- only check normal resume, not debug resume
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54
55 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58
59 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
78
79 /* targets
80  */
81 extern target_type_t arm7tdmi_target;
82 extern target_type_t arm720t_target;
83 extern target_type_t arm9tdmi_target;
84 extern target_type_t arm920t_target;
85 extern target_type_t arm966e_target;
86 extern target_type_t arm926ejs_target;
87 extern target_type_t feroceon_target;
88 extern target_type_t xscale_target;
89 extern target_type_t cortexm3_target;
90 extern target_type_t arm11_target;
91
92 target_type_t *target_types[] =
93 {
94         &arm7tdmi_target,
95         &arm9tdmi_target,
96         &arm920t_target,
97         &arm720t_target,
98         &arm966e_target,
99         &arm926ejs_target,
100         &feroceon_target,
101         &xscale_target,
102         &cortexm3_target,
103         &arm11_target,
104         NULL,
105 };
106
107 target_t *targets = NULL;
108 target_event_callback_t *target_event_callbacks = NULL;
109 target_timer_callback_t *target_timer_callbacks = NULL;
110
111 char *target_state_strings[] =
112 {
113         "unknown",
114         "running",
115         "halted",
116         "reset",
117         "debug_running",
118 };
119
120 char *target_debug_reason_strings[] =
121 {
122         "debug request", "breakpoint", "watchpoint",
123         "watchpoint and breakpoint", "single step",
124         "target not halted", "undefined"
125 };
126
127 char *target_endianess_strings[] =
128 {
129         "big endian",
130         "little endian",
131 };
132
133 static int target_continous_poll = 1;
134
135 /* read a u32 from a buffer in target memory endianness */
136 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
137 {
138         if (target->endianness == TARGET_LITTLE_ENDIAN)
139                 return le_to_h_u32(buffer);
140         else
141                 return be_to_h_u32(buffer);
142 }
143
144 /* read a u16 from a buffer in target memory endianness */
145 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
146 {
147         if (target->endianness == TARGET_LITTLE_ENDIAN)
148                 return le_to_h_u16(buffer);
149         else
150                 return be_to_h_u16(buffer);
151 }
152
153 /* write a u32 to a buffer in target memory endianness */
154 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
155 {
156         if (target->endianness == TARGET_LITTLE_ENDIAN)
157                 h_u32_to_le(buffer, value);
158         else
159                 h_u32_to_be(buffer, value);
160 }
161
162 /* write a u16 to a buffer in target memory endianness */
163 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
164 {
165         if (target->endianness == TARGET_LITTLE_ENDIAN)
166                 h_u16_to_le(buffer, value);
167         else
168                 h_u16_to_be(buffer, value);
169 }
170
171 /* returns a pointer to the n-th configured target */
172 target_t* get_target_by_num(int num)
173 {
174         target_t *target = targets;
175         int i = 0;
176
177         while (target)
178         {
179                 if (num == i)
180                         return target;
181                 target = target->next;
182                 i++;
183         }
184
185         return NULL;
186 }
187
188 int get_num_by_target(target_t *query_target)
189 {
190         target_t *target = targets;
191         int i = 0;      
192         
193         while (target)
194         {
195                 if (target == query_target)
196                         return i;
197                 target = target->next;
198                 i++;
199         }
200         
201         return -1;
202 }
203
204 target_t* get_current_target(command_context_t *cmd_ctx)
205 {
206         target_t *target = get_target_by_num(cmd_ctx->current_target);
207         
208         if (target == NULL)
209         {
210                 LOG_ERROR("BUG: current_target out of bounds");
211                 exit(-1);
212         }
213         
214         return target;
215 }
216
217 /* Process target initialization, when target entered debug out of reset
218  * the handler is unregistered at the end of this function, so it's only called once
219  */
220 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
221 {
222         struct command_context_s *cmd_ctx = priv;
223         
224         if (event == TARGET_EVENT_HALTED)
225         {
226                 target_unregister_event_callback(target_init_handler, priv);
227                 target_invoke_script(cmd_ctx, target, "post_reset");
228                 jtag_execute_queue();
229         }
230         
231         return ERROR_OK;
232 }
233
234 int target_run_and_halt_handler(void *priv)
235 {
236         target_t *target = priv;
237         
238         target_halt(target);
239         
240         return ERROR_OK;
241 }
242
243 int target_poll(struct target_s *target)
244 {
245         /* We can't poll until after examine */
246         if (!target->type->examined)
247         {
248                 /* Fail silently lest we pollute the log */
249                 return ERROR_FAIL;
250         }
251         return target->type->poll(target);
252 }
253
254 int target_halt(struct target_s *target)
255 {
256         /* We can't poll until after examine */
257         if (!target->type->examined)
258         {
259                 LOG_ERROR("Target not examined yet");
260                 return ERROR_FAIL;
261         }
262         return target->type->halt(target);
263 }
264
265 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
266 {
267         int retval;
268         int timeout_ms = 5000;
269         
270         /* We can't poll until after examine */
271         if (!target->type->examined)
272         {
273                 LOG_ERROR("Target not examined yet");
274                 return ERROR_FAIL;
275         }
276         
277         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
278                 return retval;
279         
280         /* only check for resume event if normal resume */
281         if (!debug_execution)
282         {
283                 /* wait for target to exit halted mode - not debug resume*/
284                 target_poll(target);
285                 
286                 while (target->state != TARGET_RUNNING)
287                 {
288                         usleep(10000);
289                         target_poll(target);
290                         if ((timeout_ms -= 10) <= 0)
291                         {
292                                 LOG_ERROR("timeout waiting for target resume");
293                                 return ERROR_TARGET_TIMEOUT;
294                         }
295                 }
296         }
297         
298         return retval;
299 }
300
301 int target_process_reset(struct command_context_s *cmd_ctx)
302 {
303         int retval = ERROR_OK;
304         target_t *target;
305         struct timeval timeout, now;
306
307         jtag->speed(jtag_speed);
308
309         target = targets;
310         while (target)
311         {
312                 target_invoke_script(cmd_ctx, target, "pre_reset");
313                 target = target->next;
314         }
315         
316         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
317                 return retval;
318         
319         /* First time this is executed after launching OpenOCD, it will read out 
320          * the type of CPU, etc. and init Embedded ICE registers in host
321          * memory. 
322          * 
323          * It will also set up ICE registers in the target.
324          * 
325          * However, if we assert TRST later, we need to set up the registers again. 
326          * 
327          * For the "reset halt/init" case we must only set up the registers here.
