- str9x flash support (Thanks to Spencer Oliver)
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26
27 #include "log.h"
28 #include "configuration.h"
29 #include "binarybuffer.h"
30 #include "jtag.h"
31
32 #include <string.h>
33 #include <stdlib.h>
34
35 #include <sys/types.h>
36 #include <sys/stat.h>
37 #include <unistd.h>
38 #include <errno.h>
39
40 #include <sys/time.h>
41 #include <time.h>
42
43 #include <time_support.h>
44
45 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
46
47 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50
51 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54
55 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_load_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_dump_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71
72 /* targets
73  */
74 extern target_type_t arm7tdmi_target;
75 extern target_type_t arm720t_target;
76 extern target_type_t arm9tdmi_target;
77 extern target_type_t arm920t_target;
78 extern target_type_t arm966e_target;
79
80 target_type_t *target_types[] =
81 {
82         &arm7tdmi_target,
83         &arm9tdmi_target,
84         &arm920t_target,
85         &arm720t_target,
86         &arm966e_target,
87         NULL,
88 };
89
90 target_t *targets = NULL;
91 target_event_callback_t *target_event_callbacks = NULL;
92 target_timer_callback_t *target_timer_callbacks = NULL;
93
94 char *target_state_strings[] =
95 {
96         "unknown",
97         "running",
98         "halted",
99         "reset",
100         "debug_running",
101 };
102
103 char *target_debug_reason_strings[] =
104 {
105         "debug request", "breakpoint", "watchpoint",
106         "watchpoint and breakpoint", "single step",
107         "target not halted"
108 };
109
110 char *target_endianess_strings[] =
111 {
112         "big endian",
113         "little endian",
114 };
115
116 enum daemon_startup_mode startup_mode = DAEMON_ATTACH;
117
118 static int target_continous_poll = 1;
119
120 /* read a u32 from a buffer in target memory endianness */
121 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
122 {
123         if (target->endianness == TARGET_LITTLE_ENDIAN)
124                 return le_to_h_u32(buffer);
125         else
126                 return be_to_h_u32(buffer);
127 }
128
129 /* read a u16 from a buffer in target memory endianness */
130 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
131 {
132         if (target->endianness == TARGET_LITTLE_ENDIAN)
133                 return le_to_h_u16(buffer);
134         else
135                 return be_to_h_u16(buffer);
136 }
137
138 /* write a u32 to a buffer in target memory endianness */
139 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
140 {
141         if (target->endianness == TARGET_LITTLE_ENDIAN)
142                 h_u32_to_le(buffer, value);
143         else
144                 h_u32_to_be(buffer, value);
145 }
146
147 /* write a u16 to a buffer in target memory endianness */
148 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
149 {
150         if (target->endianness == TARGET_LITTLE_ENDIAN)
151                 h_u16_to_le(buffer, value);
152         else
153                 h_u16_to_be(buffer, value);
154 }
155
156 /* returns a pointer to the n-th configured target */
157 target_t* get_target_by_num(int num)
158 {
159         target_t *target = targets;
160         int i = 0;
161
162         while (target)
163         {
164                 if (num == i)
165                         return target;
166                 target = target->next;
167                 i++;
168         }
169
170         return NULL;
171 }
172
173 int get_num_by_target(target_t *query_target)
174 {
175         target_t *target = targets;
176         int i = 0;      
177         
178         while (target)
179         {
180                 if (target == query_target)
181                         return i;
182                 target = target->next;
183                 i++;
184         }
185         
186         return -1;
187 }
188
189 target_t* get_current_target(command_context_t *cmd_ctx)
190 {
191         target_t *target = get_target_by_num(cmd_ctx->current_target);
192         
193         if (target == NULL)
194         {
195                 ERROR("BUG: current_target out of bounds");
196                 exit(-1);
197         }
198         
199         return target;
200 }
201
202 /* Process target initialization, when target entered debug out of reset
203  * the handler is unregistered at the end of this function, so it's only called once
204  */
205 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
206 {
207         FILE *script;
208         struct command_context_s *cmd_ctx = priv;
209         
210         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
211         {
212                 script = fopen(target->reset_script, "r");
213                 if (!script)
214                 {
215                         ERROR("couldn't open script file %s", target->reset_script);
216                                 return ERROR_OK;
217                 }
218
219                 INFO("executing reset script '%s'", target->reset_script);
220                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
221                 fclose(script);
222
223                 jtag_execute_queue();
224
225                 target_unregister_event_callback(target_init_handler, priv);
226         }
227         
228         return ERROR_OK;
229 }
230
231 int target_run_and_halt_handler(void *priv)
232 {
233         target_t *target = priv;
234         
235         target->type->halt(target);
236         
237         return ERROR_OK;
238 }
239
240 int target_process_reset(struct command_context_s *cmd_ctx)
241 {
242         int retval = ERROR_OK;
243         target_t *target;
244          
245         target = targets;
246         while (target)
247         {
248                 target->type->assert_reset(target);
249                 target = target->next;
250         }
251         jtag_execute_queue();
252         
253         /* request target halt if necessary, and schedule further action */
