 2000 > current;
1737         if (powerDropout && !waitMore)
1738         {
1739                 runPowerDropout = 1;
1740                 lastPower = current;
1741         }
1742
1743         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1744                 return retval;
1745
1746         int srstDeasserted;
1747         srstDeasserted = prevSrstAsserted && !srstAsserted;
1748
1749         static long long lastSrst = 0;
1750         waitMore = lastSrst + 2000 > current;
1751         if (srstDeasserted && !waitMore)
1752         {
1753                 runSrstDeasserted = 1;
1754                 lastSrst = current;
1755         }
1756
1757         if (!prevSrstAsserted && srstAsserted)
1758         {
1759                 runSrstAsserted = 1;
1760         }
1761
1762         prevSrstAsserted = srstAsserted;
1763         prevPowerdropout = powerDropout;
1764
1765         if (srstDeasserted || powerRestored)
1766         {
1767                 /* Other than logging the event we can't do anything here.
1768                  * Issuing a reset is a particularly bad idea as we might
1769                  * be inside a reset already.
1770                  */
1771         }
1772
1773         return ERROR_OK;
1774 }
1775
1776 static void target_call_event_callbacks_all(enum target_event e) {
1777         struct target *target;
1778         target = all_targets;
1779         while (target) {
1780                 target_call_event_callbacks(target, e);
1781                 target = target->next;
1782         }
1783 }
1784
1785 /* process target state changes */
1786 int handle_target(void *priv)
1787 {
1788         int retval = ERROR_OK;
1789
1790         /* we do not want to recurse here... */
1791         static int recursive = 0;
1792         if (! recursive)
1793         {
1794                 recursive = 1;
1795                 sense_handler();
1796                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1797                  * We need to avoid an infinite loop/recursion here and we do that by
1798                  * clearing the flags after running these events.
1799                  */
1800                 int did_something = 0;
1801                 if (runSrstAsserted)
1802                 {
1803                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1804                         Jim_Eval(interp, "srst_asserted");
1805                         did_something = 1;
1806                 }
1807                 if (runSrstDeasserted)
1808                 {
1809                         Jim_Eval(interp, "srst_deasserted");
1810                         did_something = 1;
1811                 }
1812                 if (runPowerDropout)
1813                 {
1814                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1815                         Jim_Eval(interp, "power_dropout");
1816                         did_something = 1;
1817                 }
1818                 if (runPowerRestore)
1819                 {
1820                         Jim_Eval(interp, "power_restore");
1821                         did_something = 1;
1822                 }
1823
1824                 if (did_something)
1825                 {
1826                         /* clear detect flags */
1827                         sense_handler();
1828                 }
1829
1830                 /* clear action flags */
1831
1832                 runSrstAsserted = 0;
1833                 runSrstDeasserted = 0;
1834                 runPowerRestore = 0;
1835                 runPowerDropout = 0;
1836
1837                 recursive = 0;
1838         }
1839
1840         /* Poll targets for state changes unless that's globally disabled.
1841          * Skip targets that are currently disabled.
1842          */
1843         for (struct target *target = all_targets;
1844                         is_jtag_poll_safe() && target;
1845                         target = target->next)
1846         {
1847                 if (!target->tap->enabled)
1848                         continue;
1849
1850                 /* only poll target if we've got power and srst isn't asserted */
1851                 if (!powerDropout && !srstAsserted)
1852                 {
1853                         /* polling may fail silently until the target has been examined */
1854                         if ((retval = target_poll(target)) != ERROR_OK)
1855                         {
1856                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1857                                 return retval;
1858                         }
1859                 }
1860         }
1861
1862         return retval;
1863 }
1864
1865 COMMAND_HANDLER(handle_reg_command)
1866 {
1867         struct target *target;
1868         struct reg *reg = NULL;
1869         int count = 0;
1870         char *value;
1871
1872         LOG_DEBUG("-");
1873
1874         target = get_current_target(cmd_ctx);
1875
1876         /* list all available registers for the current target */
1877         if (argc == 0)
1878         {
1879                 struct reg_cache *cache = target->reg_cache;
1880
1881                 count = 0;
1882                 while (cache)
1883                 {
1884                         int i;
1885
1886                         command_print(cmd_ctx, "===== %s", cache->name);
1887
1888                         for (i = 0, reg = cache->reg_list;
1889                                         i < cache->num_regs;
1890                                         i++, reg++, count++)
1891                         {
1892                                 /* only print cached values if they are valid */
1893                                 if (reg->valid) {
1894                                         value = buf_to_str(reg->value,
1895                                                         reg->size, 16);
1896                                         command_print(cmd_ctx,
1897                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1898                                                         count, reg->name,
1899                                                         reg->size, value,
1900                                                         reg->dirty
1901                                                                 ? " (dirty)"
1902                                                                 : "");
1903                                         free(value);
1904                                 } else {
1905                                         command_print(cmd_ctx, "(%i) %s (/%" PRIu32 ")",
1906                                                           count, reg->name,
1907                                                           reg->size) ;
1908                                 }
1909                         }
1910                         cache = cache->next;
1911                 }
1912
1913                 return ERROR_OK;
1914         }
1915
1916         /* access a single register by its ordinal number */
1917         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1918         {
1919                 unsigned num;
1920                 COMMAND_PARSE_NUMBER(uint, args[0], num);
1921
1922                 struct reg_cache *cache = target->reg_cache;
1923                 count = 0;
1924                 while (cache)
1925                 {
1926                         int i;
1927                         for (i = 0; i < cache->num_regs; i++)
1928                         {
1929                                 if (count++ == (int)num)
1930                                 {
1931                                         reg = &cache->reg_list[i];
1932                                         break;
1933                                 }
1934                         }
1935                         if (reg)
1936                                 break;
1937                         cache = cache->next;
1938                 }
1939
1940                 if (!reg)
1941                 {
1942                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1943                         return ERROR_OK;
1944                 }
1945         } else /* access a single register by its name */
1946         {
1947                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1948
1949                 if (!reg)
1950                 {
1951                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1952                         return ERROR_OK;
1953                 }
1954         }
1955
1956         /* display a register */
1957         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1958         {
1959                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1960                         reg->valid = 0;
1961
1962                 if (reg->valid == 0)
1963                 {
1964                         struct reg_arch_type *arch_type = register_get_arch_type(reg->arch_type);
1965                         arch_type->get(reg);
1966                 }
1967                 value = buf_to_str(reg->value, reg->size, 16);
1968                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1969                 free(value);
1970                 return ERROR_OK;
1971         }
1972
1973         /* set register value */
1974         if (argc == 2)
1975         {
1976                 uint8_t *buf = malloc(CEIL(reg->size, 8));
1977                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1978
1979                 struct reg_arch_type *arch_type = register_get_arch_type(reg->arch_type);
1980                 arch_type->set(reg, buf);
1981
1982                 value = buf_to_str(reg->value, reg->size, 16);
1983                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1984                 free(value);
1985
1986                 free(buf);
1987
1988                 return ERROR_OK;
1989         }
1990
1991         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1992
1993         return ERROR_OK;
1994 }
1995
1996 COMMAND_HANDLER(handle_poll_command)
1997 {
1998         int retval = ERROR_OK;
1999         struct target *target = get_current_target(cmd_ctx);
2000
2001         if (argc == 0)
2002         {
2003                 command_print(cmd_ctx, "background polling: %s",
2004                                 jtag_poll_get_enabled() ? "on" : "off");
2005                 command_print(cmd_ctx, "TAP: %s (%s)",
2006                                 target->tap->dotted_name,
2007                                 target->tap->enabled ? "enabled" : "disabled");
2008                 if (!target->tap->enabled)
2009                         return ERROR_OK;
2010                 if ((retval = target_poll(target)) != ERROR_OK)
2011                         return retval;
2012                 if ((retval = target_arch_state(target)) != ERROR_OK)
2013                         return retval;
2014
2015         }
2016         else if (argc == 1)
2017         {
2018                 if (strcmp(args[0], "on") == 0)
2019                 {
2020                         jtag_poll_set_enabled(true);
2021                 }
2022                 else if (strcmp(args[0], "off") == 0)
2023                 {
2024                         jtag_poll_set_enabled(false);
2025                 }
2026                 else
2027                 {
2028                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
2029                 }
2030         } else
2031         {
2032                 return ERROR_COMMAND_SYNTAX_ERROR;
2033         }
2034
2035         return retval;
2036 }
2037
2038 COMMAND_HANDLER(handle_wait_halt_command)
2039 {
2040         if (argc > 1)
2041                 return ERROR_COMMAND_SYNTAX_ERROR;
2042
2043         unsigned ms = 5000;
2044         if (1 == argc)
2045         {
2046                 int retval = parse_uint(args[0], &ms);
2047                 if (ERROR_OK != retval)
2048                 {
2049                         command_print(cmd_ctx, "usage: %s [seconds]", CMD_NAME);
2050                         return ERROR_COMMAND_SYNTAX_ERROR;
2051                 }
2052                 // convert seconds (given) to milliseconds (needed)
2053                 ms *= 1000;
2054         }
2055
2056         struct target *target = get_current_target(cmd_ctx);
2057         return target_wait_state(target, TARGET_HALTED, ms);
2058 }
2059
2060 /* wait for target state to change. The trick here is to have a low
2061  * latency for short waits and not to suck up all the CPU time
2062  * on longer waits.