328          */
329         if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
330                 return retval;
331         
332         /* prepare reset_halt where necessary */
333         target = targets;
334         while (target)
335         {
336                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
337                 {
338                         switch (target->reset_mode)
339                         {
340                                 case RESET_HALT:
341                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
342                                         target->reset_mode = RESET_RUN_AND_HALT;
343                                         break;
344                                 case RESET_INIT:
345                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
346                                         target->reset_mode = RESET_RUN_AND_INIT;
347                                         break;
348                                 default:
349                                         break;
350                         } 
351                 }
352                 target = target->next;
353         }
354         
355         target = targets;
356         while (target)
357         {
358                 /* we have no idea what state the target is in, so we
359                  * have to drop working areas
360                  */
361                 target_free_all_working_areas_restore(target, 0);
362                 target->type->assert_reset(target);
363                 target = target->next;
364         }
365         if ((retval = jtag_execute_queue()) != ERROR_OK)
366         {
367                 LOG_WARNING("JTAG communication failed asserting reset.");
368                 retval = ERROR_OK;
369         }
370         
371         /* request target halt if necessary, and schedule further action */
372         target = targets;
373         while (target)
374         {
375                 switch (target->reset_mode)
376                 {
377                         case RESET_RUN:
378                                 /* nothing to do if target just wants to be run */
379                                 break;
380                         case RESET_RUN_AND_HALT:
381                                 /* schedule halt */
382                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
383                                 break;
384                         case RESET_RUN_AND_INIT:
385                                 /* schedule halt */
386                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
387                                 target_register_event_callback(target_init_handler, cmd_ctx);
388                                 break;
389                         case RESET_HALT:
390                                 target_halt(target);
391                                 break;
392                         case RESET_INIT:
393                                 target_halt(target);
394                                 target_register_event_callback(target_init_handler, cmd_ctx);
395                                 break;
396                         default:
397                                 LOG_ERROR("BUG: unknown target->reset_mode");
398                 }
399                 target = target->next;
400         }
401         
402         if ((retval = jtag_execute_queue()) != ERROR_OK)
403         {
404                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
405                 retval = ERROR_OK;              
406         }
407         
408         target = targets;
409         while (target)
410         {
411                 target->type->deassert_reset(target);
412                 target = target->next;
413         }
414         
415         if ((retval = jtag_execute_queue()) != ERROR_OK)
416         {
417                 LOG_WARNING("JTAG communication failed while deasserting reset.");
418                 retval = ERROR_OK;
419         }
420
421         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
422         {
423                 /* If TRST was asserted we need to set up registers again */
424                 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
425                         return retval;
426         }               
427         
428         
429         LOG_DEBUG("Waiting for halted stated as approperiate");
430         
431         /* Wait for reset to complete, maximum 5 seconds. */    
432         gettimeofday(&timeout, NULL);
433         timeval_add_time(&timeout, 5, 0);
434         for(;;)
435         {
436                 gettimeofday(&now, NULL);
437                 
438                 target_call_timer_callbacks_now();
439                 
440                 target = targets;
441                 while (target)
442                 {
443                         LOG_DEBUG("Polling target");
444                         target_poll(target);
445                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
446                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
447                                         (target->reset_mode == RESET_HALT) ||
448                                         (target->reset_mode == RESET_INIT))
449                         {
450                                 if (target->state != TARGET_HALTED)
451                                 {
452                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
453                                         {
454                                                 LOG_USER("Timed out waiting for halt after reset");
455                                                 goto done;
456                                         }
457                                         /* this will send alive messages on e.g. GDB remote protocol. */
458                                         usleep(500*1000); 
459                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
460                                         goto again;
461                                 }
462                         }
463                         target = target->next;
464                 }
465                 /* All targets we're waiting for are halted */
466                 break;
467                 
468                 again:;
469         }
470         done:
471         
472         
473         /* We want any events to be processed before the prompt */
474         target_call_timer_callbacks_now();
475
476         /* if we timed out we need to unregister these handlers */
477         target = targets;
478         while (target)
479         {
480                 target_unregister_timer_callback(target_run_and_halt_handler, target);
481                 target = target->next;
482         }
483         target_unregister_event_callback(target_init_handler, cmd_ctx);
484         
485         jtag->speed(jtag_speed_post_reset);
486         
487         return retval;
488 }
489
490 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
491 {
492         *physical = virtual;
493         return ERROR_OK;
494 }
495
496 static int default_mmu(struct target_s *target, int *enabled)
497 {
498         *enabled = 0;
499         return ERROR_OK;
500 }
501
502 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
503 {
504         target->type->examined = 1;
505         return ERROR_OK;
506 }
507
508
509 /* Targets that correctly implement init+examine, i.e.
510  * no communication with target during init:
511  * 
512  * XScale 
513  */
514 int target_examine(struct command_context_s *cmd_ctx)
515 {
516         int retval = ERROR_OK;
517         target_t *target = targets;
518         while (target)
519         {
520                 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
521                         return retval;
522                 target = target->next;
523         }
524         return retval;
525 }
526
527 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
528 {
529         if (!target->type->examined)
530         {
531                 LOG_ERROR("Target not examined yet");
532                 return ERROR_FAIL;
533         }
534         return target->type->write_memory_imp(target, address, size, count, buffer);
535 }
536
537 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
538 {
539         if (!target->type->examined)
540         {
541                 LOG_ERROR("Target not examined yet");
542                 return ERROR_FAIL;
543         }
544         return target->type->read_memory_imp(target, address, size, count, buffer);
545 }
546
547 static int target_soft_reset_halt_imp(struct target_s *target)
548 {
549         if (!target->type->examined)
550         {
551                 LOG_ERROR("Target not examined yet");
552                 return ERROR_FAIL;
553         }
554         return target->type->soft_reset_halt_imp(target);
555 }
556
557 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
558 {
559         if (!target->type->examined)
560         {
561                 LOG_ERROR("Target not examined yet");
562                 return ERROR_FAIL;
563         }
564         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
565 }
566
567 int target_init(struct command_context_s *cmd_ctx)
568 {
569         target_t *target = targets;
570         
571         while (target)
572         {
573                 target->type->examined = 0;
574                 if (target->type->examine == NULL)
575                 {
576                         target->type->examine = default_examine;
577                 }
578                 
579                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
580                 {
581                         LOG_ERROR("target '%s' init failed", target->type->name);
582                         exit(-1);
583                 }
584                 
585                 /* Set up default functions if none are provided by target */
586                 if (target->type->virt2phys == NULL)
587                 {
588                         target->type->virt2phys = default_virt2phys;
589                 }
590                 target->type->virt2phys = default_virt2phys;
591                 /* a non-invasive way(in terms of patches) to add some code that
592                  * runs before the type->write/read_memory implementation
593                  */
594                 target->type->write_memory_imp = target->type->write_memory;
595                 target->type->write_memory = target_write_memory_imp;
596                 target->type->read_memory_imp = target->type->read_memory;
597                 target->type->read_memory = target_read_memory_imp;
598                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
599                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
600                 target->type->run_algorithm_imp = target->type->run_algorithm;
601                 target->type->run_algorithm = target_run_algorithm_imp;
602
603                 
604                 if (target->type->mmu == NULL)
605                 {
606                         target->type->mmu = default_mmu;
607                 }
608                 target = target->next;
609         }
610         
611         if (targets)
612         {
613                 target_register_user_commands(cmd_ctx);
614                 target_register_timer_callback(handle_target, 100, 1, NULL);
615         }
616                 
617         return ERROR_OK;
618 }
619
620 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
621 {
622         target_event_callback_t **callbacks_p = &target_event_callbacks;
623         
624         if (callback == NULL)
625         {
626                 return ERROR_INVALID_ARGUMENTS;
627         }
628         
629         if (*callbacks_p)
630         {
631                 while ((*callbacks_p)->next)
632                         callbacks_p = &((*callbacks_p)->next);
633                 callbacks_p = &((*callbacks_p)->next);
634         }
635         
636         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
637         (*callbacks_p)->callback = callback;
638         (*callbacks_p)->priv = priv;