254         target = targets;
255         while (target)
256         {
257                 switch (target->reset_mode)
258                 {
259                         case RESET_RUN:
260                                 /* nothing to do if target just wants to be run */
261                                 break;
262                         case RESET_RUN_AND_HALT:
263                                 /* schedule halt */
264                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
265                                 break;
266                         case RESET_RUN_AND_INIT:
267                                 /* schedule halt */
268                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
269                                 target_register_event_callback(target_init_handler, cmd_ctx);
270                                 break;
271                         case RESET_HALT:
272                                 target->type->halt(target);
273                                 break;
274                         case RESET_INIT:
275                                 target->type->halt(target);
276                                 target_register_event_callback(target_init_handler, cmd_ctx);
277                                 break;
278                         default:
279                                 ERROR("BUG: unknown target->reset_mode");
280                 }
281                 target = target->next;
282         }
283         
284         target = targets;
285         while (target)
286         {
287                 target->type->deassert_reset(target);
288                 target = target->next;
289         }
290         jtag_execute_queue();
291         
292         return retval;
293 }       
294
295 int target_init(struct command_context_s *cmd_ctx)
296 {
297         target_t *target = targets;
298         
299         while (target)
300         {
301                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
302                 {
303                         ERROR("target '%s' init failed", target->type->name);
304                         exit(-1);
305                 }
306                 target = target->next;
307         }
308         
309         if (targets)
310         {
311                 target_register_user_commands(cmd_ctx);
312                 target_register_timer_callback(handle_target, 100, 1, NULL);
313         }
314                 
315         if (startup_mode == DAEMON_RESET)
316                 target_process_reset(cmd_ctx);
317         
318         return ERROR_OK;
319 }
320
321 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
322 {
323         target_event_callback_t **callbacks_p = &target_event_callbacks;
324         
325         if (callback == NULL)
326         {
327                 return ERROR_INVALID_ARGUMENTS;
328         }
329         
330         if (*callbacks_p)
331         {
332                 while ((*callbacks_p)->next)
333                         callbacks_p = &((*callbacks_p)->next);
334                 callbacks_p = &((*callbacks_p)->next);
335         }
336         
337         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
338         (*callbacks_p)->callback = callback;
339         (*callbacks_p)->priv = priv;
340         (*callbacks_p)->next = NULL;
341         
342         return ERROR_OK;
343 }
344
345 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
346 {
347         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
348         struct timeval now;
349         
350         if (callback == NULL)
351         {
352                 return ERROR_INVALID_ARGUMENTS;
353         }
354         
355         if (*callbacks_p)
356         {
357                 while ((*callbacks_p)->next)
358                         callbacks_p = &((*callbacks_p)->next);
359                 callbacks_p = &((*callbacks_p)->next);
360         }
361         
362         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
363         (*callbacks_p)->callback = callback;
364         (*callbacks_p)->periodic = periodic;
365         (*callbacks_p)->time_ms = time_ms;
366         
367         gettimeofday(&now, NULL);
368         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
369         time_ms -= (time_ms % 1000);
370         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
371         if ((*callbacks_p)->when.tv_usec > 1000000)
372         {
373                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
374                 (*callbacks_p)->when.tv_sec += 1;
375         }
376         
377         (*callbacks_p)->priv = priv;
378         (*callbacks_p)->next = NULL;
379         
380         return ERROR_OK;
381 }
382
383 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
384 {
385         target_event_callback_t **p = &target_event_callbacks;
386         target_event_callback_t *c = target_event_callbacks;
387         
388         if (callback == NULL)
389         {
390                 return ERROR_INVALID_ARGUMENTS;
391         }
392                 
393         while (c)
394         {
395                 target_event_callback_t *next = c->next;
396                 if ((c->callback == callback) && (c->priv == priv))
397                 {
398                         *p = next;
399                         free(c);
400                         return ERROR_OK;
401                 }
402                 else
403                         p = &(c->next);
404                 c = next;
405         }
406         
407         return ERROR_OK;
408 }
409
410 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
411 {
412         target_timer_callback_t **p = &target_timer_callbacks;
413         target_timer_callback_t *c = target_timer_callbacks;
414         
415         if (callback == NULL)
416         {
417                 return ERROR_INVALID_ARGUMENTS;
418         }
419                 
420         while (c)
421         {
422                 target_timer_callback_t *next = c->next;
423                 if ((c->callback == callback) && (c->priv == priv))
424                 {