2063  *
2064  * After 500ms, keep_alive() is invoked
2065  */
2066 int target_wait_state(struct target *target, enum target_state state, int ms)
2067 {
2068         int retval;
2069         long long then = 0, cur;
2070         int once = 1;
2071
2072         for (;;)
2073         {
2074                 if ((retval = target_poll(target)) != ERROR_OK)
2075                         return retval;
2076                 if (target->state == state)
2077                 {
2078                         break;
2079                 }
2080                 cur = timeval_ms();
2081                 if (once)
2082                 {
2083                         once = 0;
2084                         then = timeval_ms();
2085                         LOG_DEBUG("waiting for target %s...",
2086                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2087                 }
2088
2089                 if (cur-then > 500)
2090                 {
2091                         keep_alive();
2092                 }
2093
2094                 if ((cur-then) > ms)
2095                 {
2096                         LOG_ERROR("timed out while waiting for target %s",
2097                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2098                         return ERROR_FAIL;
2099                 }
2100         }
2101
2102         return ERROR_OK;
2103 }
2104
2105 COMMAND_HANDLER(handle_halt_command)
2106 {
2107         LOG_DEBUG("-");
2108
2109         struct target *target = get_current_target(cmd_ctx);
2110         int retval = target_halt(target);
2111         if (ERROR_OK != retval)
2112                 return retval;
2113
2114         if (argc == 1)
2115         {
2116                 unsigned wait;
2117                 retval = parse_uint(args[0], &wait);
2118                 if (ERROR_OK != retval)
2119                         return ERROR_COMMAND_SYNTAX_ERROR;
2120                 if (!wait)
2121                         return ERROR_OK;
2122         }
2123
2124         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2125 }
2126
2127 COMMAND_HANDLER(handle_soft_reset_halt_command)
2128 {
2129         struct target *target = get_current_target(cmd_ctx);
2130
2131         LOG_USER("requesting target halt and executing a soft reset");
2132
2133         target->type->soft_reset_halt(target);
2134
2135         return ERROR_OK;
2136 }
2137
2138 COMMAND_HANDLER(handle_reset_command)
2139 {
2140         if (argc > 1)
2141                 return ERROR_COMMAND_SYNTAX_ERROR;
2142
2143         enum target_reset_mode reset_mode = RESET_RUN;
2144         if (argc == 1)
2145         {
2146                 const Jim_Nvp *n;
2147                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
2148                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2149                         return ERROR_COMMAND_SYNTAX_ERROR;
2150                 }
2151                 reset_mode = n->value;
2152         }
2153
2154         /* reset *all* targets */
2155         return target_process_reset(cmd_ctx, reset_mode);
2156 }
2157
2158
2159 COMMAND_HANDLER(handle_resume_command)
2160 {
2161         int current = 1;
2162         if (argc > 1)
2163                 return ERROR_COMMAND_SYNTAX_ERROR;
2164
2165         struct target *target = get_current_target(cmd_ctx);
2166         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2167
2168         /* with no args, resume from current pc, addr = 0,
2169          * with one arguments, addr = args[0],
2170          * handle breakpoints, not debugging */
2171         uint32_t addr = 0;
2172         if (argc == 1)
2173         {
2174                 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2175                 current = 0;
2176         }
2177
2178         return target_resume(target, current, addr, 1, 0);
2179 }
2180
2181 COMMAND_HANDLER(handle_step_command)
2182 {
2183         if (argc > 1)
2184                 return ERROR_COMMAND_SYNTAX_ERROR;
2185
2186         LOG_DEBUG("-");
2187
2188         /* with no args, step from current pc, addr = 0,
2189          * with one argument addr = args[0],
2190          * handle breakpoints, debugging */
2191         uint32_t addr = 0;
2192         int current_pc = 1;
2193         if (argc == 1)
2194         {
2195                 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2196                 current_pc = 0;
2197         }
2198
2199         struct target *target = get_current_target(cmd_ctx);
2200
2201         return target->type->step(target, current_pc, addr, 1);
2202 }
2203
2204 static void handle_md_output(struct command_context *cmd_ctx,
2205                 struct target *target, uint32_t address, unsigned size,
2206                 unsigned count, const uint8_t *buffer)
2207 {
2208         const unsigned line_bytecnt = 32;
2209         unsigned line_modulo = line_bytecnt / size;
2210
2211         char output[line_bytecnt * 4 + 1];
2212         unsigned output_len = 0;
2213
2214         const char *value_fmt;
2215         switch (size) {
2216         case 4: value_fmt = "%8.8x "; break;
2217         case 2: value_fmt = "%4.2x "; break;
2218         case 1: value_fmt = "%2.2x "; break;
2219         default:
2220                 LOG_ERROR("invalid memory read size: %u", size);
2221                 exit(-1);
2222         }
2223
2224         for (unsigned i = 0; i < count; i++)
2225         {
2226                 if (i % line_modulo == 0)
2227                 {
2228                         output_len += snprintf(output + output_len,
2229                                         sizeof(output) - output_len,
2230                                         "0x%8.8x: ",
2231                                         (unsigned)(address + (i*size)));
2232                 }
2233
2234                 uint32_t value = 0;
2235                 const uint8_t *value_ptr = buffer + i * size;
2236                 switch (size) {
2237                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2238                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2239                 case 1: value = *value_ptr;
2240                 }
2241                 output_len += snprintf(output + output_len,
2242                                 sizeof(output) - output_len,
2243                                 value_fmt, value);
2244
2245                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2246                 {
2247                         command_print(cmd_ctx, "%s", output);
2248                         output_len = 0;
2249                 }
2250         }
2251 }
2252
2253 COMMAND_HANDLER(handle_md_command)
2254 {
2255         if (argc < 1)
2256                 return ERROR_COMMAND_SYNTAX_ERROR;
2257
2258         unsigned size = 0;
2259         switch (CMD_NAME[2]) {
2260         case 'w': size = 4; break;
2261         case 'h': size = 2; break;
2262         case 'b': size = 1; break;
2263         default: return ERROR_COMMAND_SYNTAX_ERROR;
2264         }
2265
2266         bool physical=strcmp(args[0], "phys")==0;
2267         int (*fn)(struct target *target,
2268                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2269         if (physical)
2270         {
2271                 argc--;
2272                 args++;
2273                 fn=target_read_phys_memory;
2274         } else
2275         {
2276                 fn=target_read_memory;
2277         }
2278         if ((argc < 1) || (argc > 2))
2279         {
2280                 return ERROR_COMMAND_SYNTAX_ERROR;
2281         }
2282
2283         uint32_t address;
2284         COMMAND_PARSE_NUMBER(u32, args[0], address);
2285
2286         unsigned count = 1;
2287         if (argc == 2)
2288                 COMMAND_PARSE_NUMBER(uint, args[1], count);
2289
2290         uint8_t *buffer = calloc(count, size);
2291
2292         struct target *target = get_current_target(cmd_ctx);
2293         int retval = fn(target, address, size, count, buffer);
2294         if (ERROR_OK == retval)
2295                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2296
2297         free(buffer);
2298
2299         return retval;
2300 }
2301
2302 COMMAND_HANDLER(handle_mw_command)
2303 {
2304         if (argc < 2)
2305         {
2306                 return ERROR_COMMAND_SYNTAX_ERROR;
2307         }
2308         bool physical=strcmp(args[0], "phys")==0;
2309         int (*fn)(struct target *target,
2310                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2311         if (physical)
2312         {
2313                 argc--;
2314                 args++;
2315                 fn=target_write_phys_memory;
2316         } else
2317         {
2318                 fn=target_write_memory;
2319         }
2320         if ((argc < 2) || (argc > 3))
2321                 return ERROR_COMMAND_SYNTAX_ERROR;
2322
2323         uint32_t address;
2324         COMMAND_PARSE_NUMBER(u32, args[0], address);
2325
2326         uint32_t value;
2327         COMMAND_PARSE_NUMBER(u32, args[1], value);
2328
2329         unsigned count = 1;
2330         if (argc == 3)
2331                 COMMAND_PARSE_NUMBER(uint, args[2], count);
2332
2333         struct target *target = get_current_target(cmd_ctx);
2334         unsigned wordsize;
2335         uint8_t value_buf[4];
2336         switch (CMD_NAME[2])
2337         {
2338                 case 'w':
2339                         wordsize = 4;
2340                         target_buffer_set_u32(target, value_buf, value);
2341                         break;
2342                 case 'h':
2343                         wordsize = 2;
2344                         target_buffer_set_u16(target, value_buf, value);
2345                         break;
2346                 case 'b':
2347                         wordsize = 1;
2348                         value_buf[0] = value;
2349                         break;
2350                 default:
2351                         return ERROR_COMMAND_SYNTAX_ERROR;
2352         }
2353         for (unsigned i = 0; i < count; i++)
2354         {
2355                 int retval = fn(target,
2356                                 address + i * wordsize, wordsize, 1, value_buf);
2357                 if (ERROR_OK != retval)
2358                         return retval;
2359                 keep_alive();
2360         }
2361
2362         return ERROR_OK;
2363
2364 }
2365
2366 static COMMAND_HELPER(parse_load_image_command_args, struct image *image,
2367                 uint32_t *min_address, uint32_t *max_address)
2368 {
2369         if (argc < 1 || argc > 5)
2370                 return ERROR_COMMAND_SYNTAX_ERROR;
2371
2372         /* a base address isn't always necessary,
2373          * default to 0x0 (i.e. don't relocate) */
2374         if (argc >= 2)
2375         {
2376                 uint32_t addr;
2377                 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2378                 image->base_address = addr;
2379                 image->base_address_set = 1;
2380         }
2381         else
2382                 image->base_address_set = 0;
2383
2384         image->start_address_set = 0;
2385
2386         if (argc >= 4)
2387         {
2388                 COMMAND_PARSE_NUMBER(u32, args[3], *min_address);
2389         }
2390         if (argc == 5)
2391         {
2392                 COMMAND_PARSE_NUMBER(u32, args[4], *max_address);
2393                 // use size (given) to find max (required)
2394                 *max_address += *min_address;
2395         }
2396
2397         if (*min_address > *max_address)
2398                 return ERROR_COMMAND_SYNTAX_ERROR;
2399
2400         return ERROR_OK;
2401 }
2402
2403 COMMAND_HANDLER(handle_load_image_command)
2404 {
2405         uint8_t *buffer;
2406         uint32_t buf_cnt;
2407         uint32_t image_size;
2408         uint32_t min_address = 0;
2409         uint32_t max_address = 0xffffffff;
2410         int i;
2411         struct image image;
2412
2413         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_args,
2414                         &image, &min_address, &max_address);
2415         if (ERROR_OK != retval)
2416                 return retval;
2417
2418         struct target *target = get_current_target(cmd_ctx);
2419
2420         struct duration bench;
2421         duration_start(&bench);
2422
2423         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2424         {
2425                 return ERROR_OK;
2426         }
2427
2428         image_size = 0x0;
2429         retval = ERROR_OK;
2430         for (i = 0; i < image.num_sections; i++)
2431         {
2432                 buffer = malloc(image.sections[i].size);
2433                 if (buffer == NULL)
2434                 {
2435                         command_print(cmd_ctx,
2436                                                   "error allocating buffer for section (%d bytes)",
2437                                                   (int)(image.sections[i].size));
2438                         break;
2439                 }
2440
2441                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2442                 {
2443                         free(buffer);
2444                         break;
2445                 }
2446
2447                 uint32_t offset = 0;
2448                 uint32_t length = buf_cnt;
2449
2450                 /* DANGER!!! beware of unsigned comparision here!!! */
2451
2452                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2453                                 (image.sections[i].base_address < max_address))
2454                 {
2455                         if (image.sections[i].base_address < min_address)
2456                         {
2457                                 /* clip addresses below */
2458                                 offset += min_address-image.sections[i].base_address;
2459                                 length -= offset;
2460                         }
2461
2462                         if (image.sections[i].base_address + buf_cnt > max_address)
2463                         {
2464                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2465                         }
2466
2467                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2468                         {
2469                                 free(buffer);
2470                                 break;
2471                         }
2472                         image_size += length;
2473                         command_print(cmd_ctx, "%u bytes written at address 0x%8.8" PRIx32 "",
2474                                                   (unsigned int)length,
2475                                                   image.sections[i].base_address + offset);
2476                 }
2477
2478                 free(buffer);
2479         }
2480
2481         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2482         {
2483                 command_print(cmd_ctx, "downloaded %" PRIu32 " bytes "
2484                                 "in %fs (%0.3f kb/s)", image_size,