639         (*callbacks_p)->next = NULL;
640         
641         return ERROR_OK;
642 }
643
644 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
645 {
646         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
647         struct timeval now;
648         
649         if (callback == NULL)
650         {
651                 return ERROR_INVALID_ARGUMENTS;
652         }
653         
654         if (*callbacks_p)
655         {
656                 while ((*callbacks_p)->next)
657                         callbacks_p = &((*callbacks_p)->next);
658                 callbacks_p = &((*callbacks_p)->next);
659         }
660         
661         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
662         (*callbacks_p)->callback = callback;
663         (*callbacks_p)->periodic = periodic;
664         (*callbacks_p)->time_ms = time_ms;
665         
666         gettimeofday(&now, NULL);
667         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
668         time_ms -= (time_ms % 1000);
669         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
670         if ((*callbacks_p)->when.tv_usec > 1000000)
671         {
672                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
673                 (*callbacks_p)->when.tv_sec += 1;
674         }
675         
676         (*callbacks_p)->priv = priv;
677         (*callbacks_p)->next = NULL;
678         
679         return ERROR_OK;
680 }
681
682 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
683 {
684         target_event_callback_t **p = &target_event_callbacks;
685         target_event_callback_t *c = target_event_callbacks;
686         
687         if (callback == NULL)
688         {
689                 return ERROR_INVALID_ARGUMENTS;
690         }
691                 
692         while (c)
693         {
694                 target_event_callback_t *next = c->next;
695                 if ((c->callback == callback) && (c->priv == priv))
696                 {
697                         *p = next;
698                         free(c);
699                         return ERROR_OK;
700                 }
701                 else
702                         p = &(c->next);
703                 c = next;
704         }
705         
706         return ERROR_OK;
707 }
708
709 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
710 {
711         target_timer_callback_t **p = &target_timer_callbacks;
712         target_timer_callback_t *c = target_timer_callbacks;
713         
714         if (callback == NULL)
715         {
716                 return ERROR_INVALID_ARGUMENTS;
717         }
718                 
719         while (c)
720         {
721                 target_timer_callback_t *next = c->next;
722                 if ((c->callback == callback) && (c->priv == priv))
723                 {
724                         *p = next;
725                         free(c);
726                         return ERROR_OK;
727                 }
728                 else
729                         p = &(c->next);
730                 c = next;
731         }
732         
733         return ERROR_OK;
734 }
735
736 int target_call_event_callbacks(target_t *target, enum target_event event)
737 {
738         target_event_callback_t *callback = target_event_callbacks;
739         target_event_callback_t *next_callback;
740         
741         LOG_DEBUG("target event %i", event);
742         
743         while (callback)
744         {
745                 next_callback = callback->next;
746                 callback->callback(target, event, callback->priv);
747                 callback = next_callback;
748         }
749         
750         return ERROR_OK;
751 }
752
753 static int target_call_timer_callbacks_check_time(int checktime)
754 {
755         target_timer_callback_t *callback = target_timer_callbacks;
756         target_timer_callback_t *next_callback;
757         struct timeval now;
758
759         gettimeofday(&now, NULL);
760         
761         while (callback)
762         {
763                 next_callback = callback->next;
764                 
765                 if ((!checktime&&callback->periodic)||
766                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
767                                                 || (now.tv_sec > callback->when.tv_sec)))
768                 {
769                         if(callback->callback != NULL)
770                         {
771                                 callback->callback(callback->priv);
772                                 if (callback->periodic)
773                                 {
774                                         int time_ms = callback->time_ms;
775                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
776                                         time_ms -= (time_ms % 1000);
777                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
778                                         if (callback->when.tv_usec > 1000000)
779                                         {
780                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
781                                                 callback->when.tv_sec += 1;
782                                         }
783                                 }
784                                 else
785                                         target_unregister_timer_callback(callback->callback, callback->priv);
786                         }
787                 }
788                         
789                 callback = next_callback;
790         }
791         
792         return ERROR_OK;
793 }
794
795 int target_call_timer_callbacks()
796 {
797         return target_call_timer_callbacks_check_time(1);
798 }
799
800 /* invoke periodic callbacks immediately */
801 int target_call_timer_callbacks_now()
802 {
803         return target_call_timer_callbacks(0);
804 }
805
806 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
807 {
808         working_area_t *c = target->working_areas;
809         working_area_t *new_wa = NULL;
810         
811         /* Reevaluate working area address based on MMU state*/
812         if (target->working_areas == NULL)
813         {
814                 int retval;
815                 int enabled;
816                 retval = target->type->mmu(target, &enabled);
817                 if (retval != ERROR_OK)
818                 {
819                         return retval;
820                 }
821                 if (enabled)
822                 {
823                         target->working_area = target->working_area_virt;
824                 }
825                 else
826                 {
827                         target->working_area = target->working_area_phys;
828                 }
829         }
830         
831         /* only allocate multiples of 4 byte */
832         if (size % 4)
833         {
834                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
835                 size = CEIL(size, 4);
836         }
837         
838         /* see if there's already a matching working area */
839         while (c)
840         {
841                 if ((c->free) && (c->size == size))
842                 {
843                         new_wa = c;
844                         break;
845                 }
846                 c = c->next;
847         }
848         
849         /* if not, allocate a new one */
850         if (!new_wa)
851         {
852                 working_area_t **p = &target->working_areas;
853                 u32 first_free = target->working_area;
854                 u32 free_size = target->working_area_size;
855                 
856                 LOG_DEBUG("allocating new working area");
857                 
858                 c = target->working_areas;
859                 while (c)
860                 {
861                         first_free += c->size;
862                         free_size -= c->size;
863                         p = &c->next;
864                         c = c->next;
865                 }
866                 
867                 if (free_size < size)
868                 {
869                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
870                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
871                 }
872                 
873                 new_wa = malloc(sizeof(working_area_t));
874                 new_wa->next = NULL;
875                 new_wa->size = size;
876                 new_wa->address = first_free;
877                 
878                 if (target->backup_working_area)
879                 {
880                         new_wa->backup = malloc(new_wa->size);
881                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
882                 }
883                 else
884                 {
885                         new_wa->backup = NULL;
886                 }
887                 
888                 /* put new entry in list */
889                 *p = new_wa;
890         }
891         
892         /* mark as used, and return the new (reused) area */
893         new_wa->free = 0;
894         *area = new_wa;
895         
896         /* user pointer */
897         new_wa->user = area;
898         
899         return ERROR_OK;
900 }
901
902 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
903 {
904         if (area->free)
905                 return ERROR_OK;
906         
907         if (restore&&target->backup_working_area)
908                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
909         
910         area->free = 1;
911         
912         /* mark user pointer invalid */
913         *area->user = NULL;
914         area->user = NULL;
915         
916         return ERROR_OK;
917 }
918
919 int target_free_working_area(struct target_s *target, working_area_t *area)
920 {
921         return target_free_working_area_restore(target, area, 1);
922 }
923
924 int target_free_all_working_areas_restore(struct target_s *target, int restore)
925 {
926         working_area_t *c = target->working_areas;
927
928         while (c)
929         {
930                 working_area_t *next = c->next;
931                 target_free_working_area_restore(target, c, restore);
932                 
933                 if (c->backup)
934                         free(c->backup);
935                 
936                 free(c);
937                 
938                 c = next;
939         }
940         
941         target->working_areas = NULL;
942         
943         return ERROR_OK;
944 }
945
946 int target_free_all_working_areas(struct target_s *target)
947 {
948         return target_free_all_working_areas_restore(target, 1); 
949 }
950
951 int target_register_commands(struct command_context_s *cmd_ctx)
952 {
953         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
954         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
955         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, 
956         "target_script <target#> <event=reset/pre_reset/post_halt/pre_resume/gdb_program_config> <script_file>");
957         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
958         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
959         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
960         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
961
962         return ERROR_OK;
963 }
964
965 int target_arch_state(struct target_s *target)
966 {
967         int retval;
968         if (target==NULL)
969         {
970                 LOG_USER("No target has been configured");
971                 return ERROR_OK;
972         }
973         
974         LOG_USER("target state: %s", target_state_strings[target->state]);
975         
976         if (target->state!=TARGET_HALTED)
977                 return ERROR_OK;
978         
979         retval=target->type->arch_state(target);
980         return retval;
981 }
982
983 /* Single aligned words are guaranteed to use 16 or 32 bit access 
984  * mode respectively, otherwise data is handled as quickly as 
985  * possible
986  */
987 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
988 {