425                         *p = next;
426                         free(c);
427                         return ERROR_OK;
428                 }
429                 else
430                         p = &(c->next);
431                 c = next;
432         }
433         
434         return ERROR_OK;
435 }
436
437 int target_call_event_callbacks(target_t *target, enum target_event event)
438 {
439         target_event_callback_t *callback = target_event_callbacks;
440         target_event_callback_t *next_callback;
441         
442         DEBUG("target event %i", event);
443         
444         while (callback)
445         {
446                 next_callback = callback->next;
447                 callback->callback(target, event, callback->priv);
448                 callback = next_callback;
449         }
450         
451         return ERROR_OK;
452 }
453
454 int target_call_timer_callbacks()
455 {
456         target_timer_callback_t *callback = target_timer_callbacks;
457         target_timer_callback_t *next_callback;
458         struct timeval now;
459
460         gettimeofday(&now, NULL);
461         
462         while (callback)
463         {
464                 next_callback = callback->next;
465                 
466                 if (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
467                         || (now.tv_sec > callback->when.tv_sec))
468                 {
469                         callback->callback(callback->priv);
470                         if (callback->periodic)
471                         {
472                                 int time_ms = callback->time_ms;
473                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
474                                 time_ms -= (time_ms % 1000);
475                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
476                                 if (callback->when.tv_usec > 1000000)
477                                 {
478                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
479                                         callback->when.tv_sec += 1;
480                                 }
481                         }
482                         else
483                                 target_unregister_timer_callback(callback->callback, callback->priv);
484                 }
485                         
486                 callback = next_callback;
487         }
488         
489         return ERROR_OK;
490 }
491
492 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
493 {
494         working_area_t *c = target->working_areas;
495         working_area_t *new_wa = NULL;
496         
497         /* only allocate multiples of 4 byte */
498         if (size % 4)
499         {
500                 ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
501                 size = CEIL(size, 4);
502         }
503         
504         /* see if there's already a matching working area */
505         while (c)
506         {
507                 if ((c->free) && (c->size == size))
508                 {
509                         new_wa = c;
510                         break;
511                 }
512                 c = c->next;
513         }
514         
515         /* if not, allocate a new one */
516         if (!new_wa)
517         {
518                 working_area_t **p = &target->working_areas;
519                 u32 first_free = target->working_area;
520                 u32 free_size = target->working_area_size;
521                 
522                 DEBUG("allocating new working area");
523                 
524                 c = target->working_areas;
525                 while (c)
526                 {
527                         first_free += c->size;
528                         free_size -= c->size;
529                         p = &c->next;
530                         c = c->next;
531                 }
532                 
533                 if (free_size < size)
534                 {
535                         WARNING("not enough working area available");
536                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
537                 }
538                 
539                 new_wa = malloc(sizeof(working_area_t));
540                 new_wa->next = NULL;
541                 new_wa->size = size;
542                 new_wa->address = first_free;
543                 
544                 if (target->backup_working_area)
545                 {
546                         new_wa->backup = malloc(new_wa->size);
547                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
548                 }
549                 else
550                 {
551                         new_wa->backup = NULL;
552                 }
553                 
554                 /* put new entry in list */
555                 *p = new_wa;
556         }
557         
558         /* mark as used, and return the new (reused) area */
559         new_wa->free = 0;
560         *area = new_wa;
561         
562         /* user pointer */
563         new_wa->user = area;
564         
565         return ERROR_OK;
566 }
567
568 int target_free_working_area(struct target_s *target, working_area_t *area)
569 {
570         if (area->free)
571                 return ERROR_OK;
572         
573         if (target->backup_working_area)
574                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
575         
576         area->free = 1;
577         
578         /* mark user pointer invalid */
579         *area->user = NULL;
580         area->user = NULL;
581         
582         return ERROR_OK;
583 }
584
585 int target_free_all_working_areas(struct target_s *target)
586 {
587         working_area_t *c = target->working_areas;
588
589         while (c)
590         {
591                 working_area_t *next = c->next;
592                 target_free_working_area(target, c);
593                 
594                 if (c->backup)
595                         free(c->backup);
596                 
597                 free(c);
598                 
599                 c = next;
600         }
601         