2485                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2486         }
2487
2488         image_close(&image);
2489
2490         return retval;
2491
2492 }
2493
2494 COMMAND_HANDLER(handle_dump_image_command)
2495 {
2496         struct fileio fileio;
2497
2498         uint8_t buffer[560];
2499         int retvaltemp;
2500
2501
2502         struct target *target = get_current_target(cmd_ctx);
2503
2504         if (argc != 3)
2505         {
2506                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2507                 return ERROR_OK;
2508         }
2509
2510         uint32_t address;
2511         COMMAND_PARSE_NUMBER(u32, args[1], address);
2512         uint32_t size;
2513         COMMAND_PARSE_NUMBER(u32, args[2], size);
2514
2515         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2516         {
2517                 return ERROR_OK;
2518         }
2519
2520         struct duration bench;
2521         duration_start(&bench);
2522
2523         int retval = ERROR_OK;
2524         while (size > 0)
2525         {
2526                 uint32_t size_written;
2527                 uint32_t this_run_size = (size > 560) ? 560 : size;
2528                 retval = target_read_buffer(target, address, this_run_size, buffer);
2529                 if (retval != ERROR_OK)
2530                 {
2531                         break;
2532                 }
2533
2534                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2535                 if (retval != ERROR_OK)
2536                 {
2537                         break;
2538                 }
2539
2540                 size -= this_run_size;
2541                 address += this_run_size;
2542         }
2543
2544         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2545                 return retvaltemp;
2546
2547         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2548         {
2549                 command_print(cmd_ctx,
2550                                 "dumped %lld bytes in %fs (%0.3f kb/s)", fileio.size,
2551                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2552         }
2553
2554         return retval;
2555 }
2556
2557 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2558 {
2559         uint8_t *buffer;
2560         uint32_t buf_cnt;
2561         uint32_t image_size;
2562         int i;
2563         int retval;
2564         uint32_t checksum = 0;
2565         uint32_t mem_checksum = 0;
2566
2567         struct image image;
2568
2569         struct target *target = get_current_target(cmd_ctx);
2570
2571         if (argc < 1)
2572         {
2573                 return ERROR_COMMAND_SYNTAX_ERROR;
2574         }
2575
2576         if (!target)
2577         {
2578                 LOG_ERROR("no target selected");
2579                 return ERROR_FAIL;
2580         }
2581
2582         struct duration bench;
2583         duration_start(&bench);
2584
2585         if (argc >= 2)
2586         {
2587                 uint32_t addr;
2588                 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2589                 image.base_address = addr;
2590                 image.base_address_set = 1;
2591         }
2592         else
2593         {
2594                 image.base_address_set = 0;
2595                 image.base_address = 0x0;
2596         }
2597
2598         image.start_address_set = 0;
2599
2600         if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2601         {
2602                 return retval;
2603         }
2604
2605         image_size = 0x0;
2606         retval = ERROR_OK;
2607         for (i = 0; i < image.num_sections; i++)
2608         {
2609                 buffer = malloc(image.sections[i].size);
2610                 if (buffer == NULL)
2611                 {
2612                         command_print(cmd_ctx,
2613                                                   "error allocating buffer for section (%d bytes)",
2614                                                   (int)(image.sections[i].size));
2615                         break;
2616                 }
2617                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2618                 {
2619                         free(buffer);
2620                         break;
2621                 }
2622
2623                 if (verify)
2624                 {
2625                         /* calculate checksum of image */
2626                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2627
2628                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2629                         if (retval != ERROR_OK)
2630                         {
2631                                 free(buffer);
2632                                 break;
2633                         }
2634
2635                         if (checksum != mem_checksum)
2636                         {
2637                                 /* failed crc checksum, fall back to a binary compare */
2638                                 uint8_t *data;
2639
2640                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2641
2642                                 data = (uint8_t*)malloc(buf_cnt);
2643
2644                                 /* Can we use 32bit word accesses? */
2645                                 int size = 1;
2646                                 int count = buf_cnt;
2647                                 if ((count % 4) == 0)
2648                                 {
2649                                         size *= 4;
2650                                         count /= 4;
2651                                 }
2652                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2653                                 if (retval == ERROR_OK)
2654                                 {
2655                                         uint32_t t;
2656                                         for (t = 0; t < buf_cnt; t++)
2657                                         {
2658                                                 if (data[t] != buffer[t])
2659                                                 {
2660                                                         command_print(cmd_ctx,
2661                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2662                                                                                   (unsigned)(t + image.sections[i].base_address),
2663                                                                                   data[t],
2664                                                                                   buffer[t]);
2665                                                         free(data);
2666                                                         free(buffer);
2667                                                         retval = ERROR_FAIL;
2668                                                         goto done;
2669                                                 }
2670                                                 if ((t%16384) == 0)
2671                                                 {
2672                                                         keep_alive();
2673                                                 }
2674                                         }
2675                                 }
2676
2677                                 free(data);
2678                         }
2679                 } else
2680                 {
2681                         command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
2682                                                   image.sections[i].base_address,
2683                                                   buf_cnt);
2684                 }
2685
2686                 free(buffer);
2687                 image_size += buf_cnt;
2688         }
2689 done:
2690         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2691         {
2692                 command_print(cmd_ctx, "verified %" PRIu32 " bytes "
2693                                 "in %fs (%0.3f kb/s)", image_size,
2694                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2695         }
2696
2697         image_close(&image);
2698
2699         return retval;
2700 }
2701
2702 COMMAND_HANDLER(handle_verify_image_command)
2703 {
2704         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2705 }
2706
2707 COMMAND_HANDLER(handle_test_image_command)
2708 {
2709         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2710 }
2711
2712 static int handle_bp_command_list(struct command_context *cmd_ctx)
2713 {
2714         struct target *target = get_current_target(cmd_ctx);
2715         struct breakpoint *breakpoint = target->breakpoints;
2716         while (breakpoint)
2717         {
2718                 if (breakpoint->type == BKPT_SOFT)
2719                 {
2720                         char* buf = buf_to_str(breakpoint->orig_instr,
2721                                         breakpoint->length, 16);
2722                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2723                                         breakpoint->address,
2724                                         breakpoint->length,
2725                                         breakpoint->set, buf);
2726                         free(buf);
2727                 }
2728                 else
2729                 {
2730                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2731                                                   breakpoint->address,
2732                                                   breakpoint->length, breakpoint->set);
2733                 }
2734
2735                 breakpoint = breakpoint->next;
2736         }
2737         return ERROR_OK;
2738 }
2739
2740 static int handle_bp_command_set(struct command_context *cmd_ctx,
2741                 uint32_t addr, uint32_t length, int hw)
2742 {
2743         struct target *target = get_current_target(cmd_ctx);
2744         int retval = breakpoint_add(target, addr, length, hw);
2745         if (ERROR_OK == retval)
2746                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2747         else
2748                 LOG_ERROR("Failure setting breakpoint");
2749         return retval;
2750 }
2751
2752 COMMAND_HANDLER(handle_bp_command)
2753 {
2754         if (argc == 0)
2755                 return handle_bp_command_list(cmd_ctx);
2756
2757         if (argc < 2 || argc > 3)
2758         {
2759                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2760                 return ERROR_COMMAND_SYNTAX_ERROR;
2761         }
2762
2763         uint32_t addr;
2764         COMMAND_PARSE_NUMBER(u32, args[0], addr);
2765         uint32_t length;
2766         COMMAND_PARSE_NUMBER(u32, args[1], length);
2767
2768         int hw = BKPT_SOFT;
2769         if (argc == 3)
2770         {
2771                 if (strcmp(args[2], "hw") == 0)
2772                         hw = BKPT_HARD;
2773                 else
2774                         return ERROR_COMMAND_SYNTAX_ERROR;
2775         }
2776
2777         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2778 }
2779
2780 COMMAND_HANDLER(handle_rbp_command)
2781 {
2782         if (argc != 1)
2783                 return ERROR_COMMAND_SYNTAX_ERROR;
2784
2785         uint32_t addr;
2786         COMMAND_PARSE_NUMBER(u32, args[0], addr);
2787
2788         struct target *target = get_current_target(cmd_ctx);
2789         breakpoint_remove(target, addr);
2790
2791         return ERROR_OK;
2792 }
2793
2794 COMMAND_HANDLER(handle_wp_command)
2795 {
2796         struct target *target = get_current_target(cmd_ctx);
2797
2798         if (argc == 0)
2799         {
2800                 struct watchpoint *watchpoint = target->watchpoints;
2801
2802                 while (watchpoint)
2803                 {
2804                         command_print(cmd_ctx, "address: 0x%8.8" PRIx32
2805                                         ", len: 0x%8.8" PRIx32
2806                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2807                                         ", mask: 0x%8.8" PRIx32,
2808                                         watchpoint->address,
2809                                         watchpoint->length,
2810                                         (int)watchpoint->rw,
2811                                         watchpoint->value,
2812                                         watchpoint->mask);
2813                         watchpoint = watchpoint->next;
2814                 }
2815                 return ERROR_OK;
2816         }
2817
2818         enum watchpoint_rw type = WPT_ACCESS;
2819         uint32_t addr = 0;
2820         uint32_t length = 0;
2821         uint32_t data_value = 0x0;
2822         uint32_t data_mask = 0xffffffff;
2823
2824         switch (argc)
2825         {
2826         case 5:
2827                 COMMAND_PARSE_NUMBER(u32, args[4], data_mask);
2828                 // fall through
2829         case 4:
2830                 COMMAND_PARSE_NUMBER(u32, args[3], data_value);
2831                 // fall through
2832         case 3:
2833                 switch (args[2][0])
2834                 {
2835                 case 'r':
2836                         type = WPT_READ;
2837                         break;
2838                 case 'w':
2839                         type = WPT_WRITE;
2840                         break;
2841                 case 'a':
2842                         type = WPT_ACCESS;
2843                         break;
2844                 default:
2845                         LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2846                         return ERROR_COMMAND_SYNTAX_ERROR;
2847                 }
2848                 // fall through
2849         case 2:
2850                 COMMAND_PARSE_NUMBER(u32, args[1], length);
2851                 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2852                 break;
2853
2854         default:
2855                 command_print(cmd_ctx, "usage: wp [address length "
2856                                 "[(r|w|a) [value [mask]]]]");
2857                 return ERROR_COMMAND_SYNTAX_ERROR;
2858         }
2859
2860         int retval = watchpoint_add(target, addr, length, type,
2861                         data_value, data_mask);
2862         if (ERROR_OK != retval)
2863                 LOG_ERROR("Failure setting watchpoints");
2864
2865         return retval;
2866 }
2867
2868 COMMAND_HANDLER(handle_rwp_command)
2869 {
2870         if (argc != 1)
2871                 return ERROR_COMMAND_SYNTAX_ERROR;
2872
2873         uint32_t addr;
2874         COMMAND_PARSE_NUMBER(u32, args[0], addr);
2875
2876         struct target *target = get_current_target(cmd_ctx);
2877         watchpoint_remove(target, addr);
2878
2879         return ERROR_OK;
2880 }
2881
2882
2883 /**
2884  * Translate a virtual address to a physical address.
2885  *
2886  * The low-level target implementation must have logged a detailed error
2887  * which is forwarded to telnet/GDB session.