989         int retval;
990         if (!target->type->examined)
991         {
992                 LOG_ERROR("Target not examined yet");
993                 return ERROR_FAIL;
994         }
995         
996         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
997         
998         if (((address % 2) == 0) && (size == 2))
999         {
1000                 return target->type->write_memory(target, address, 2, 1, buffer);
1001         }
1002         
1003         /* handle unaligned head bytes */
1004         if (address % 4)
1005         {
1006                 int unaligned = 4 - (address % 4);
1007                 
1008                 if (unaligned > size)
1009                         unaligned = size;
1010
1011                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1012                         return retval;
1013                 
1014                 buffer += unaligned;
1015                 address += unaligned;
1016                 size -= unaligned;
1017         }
1018                 
1019         /* handle aligned words */
1020         if (size >= 4)
1021         {
1022                 int aligned = size - (size % 4);
1023         
1024                 /* use bulk writes above a certain limit. This may have to be changed */
1025                 if (aligned > 128)
1026                 {
1027                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1028                                 return retval;
1029                 }
1030                 else
1031                 {
1032                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1033                                 return retval;
1034                 }
1035                 
1036                 buffer += aligned;
1037                 address += aligned;
1038                 size -= aligned;
1039         }
1040         
1041         /* handle tail writes of less than 4 bytes */
1042         if (size > 0)
1043         {
1044                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1045                         return retval;
1046         }
1047         
1048         return ERROR_OK;
1049 }
1050
1051
1052 /* Single aligned words are guaranteed to use 16 or 32 bit access 
1053  * mode respectively, otherwise data is handled as quickly as 
1054  * possible
1055  */
1056 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1057 {
1058         int retval;
1059         if (!target->type->examined)
1060         {
1061                 LOG_ERROR("Target not examined yet");
1062                 return ERROR_FAIL;
1063         }
1064
1065         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1066         
1067         if (((address % 2) == 0) && (size == 2))
1068         {
1069                 return target->type->read_memory(target, address, 2, 1, buffer);
1070         }
1071         
1072         /* handle unaligned head bytes */
1073         if (address % 4)
1074         {
1075                 int unaligned = 4 - (address % 4);
1076                 
1077                 if (unaligned > size)
1078                         unaligned = size;
1079
1080                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1081                         return retval;
1082                 
1083                 buffer += unaligned;
1084                 address += unaligned;
1085                 size -= unaligned;
1086         }
1087                 
1088         /* handle aligned words */
1089         if (size >= 4)
1090         {
1091                 int aligned = size - (size % 4);
1092         
1093                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1094                         return retval;
1095                 
1096                 buffer += aligned;
1097                 address += aligned;
1098                 size -= aligned;
1099         }
1100         
1101         /* handle tail writes of less than 4 bytes */
1102         if (size > 0)
1103         {
1104                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1105                         return retval;
1106         }
1107         
1108         return ERROR_OK;
1109 }
1110
1111 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1112 {
1113         u8 *buffer;
1114         int retval;
1115         int i;
1116         u32 checksum = 0;
1117         if (!target->type->examined)
1118         {
1119                 LOG_ERROR("Target not examined yet");
1120                 return ERROR_FAIL;
1121         }
1122         
1123         if ((retval = target->type->checksum_memory(target, address,
1124                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1125         {
1126                 buffer = malloc(size);
1127                 if (buffer == NULL)
1128                 {
1129                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1130                         return ERROR_INVALID_ARGUMENTS;
1131                 }
1132                 retval = target_read_buffer(target, address, size, buffer);
1133                 if (retval != ERROR_OK)
1134                 {
1135                         free(buffer);
1136                         return retval;
1137                 }
1138
1139                 /* convert to target endianess */
1140                 for (i = 0; i < (size/sizeof(u32)); i++)
1141                 {
1142                         u32 target_data;
1143                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1144                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1145                 }
1146
1147                 retval = image_calculate_checksum( buffer, size, &checksum );
1148                 free(buffer);
1149         }
1150         
1151         *crc = checksum;
1152         
1153         return retval;
1154 }
1155
1156 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1157 {
1158         int retval;
1159         if (!target->type->examined)
1160         {
1161                 LOG_ERROR("Target not examined yet");
1162                 return ERROR_FAIL;
1163         }
1164         
1165         if (target->type->blank_check_memory == 0)
1166                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1167         
1168         retval = target->type->blank_check_memory(target, address, size, blank);
1169                         
1170         return retval;
1171 }
1172
1173 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1174 {
1175         u8 value_buf[4];
1176         if (!target->type->examined)
1177         {
1178                 LOG_ERROR("Target not examined yet");
1179                 return ERROR_FAIL;
1180         }
1181
1182         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1183         
1184         if (retval == ERROR_OK)
1185         {
1186                 *value = target_buffer_get_u32(target, value_buf);
1187                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1188         }
1189         else
1190         {
1191                 *value = 0x0;
1192                 LOG_DEBUG("address: 0x%8.8x failed", address);
1193         }
1194         
1195         return retval;
1196 }
1197
1198 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1199 {
1200         u8 value_buf[2];
1201         if (!target->type->examined)
1202         {
1203                 LOG_ERROR("Target not examined yet");
1204                 return ERROR_FAIL;
1205         }
1206
1207         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1208         
1209         if (retval == ERROR_OK)
1210         {
1211                 *value = target_buffer_get_u16(target, value_buf);
1212                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1213         }
1214         else
1215         {
1216                 *value = 0x0;
1217                 LOG_DEBUG("address: 0x%8.8x failed", address);
1218         }
1219         
1220         return retval;
1221 }
1222
1223 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1224 {
1225         int retval = target->type->read_memory(target, address, 1, 1, value);
1226         if (!target->type->examined)
1227         {
1228                 LOG_ERROR("Target not examined yet");
1229                 return ERROR_FAIL;
1230         }
1231
1232         if (retval == ERROR_OK)
1233         {
1234                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1235         }
1236         else
1237         {
1238                 *value = 0x0;
1239                 LOG_DEBUG("address: 0x%8.8x failed", address);
1240         }
1241         
1242         return retval;
1243 }
1244
1245 int target_write_u32(struct target_s *target, u32 address, u32 value)
1246 {
1247         int retval;
1248         u8 value_buf[4];
1249         if (!target->type->examined)
1250         {
1251                 LOG_ERROR("Target not examined yet");
1252                 return ERROR_FAIL;
1253         }
1254
1255         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1256
1257         target_buffer_set_u32(target, value_buf, value);        
1258         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1259         {
1260                 LOG_DEBUG("failed: %i", retval);
1261         }
1262         
1263         return retval;
1264 }
1265
1266 int target_write_u16(struct target_s *target, u32 address, u16 value)
1267 {
1268         int retval;
1269         u8 value_buf[2];
1270         if (!target->type->examined)
1271         {
1272                 LOG_ERROR("Target not examined yet");
1273                 return ERROR_FAIL;
1274         }
1275
1276         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1277
1278         target_buffer_set_u16(target, value_buf, value);        
1279         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1280         {
1281                 LOG_DEBUG("failed: %i", retval);
1282         }
1283         
1284         return retval;
1285 }
1286
1287 int target_write_u8(struct target_s *target, u32 address, u8 value)
1288 {
1289         int retval;
1290         if (!target->type->examined)
1291         {
1292                 LOG_ERROR("Target not examined yet");
1293                 return ERROR_FAIL;
1294         }
1295
1296         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1297
1298         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1299         {
1300                 LOG_DEBUG("failed: %i", retval);
1301         }
1302         
1303         return retval;
1304 }
1305
1306 int target_register_user_commands(struct command_context_s *cmd_ctx)
1307 {
1308         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1309         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1310         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1311         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1312         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1313         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1314         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1315         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1316
1317         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1318         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1319         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1320         
1321         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1322         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1323         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1324         
1325         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1326         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1327         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1328         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1329         
1330         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1331         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1332         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1333         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1334         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1335         
1336         target_request_register_commands(cmd_ctx);