602         target->working_areas = NULL;
603         
604         return ERROR_OK;
605 }
606
607 int target_register_commands(struct command_context_s *cmd_ctx)
608 {
609         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, NULL);
610         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
611         register_command(cmd_ctx, NULL, "daemon_startup", handle_daemon_startup_command, COMMAND_CONFIG, NULL);
612         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
613         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, NULL);
614         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_CONFIG, NULL);
615
616         return ERROR_OK;
617 }
618
619 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
620 {
621         int retval;
622         
623         DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
624         
625         /* handle writes of less than 4 byte */
626         if (size < 4)
627         {
628                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
629                         return retval;
630         }
631         
632         /* handle unaligned head bytes */
633         if (address % 4)
634         {
635                 int unaligned = 4 - (address % 4);
636                 
637                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
638                         return retval;
639                 
640                 buffer += unaligned;
641                 address += unaligned;
642                 size -= unaligned;
643         }
644                 
645         /* handle aligned words */
646         if (size >= 4)
647         {
648                 int aligned = size - (size % 4);
649         
650                 /* use bulk writes above a certain limit. This may have to be changed */
651                 if (aligned > 128)
652                 {
653                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
654                                 return retval;
655                 }
656                 else
657                 {
658                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
659                                 return retval;
660                 }
661                 
662                 buffer += aligned;
663                 address += aligned;
664                 size -= aligned;
665         }
666         
667         /* handle tail writes of less than 4 bytes */
668         if (size > 0)
669         {
670                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
671                         return retval;
672         }
673         
674         return ERROR_OK;
675 }
676
677 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
678 {
679         int retval;
680         
681         DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
682         
683         /* handle reads of less than 4 byte */
684         if (size < 4)
685         {
686                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
687                         return retval;
688         }
689         
690         /* handle unaligned head bytes */
691         if (address % 4)
692         {
693                 int unaligned = 4 - (address % 4);
694                 
695                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
696                         return retval;
697                 
698                 buffer += unaligned;
699                 address += unaligned;
700                 size -= unaligned;
701         }
702                 
703         /* handle aligned words */
704         if (size >= 4)
705         {
706                 int aligned = size - (size % 4);
707         
708                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
709                         return retval;
710                 
711                 buffer += aligned;
712                 address += aligned;
713                 size -= aligned;
714         }
715         
716         /* handle tail writes of less than 4 bytes */
717         if (size > 0)
718         {
719                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
720                         return retval;
721         }
722         
723         return ERROR_OK;
724 }
725
726 void target_read_u32(struct target_s *target, u32 address, u32 *value)
727 {
728         u8 value_buf[4];
729         
730         target->type->read_memory(target, address, 4, 1, value_buf);
731         
732         *value = target_buffer_get_u32(target, value_buf);
733 }
734
735 void target_read_u16(struct target_s *target, u32 address, u16 *value)
736 {
737         u8 value_buf[2];
738         
739         target->type->read_memory(target, address, 2, 1, value_buf);
740         
741         *value = target_buffer_get_u16(target, value_buf);
742 }
743
744 void target_read_u8(struct target_s *target, u32 address, u8 *value)
745 {
746         target->type->read_memory(target, address, 1, 1, value);
747 }
748
749 void target_write_u32(struct target_s *target, u32 address, u32 value)
750 {
751         u8 value_buf[4];
752
753         target_buffer_set_u32(target, value_buf, value);        
754         target->type->write_memory(target, address, 4, 1, value_buf);
755 }
756
757 void target_write_u16(struct target_s *target, u32 address, u16 value)
758 {
759         u8 value_buf[2];
760         
761         target_buffer_set_u16(target, value_buf, value);        
762         target->type->write_memory(target, address, 2, 1, value_buf);
763 }
764
765 void target_write_u8(struct target_s *target, u32 address, u8 value)
766 {
767         target->type->read_memory(target, address, 1, 1, &value);
768 }
769
770 int target_register_user_commands(struct command_context_s *cmd_ctx)
771 {
772         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
773         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
774         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt");
775         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
776         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