2888  */
2889 COMMAND_HANDLER(handle_virt2phys_command)
2890 {
2891         if (argc != 1)
2892                 return ERROR_COMMAND_SYNTAX_ERROR;
2893
2894         uint32_t va;
2895         COMMAND_PARSE_NUMBER(u32, args[0], va);
2896         uint32_t pa;
2897
2898         struct target *target = get_current_target(cmd_ctx);
2899         int retval = target->type->virt2phys(target, va, &pa);
2900         if (retval == ERROR_OK)
2901                 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
2902
2903         return retval;
2904 }
2905
2906 static void writeData(FILE *f, const void *data, size_t len)
2907 {
2908         size_t written = fwrite(data, 1, len, f);
2909         if (written != len)
2910                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2911 }
2912
2913 static void writeLong(FILE *f, int l)
2914 {
2915         int i;
2916         for (i = 0; i < 4; i++)
2917         {
2918                 char c = (l >> (i*8))&0xff;
2919                 writeData(f, &c, 1);
2920         }
2921
2922 }
2923
2924 static void writeString(FILE *f, char *s)
2925 {
2926         writeData(f, s, strlen(s));
2927 }
2928
2929 /* Dump a gmon.out histogram file. */
2930 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2931 {
2932         uint32_t i;
2933         FILE *f = fopen(filename, "w");
2934         if (f == NULL)
2935                 return;
2936         writeString(f, "gmon");
2937         writeLong(f, 0x00000001); /* Version */
2938         writeLong(f, 0); /* padding */
2939         writeLong(f, 0); /* padding */
2940         writeLong(f, 0); /* padding */
2941
2942         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2943         writeData(f, &zero, 1);
2944
2945         /* figure out bucket size */
2946         uint32_t min = samples[0];
2947         uint32_t max = samples[0];
2948         for (i = 0; i < sampleNum; i++)
2949         {
2950                 if (min > samples[i])
2951                 {
2952                         min = samples[i];
2953                 }
2954                 if (max < samples[i])
2955                 {
2956                         max = samples[i];
2957                 }
2958         }
2959
2960         int addressSpace = (max-min + 1);
2961
2962         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2963         uint32_t length = addressSpace;
2964         if (length > maxBuckets)
2965         {
2966                 length = maxBuckets;
2967         }
2968         int *buckets = malloc(sizeof(int)*length);
2969         if (buckets == NULL)
2970         {
2971                 fclose(f);
2972                 return;
2973         }
2974         memset(buckets, 0, sizeof(int)*length);
2975         for (i = 0; i < sampleNum;i++)
2976         {
2977                 uint32_t address = samples[i];
2978                 long long a = address-min;
2979                 long long b = length-1;
2980                 long long c = addressSpace-1;
2981                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2982                 buckets[index]++;
2983         }
2984
2985         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2986         writeLong(f, min);                      /* low_pc */
2987         writeLong(f, max);                      /* high_pc */
2988         writeLong(f, length);           /* # of samples */
2989         writeLong(f, 64000000);         /* 64MHz */
2990         writeString(f, "seconds");
2991         for (i = 0; i < (15-strlen("seconds")); i++)
2992                 writeData(f, &zero, 1);
2993         writeString(f, "s");
2994
2995         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2996
2997         char *data = malloc(2*length);
2998         if (data != NULL)
2999         {
3000                 for (i = 0; i < length;i++)
3001                 {
3002                         int val;
3003                         val = buckets[i];
3004                         if (val > 65535)
3005                         {
3006                                 val = 65535;
3007                         }
3008                         data[i*2]=val&0xff;
3009                         data[i*2 + 1]=(val >> 8)&0xff;
3010                 }
3011                 free(buckets);
3012                 writeData(f, data, length * 2);
3013                 free(data);
3014         } else
3015         {
3016                 free(buckets);
3017         }
3018
3019         fclose(f);
3020 }
3021
3022 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
3023 COMMAND_HANDLER(handle_profile_command)
3024 {
3025         struct target *target = get_current_target(cmd_ctx);
3026         struct timeval timeout, now;
3027
3028         gettimeofday(&timeout, NULL);
3029         if (argc != 2)
3030         {
3031                 return ERROR_COMMAND_SYNTAX_ERROR;
3032         }
3033         unsigned offset;
3034         COMMAND_PARSE_NUMBER(uint, args[0], offset);
3035
3036         timeval_add_time(&timeout, offset, 0);
3037
3038         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
3039
3040         static const int maxSample = 10000;
3041         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3042         if (samples == NULL)
3043                 return ERROR_OK;
3044
3045         int numSamples = 0;
3046         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3047         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3048
3049         for (;;)
3050         {
3051                 int retval;
3052                 target_poll(target);
3053                 if (target->state == TARGET_HALTED)
3054                 {
3055                         uint32_t t=*((uint32_t *)reg->value);
3056                         samples[numSamples++]=t;
3057                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3058                         target_poll(target);
3059                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3060                 } else if (target->state == TARGET_RUNNING)
3061                 {
3062                         /* We want to quickly sample the PC. */
3063                         if ((retval = target_halt(target)) != ERROR_OK)
3064                         {
3065                                 free(samples);
3066                                 return retval;
3067                         }
3068                 } else
3069                 {
3070                         command_print(cmd_ctx, "Target not halted or running");
3071                         retval = ERROR_OK;
3072                         break;
3073                 }
3074                 if (retval != ERROR_OK)
3075                 {
3076                         break;
3077                 }
3078
3079                 gettimeofday(&now, NULL);
3080                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3081                 {
3082                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
3083                         if ((retval = target_poll(target)) != ERROR_OK)
3084                         {
3085                                 free(samples);
3086                                 return retval;
3087                         }
3088                         if (target->state == TARGET_HALTED)
3089                         {
3090                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3091                         }
3092                         if ((retval = target_poll(target)) != ERROR_OK)
3093                         {
3094                                 free(samples);
3095                                 return retval;
3096                         }
3097                         writeGmon(samples, numSamples, args[1]);
3098                         command_print(cmd_ctx, "Wrote %s", args[1]);
3099                         break;
3100                 }
3101         }
3102         free(samples);
3103
3104         return ERROR_OK;
3105 }
3106
3107 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3108 {
3109         char *namebuf;
3110         Jim_Obj *nameObjPtr, *valObjPtr;
3111         int result;
3112
3113         namebuf = alloc_printf("%s(%d)", varname, idx);
3114         if (!namebuf)
3115                 return JIM_ERR;
3116
3117         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3118         valObjPtr = Jim_NewIntObj(interp, val);
3119         if (!nameObjPtr || !valObjPtr)
3120         {
3121                 free(namebuf);
3122                 return JIM_ERR;
3123         }
3124
3125         Jim_IncrRefCount(nameObjPtr);
3126         Jim_IncrRefCount(valObjPtr);
3127         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3128         Jim_DecrRefCount(interp, nameObjPtr);
3129         Jim_DecrRefCount(interp, valObjPtr);
3130         free(namebuf);
3131         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3132         return result;
3133 }
3134
3135 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3136 {
3137         struct command_context *context;
3138         struct target *target;
3139
3140         context = Jim_GetAssocData(interp, "context");
3141         if (context == NULL)
3142         {
3143                 LOG_ERROR("mem2array: no command context");
3144                 return JIM_ERR;
3145         }
3146         target = get_current_target(context);
3147         if (target == NULL)
3148         {
3149                 LOG_ERROR("mem2array: no current target");
3150                 return JIM_ERR;
3151         }
3152
3153         return  target_mem2array(interp, target, argc-1, argv + 1);
3154 }
3155
3156 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3157 {
3158         long l;
3159         uint32_t width;
3160         int len;
3161         uint32_t addr;
3162         uint32_t count;
3163         uint32_t v;
3164         const char *varname;
3165         uint8_t buffer[4096];
3166         int  n, e, retval;
3167         uint32_t i;
3168
3169         /* argv[1] = name of array to receive the data
3170          * argv[2] = desired width
3171          * argv[3] = memory address
3172          * argv[4] = count of times to read
3173          */
3174         if (argc != 4) {
3175                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3176                 return JIM_ERR;
3177         }
3178         varname = Jim_GetString(argv[0], &len);
3179         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3180
3181         e = Jim_GetLong(interp, argv[1], &l);
3182         width = l;
3183         if (e != JIM_OK) {
3184                 return e;
3185         }
3186
3187         e = Jim_GetLong(interp, argv[2], &l);
3188         addr = l;
3189         if (e != JIM_OK) {
3190                 return e;
3191         }
3192         e = Jim_GetLong(interp, argv[3], &l);
3193         len = l;
3194         if (e != JIM_OK) {
3195                 return e;
3196         }
3197         switch (width) {
3198                 case 8:
3199                         width = 1;
3200                         break;
3201                 case 16:
3202                         width = 2;
3203                         break;
3204                 case 32:
3205                         width = 4;
3206                         break;
3207                 default:
3208                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3209                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3210                         return JIM_ERR;
3211         }
3212         if (len == 0) {
3213                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3214                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3215                 return JIM_ERR;
3216         }
3217         if ((addr + (len * width)) < addr) {
3218                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3219                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3220                 return JIM_ERR;
3221         }
3222         /* absurd transfer size? */
3223         if (len > 65536) {
3224                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3225                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3226                 return JIM_ERR;
3227         }
3228
3229         if ((width == 1) ||
3230                 ((width == 2) && ((addr & 1) == 0)) ||
3231                 ((width == 4) && ((addr & 3) == 0))) {
3232                 /* all is well */
3233         } else {
3234                 char buf[100];
3235                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3236                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3237                                 addr,
3238                                 width);
3239                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3240                 return JIM_ERR;
3241         }
3242
3243         /* Transfer loop */
3244
3245         /* index counter */
3246         n = 0;
3247         /* assume ok */
3248         e = JIM_OK;
3249         while (len) {
3250                 /* Slurp... in buffer size chunks */
3251
3252                 count = len; /* in objects.. */
3253                 if (count > (sizeof(buffer)/width)) {
3254                         count = (sizeof(buffer)/width);
3255                 }
3256
3257                 retval = target_read_memory(target, addr, width, count, buffer);
3258                 if (retval != ERROR_OK) {
3259                         /* BOO !*/
3260                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3261                                           (unsigned int)addr,
3262                                           (int)width,
3263                                           (int)count);
3264                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3265                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3266                         e = JIM_ERR;
3267                         len = 0;
3268                 } else {
3269                         v = 0; /* shut up gcc */
3270                         for (i = 0 ;i < count ;i++, n++) {
3271                                 switch (width) {
3272                                         case 4:
3273                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3274                                                 break;
3275                                         case 2:
3276                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3277                                                 break;
3278                                         case 1:
3279                                                 v = buffer[i] & 0x0ff;
3280                                                 break;
3281                                 }
3282                                 new_int_array_element(interp, varname, n, v);
3283                         }
3284                         len -= count;
3285                 }
3286         }
3287
3288         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3289
3290         return JIM_OK;
3291 }
3292
3293 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3294 {
3295         char *namebuf;
3296         Jim_Obj *nameObjPtr, *valObjPtr;
3297         int result;
3298         long l;
3299
3300         namebuf = alloc_printf("%s(%d)", varname, idx);
3301         if (!namebuf)
3302                 return JIM_ERR;
3303
3304         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3305         if (!nameObjPtr)
3306         {
3307                 free(namebuf);
3308                 return JIM_ERR;
3309         }
3310
3311         Jim_IncrRefCount(nameObjPtr);
3312         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3313         Jim_DecrRefCount(interp, nameObjPtr);
3314         free(namebuf);
3315         if (valObjPtr == NULL)
3316                 return JIM_ERR;
3317
3318         result = Jim_GetLong(interp, valObjPtr, &l);
3319         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3320         *val = l;
3321         return result;
3322 }
3323
3324 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3325 {
3326         struct command_context *context;
3327         struct target *target;
3328
3329         context = Jim_GetAssocData(interp, "context");
3330         if (context == NULL) {
3331                 LOG_ERROR("array2mem: no command context");
3332                 return JIM_ERR;
3333         }
3334         target = get_current_target(context);
3335         if (target == NULL) {
3336                 LOG_ERROR("array2mem: no current target");
3337                 return JIM_ERR;
3338         }
3339
3340         return target_array2mem(interp,target, argc-1, argv + 1);
3341 }
3342 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3343 {
3344         long l;
3345         uint32_t width;
3346         int len;
3347         uint32_t addr;
3348         uint32_t count;
3349         uint32_t v;
3350         const char *varname;
3351         uint8_t buffer[4096];
3352         int  n, e, retval;
3353         uint32_t i;
3354
3355         /* argv[1] = name of array to get the data
3356          * argv[2] = desired width
3357          * argv[3] = memory address
3358          * argv[4] = count to write
3359          */
3360         if (argc != 4) {
3361                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3362                 return JIM_ERR;
3363         }
3364         varname = Jim_GetString(argv[0], &len);
3365         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3366
3367         e = Jim_GetLong(interp, argv[1], &l);
3368         width = l;
3369         if (e != JIM_OK) {
3370                 return e;
3371         }
3372
3373         e = Jim_GetLong(interp, argv[2], &l);
3374         addr = l;
3375         if (e != JIM_OK) {
3376                 return e;
3377         }
3378         e = Jim_GetLong(interp, argv[3], &l);
3379         len = l;
3380         if (e != JIM_OK) {
3381                 return e;
3382         }
3383         switch (width) {
3384                 case 8:
3385                         width = 1;
3386                         break;
3387                 case 16:
3388                         width = 2;
3389                         break;
3390                 case 32:
3391                         width = 4;
3392                         break;
3393                 default:
3394                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3395                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3396                         return JIM_ERR;
3397         }
3398         if (len == 0) {
3399                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3400                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3401                 return JIM_ERR;
3402         }
3403         if ((addr + (len * width)) < addr) {
3404                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3405                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3406                 return JIM_ERR;
3407         }
3408         /* absurd transfer size? */
3409         if (len > 65536) {
3410                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3411                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3412                 return JIM_ERR;
3413         }
3414
3415         if ((width == 1) ||
3416                 ((width == 2) && ((addr & 1) == 0)) ||
3417                 ((width == 4) && ((addr & 3) == 0))) {
3418                 /* all is well */
3419         } else {
3420                 char buf[100];
3421                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3422                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3423                                 (unsigned int)addr,
3424                                 (int)width);
3425                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3426                 return JIM_ERR;
3427         }
3428
3429         /* Transfer loop */
3430
3431         /* index counter */
3432         n = 0;
3433         /* assume ok */
3434         e = JIM_OK;
3435         while (len) {
3436                 /* Slurp... in buffer size chunks */
3437
3438                 count = len; /* in objects.. */
3439                 if (count > (sizeof(buffer)/width)) {
3440                         count = (sizeof(buffer)/width);
3441                 }
3442
3443                 v = 0; /* shut up gcc */
3444                 for (i = 0 ;i < count ;i++, n++) {
3445                         get_int_array_element(interp, varname, n, &v);
3446                         switch (width) {
3447                         case 4:
3448                                 target_buffer_set_u32(target, &buffer[i*width], v);
3449                                 break;
3450                         case 2:
3451                                 target_buffer_set_u16(target, &buffer[i*width], v);
3452                                 break;
3453                         case 1:
3454                                 buffer[i] = v & 0x0ff;
3455                                 break;
3456                         }
3457                 }
3458                 len -= count;
3459
3460                 retval = target_write_memory(target, addr, width, count, buffer);
3461                 if (retval != ERROR_OK) {
3462                         /* BOO !*/
3463                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3464                                           (unsigned int)addr,
3465                                           (int)width,
3466                                           (int)count);
3467                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3468                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3469                         e = JIM_ERR;
3470                         len = 0;
3471                 }
3472         }
3473
3474         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3475
3476         return JIM_OK;
3477 }
3478
3479 void target_all_handle_event(enum target_event e)
3480 {
3481         struct target *target;
3482
3483         LOG_DEBUG("**all*targets: event: %d, %s",
3484                            (int)e,
3485                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3486
3487         target = all_targets;
3488         while (target) {
3489                 target_handle_event(target, e);
3490                 target = target->next;
3491         }
3492 }
3493
3494
3495 /* FIX? should we propagate errors here rather than printing them
3496  * and continuing?