1337         trace_register_commands(cmd_ctx);
1338         
1339         return ERROR_OK;
1340 }
1341
1342 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1343 {
1344         target_t *target = targets;
1345         int count = 0;
1346         
1347         if (argc == 1)
1348         {
1349                 int num = strtoul(args[0], NULL, 0);
1350                 
1351                 while (target)
1352                 {
1353                         count++;
1354                         target = target->next;
1355                 }
1356                 
1357                 if (num < count)
1358                         cmd_ctx->current_target = num;
1359                 else
1360                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1361                         
1362                 return ERROR_OK;
1363         }
1364                 
1365         while (target)
1366         {
1367                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1368                 target = target->next;
1369         }
1370         
1371         return ERROR_OK;
1372 }
1373
1374 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1375 {
1376         int i;
1377         int found = 0;
1378         
1379         if (argc < 3)
1380         {
1381                 return ERROR_COMMAND_SYNTAX_ERROR;
1382         }
1383         
1384         /* search for the specified target */
1385         if (args[0] && (args[0][0] != 0))
1386         {
1387                 for (i = 0; target_types[i]; i++)
1388                 {
1389                         if (strcmp(args[0], target_types[i]->name) == 0)
1390                         {
1391                                 target_t **last_target_p = &targets;
1392                                 
1393                                 /* register target specific commands */
1394                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1395                                 {
1396                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1397                                         exit(-1);
1398                                 }
1399
1400                                 if (*last_target_p)
1401                                 {
1402                                         while ((*last_target_p)->next)
1403                                                 last_target_p = &((*last_target_p)->next);
1404                                         last_target_p = &((*last_target_p)->next);
1405                                 }
1406
1407                                 *last_target_p = malloc(sizeof(target_t));
1408                                 
1409                                 /* allocate memory for each unique target type */
1410                                 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1411                                 *((*last_target_p)->type) = *target_types[i]; 
1412                                 
1413                                 if (strcmp(args[1], "big") == 0)
1414                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1415                                 else if (strcmp(args[1], "little") == 0)
1416                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1417                                 else
1418                                 {
1419                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1420                                         return ERROR_COMMAND_SYNTAX_ERROR;
1421                                 }
1422                                 
1423                                 /* what to do on a target reset */
1424                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1425                                 if (strcmp(args[2], "reset_halt") == 0)
1426                                         (*last_target_p)->reset_mode = RESET_HALT;
1427                                 else if (strcmp(args[2], "reset_run") == 0)
1428                                         (*last_target_p)->reset_mode = RESET_RUN;
1429                                 else if (strcmp(args[2], "reset_init") == 0)
1430                                         (*last_target_p)->reset_mode = RESET_INIT;
1431                                 else if (strcmp(args[2], "run_and_halt") == 0)
1432                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1433                                 else if (strcmp(args[2], "run_and_init") == 0)
1434                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1435                                 else
1436                                 {
1437                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1438                                         args--;
1439                                         argc++;
1440                                 }
1441                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1442                                 
1443                                 (*last_target_p)->working_area = 0x0;
1444                                 (*last_target_p)->working_area_size = 0x0;
1445                                 (*last_target_p)->working_areas = NULL;
1446                                 (*last_target_p)->backup_working_area = 0;
1447                                 
1448                                 (*last_target_p)->state = TARGET_UNKNOWN;
1449                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1450                                 (*last_target_p)->reg_cache = NULL;
1451                                 (*last_target_p)->breakpoints = NULL;
1452                                 (*last_target_p)->watchpoints = NULL;
1453                                 (*last_target_p)->next = NULL;
1454                                 (*last_target_p)->arch_info = NULL;
1455                                 
1456                                 /* initialize trace information */
1457                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1458                                 (*last_target_p)->trace_info->num_trace_points = 0;
1459                                 (*last_target_p)->trace_info->trace_points_size = 0;
1460                                 (*last_target_p)->trace_info->trace_points = NULL;
1461                                 (*last_target_p)->trace_info->trace_history_size = 0;
1462                                 (*last_target_p)->trace_info->trace_history = NULL;
1463                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1464                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1465                                 
1466                                 (*last_target_p)->dbgmsg = NULL;
1467                                 (*last_target_p)->dbg_msg_enabled = 0;
1468                                                                 
1469                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1470                                 
1471                                 found = 1;
1472                                 break;
1473                         }
1474                 }
1475         }
1476         
1477         /* no matching target found */
1478         if (!found)
1479         {
1480                 LOG_ERROR("target '%s' not found", args[0]);
1481                 return ERROR_COMMAND_SYNTAX_ERROR;
1482         }
1483
1484         return ERROR_OK;
1485 }
1486
1487 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1488 {
1489         return command_run_linef(cmd_ctx, " if {[catch {info body target_%s_%d} t]==0} {target_%s_%d}", 
1490         name, get_num_by_target(target),
1491         name, get_num_by_target(target));
1492 }
1493
1494 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1495 {
1496         target_t *target = NULL;
1497         
1498         if (argc < 3)
1499         {
1500                 LOG_ERROR("incomplete target_script command");
1501                 return ERROR_COMMAND_SYNTAX_ERROR;
1502         }
1503         
1504         target = get_target_by_num(strtoul(args[0], NULL, 0));
1505         
1506         if (!target)
1507         {
1508                 return ERROR_COMMAND_SYNTAX_ERROR;
1509         }
1510         
1511         const char *event=args[1];
1512         if (strcmp("reset", event)==0)
1513         {
1514                 /* synonymous */
1515                 event="post_reset";
1516         }
1517                         
1518         /* Define a tcl procedure which we'll invoke upon some event */
1519         command_run_linef(cmd_ctx, 
1520         "proc target_%s_%d {} {"
1521         "openocd {script %s} ; return \"\"" 
1522         "}",
1523         event,
1524         get_num_by_target(target),
1525         args[2]);
1526         
1527         return ERROR_OK;
1528 }
1529
1530 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1531 {
1532         target_t *target = NULL;
1533         
1534         if (argc < 2)
1535         {
1536                 return ERROR_COMMAND_SYNTAX_ERROR;
1537         }
1538         
1539         target = get_target_by_num(strtoul(args[0], NULL, 0));
1540         if (!target)
1541         {
1542                 return ERROR_COMMAND_SYNTAX_ERROR;
1543         }
1544         
1545         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1546         
1547         return ERROR_OK;
1548 }
1549
1550 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1551 {
1552         target_t *target = NULL;
1553         
1554         if ((argc < 4) || (argc > 5))
1555         {
1556                 return ERROR_COMMAND_SYNTAX_ERROR;
1557         }
1558         
1559         target = get_target_by_num(strtoul(args[0], NULL, 0));
1560         if (!target)
1561         {
1562                 return ERROR_COMMAND_SYNTAX_ERROR;
1563         }
1564         target_free_all_working_areas(target);
1565         
1566         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1567         if (argc == 5)
1568         {
1569                 target->working_area_virt = strtoul(args[4], NULL, 0);
1570         }
1571         target->working_area_size = strtoul(args[2], NULL, 0);
1572         
1573         if (strcmp(args[3], "backup") == 0)
1574         {
1575                 target->backup_working_area = 1;
1576         }
1577         else if (strcmp(args[3], "nobackup") == 0)
1578         {
1579                 target->backup_working_area = 0;
1580         }
1581         else
1582         {
1583                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1584                 return ERROR_COMMAND_SYNTAX_ERROR;
1585         }
1586         
1587         return ERROR_OK;
1588 }
1589
1590
1591 /* process target state changes */
1592 int handle_target(void *priv)
1593 {
1594         target_t *target = targets;
1595         
1596         while (target)
1597         {
1598                 if (target_continous_poll)
1599                 {
1600                         /* polling may fail silently until the target has been examined */
1601                         target_poll(target);
1602                 }
1603         
1604                 target = target->next;
1605         }
1606         
1607         return ERROR_OK;
1608 }
1609
1610 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1611 {
1612         target_t *target;
1613         reg_t *reg = NULL;
1614         int count = 0;
1615         char *value;
1616         
1617         LOG_DEBUG("-");
1618         
1619         target = get_current_target(cmd_ctx);
1620         
1621         /* list all available registers for the current target */
1622         if (argc == 0)
1623         {
1624                 reg_cache_t *cache = target->reg_cache;
1625                 
1626                 count = 0;
1627                 while(cache)
1628                 {
1629                         int i;
1630                         for (i = 0; i < cache->num_regs; i++)
1631                         {
1632                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1633                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1634                                 free(value);
1635                         }
1636                         cache = cache->next;