777         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction");
778         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
779         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
780
781         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
782         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
783         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
784         
785         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value>");
786         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value>");
787         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value>");
788         
789         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
790         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
791         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
792         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
793         
794         register_command(cmd_ctx,  NULL, "load_binary", handle_load_binary_command, COMMAND_EXEC, "load binary <file> <address>");
795         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_binary_command, COMMAND_EXEC, "dump binary <file> <address> <size>");
796         
797         return ERROR_OK;
798 }
799
800 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
801 {
802         target_t *target = targets;
803         int count = 0;
804         
805         if (argc == 1)
806         {
807                 int num = strtoul(args[0], NULL, 0);
808                 
809                 while (target)
810                 {
811                         count++;
812                         target = target->next;
813                 }
814                 
815                 if (num < count)
816                         cmd_ctx->current_target = num;
817                 else
818                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
819                         
820                 return ERROR_OK;
821         }
822                 
823         while (target)
824         {
825                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
826                 target = target->next;
827         }
828         
829         return ERROR_OK;
830 }
831
832 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
833 {
834         int i;
835         int found = 0;
836         
837         if (argc < 3)
838         {
839                 ERROR("target command requires at least three arguments: <type> <endianess> <reset_mode>");
840                 exit(-1);
841         }
842         
843         /* search for the specified target */
844         if (args[0] && (args[0][0] != 0))
845         {
846                 for (i = 0; target_types[i]; i++)
847                 {
848                         if (strcmp(args[0], target_types[i]->name) == 0)
849                         {
850                                 target_t **last_target_p = &targets;
851                                 
852                                 /* register target specific commands */
853                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
854                                 {
855                                         ERROR("couldn't register '%s' commands", args[0]);
856                                         exit(-1);
857                                 }
858
859                                 if (*last_target_p)
860                                 {
861                                         while ((*last_target_p)->next)
862                                                 last_target_p = &((*last_target_p)->next);
863                                         last_target_p = &((*last_target_p)->next);
864                                 }
865
866                                 *last_target_p = malloc(sizeof(target_t));
867                                 
868                                 (*last_target_p)->type = target_types[i];
869                                 
870                                 if (strcmp(args[1], "big") == 0)
871                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
872                                 else if (strcmp(args[1], "little") == 0)
873                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
874                                 else
875                                 {
876                                         ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
877                                         exit(-1);
878                                 }
879                                 
880                                 /* what to do on a target reset */
881                                 if (strcmp(args[2], "reset_halt") == 0)
882                                         (*last_target_p)->reset_mode = RESET_HALT;
883                                 else if (strcmp(args[2], "reset_run") == 0)
884                                         (*last_target_p)->reset_mode = RESET_RUN;
885                                 else if (strcmp(args[2], "reset_init") == 0)
886                                         (*last_target_p)->reset_mode = RESET_INIT;
887                                 else if (strcmp(args[2], "run_and_halt") == 0)
888                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
889                                 else if (strcmp(args[2], "run_and_init") == 0)
890                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
891                                 else
892                                 {
893                                         ERROR("unknown target startup mode %s", args[2]);
894                                         exit(-1);
895                                 }
896                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
897                                 
898                                 (*last_target_p)->reset_script = NULL;
899                                 (*last_target_p)->post_halt_script = NULL;
900                                 (*last_target_p)->pre_resume_script = NULL;
901                                 