3497  */
3498 void target_handle_event(struct target *target, enum target_event e)
3499 {
3500         struct target_event_action *teap;
3501
3502         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3503                 if (teap->event == e) {
3504                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3505                                            target->target_number,
3506                                            target->cmd_name,
3507                                            target_get_name(target),
3508                                            e,
3509                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3510                                            Jim_GetString(teap->body, NULL));
3511                         if (Jim_EvalObj(interp, teap->body) != JIM_OK)
3512                         {
3513                                 Jim_PrintErrorMessage(interp);
3514                         }
3515                 }
3516         }
3517 }
3518
3519 enum target_cfg_param {
3520         TCFG_TYPE,
3521         TCFG_EVENT,
3522         TCFG_WORK_AREA_VIRT,
3523         TCFG_WORK_AREA_PHYS,
3524         TCFG_WORK_AREA_SIZE,
3525         TCFG_WORK_AREA_BACKUP,
3526         TCFG_ENDIAN,
3527         TCFG_VARIANT,
3528         TCFG_CHAIN_POSITION,
3529 };
3530
3531 static Jim_Nvp nvp_config_opts[] = {
3532         { .name = "-type",             .value = TCFG_TYPE },
3533         { .name = "-event",            .value = TCFG_EVENT },
3534         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3535         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3536         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3537         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3538         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3539         { .name = "-variant",          .value = TCFG_VARIANT },
3540         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3541
3542         { .name = NULL, .value = -1 }
3543 };
3544
3545 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3546 {
3547         Jim_Nvp *n;
3548         Jim_Obj *o;
3549         jim_wide w;
3550         char *cp;
3551         int e;
3552
3553         /* parse config or cget options ... */
3554         while (goi->argc > 0) {
3555                 Jim_SetEmptyResult(goi->interp);
3556                 /* Jim_GetOpt_Debug(goi); */
3557
3558                 if (target->type->target_jim_configure) {
3559                         /* target defines a configure function */
3560                         /* target gets first dibs on parameters */
3561                         e = (*(target->type->target_jim_configure))(target, goi);
3562                         if (e == JIM_OK) {
3563                                 /* more? */
3564                                 continue;
3565                         }
3566                         if (e == JIM_ERR) {
3567                                 /* An error */
3568                                 return e;
3569                         }
3570                         /* otherwise we 'continue' below */
3571                 }
3572                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3573                 if (e != JIM_OK) {
3574                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3575                         return e;
3576                 }
3577                 switch (n->value) {
3578                 case TCFG_TYPE:
3579                         /* not setable */
3580                         if (goi->isconfigure) {
3581                                 Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name);
3582                                 return JIM_ERR;
3583                         } else {
3584                         no_params:
3585                                 if (goi->argc != 0) {
3586                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
3587                                         return JIM_ERR;
3588                                 }
3589                         }
3590                         Jim_SetResultString(goi->interp, target_get_name(target), -1);
3591                         /* loop for more */
3592                         break;
3593                 case TCFG_EVENT:
3594                         if (goi->argc == 0) {
3595                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3596                                 return JIM_ERR;
3597                         }
3598
3599                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3600                         if (e != JIM_OK) {
3601                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3602                                 return e;
3603                         }
3604
3605                         if (goi->isconfigure) {
3606                                 if (goi->argc != 1) {
3607                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3608                                         return JIM_ERR;
3609                                 }
3610                         } else {
3611                                 if (goi->argc != 0) {
3612                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3613                                         return JIM_ERR;
3614                                 }
3615                         }
3616
3617                         {
3618                                 struct target_event_action *teap;
3619
3620                                 teap = target->event_action;
3621                                 /* replace existing? */
3622                                 while (teap) {
3623                                         if (teap->event == (enum target_event)n->value) {
3624                                                 break;
3625                                         }
3626                                         teap = teap->next;
3627                                 }
3628
3629                                 if (goi->isconfigure) {
3630                                         bool replace = true;
3631                                         if (teap == NULL) {
3632                                                 /* create new */
3633                                                 teap = calloc(1, sizeof(*teap));
3634                                                 replace = false;
3635                                         }
3636                                         teap->event = n->value;
3637                                         Jim_GetOpt_Obj(goi, &o);
3638                                         if (teap->body) {
3639                                                 Jim_DecrRefCount(interp, teap->body);
3640                                         }
3641                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3642                                         /*
3643                                          * FIXME:
3644                                          *     Tcl/TK - "tk events" have a nice feature.
3645                                          *     See the "BIND" command.
3646                                          *    We should support that here.
3647                                          *     You can specify %X and %Y in the event code.
3648                                          *     The idea is: %T - target name.
3649                                          *     The idea is: %N - target number
3650                                          *     The idea is: %E - event name.
3651                                          */
3652                                         Jim_IncrRefCount(teap->body);
3653
3654                                         if (!replace)
3655                                         {
3656                                                 /* add to head of event list */
3657                                                 teap->next = target->event_action;
3658                                                 target->event_action = teap;
3659                                         }
3660                                         Jim_SetEmptyResult(goi->interp);
3661                                 } else {
3662                                         /* get */
3663                                         if (teap == NULL) {
3664                                                 Jim_SetEmptyResult(goi->interp);
3665                                         } else {
3666                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3667                                         }
3668                                 }
3669                         }
3670                         /* loop for more */
3671                         break;
3672
3673                 case TCFG_WORK_AREA_VIRT:
3674                         if (goi->isconfigure) {
3675                                 target_free_all_working_areas(target);
3676                                 e = Jim_GetOpt_Wide(goi, &w);
3677                                 if (e != JIM_OK) {
3678                                         return e;
3679                                 }
3680                                 target->working_area_virt = w;
3681                                 target->working_area_virt_spec = true;
3682                         } else {
3683                                 if (goi->argc != 0) {
3684                                         goto no_params;
3685                                 }
3686                         }
3687                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3688                         /* loop for more */
3689                         break;
3690
3691                 case TCFG_WORK_AREA_PHYS:
3692                         if (goi->isconfigure) {
3693                                 target_free_all_working_areas(target);
3694                                 e = Jim_GetOpt_Wide(goi, &w);
3695                                 if (e != JIM_OK) {
3696                                         return e;
3697                                 }
3698                                 target->working_area_phys = w;
3699                                 target->working_area_phys_spec = true;
3700                         } else {
3701                                 if (goi->argc != 0) {
3702                                         goto no_params;
3703                                 }
3704                         }
3705                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3706                         /* loop for more */
3707                         break;
3708
3709                 case TCFG_WORK_AREA_SIZE:
3710                         if (goi->isconfigure) {
3711                                 target_free_all_working_areas(target);
3712                                 e = Jim_GetOpt_Wide(goi, &w);
3713                                 if (e != JIM_OK) {
3714                                         return e;
3715                                 }
3716                                 target->working_area_size = w;
3717                         } else {
3718                                 if (goi->argc != 0) {
3719                                         goto no_params;
3720                                 }
3721                         }
3722                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3723                         /* loop for more */
3724                         break;
3725
3726                 case TCFG_WORK_AREA_BACKUP:
3727                         if (goi->isconfigure) {
3728                                 target_free_all_working_areas(target);
3729                                 e = Jim_GetOpt_Wide(goi, &w);
3730                                 if (e != JIM_OK) {
3731                                         return e;
3732                                 }
3733                                 /* make this exactly 1 or 0 */
3734                                 target->backup_working_area = (!!w);
3735                         } else {
3736                                 if (goi->argc != 0) {
3737                                         goto no_params;
3738                                 }
3739                         }
3740                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3741                         /* loop for more e*/
3742                         break;
3743
3744                 case TCFG_ENDIAN:
3745                         if (goi->isconfigure) {
3746                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3747                                 if (e != JIM_OK) {
3748                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3749                                         return e;
3750                                 }
3751                                 target->endianness = n->value;
3752                         } else {
3753                                 if (goi->argc != 0) {
3754                                         goto no_params;
3755                                 }
3756                         }
3757                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3758                         if (n->name == NULL) {
3759                                 target->endianness = TARGET_LITTLE_ENDIAN;
3760                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3761                         }
3762                         Jim_SetResultString(goi->interp, n->name, -1);
3763                         /* loop for more */
3764                         break;
3765
3766                 case TCFG_VARIANT:
3767                         if (goi->isconfigure) {
3768                                 if (goi->argc < 1) {
3769                                         Jim_SetResult_sprintf(goi->interp,
3770                                                                                    "%s ?STRING?",
3771                                                                                    n->name);
3772                                         return JIM_ERR;
3773                                 }
3774                                 if (target->variant) {
3775                                         free((void *)(target->variant));
3776                                 }
3777                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3778                                 target->variant = strdup(cp);
3779                         } else {
3780                                 if (goi->argc != 0) {
3781                                         goto no_params;
3782                                 }
3783                         }
3784                         Jim_SetResultString(goi->interp, target->variant,-1);
3785                         /* loop for more */
3786                         break;
3787                 case TCFG_CHAIN_POSITION:
3788                         if (goi->isconfigure) {
3789                                 Jim_Obj *o;
3790                                 struct jtag_tap *tap;
3791                                 target_free_all_working_areas(target);
3792                                 e = Jim_GetOpt_Obj(goi, &o);
3793                                 if (e != JIM_OK) {
3794                                         return e;
3795                                 }
3796                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3797                                 if (tap == NULL) {
3798                                         return JIM_ERR;
3799                                 }
3800                                 /* make this exactly 1 or 0 */
3801                                 target->tap = tap;
3802                         } else {
3803                                 if (goi->argc != 0) {
3804                                         goto no_params;
3805                                 }
3806                         }
3807                         Jim_SetResultString(interp, target->tap->dotted_name, -1);
3808                         /* loop for more e*/
3809                         break;
3810                 }
3811         } /* while (goi->argc) */
3812
3813
3814                 /* done - we return */
3815         return JIM_OK;
3816 }
3817
3818 /** this is the 'tcl' handler for the target specific command */
3819 static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3820 {
3821         Jim_GetOptInfo goi;
3822         jim_wide a,b,c;
3823         int x,y,z;
3824         uint8_t  target_buf[32];
3825         Jim_Nvp *n;
3826         struct target *target;
3827         struct command_context *cmd_ctx;
3828         int e;
3829
3830         enum {
3831                 TS_CMD_CONFIGURE,
3832                 TS_CMD_CGET,
3833
3834                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3835                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3836                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3837                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3838                 TS_CMD_EXAMINE,
3839                 TS_CMD_POLL,
3840                 TS_CMD_RESET,
3841                 TS_CMD_HALT,
3842                 TS_CMD_WAITSTATE,
3843                 TS_CMD_EVENTLIST,
3844                 TS_CMD_CURSTATE,
3845                 TS_CMD_INVOKE_EVENT,
3846         };
3847
3848         static const Jim_Nvp target_options[] = {
3849                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3850                 { .name = "cget", .value = TS_CMD_CGET },
3851                 { .name = "mww", .value = TS_CMD_MWW },
3852                 { .name = "mwh", .value = TS_CMD_MWH },
3853                 { .name = "mwb", .value = TS_CMD_MWB },
3854                 { .name = "mdw", .value = TS_CMD_MDW },
3855                 { .name = "mdh", .value = TS_CMD_MDH },
3856                 { .name = "mdb", .value = TS_CMD_MDB },
3857                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3858                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3859                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3860                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3861
3862                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3863                 { .name = "arp_poll", .value = TS_CMD_POLL },
3864                 { .name = "arp_reset", .value = TS_CMD_RESET },
3865                 { .name = "arp_halt", .value = TS_CMD_HALT },
3866                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3867                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3868
3869                 { .name = NULL, .value = -1 },
3870         };
3871
3872         /* go past the "command" */
3873         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
3874
3875         target = Jim_CmdPrivData(goi.interp);
3876         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3877
3878         /* commands here are in an NVP table */
3879         e = Jim_GetOpt_Nvp(&goi, target_options, &n);
3880         if (e != JIM_OK) {
3881                 Jim_GetOpt_NvpUnknown(&goi, target_options, 0);
3882                 return e;
3883         }
3884         /* Assume blank result */
3885         Jim_SetEmptyResult(goi.interp);
3886
3887         switch (n->value) {
3888         case TS_CMD_CONFIGURE:
3889                 if (goi.argc < 2) {
3890                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3891                         return JIM_ERR;
3892                 }
3893                 goi.isconfigure = 1;
3894                 return target_configure(&goi, target);
3895         case TS_CMD_CGET:
3896                 // some things take params
3897                 if (goi.argc < 1) {
3898                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?");
3899                         return JIM_ERR;
3900                 }
3901                 goi.isconfigure = 0;
3902                 return target_configure(&goi, target);
3903                 break;
3904         case TS_CMD_MWW:
3905         case TS_CMD_MWH:
3906         case TS_CMD_MWB:
3907                 /* argv[0] = cmd
3908                  * argv[1] = address
3909                  * argv[2] = data
3910                  * argv[3] = optional count.