1637                 }
1638                 
1639                 return ERROR_OK;
1640         }
1641         
1642         /* access a single register by its ordinal number */
1643         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1644         {
1645                 int num = strtoul(args[0], NULL, 0);
1646                 reg_cache_t *cache = target->reg_cache;
1647                 
1648                 count = 0;
1649                 while(cache)
1650                 {
1651                         int i;
1652                         for (i = 0; i < cache->num_regs; i++)
1653                         {
1654                                 if (count++ == num)
1655                                 {
1656                                         reg = &cache->reg_list[i];
1657                                         break;
1658                                 }
1659                         }
1660                         if (reg)
1661                                 break;
1662                         cache = cache->next;
1663                 }
1664                 
1665                 if (!reg)
1666                 {
1667                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1668                         return ERROR_OK;
1669                 }
1670         } else /* access a single register by its name */
1671         {
1672                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1673                 
1674                 if (!reg)
1675                 {
1676                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1677                         return ERROR_OK;
1678                 }
1679         }
1680
1681         /* display a register */
1682         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1683         {
1684                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1685                         reg->valid = 0;
1686                 
1687                 if (reg->valid == 0)
1688                 {
1689                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1690                         if (arch_type == NULL)
1691                         {
1692                                 LOG_ERROR("BUG: encountered unregistered arch type");
1693                                 return ERROR_OK;
1694                         }
1695                         arch_type->get(reg);
1696                 }
1697                 value = buf_to_str(reg->value, reg->size, 16);
1698                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1699                 free(value);
1700                 return ERROR_OK;
1701         }
1702         
1703         /* set register value */
1704         if (argc == 2)
1705         {
1706                 u8 *buf = malloc(CEIL(reg->size, 8));
1707                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1708
1709                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1710                 if (arch_type == NULL)
1711                 {
1712                         LOG_ERROR("BUG: encountered unregistered arch type");
1713                         return ERROR_OK;
1714                 }
1715                 
1716                 arch_type->set(reg, buf);
1717                 
1718                 value = buf_to_str(reg->value, reg->size, 16);
1719                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1720                 free(value);
1721                 
1722                 free(buf);
1723                 
1724                 return ERROR_OK;
1725         }
1726         
1727         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1728         
1729         return ERROR_OK;
1730 }
1731
1732 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1733
1734 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1735 {
1736         target_t *target = get_current_target(cmd_ctx);
1737
1738         if (argc == 0)
1739         {
1740                 target_poll(target);
1741                 target_arch_state(target);
1742         }
1743         else
1744         {
1745                 if (strcmp(args[0], "on") == 0)
1746                 {
1747                         target_continous_poll = 1;
1748                 }
1749                 else if (strcmp(args[0], "off") == 0)
1750                 {
1751                         target_continous_poll = 0;
1752                 }
1753                 else
1754                 {
1755                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1756                 }
1757         }
1758         
1759         
1760         return ERROR_OK;
1761 }
1762
1763 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1764 {
1765         int ms = 5000;
1766         
1767         if (argc > 0)
1768         {
1769                 char *end;
1770
1771                 ms = strtoul(args[0], &end, 0) * 1000;
1772                 if (*end)
1773                 {
1774                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1775                         return ERROR_OK;
1776                 }
1777         }
1778
1779         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1780 }
1781
1782 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1783 {
1784         int retval;
1785         struct timeval timeout, now;
1786         int once=1;
1787         gettimeofday(&timeout, NULL);
1788         timeval_add_time(&timeout, 0, ms * 1000);
1789         
1790         target_t *target = get_current_target(cmd_ctx);
1791         for (;;)
1792         {
1793                 if ((retval=target_poll(target))!=ERROR_OK)
1794                         return retval;
1795                 target_call_timer_callbacks_now();
1796                 if (target->state == state)
1797                 {
1798                         break;
1799                 }
1800                 if (once)
1801                 {
1802                         once=0;
1803                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1804                 }
1805                 
1806                 gettimeofday(&now, NULL);
1807                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1808                 {
1809                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1810                         break;
1811                 }
1812         }
1813         
1814         return ERROR_OK;
1815 }
1816
1817 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1818 {
1819         int retval;
1820         target_t *target = get_current_target(cmd_ctx);
1821
1822         LOG_DEBUG("-");
1823
1824         if ((retval = target_halt(target)) != ERROR_OK)
1825         {
1826                 return retval;
1827         }
1828         
1829         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1830 }
1831
1832 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1833 {
1834         target_t *target = get_current_target(cmd_ctx);
1835         
1836         LOG_USER("requesting target halt and executing a soft reset");
1837         
1838         target->type->soft_reset_halt(target);
1839         
1840         return ERROR_OK;
1841 }
1842
1843 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1844 {
1845         target_t *target = get_current_target(cmd_ctx);
1846         enum target_reset_mode reset_mode = target->reset_mode;
1847         enum target_reset_mode save = target->reset_mode;
1848         
1849         LOG_DEBUG("-");
1850         
1851         if (argc >= 1)
1852         {
1853                 if (strcmp("run", args[0]) == 0)
1854                         reset_mode = RESET_RUN;
1855                 else if (strcmp("halt", args[0]) == 0)
1856                         reset_mode = RESET_HALT;
1857                 else if (strcmp("init", args[0]) == 0)
1858                         reset_mode = RESET_INIT;
1859                 else if (strcmp("run_and_halt", args[0]) == 0)
1860                 {
1861                         reset_mode = RESET_RUN_AND_HALT;
1862                         if (argc >= 2)
1863                         {
1864                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1865                         }
1866                 }
1867                 else if (strcmp("run_and_init", args[0]) == 0)
1868                 {
1869                         reset_mode = RESET_RUN_AND_INIT;
1870                         if (argc >= 2)
1871                         {
1872                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1873                         }
1874                 }
1875                 else
1876                 {
1877                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1878                         return ERROR_OK;
1879                 }
1880         }
1881         
1882         /* temporarily modify mode of current reset target */
1883         target->reset_mode = reset_mode;
1884
1885         /* reset *all* targets */
1886         target_process_reset(cmd_ctx);
1887         
1888         /* Restore default reset mode for this target */
1889     target->reset_mode = save;
1890         
1891         return ERROR_OK;
1892 }
1893
1894 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1895 {
1896         int retval;
1897         target_t *target = get_current_target(cmd_ctx);
1898         
1899         target_invoke_script(cmd_ctx, target, "pre_resume");
1900         
1901         if (argc == 0)
1902                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1903         else if (argc == 1)
1904                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1905         else
1906         {
1907                 return ERROR_COMMAND_SYNTAX_ERROR;
1908         }
1909         
1910         return retval;
1911 }
1912
1913 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1914 {
1915         target_t *target = get_current_target(cmd_ctx);
1916         
1917         LOG_DEBUG("-");
1918         
1919         if (argc == 0)
1920                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1921
1922         if (argc == 1)
1923                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1924         
1925         return ERROR_OK;
1926 }
1927
1928 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1929 {
1930         const int line_bytecnt = 32;
1931         int count = 1;
1932         int size = 4;
1933         u32 address = 0;
1934         int line_modulo;
1935         int i;
1936
1937         char output[128];
1938         int output_len;
1939
1940         int retval;
1941
1942         u8 *buffer;
1943         target_t *target = get_current_target(cmd_ctx);
1944
1945         if (argc < 1)
1946                 return ERROR_OK;
1947
1948         if (argc == 2)
1949                 count = strtoul(args[1], NULL, 0);
1950
1951         address = strtoul(args[0], NULL, 0);
1952         
1953
1954         switch (cmd[2])
1955         {
1956                 case 'w':
1957                         size = 4; line_modulo = line_bytecnt / 4;
1958                         break;
1959                 case 'h':
1960                         size = 2; line_modulo = line_bytecnt / 2;
1961                         break;
1962                 case 'b':
1963                         size = 1; line_modulo = line_bytecnt / 1;
1964                         break;
1965                 default:
1966                         return ERROR_OK;
1967         }
1968
1969         buffer = calloc(count, size);
1970         retval  = target->type->read_memory(target, address, size, count, buffer);
1971         if (retval == ERROR_OK)
1972         {
1973                 output_len = 0;
1974         
1975                 for (i = 0; i < count; i++)
1976                 {
1977                         if (i%line_modulo == 0)
1978                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1979                         
1980                         switch (size)
1981                         {
1982                                 case 4:
1983                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1984                                         break;
1985                                 case 2:
1986                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1987                                         break;
1988                                 case 1:
1989                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1990                                         break;
1991                         }
1992         
1993                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1994                         {
1995                                 command_print(cmd_ctx, output);
1996                                 output_len = 0;
1997                         }
1998                 }
1999         }
2000
2001         free(buffer);
2002         
2003         return retval;
2004 }
2005
2006 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2007 {
2008         u32 address = 0;
2009         u32 value = 0;
2010         int count = 1;
2011         int i;
2012         int wordsize;
2013         target_t *target = get_current_target(cmd_ctx);
2014         u8 value_buf[4];
2015
2016          if ((argc < 2) || (argc > 3))
2017                 return ERROR_COMMAND_SYNTAX_ERROR;
2018
2019         address = strtoul(args[0], NULL, 0);
2020         value = strtoul(args[1], NULL, 0);
2021         if (argc == 3)
2022                 count = strtoul(args[2], NULL, 0);
2023         
2024         switch (cmd[2])
2025         {
2026                 case 'w':
2027                         wordsize = 4;
2028                         target_buffer_set_u32(target, value_buf, value);
2029                         break;
2030                 case 'h':
2031                         wordsize = 2;
2032                         target_buffer_set_u16(target, value_buf, value);
2033                         break;
2034                 case 'b':
2035                         wordsize = 1;
2036                         value_buf[0] = value;
2037                         break;
2038                 default:
2039                         return ERROR_COMMAND_SYNTAX_ERROR;
2040         }
2041         for (i=0; i<count; i++)
2042         {
2043                 int retval;
2044                 switch (wordsize)
2045                 {
2046                         case 4:
2047                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
2048                                 break;
2049                         case 2:
2050                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
2051                                 break;
2052                         case 1:
2053                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
2054                         break;
2055                         default:
2056                         return ERROR_OK;
2057                 }
2058                 if (retval!=ERROR_OK)
2059                 {
2060                         return retval;
2061                 }
2062         }
2063
2064         return ERROR_OK;
2065
2066 }
2067
2068 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2069 {
2070         u8 *buffer;
2071         u32 buf_cnt;
2072         u32 image_size;
2073         int i;
2074         int retval;
2075
2076         image_t image;  
2077         
2078         duration_t duration;
2079         char *duration_text;
2080         
2081         target_t *target = get_current_target(cmd_ctx);
2082
2083         if (argc < 1)
2084         {
2085                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
2086                 return ERROR_OK;
2087         }
2088         
2089         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2090         if (argc >= 2)
2091         {
2092                 image.base_address_set = 1;
2093                 image.base_address = strtoul(args[1], NULL, 0);
2094         }
2095         else
2096         {
2097                 image.base_address_set = 0;
2098         }
2099         
2100         image.start_address_set = 0;
2101
2102         duration_start_measure(&duration);
2103         
2104         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2105         {
2106                 return ERROR_OK;
2107         }
2108         
2109         image_size = 0x0;
2110         retval = ERROR_OK;
2111         for (i = 0; i < image.num_sections; i++)
2112         {
2113                 buffer = malloc(image.sections[i].size);
2114                 if (buffer == NULL)
2115                 {
2116                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2117                         break;
2118                 }
2119                 
2120                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2121                 {
2122                         free(buffer);
2123                         break;
2124                 }
2125                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
2126                 {
2127                         free(buffer);
2128                         break;
2129                 }
2130                 image_size += buf_cnt;
2131                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
2132                 
2133                 free(buffer);
2134         }
2135
2136         duration_stop_measure(&duration, &duration_text);
2137         if (retval==ERROR_OK)
2138         {
2139                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2140         }
2141         free(duration_text);
2142         
2143         image_close(&image);
2144
2145         return retval;
2146
2147 }
2148
2149 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2150 {
2151         fileio_t fileio;
2152         
2153         u32 address;
2154         u32 size;
2155         u8 buffer[560];
2156         int retval=ERROR_OK;
2157         
2158         duration_t duration;
2159         char *duration_text;
2160         
2161         target_t *target = get_current_target(cmd_ctx);
2162
2163         if (argc != 3)
2164         {
2165                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2166                 return ERROR_OK;
2167         }
2168
2169         address = strtoul(args[1], NULL, 0);
2170         size = strtoul(args[2], NULL, 0);
2171
2172         if ((address & 3) || (size & 3))
2173         {
2174                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2175                 return ERROR_OK;
2176         }
2177         
2178         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2179         {
2180                 return ERROR_OK;
2181         }
2182         
2183         duration_start_measure(&duration);
2184         
2185         while (size > 0)
2186         {
2187                 u32 size_written;
2188                 u32 this_run_size = (size > 560) ? 560 : size;
2189                 
2190                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2191                 if (retval != ERROR_OK)
2192                 {
2193                         break;
2194                 }
2195                 
2196                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2197                 if (retval != ERROR_OK)
2198                 {
2199                         break;
2200                 }
2201                 
2202                 size -= this_run_size;
2203                 address += this_run_size;
2204         }
2205
2206         fileio_close(&fileio);
2207
2208         duration_stop_measure(&duration, &duration_text);
2209         if (retval==ERROR_OK)
2210         {
2211                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2212         }
2213         free(duration_text);
2214         
2215         return ERROR_OK;
2216 }
2217
2218 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2219 {
2220         u8 *buffer;
2221         u32 buf_cnt;
2222         u32 image_size;
2223         int i;
2224         int retval;
2225         u32 checksum = 0;
2226         u32 mem_checksum = 0;
2227
2228         image_t image;  
2229         
2230         duration_t duration;
2231         char *duration_text;
2232         
2233         target_t *target = get_current_target(cmd_ctx);
2234         
2235         if (argc < 1)
2236         {
2237                 return ERROR_COMMAND_SYNTAX_ERROR;
2238         }
2239         
2240         if (!target)
2241         {
2242                 LOG_ERROR("no target selected");
2243                 return ERROR_FAIL;
2244         }
2245         
2246         duration_start_measure(&duration);
2247         
2248         if (argc >= 2)
2249         {
2250                 image.base_address_set = 1;
2251                 image.base_address = strtoul(args[1], NULL, 0);
2252         }
2253         else
2254         {
2255                 image.base_address_set = 0;
2256                 image.base_address = 0x0;
2257         }
2258
2259         image.start_address_set = 0;
2260
2261         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2262         {
2263                 return retval;
2264         }
2265         
2266         image_size = 0x0;
2267         retval=ERROR_OK;
2268         for (i = 0; i < image.num_sections; i++)
2269         {
2270                 buffer = malloc(image.sections[i].size);
2271                 if (buffer == NULL)
2272                 {
2273                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2274                         break;
2275                 }
2276                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2277                 {
2278                         free(buffer);
2279                         break;
2280                 }
2281                 
2282                 /* calculate checksum of image */
2283                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2284                 
2285                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2286                 if( retval != ERROR_OK )
2287                 {
2288                         free(buffer);
2289                         break;
2290                 }
2291                 
2292                 if( checksum != mem_checksum )
2293                 {
2294                         /* failed crc checksum, fall back to a binary compare */
2295                         u8 *data;
2296                         
2297                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2298                         
2299                         data = (u8*)malloc(buf_cnt);
2300                         
2301                         /* Can we use 32bit word accesses? */
2302                         int size = 1;
2303                         int count = buf_cnt;
2304                         if ((count % 4) == 0)
2305                         {
2306                                 size *= 4;
2307                                 count /= 4;
2308                         }
2309                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2310                         if (retval == ERROR_OK)
2311                         {
2312                                 int t;
2313                                 for (t = 0; t < buf_cnt; t++)
2314                                 {
2315                                         if (data[t] != buffer[t])
2316                                         {
2317                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2318                                                 free(data);
2319                                                 free(buffer);
2320                                                 retval=ERROR_FAIL;
2321                                                 goto done;
2322                                         }
2323                                 }
2324                         }
2325                         
2326                         free(data);
2327                 }
2328                 
2329                 free(buffer);
2330                 image_size += buf_cnt;
2331         }
2332 done:   
2333         duration_stop_measure(&duration, &duration_text);
2334         if (retval==ERROR_OK)
2335         {
2336                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2337         }
2338         free(duration_text);
2339         
2340         image_close(&image);
2341         
2342         return retval;