902                                 (*last_target_p)->working_area = 0x0;
903                                 (*last_target_p)->working_area_size = 0x0;
904                                 (*last_target_p)->working_areas = NULL;
905                                 (*last_target_p)->backup_working_area = 0;
906                                 
907                                 (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
908                                 (*last_target_p)->state = TARGET_UNKNOWN;
909                                 (*last_target_p)->reg_cache = NULL;
910                                 (*last_target_p)->breakpoints = NULL;
911                                 (*last_target_p)->watchpoints = NULL;
912                                 (*last_target_p)->next = NULL;
913                                 (*last_target_p)->arch_info = NULL;
914                                 
915                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
916                                 
917                                 found = 1;
918                                 break;
919                         }
920                 }
921         }
922         
923         /* no matching target found */
924         if (!found)
925         {
926                 ERROR("target '%s' not found", args[0]);
927                 exit(-1);
928         }
929
930         return ERROR_OK;
931 }
932
933 /* usage: target_script <target#> <event> <script_file> */
934 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
935 {
936         target_t *target = NULL;
937         
938         if (argc < 3)
939         {
940                 ERROR("incomplete target_script command");
941                 exit(-1);
942         }
943         
944         target = get_target_by_num(strtoul(args[0], NULL, 0));
945         
946         if (!target)
947         {
948                 ERROR("target number '%s' not defined", args[0]);
949                 exit(-1);
950         }
951         
952         if (strcmp(args[1], "reset") == 0)
953         {
954                 if (target->reset_script)
955                         free(target->reset_script);
956                 target->reset_script = strdup(args[2]);
957         }
958         else if (strcmp(args[1], "post_halt") == 0)
959         {
960                 if (target->post_halt_script)
961                         free(target->post_halt_script);
962                 target->post_halt_script = strdup(args[2]);
963         }
964         else if (strcmp(args[1], "pre_resume") == 0)
965         {
966                 if (target->pre_resume_script)
967                         free(target->pre_resume_script);
968                 target->pre_resume_script = strdup(args[2]);
969         }
970         else
971         {
972                 ERROR("unknown event type: '%s", args[1]);
973                 exit(-1);       
974         }
975         
976         return ERROR_OK;
977 }
978
979 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
980 {
981         target_t *target = NULL;
982         
983         if (argc < 2)
984         {
985                 ERROR("incomplete run_and_halt_time command");
986                 exit(-1);
987         }
988         
989         target = get_target_by_num(strtoul(args[0], NULL, 0));
990         
991         if (!target)
992         {
993                 ERROR("target number '%s' not defined", args[0]);
994                 exit(-1);
995         }
996         
997         target->run_and_halt_time = strtoul(args[1], NULL, 0);
998         
999         return ERROR_OK;
1000 }
1001
1002 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1003 {
1004         target_t *target = NULL;
1005         
1006         if (argc < 4)
1007         {
1008                 ERROR("incomplete working_area command. usage: working_area <target#> <address> <size> <'backup'|'nobackup'>");
1009                 exit(-1);
1010         }
1011         
1012         target = get_target_by_num(strtoul(args[0], NULL, 0));
1013         
1014         if (!target)
1015         {
1016                 ERROR("target number '%s' not defined", args[0]);
1017                 exit(-1);
1018         }
1019         
1020         target->working_area = strtoul(args[1], NULL, 0);
1021         target->working_area_size = strtoul(args[2], NULL, 0);
1022         
1023         if (strcmp(args[3], "backup") == 0)
1024         {
1025                 target->backup_working_area = 1;
1026         }
1027         else if (strcmp(args[3], "nobackup") == 0)
1028         {
1029                 target->backup_working_area = 0;
1030         }
1031         else
1032         {
1033                 ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1034                 exit(-1);
1035         }
1036         
1037         return ERROR_OK;
1038 }
1039
1040
1041 /* process target state changes */
1042 int handle_target(void *priv)
1043 {
1044         int retval;
1045         target_t *target = targets;
1046         
1047         while (target)
1048         {
1049                 /* only poll if target isn't already halted */
1050                 if (target->state != TARGET_HALTED)
1051                 {
1052                         if (target_continous_poll)
1053                                 if ((retval = target->type->poll(target)) < 0)
1054                                 {
1055                                         ERROR("couldn't poll target, exiting");
1056                                         exit(-1);
1057                                 }
1058                 }
1059         
1060                 target = target->next;
1061         }
1062         
1063         return ERROR_OK;
1064 }
1065
1066 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1067 {
1068         target_t *target;
1069         reg_t *reg = NULL;
1070         int count = 0;
1071         char *value;
1072         
1073         DEBUG("");
1074         
1075         target = get_current_target(cmd_ctx);
1076         
1077         /* list all available registers for the current target */
1078         if (argc == 0)
1079         {