3911                  */
3912
3913                 if ((goi.argc == 2) || (goi.argc == 3)) {
3914                         /* all is well */
3915                 } else {
3916                 mwx_error:
3917                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name);
3918                         return JIM_ERR;
3919                 }
3920
3921                 e = Jim_GetOpt_Wide(&goi, &a);
3922                 if (e != JIM_OK) {
3923                         goto mwx_error;
3924                 }
3925
3926                 e = Jim_GetOpt_Wide(&goi, &b);
3927                 if (e != JIM_OK) {
3928                         goto mwx_error;
3929                 }
3930                 if (goi.argc == 3) {
3931                         e = Jim_GetOpt_Wide(&goi, &c);
3932                         if (e != JIM_OK) {
3933                                 goto mwx_error;
3934                         }
3935                 } else {
3936                         c = 1;
3937                 }
3938
3939                 switch (n->value) {
3940                 case TS_CMD_MWW:
3941                         target_buffer_set_u32(target, target_buf, b);
3942                         b = 4;
3943                         break;
3944                 case TS_CMD_MWH:
3945                         target_buffer_set_u16(target, target_buf, b);
3946                         b = 2;
3947                         break;
3948                 case TS_CMD_MWB:
3949                         target_buffer_set_u8(target, target_buf, b);
3950                         b = 1;
3951                         break;
3952                 }
3953                 for (x = 0 ; x < c ; x++) {
3954                         e = target_write_memory(target, a, b, 1, target_buf);
3955                         if (e != ERROR_OK) {
3956                                 Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e);
3957                                 return JIM_ERR;
3958                         }
3959                         /* b = width */
3960                         a = a + b;
3961                 }
3962                 return JIM_OK;
3963                 break;
3964
3965                 /* display */
3966         case TS_CMD_MDW:
3967         case TS_CMD_MDH:
3968         case TS_CMD_MDB:
3969                 /* argv[0] = command
3970                  * argv[1] = address
3971                  * argv[2] = optional count
3972                  */
3973                 if ((goi.argc == 2) || (goi.argc == 3)) {
3974                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name);
3975                         return JIM_ERR;
3976                 }
3977                 e = Jim_GetOpt_Wide(&goi, &a);
3978                 if (e != JIM_OK) {
3979                         return JIM_ERR;
3980                 }
3981                 if (goi.argc) {
3982                         e = Jim_GetOpt_Wide(&goi, &c);
3983                         if (e != JIM_OK) {
3984                                 return JIM_ERR;
3985                         }
3986                 } else {
3987                         c = 1;
3988                 }
3989                 b = 1; /* shut up gcc */
3990                 switch (n->value) {
3991                 case TS_CMD_MDW:
3992                         b =  4;
3993                         break;
3994                 case TS_CMD_MDH:
3995                         b = 2;
3996                         break;
3997                 case TS_CMD_MDB:
3998                         b = 1;
3999                         break;
4000                 }
4001
4002                 /* convert to "bytes" */
4003                 c = c * b;
4004                 /* count is now in 'BYTES' */
4005                 while (c > 0) {
4006                         y = c;
4007                         if (y > 16) {
4008                                 y = 16;
4009                         }
4010                         e = target_read_memory(target, a, b, y / b, target_buf);
4011                         if (e != ERROR_OK) {
4012                                 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4013                                 return JIM_ERR;
4014                         }
4015
4016                         Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4017                         switch (b) {
4018                         case 4:
4019                                 for (x = 0 ; (x < 16) && (x < y) ; x += 4) {
4020                                         z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
4021                                         Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4022                                 }
4023                                 for (; (x < 16) ; x += 4) {
4024                                         Jim_fprintf(interp, interp->cookie_stdout, "         ");
4025                                 }
4026                                 break;
4027                         case 2:
4028                                 for (x = 0 ; (x < 16) && (x < y) ; x += 2) {
4029                                         z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
4030                                         Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4031                                 }
4032                                 for (; (x < 16) ; x += 2) {
4033                                         Jim_fprintf(interp, interp->cookie_stdout, "     ");
4034                                 }
4035                                 break;
4036                         case 1:
4037                         default:
4038                                 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4039                                         z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
4040                                         Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4041                                 }
4042                                 for (; (x < 16) ; x += 1) {
4043                                         Jim_fprintf(interp, interp->cookie_stdout, "   ");
4044                                 }
4045                                 break;
4046                         }
4047                         /* ascii-ify the bytes */
4048                         for (x = 0 ; x < y ; x++) {
4049                                 if ((target_buf[x] >= 0x20) &&
4050                                         (target_buf[x] <= 0x7e)) {
4051                                         /* good */
4052                                 } else {
4053                                         /* smack it */
4054                                         target_buf[x] = '.';
4055                                 }
4056                         }
4057                         /* space pad  */
4058                         while (x < 16) {
4059                                 target_buf[x] = ' ';
4060                                 x++;
4061                         }
4062                         /* terminate */
4063                         target_buf[16] = 0;
4064                         /* print - with a newline */
4065                         Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4066                         /* NEXT... */
4067                         c -= 16;
4068                         a += 16;
4069                 }
4070                 return JIM_OK;
4071         case TS_CMD_MEM2ARRAY:
4072                 return target_mem2array(goi.interp, target, goi.argc, goi.argv);
4073                 break;
4074         case TS_CMD_ARRAY2MEM:
4075                 return target_array2mem(goi.interp, target, goi.argc, goi.argv);
4076                 break;
4077         case TS_CMD_EXAMINE:
4078                 if (goi.argc) {
4079                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4080                         return JIM_ERR;
4081                 }
4082                 if (!target->tap->enabled)
4083                         goto err_tap_disabled;
4084                 e = target->type->examine(target);
4085                 if (e != ERROR_OK) {
4086                         Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4087                         return JIM_ERR;
4088                 }
4089                 return JIM_OK;
4090         case TS_CMD_POLL:
4091                 if (goi.argc) {
4092                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4093                         return JIM_ERR;
4094                 }
4095                 if (!target->tap->enabled)
4096                         goto err_tap_disabled;
4097                 if (!(target_was_examined(target))) {
4098                         e = ERROR_TARGET_NOT_EXAMINED;
4099                 } else {
4100                         e = target->type->poll(target);
4101                 }
4102                 if (e != ERROR_OK) {
4103                         Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4104                         return JIM_ERR;
4105                 } else {
4106                         return JIM_OK;
4107                 }
4108                 break;
4109         case TS_CMD_RESET:
4110                 if (goi.argc != 2) {
4111                         Jim_WrongNumArgs(interp, 2, argv,
4112                                         "([tT]|[fF]|assert|deassert) BOOL");
4113                         return JIM_ERR;
4114                 }
4115                 e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4116                 if (e != JIM_OK) {
4117                         Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4118                         return e;
4119                 }
4120                 /* the halt or not param */
4121                 e = Jim_GetOpt_Wide(&goi, &a);
4122                 if (e != JIM_OK) {
4123                         return e;
4124                 }
4125                 if (!target->tap->enabled)
4126                         goto err_tap_disabled;
4127                 if (!target->type->assert_reset
4128                                 || !target->type->deassert_reset) {
4129                         Jim_SetResult_sprintf(interp,
4130                                         "No target-specific reset for %s",
4131                                         target->cmd_name);
4132                         return JIM_ERR;
4133                 }
4134                 /* determine if we should halt or not. */
4135                 target->reset_halt = !!a;
4136                 /* When this happens - all workareas are invalid. */
4137                 target_free_all_working_areas_restore(target, 0);
4138
4139                 /* do the assert */
4140                 if (n->value == NVP_ASSERT) {
4141                         e = target->type->assert_reset(target);
4142                 } else {
4143                         e = target->type->deassert_reset(target);
4144                 }
4145                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4146         case TS_CMD_HALT:
4147                 if (goi.argc) {
4148                         Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]");
4149                         return JIM_ERR;
4150                 }
4151                 if (!target->tap->enabled)
4152                         goto err_tap_disabled;
4153                 e = target->type->halt(target);
4154                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4155         case TS_CMD_WAITSTATE:
4156                 /* params:  <name>  statename timeoutmsecs */
4157                 if (goi.argc != 2) {
4158                         Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name);
4159                         return JIM_ERR;
4160                 }
4161                 e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4162                 if (e != JIM_OK) {
4163                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4164                         return e;
4165                 }
4166                 e = Jim_GetOpt_Wide(&goi, &a);
4167                 if (e != JIM_OK) {
4168                         return e;
4169                 }
4170                 if (!target->tap->enabled)
4171                         goto err_tap_disabled;
4172                 e = target_wait_state(target, n->value, a);
4173                 if (e != ERROR_OK) {
4174                         Jim_SetResult_sprintf(goi.interp,
4175                                                                    "target: %s wait %s fails (%d) %s",
4176                                                                    target->cmd_name,
4177                                                                    n->name,
4178                                                                    e, target_strerror_safe(e));
4179                         return JIM_ERR;
4180                 } else {
4181                         return JIM_OK;
4182                 }
4183         case TS_CMD_EVENTLIST:
4184                 /* List for human, Events defined for this target.