2343 }
2344
2345 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2346 {
2347         int retval;
2348         target_t *target = get_current_target(cmd_ctx);
2349
2350         if (argc == 0)
2351         {
2352                 breakpoint_t *breakpoint = target->breakpoints;
2353
2354                 while (breakpoint)
2355                 {
2356                         if (breakpoint->type == BKPT_SOFT)
2357                         {
2358                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2359                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2360                                 free(buf);
2361                         }
2362                         else
2363                         {
2364                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2365                         }
2366                         breakpoint = breakpoint->next;
2367                 }
2368         }
2369         else if (argc >= 2)
2370         {
2371                 int hw = BKPT_SOFT;
2372                 u32 length = 0;
2373
2374                 length = strtoul(args[1], NULL, 0);
2375                 
2376                 if (argc >= 3)
2377                         if (strcmp(args[2], "hw") == 0)
2378                                 hw = BKPT_HARD;
2379
2380                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2381                 {
2382                         LOG_ERROR("Failure setting breakpoints");
2383                 }
2384                 else
2385                 {
2386                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2387                 }
2388         }
2389         else
2390         {
2391                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2392         }
2393
2394         return ERROR_OK;
2395 }
2396
2397 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2398 {
2399         target_t *target = get_current_target(cmd_ctx);
2400
2401         if (argc > 0)
2402                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2403
2404         return ERROR_OK;
2405 }
2406
2407 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2408 {
2409         target_t *target = get_current_target(cmd_ctx);
2410         int retval;
2411
2412         if (argc == 0)
2413         {
2414                 watchpoint_t *watchpoint = target->watchpoints;
2415
2416                 while (watchpoint)
2417                 {
2418                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2419                         watchpoint = watchpoint->next;
2420                 }
2421         } 
2422         else if (argc >= 2)
2423         {
2424                 enum watchpoint_rw type = WPT_ACCESS;
2425                 u32 data_value = 0x0;
2426                 u32 data_mask = 0xffffffff;
2427                 
2428                 if (argc >= 3)
2429                 {
2430                         switch(args[2][0])
2431                         {
2432                                 case 'r':
2433                                         type = WPT_READ;
2434                                         break;
2435                                 case 'w':
2436                                         type = WPT_WRITE;
2437                                         break;
2438                                 case 'a':
2439                                         type = WPT_ACCESS;
2440                                         break;
2441                                 default:
2442                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2443                                         return ERROR_OK;
2444                         }
2445                 }
2446                 if (argc >= 4)
2447                 {
2448                         data_value = strtoul(args[3], NULL, 0);
2449                 }
2450                 if (argc >= 5)
2451                 {
2452                         data_mask = strtoul(args[4], NULL, 0);
2453                 }
2454                 
2455                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2456                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2457                 {
2458                         LOG_ERROR("Failure setting breakpoints");
2459                 }
2460         }
2461         else
2462         {
2463                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2464         }
2465                 
2466         return ERROR_OK;
2467 }
2468
2469 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2470 {
2471         target_t *target = get_current_target(cmd_ctx);
2472
2473         if (argc > 0)
2474                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2475         
2476         return ERROR_OK;
2477 }
2478
2479 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2480 {
2481         int retval;
2482         target_t *target = get_current_target(cmd_ctx);
2483         u32 va;
2484         u32 pa;
2485
2486         if (argc != 1)
2487         {
2488                 return ERROR_COMMAND_SYNTAX_ERROR;
2489         }
2490         va = strtoul(args[0], NULL, 0);
2491
2492         retval = target->type->virt2phys(target, va, &pa);
2493         if (retval == ERROR_OK)
2494         {
2495                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2496         }
2497         else
2498         {
2499                 /* lower levels will have logged a detailed error which is 
2500                  * forwarded to telnet/GDB session.  
2501                  */
2502         }
2503         return retval;
2504 }
2505 static void writeLong(FILE *f, int l)
2506 {
2507         int i;
2508         for (i=0; i<4; i++)
2509         {
2510                 char c=(l>>(i*8))&0xff;
2511                 fwrite(&c, 1, 1, f); 
2512         }
2513         
2514 }
2515 static void writeString(FILE *f, char *s)
2516 {
2517         fwrite(s, 1, strlen(s), f); 
2518 }
2519
2520
2521
2522 // Dump a gmon.out histogram file.
2523 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2524 {
2525         int i;
2526         FILE *f=fopen(filename, "w");
2527         if (f==NULL)
2528                 return;
2529         fwrite("gmon", 1, 4, f);
2530         writeLong(f, 0x00000001); // Version
2531         writeLong(f, 0); // padding
2532         writeLong(f, 0); // padding
2533         writeLong(f, 0); // padding
2534                                 
2535         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2536
2537         // figure out bucket size
2538         u32 min=samples[0];
2539         u32 max=samples[0];
2540         for (i=0; i<sampleNum; i++)
2541         {
2542                 if (min>samples[i])
2543                 {
2544                         min=samples[i];
2545                 }
2546                 if (max<samples[i])
2547                 {
2548                         max=samples[i];
2549                 }
2550         }
2551
2552         int addressSpace=(max-min+1);
2553         
2554         static int const maxBuckets=256*1024; // maximum buckets.
2555         int length=addressSpace;
2556         if (length > maxBuckets)
2557         {
2558                 length=maxBuckets; 
2559         }
2560         int *buckets=malloc(sizeof(int)*length);
2561         if (buckets==NULL)
2562         {
2563                 fclose(f);
2564                 return;
2565         }
2566         memset(buckets, 0, sizeof(int)*length);
2567         for (i=0; i<sampleNum;i++)
2568         {
2569                 u32 address=samples[i];
2570                 long long a=address-min;
2571                 long long b=length-1;
2572                 long long c=addressSpace-1;
2573                 int index=(a*b)/c; // danger!!!! int32 overflows 
2574                 buckets[index]++;
2575         }
2576         
2577         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2578         writeLong(f, min);                                      // low_pc
2579         writeLong(f, max);              // high_pc
2580         writeLong(f, length);           // # of samples
2581         writeLong(f, 64000000);                         // 64MHz
2582         writeString(f, "seconds");
2583         for (i=0; i<(15-strlen("seconds")); i++)
2584         {
2585                 fwrite("", 1, 1, f);  // padding
2586         }
2587         writeString(f, "s");
2588                 
2589 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2590         
2591         char *data=malloc(2*length);
2592         if (data!=NULL)
2593         {
2594                 for (i=0; i<length;i++)
2595                 {
2596                         int val;
2597                         val=buckets[i];
2598                         if (val>65535)
2599                         {
2600                                 val=65535;
2601                         }
2602                         data[i*2]=val&0xff;
2603                         data[i*2+1]=(val>>8)&0xff;
2604                 }
2605                 free(buckets);
2606                 fwrite(data, 1, length*2, f);
2607                 free(data);
2608         } else
2609         {
2610                 free(buckets);
2611         }
2612
2613         fclose(f);
2614 }
2615
2616 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2617 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2618 {
2619         target_t *target = get_current_target(cmd_ctx);
2620         struct timeval timeout, now;
2621         
2622         gettimeofday(&timeout, NULL);
2623         if (argc!=2)
2624         {
2625                 return ERROR_COMMAND_SYNTAX_ERROR;
2626         }
2627         char *end;
2628         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2629         if (*end) 
2630         {
2631                 return ERROR_OK;
2632         }
2633         
2634         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2635
2636         static const int maxSample=10000;
2637         u32 *samples=malloc(sizeof(u32)*maxSample);
2638         if (samples==NULL)
2639                 return ERROR_OK;
2640         
2641         int numSamples=0;
2642         int retval=ERROR_OK;
2643         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2644         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2645         
2646         for (;;)
2647         {
2648                 target_poll(target);
2649                 if (target->state == TARGET_HALTED)
2650                 {
2651                         u32 t=*((u32 *)reg->value);
2652                         samples[numSamples++]=t;
2653                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2654                         target_poll(target);
2655                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2656                 } else if (target->state == TARGET_RUNNING)
2657                 {
2658                         // We want to quickly sample the PC.
2659                         target_halt(target);
2660                 } else
2661                 {
2662                         command_print(cmd_ctx, "Target not halted or running");
2663                         retval=ERROR_OK;
2664                         break;
2665                 }
2666                 if (retval!=ERROR_OK)
2667                 {
2668                         break;
2669                 }
2670                 
2671                 gettimeofday(&now, NULL);
2672                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2673                 {
2674                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2675                         target_poll(target);
2676                         if (target->state == TARGET_HALTED)
2677                         {
2678                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2679                         }
2680                         target_poll(target);
2681                         writeGmon(samples, numSamples, args[1]);
2682                         command_print(cmd_ctx, "Wrote %s", args[1]);
2683                         break;
2684                 }
2685         }
2686         free(samples);
2687         
2688         return ERROR_OK;
2689 }