1080                 reg_cache_t *cache = target->reg_cache;
1081                 
1082                 count = 0;
1083                 while(cache)
1084                 {
1085                         int i;
1086                         for (i = 0; i < cache->num_regs; i++)
1087                         {
1088                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1089                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1090                                 free(value);
1091                         }
1092                         cache = cache->next;
1093                 }
1094                 
1095                 return ERROR_OK;
1096         }
1097         
1098         /* access a single register by its ordinal number */
1099         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1100         {
1101                 int num = strtoul(args[0], NULL, 0);
1102                 reg_cache_t *cache = target->reg_cache;
1103                 
1104                 count = 0;
1105                 while(cache)
1106                 {
1107                         int i;
1108                         for (i = 0; i < cache->num_regs; i++)
1109                         {
1110                                 if (count++ == num)
1111                                 {
1112                                         reg = &cache->reg_list[i];
1113                                         break;
1114                                 }
1115                         }
1116                         if (reg)
1117                                 break;
1118                         cache = cache->next;
1119                 }
1120                 
1121                 if (!reg)
1122                 {
1123                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1124                         return ERROR_OK;
1125                 }
1126         } else /* access a single register by its name */
1127         {
1128                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1129                 
1130                 if (!reg)
1131                 {
1132                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1133                         return ERROR_OK;
1134                 }
1135         }
1136
1137         /* display a register */
1138         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1139         {
1140                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1141                         reg->valid = 0;
1142                 
1143                 if (reg->valid == 0)
1144                 {
1145                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1146                         if (arch_type == NULL)
1147                         {
1148                                 ERROR("BUG: encountered unregistered arch type");
1149                                 return ERROR_OK;
1150                         }
1151                         arch_type->get(reg);
1152                 }
1153                 value = buf_to_str(reg->value, reg->size, 16);
1154                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1155                 free(value);
1156                 return ERROR_OK;
1157         }
1158         
1159         /* set register value */
1160         if (argc == 2)
1161         {
1162                 u8 *buf = malloc(CEIL(reg->size, 8));
1163                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1164
1165                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1166                 if (arch_type == NULL)
1167                 {
1168                         ERROR("BUG: encountered unregistered arch type");
1169                         return ERROR_OK;
1170                 }
1171                 
1172                 arch_type->set(reg, buf);
1173                 
1174                 value = buf_to_str(reg->value, reg->size, 16);
1175                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1176                 free(value);
1177                 
1178                 free(buf);
1179                 
1180                 return ERROR_OK;
1181         }
1182         
1183         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1184         
1185         return ERROR_OK;
1186 }
1187
1188 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1189 {
1190         target_t *target = get_current_target(cmd_ctx);
1191         char buffer[512];
1192
1193         if (argc == 0)
1194         {
1195                 command_print(cmd_ctx, "target state: %s", target_state_strings[target->type->poll(target)]);
1196                 if (target->state == TARGET_HALTED)
1197                 {
1198                         target->type->arch_state(target, buffer, 512);
1199                         buffer[511] = 0;
1200                         command_print(cmd_ctx, "%s", buffer);
1201                 }
1202         }
1203         else
1204         {
1205                 if (strcmp(args[0], "on") == 0)
1206                 {
1207                         target_continous_poll = 1;
1208                 }
1209                 else if (strcmp(args[0], "off") == 0)
1210                 {
1211                         target_continous_poll = 0;
1212                 }
1213         }
1214         
1215         
1216         return ERROR_OK;
1217 }
1218
1219 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1220 {
1221         target_t *target = get_current_target(cmd_ctx);
1222         struct timeval timeout, now;
1223         
1224         gettimeofday(&timeout, NULL);
1225         timeval_add_time(&timeout, 5, 0);
1226
1227         command_print(cmd_ctx, "waiting for target halted...");
1228
1229         while(target->type->poll(target))
1230         {
1231                 if (target->state == TARGET_HALTED)
1232                 {
1233                         command_print(cmd_ctx, "target halted");
1234                         break;
1235                 }
1236                 target_call_timer_callbacks();
1237                 
1238                 gettimeofday(&now, NULL);