4185                  * scripts/programs should use 'name cget -event NAME'
4186                  */
4187                 {
4188                         struct target_event_action *teap;
4189                         teap = target->event_action;
4190                         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4191                                                    target->target_number,
4192                                                    target->cmd_name);
4193                         command_print(cmd_ctx, "%-25s | Body", "Event");
4194                         command_print(cmd_ctx, "------------------------- | ----------------------------------------");
4195                         while (teap) {
4196                                 command_print(cmd_ctx,
4197                                                            "%-25s | %s",
4198                                                            Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name,
4199                                                            Jim_GetString(teap->body, NULL));
4200                                 teap = teap->next;
4201                         }
4202                         command_print(cmd_ctx, "***END***");
4203                         return JIM_OK;
4204                 }
4205         case TS_CMD_CURSTATE:
4206                 if (goi.argc != 0) {
4207                         Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]");
4208                         return JIM_ERR;
4209                 }
4210                 Jim_SetResultString(goi.interp,
4211                                                         target_state_name( target ),
4212                                                         -1);
4213                 return JIM_OK;
4214         case TS_CMD_INVOKE_EVENT:
4215                 if (goi.argc != 1) {
4216                         Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name);
4217                         return JIM_ERR;
4218                 }
4219                 e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4220                 if (e != JIM_OK) {
4221                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4222                         return e;
4223                 }
4224                 target_handle_event(target, n->value);
4225                 return JIM_OK;
4226         }
4227         return JIM_ERR;
4228
4229 err_tap_disabled:
4230         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4231         return JIM_ERR;
4232 }
4233
4234 static int target_create(Jim_GetOptInfo *goi)
4235 {
4236         Jim_Obj *new_cmd;
4237         Jim_Cmd *cmd;
4238         const char *cp;
4239         char *cp2;
4240         int e;
4241         int x;
4242         struct target *target;
4243         struct command_context *cmd_ctx;
4244
4245         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4246         if (goi->argc < 3) {
4247                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4248                 return JIM_ERR;
4249         }
4250
4251         /* COMMAND */
4252         Jim_GetOpt_Obj(goi, &new_cmd);
4253         /* does this command exist? */
4254         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4255         if (cmd) {
4256                 cp = Jim_GetString(new_cmd, NULL);
4257                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4258                 return JIM_ERR;
4259         }
4260
4261         /* TYPE */
4262         e = Jim_GetOpt_String(goi, &cp2, NULL);
4263         cp = cp2;
4264         /* now does target type exist */
4265         for (x = 0 ; target_types[x] ; x++) {
4266                 if (0 == strcmp(cp, target_types[x]->name)) {
4267                         /* found */
4268                         break;
4269                 }
4270         }
4271         if (target_types[x] == NULL) {
4272                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4273                 for (x = 0 ; target_types[x] ; x++) {
4274                         if (target_types[x + 1]) {
4275                                 Jim_AppendStrings(goi->interp,
4276                                                                    Jim_GetResult(goi->interp),
4277                                                                    target_types[x]->name,
4278                                                                    ", ", NULL);
4279                         } else {
4280                                 Jim_AppendStrings(goi->interp,
4281                                                                    Jim_GetResult(goi->interp),
4282                                                                    " or ",
4283                                                                    target_types[x]->name,NULL);
4284                         }
4285                 }
4286                 return JIM_ERR;
4287         }
4288
4289         /* Create it */
4290         target = calloc(1,sizeof(struct target));
4291         /* set target number */
4292         target->target_number = new_target_number();
4293
4294         /* allocate memory for each unique target type */
4295         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4296
4297         memcpy(target->type, target_types[x], sizeof(struct target_type));
4298
4299         /* will be set by "-endian" */
4300         target->endianness = TARGET_ENDIAN_UNKNOWN;
4301
4302         target->working_area        = 0x0;
4303         target->working_area_size   = 0x0;
4304         target->working_areas       = NULL;
4305         target->backup_working_area = 0;
4306
4307         target->state               = TARGET_UNKNOWN;
4308         target->debug_reason        = DBG_REASON_UNDEFINED;
4309         target->reg_cache           = NULL;
4310         target->breakpoints         = NULL;
4311         target->watchpoints         = NULL;
4312         target->next                = NULL;
4313         target->arch_info           = NULL;
4314
4315         target->display             = 1;
4316
4317         target->halt_issued                     = false;
4318
4319         /* initialize trace information */
4320         target->trace_info = malloc(sizeof(struct trace));
4321         target->trace_info->num_trace_points         = 0;
4322         target->trace_info->trace_points_size        = 0;
4323         target->trace_info->trace_points             = NULL;
4324         target->trace_info->trace_history_size       = 0;
4325         target->trace_info->trace_history            = NULL;
4326         target->trace_info->trace_history_pos        = 0;
4327         target->trace_info->trace_history_overflowed = 0;
4328
4329         target->dbgmsg          = NULL;
4330         target->dbg_msg_enabled = 0;
4331
4332         target->endianness = TARGET_ENDIAN_UNKNOWN;
4333
4334         /* Do the rest as "configure" options */
4335         goi->isconfigure = 1;
4336         e = target_configure(goi, target);
4337
4338         if (target->tap == NULL)
4339         {
4340                 Jim_SetResultString(interp, "-chain-position required when creating target", -1);
4341                 e = JIM_ERR;
4342         }
4343
4344         if (e != JIM_OK) {
4345                 free(target->type);
4346                 free(target);
4347                 return e;
4348         }
4349
4350         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4351                 /* default endian to little if not specified */
4352                 target->endianness = TARGET_LITTLE_ENDIAN;
4353         }
4354
4355         /* incase variant is not set */
4356         if (!target->variant)
4357                 target->variant = strdup("");
4358
4359         /* create the target specific commands */
4360         if (target->type->register_commands) {
4361                 (*(target->type->register_commands))(cmd_ctx);
4362         }
4363         if (target->type->target_create) {
4364                 (*(target->type->target_create))(target, goi->interp);
4365         }
4366
4367         /* append to end of list */
4368         {
4369                 struct target **tpp;
4370                 tpp = &(all_targets);
4371                 while (*tpp) {
4372                         tpp = &((*tpp)->next);
4373                 }
4374                 *tpp = target;
4375         }
4376
4377         cp = Jim_GetString(new_cmd, NULL);
4378         target->cmd_name = strdup(cp);
4379
4380         /* now - create the new target name command */
4381         e = Jim_CreateCommand(goi->interp,
4382                                                    /* name */
4383                                                    cp,
4384                                                    tcl_target_func, /* C function */
4385                                                    target, /* private data */
4386                                                    NULL); /* no del proc */
4387
4388         return e;
4389 }
4390
4391 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4392 {
4393         int x,r,e;
4394         jim_wide w;
4395         struct command_context *cmd_ctx;
4396         struct target *target;
4397         Jim_GetOptInfo goi;
4398         enum tcmd {
4399                 /* TG = target generic */
4400                 TG_CMD_CREATE,
4401                 TG_CMD_TYPES,
4402                 TG_CMD_NAMES,
4403                 TG_CMD_CURRENT,
4404                 TG_CMD_NUMBER,
4405                 TG_CMD_COUNT,
4406         };
4407         const char *target_cmds[] = {
4408                 "create", "types", "names", "current", "number",
4409                 "count",
4410                 NULL /* terminate */
4411         };
4412
4413         LOG_DEBUG("Target command params:");
4414         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4415
4416         cmd_ctx = Jim_GetAssocData(interp, "context");
4417
4418         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
4419
4420         if (goi.argc == 0) {
4421                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4422                 return JIM_ERR;
4423         }
4424
4425         /* Jim_GetOpt_Debug(&goi); */
4426         r = Jim_GetOpt_Enum(&goi, target_cmds, &x);
4427         if (r != JIM_OK) {
4428                 return r;
4429         }
4430
4431         switch (x) {
4432         default:
4433                 Jim_Panic(goi.interp,"Why am I here?");
4434                 return JIM_ERR;
4435         case TG_CMD_CURRENT:
4436                 if (goi.argc != 0) {
4437                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4438                         return JIM_ERR;
4439                 }
4440                 Jim_SetResultString(goi.interp, get_current_target(cmd_ctx)->cmd_name, -1);
4441                 return JIM_OK;
4442         case TG_CMD_TYPES:
4443                 if (goi.argc != 0) {
4444                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4445                         return JIM_ERR;
4446                 }
4447                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4448                 for (x = 0 ; target_types[x] ; x++) {
4449                         Jim_ListAppendElement(goi.interp,
4450                                                                    Jim_GetResult(goi.interp),
4451                                                                    Jim_NewStringObj(goi.interp, target_types[x]->name, -1));
4452                 }
4453                 return JIM_OK;
4454         case TG_CMD_NAMES:
4455                 if (goi.argc != 0) {
4456                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4457                         return JIM_ERR;
4458                 }
4459                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4460                 target = all_targets;
4461                 while (target) {
4462                         Jim_ListAppendElement(goi.interp,
4463                                                                    Jim_GetResult(goi.interp),
4464                                                                    Jim_NewStringObj(goi.interp, target->cmd_name, -1));
4465                         target = target->next;
4466                 }
4467                 return JIM_OK;
4468         case TG_CMD_CREATE:
4469                 if (goi.argc < 3) {
4470                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4471                         return JIM_ERR;
4472                 }
4473                 return target_create(&goi);
4474                 break;
4475         case TG_CMD_NUMBER:
4476                 /* It's OK to remove this mechanism sometime after August 2010 or so */
4477                 LOG_WARNING("don't use numbers as target identifiers; use names");
4478                 if (goi.argc != 1) {
4479                         Jim_SetResult_sprintf(goi.interp, "expected: target number ?NUMBER?");
4480                         return JIM_ERR;
4481                 }
4482                 e = Jim_GetOpt_Wide(&goi, &w);
4483                 if (e != JIM_OK) {
4484                         return JIM_ERR;
4485                 }
4486                 for (x = 0, target = all_targets; target; target = target->next, x++) {
4487                         if (target->target_number == w)
4488                                 break;
4489                 }
4490                 if (target == NULL) {
4491                         Jim_SetResult_sprintf(goi.interp,
4492                                         "Target: number %d does not exist", (int)(w));
4493                         return JIM_ERR;
4494                 }
4495                 Jim_SetResultString(goi.interp, target->cmd_name, -1);
4496                 return JIM_OK;
4497         case TG_CMD_COUNT:
4498                 if (goi.argc != 0) {
4499                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "<no parameters>");
4500                         return JIM_ERR;
4501                 }
4502                 for (x = 0, target = all_targets; target; target = target->next, x++)
4503                         continue;
4504                 Jim_SetResult(goi.interp, Jim_NewIntObj(goi.interp, x));
4505                 return JIM_OK;
4506         }
4507
4508         return JIM_ERR;
4509 }
4510
4511
4512 struct FastLoad
4513 {
4514         uint32_t address;
4515         uint8_t *data;
4516         int length;
4517
4518 };
4519
4520 static int fastload_num;
4521 static struct FastLoad *fastload;
4522
4523 static void free_fastload(void)
4524 {
4525         if (fastload != NULL)
4526         {
4527                 int i;
4528                 for (i = 0; i < fastload_num; i++)
4529                 {
4530                         if (fastload[i].data)
4531                                 free(fastload[i].data);
4532                 }
4533                 free(fastload);
4534                 fastload = NULL;
4535         }
4536 }
4537
4538
4539
4540
4541 COMMAND_HANDLER(handle_fast_load_image_command)
4542 {
4543         uint8_t *buffer;
4544         uint32_t buf_cnt;
4545         uint32_t image_size;
4546         uint32_t min_address = 0;
4547         uint32_t max_address = 0xffffffff;
4548         int i;
4549
4550         struct image image;
4551
4552         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_args,
4553                         &image, &min_address, &max_address);
4554         if (ERROR_OK != retval)
4555                 return retval;
4556
4557         struct duration bench;
4558         duration_start(&bench);
4559
4560         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4561         {
4562                 return ERROR_OK;
4563         }
4564
4565         image_size = 0x0;
4566         retval = ERROR_OK;
4567         fastload_num = image.num_sections;
4568         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4569         if (fastload == NULL)
4570         {
4571                 image_close(&image);
4572                 return ERROR_FAIL;
4573         }
4574         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4575         for (i = 0; i < image.num_sections; i++)
4576         {
4577                 buffer = malloc(image.sections[i].size);
4578                 if (buffer == NULL)
4579                 {
4580                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)",
4581                                                   (int)(image.sections[i].size));
4582                         break;
4583                 }
4584
4585                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4586                 {
4587                         free(buffer);
4588                         break;
4589                 }
4590
4591                 uint32_t offset = 0;
4592                 uint32_t length = buf_cnt;
4593
4594
4595                 /* DANGER!!! beware of unsigned comparision here!!! */
4596
4597                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4598                                 (image.sections[i].base_address < max_address))
4599                 {
4600                         if (image.sections[i].base_address < min_address)
4601                         {
4602                                 /* clip addresses below */
4603                                 offset += min_address-image.sections[i].base_address;
4604                                 length -= offset;
4605                         }
4606
4607                         if (image.sections[i].base_address + buf_cnt > max_address)
4608                         {
4609                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4610                         }
4611
4612                         fastload[i].address = image.sections[i].base_address + offset;
4613                         fastload[i].data = malloc(length);
4614                         if (fastload[i].data == NULL)
4615                         {
4616                                 free(buffer);
4617                                 break;
4618                         }
4619                         memcpy(fastload[i].data, buffer + offset, length);
4620                         fastload[i].length = length;
4621
4622                         image_size += length;
4623                         command_print(cmd_ctx, "%u bytes written at address 0x%8.8x",
4624                                                   (unsigned int)length,
4625                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4626                 }
4627
4628                 free(buffer);
4629         }
4630
4631         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4632         {
4633                 command_print(cmd_ctx, "Loaded %" PRIu32 " bytes "
4634                                 "in %fs (%0.3f kb/s)", image_size, 
4635                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4636
4637                 command_print(cmd_ctx,
4638                                 "WARNING: image has not been loaded to target!"
4639                                 "You can issue a 'fast_load' to finish loading.");
4640         }
4641
4642         image_close(&image);
4643
4644         if (retval != ERROR_OK)
4645         {
4646                 free_fastload();
4647         }
4648
4649         return retval;
4650 }
4651
4652 COMMAND_HANDLER(handle_fast_load_command)
4653 {
4654         if (argc > 0)
4655                 return ERROR_COMMAND_SYNTAX_ERROR;
4656         if (fastload == NULL)
4657         {
4658                 LOG_ERROR("No image in memory");
4659                 return ERROR_FAIL;
4660         }
4661         int i;
4662         int ms = timeval_ms();
4663         int size = 0;
4664         int retval = ERROR_OK;
4665         for (i = 0; i < fastload_num;i++)
4666         {
4667                 struct target *target = get_current_target(cmd_ctx);
4668                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x",
4669                                           (unsigned int)(fastload[i].address),
4670                                           (unsigned int)(fastload[i].length));
4671                 if (retval == ERROR_OK)
4672                 {
4673                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4674                 }
4675                 size += fastload[i].length;
4676         }
4677         int after = timeval_ms();
4678         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4679         return retval;
4680 }
4681
4682 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4683 {
4684         struct command_context *context;
4685         struct target *target;
4686         int retval;
4687
4688         context = Jim_GetAssocData(interp, "context");
4689         if (context == NULL) {
4690                 LOG_ERROR("array2mem: no command context");
4691                 return JIM_ERR;
4692         }
4693         target = get_current_target(context);
4694         if (target == NULL) {
4695                 LOG_ERROR("array2mem: no current target");
4696                 return JIM_ERR;
4697         }
4698
4699         if ((argc < 6) || (argc > 7))
4700         {
4701                 return JIM_ERR;
4702         }
4703
4704         int cpnum;
4705         uint32_t op1;
4706         uint32_t op2;
4707         uint32_t CRn;
4708         uint32_t CRm;
4709         uint32_t value;
4710
4711         int e;
4712         long l;
4713         e = Jim_GetLong(interp, argv[1], &l);
4714         if (e != JIM_OK) {
4715                 return e;
4716         }
4717         cpnum = l;
4718
4719         e = Jim_GetLong(interp, argv[2], &l);
4720         if (e != JIM_OK) {
4721                 return e;
4722         }
4723         op1 = l;
4724
4725         e = Jim_GetLong(interp, argv[3], &l);
4726         if (e != JIM_OK) {
4727                 return e;
4728         }
4729         CRn = l;
4730
4731         e = Jim_GetLong(interp, argv[4], &l);
4732         if (e != JIM_OK) {
4733                 return e;
4734         }
4735         CRm = l;
4736
4737         e = Jim_GetLong(interp, argv[5], &l);
4738         if (e != JIM_OK) {
4739                 return e;
4740         }
4741         op2 = l;
4742
4743         value = 0;
4744
4745         if (argc == 7)
4746         {
4747                 e = Jim_GetLong(interp, argv[6], &l);
4748                 if (e != JIM_OK) {
4749                         return e;
4750                 }
4751                 value = l;
4752
4753                 retval = target_mcr(target, cpnum, op1, op2, CRn, CRm, value);
4754                 if (retval != ERROR_OK)
4755                         return JIM_ERR;
4756         } else
4757         {
4758                 retval = target_mrc(target, cpnum, op1, op2, CRn, CRm, &value);
4759                 if (retval != ERROR_OK)
4760                         return JIM_ERR;
4761
4762                 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
4763         }
4764
4765         return JIM_OK;
4766 }
4767
4768 int target_register_commands(struct command_context *cmd_ctx)
4769 {
4770
4771         register_command(cmd_ctx, NULL, "targets",
4772                         handle_targets_command, COMMAND_EXEC,
4773                         "change current command line target (one parameter) "
4774                         "or list targets (no parameters)");
4775
4776         register_jim(cmd_ctx, "target", jim_target, "configure target");
4777
4778         return ERROR_OK;
4779 }
4780
4781 int target_register_user_commands(struct command_context *cmd_ctx)
4782 {
4783         int retval = ERROR_OK;
4784         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
4785                 return retval;
4786
4787         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
4788                 return retval;
4789
4790         register_command(cmd_ctx, NULL, "profile",
4791                         handle_profile_command, COMMAND_EXEC,
4792                         "profiling samples the CPU PC");
4793
4794         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array,
4795                         "read memory and return as a TCL array for script processing "
4796                         "<ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
4797
4798         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem,
4799                         "convert a TCL array to memory locations and write the values "
4800                         "<ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
4801
4802         register_command(cmd_ctx, NULL, "fast_load_image",
4803                         handle_fast_load_image_command, COMMAND_ANY,
4804                         "same args as load_image, image stored in memory "
4805                         "- mainly for profiling purposes");
4806
4807         register_command(cmd_ctx, NULL, "fast_load",
4808                         handle_fast_load_command, COMMAND_ANY,
4809                         "loads active fast load image to current target "
4810                         "- mainly for profiling purposes");
4811
4812         /** @todo don't register virt2phys() unless target supports it */
4813         register_command(cmd_ctx, NULL, "virt2phys",
4814                         handle_virt2phys_command, COMMAND_ANY,
4815                         "translate a virtual address into a physical address");
4816
4817         register_command(cmd_ctx,  NULL, "reg",
4818                         handle_reg_command, COMMAND_EXEC,
4819                         "display or set a register");
4820
4821         register_command(cmd_ctx,  NULL, "poll",
4822                         handle_poll_command, COMMAND_EXEC,
4823                         "poll target state");
4824         register_command(cmd_ctx,  NULL, "wait_halt",
4825                         handle_wait_halt_command, COMMAND_EXEC,
4826                         "wait for target halt [time (s)]");
4827         register_command(cmd_ctx,  NULL, "halt",
4828                         handle_halt_command, COMMAND_EXEC,
4829                         "halt target");
4830         register_command(cmd_ctx,  NULL, "resume",
4831                         handle_resume_command, COMMAND_EXEC,
4832                         "resume target [addr]");
4833         register_command(cmd_ctx,  NULL, "reset",
4834                         handle_reset_command, COMMAND_EXEC,
4835                         "reset target [run | halt | init] - default is run");
4836         register_command(cmd_ctx,  NULL, "soft_reset_halt",
4837                         handle_soft_reset_halt_command, COMMAND_EXEC,
4838                         "halt the target and do a soft reset");
4839
4840         register_command(cmd_ctx,  NULL, "step",
4841                         handle_step_command, COMMAND_EXEC,
4842                         "step one instruction from current PC or [addr]");
4843
4844         register_command(cmd_ctx,  NULL, "mdw",
4845                         handle_md_command, COMMAND_EXEC,
4846                         "display memory words [phys] <addr> [count]");
4847         register_command(cmd_ctx,  NULL, "mdh",
4848                         handle_md_command, COMMAND_EXEC,
4849                         "display memory half-words [phys] <addr> [count]");
4850         register_command(cmd_ctx,  NULL, "mdb",
4851                         handle_md_command, COMMAND_EXEC,
4852                         "display memory bytes [phys] <addr> [count]");
4853
4854         register_command(cmd_ctx,  NULL, "mww",
4855                         handle_mw_command, COMMAND_EXEC,
4856                         "write memory word [phys]  <addr> <value> [count]");
4857         register_command(cmd_ctx,  NULL, "mwh",
4858                         handle_mw_command, COMMAND_EXEC,
4859                         "write memory half-word [phys]  <addr> <value> [count]");
4860         register_command(cmd_ctx,  NULL, "mwb",
4861                         handle_mw_command, COMMAND_EXEC,
4862                         "write memory byte [phys] <addr> <value> [count]");
4863
4864         register_command(cmd_ctx,  NULL, "bp",
4865                         handle_bp_command, COMMAND_EXEC,
4866                         "list or set breakpoint [<address> <length> [hw]]");
4867         register_command(cmd_ctx,  NULL, "rbp",
4868                         handle_rbp_command, COMMAND_EXEC,
4869                         "remove breakpoint <address>");
4870
4871         register_command(cmd_ctx,  NULL, "wp",
4872                         handle_wp_command, COMMAND_EXEC,
4873                         "list or set watchpoint "
4874                                 "[<address> <length> <r/w/a> [value] [mask]]");
4875         register_command(cmd_ctx,  NULL, "rwp",
4876                         handle_rwp_command, COMMAND_EXEC,
4877                         "remove watchpoint <address>");
4878
4879         register_command(cmd_ctx,  NULL, "load_image",
4880                         handle_load_image_command, COMMAND_EXEC,
4881                         "load_image <file> <address> "
4882                         "['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
4883         register_command(cmd_ctx,  NULL, "dump_image",
4884                         handle_dump_image_command, COMMAND_EXEC,
4885                         "dump_image <file> <address> <size>");
4886         register_command(cmd_ctx,  NULL, "verify_image",
4887                         handle_verify_image_command, COMMAND_EXEC,
4888                         "verify_image <file> [offset] [type]");
4889         register_command(cmd_ctx,  NULL, "test_image",
4890                         handle_test_image_command, COMMAND_EXEC,
4891                         "test_image <file> [offset] [type]");
4892
4893         return ERROR_OK;
4894 }