1239                 if ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))
1240                 {
1241                         command_print(cmd_ctx, "timed out while waiting for target halt");
1242                         ERROR("timed out while waiting for target halt");
1243                         break;
1244                 }
1245         }
1246         
1247         return ERROR_OK;
1248 }
1249
1250 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1251 {
1252         int retval;
1253         target_t *target = get_current_target(cmd_ctx);
1254
1255         DEBUG("");
1256         
1257         command_print(cmd_ctx, "requesting target halt...");
1258
1259         if ((retval = target->type->halt(target)) != ERROR_OK)
1260         {       
1261                 switch (retval)
1262                 {
1263                         case ERROR_TARGET_ALREADY_HALTED:
1264                                 command_print(cmd_ctx, "target already halted");
1265                                 break;
1266                         case ERROR_TARGET_TIMEOUT:
1267                                 command_print(cmd_ctx, "target timed out... shutting down");
1268                                 exit(-1);
1269                         default:
1270                                 command_print(cmd_ctx, "unknown error... shutting down");
1271                                 exit(-1);
1272                 }
1273         }
1274         
1275         return ERROR_OK;
1276
1277 }
1278
1279 /* what to do on daemon startup */
1280 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1281 {
1282         if (argc == 1)
1283         {
1284                 if (strcmp(args[0], "attach") == 0)
1285                 {
1286                         startup_mode = DAEMON_ATTACH;
1287                         return ERROR_OK;
1288                 }
1289                 else if (strcmp(args[0], "reset") == 0)
1290                 {
1291                         startup_mode = DAEMON_RESET;
1292                         return ERROR_OK;
1293                 }
1294         }
1295         
1296         WARNING("invalid daemon_startup configuration directive: %s", args[0]);
1297         return ERROR_OK;
1298
1299 }
1300                 
1301 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1302 {
1303         target_t *target = get_current_target(cmd_ctx);
1304         int retval;
1305         
1306         command_print(cmd_ctx, "requesting target halt and executing a soft reset");
1307         
1308         if ((retval = target->type->soft_reset_halt(target)) != ERROR_OK)
1309         {       
1310                 switch (retval)
1311                 {
1312                         case ERROR_TARGET_TIMEOUT:
1313                                 command_print(cmd_ctx, "target timed out... shutting down");
1314                                 exit(-1);
1315                         default:
1316                                 command_print(cmd_ctx, "unknown error... shutting down");
1317                                 exit(-1);
1318                 }
1319         }
1320         
1321         return ERROR_OK;
1322 }
1323
1324 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1325 {
1326         target_t *target = get_current_target(cmd_ctx);
1327         enum target_reset_mode reset_mode = RESET_RUN;
1328         
1329         DEBUG("");
1330         
1331         if (argc >= 1)
1332         {
1333                 if (strcmp("run", args[0]) == 0)
1334                         reset_mode = RESET_RUN;
1335                 else if (strcmp("halt", args[0]) == 0)
1336                         reset_mode = RESET_HALT;
1337                 else if (strcmp("init", args[0]) == 0)
1338                         reset_mode = RESET_INIT;
1339                 else if (strcmp("run_and_halt", args[0]) == 0)
1340                 {
1341                         reset_mode = RESET_RUN_AND_HALT;
1342                         if (argc >= 2)
1343                         {
1344                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1345                         }
1346                 }
1347                 else if (strcmp("run_and_init", args[0]) == 0)
1348                 {
1349                         reset_mode = RESET_RUN_AND_INIT;
1350                         if (argc >= 2)
1351                         {
1352                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1353                         }
1354                 }
1355                 else
1356                 {
1357                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1358                         return ERROR_OK;
1359                 }
1360                 target->reset_mode = reset_mode;
1361         }
1362         
1363         target_process_reset(cmd_ctx);
1364         
1365         return ERROR_OK;
1366 }
1367
1368 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1369 {
1370         int retval;
1371         target_t *target = get_current_target(cmd_ctx);
1372         
1373         DEBUG("");
1374         
1375         if (argc == 0)
1376                 retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1377         else if (argc == 1)
1378                 retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1379         else
1380         {
1381                 command_print(cmd_ctx, "usage: resume [address]");
1382                 return ERROR_OK;
1383         }
1384         
1385         if (retval != ERROR_OK)
1386         {       
1387                 switch (retval)
1388                 {
1389                         case ERROR_TARGET_NOT_HALTED:
1390                                 command_print(cmd_ctx, "target not halted");
1391                                 break;
1392                         default:
1393                                 command_print(cmd_ctx, "unknown error... shutting down");
1394                                 exit(-1);
1395                 }
1396         }
1397
1398         return ERROR_OK;
1399 }
1400
1401 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1402 {
1403         target_t *target = get_current_target(cmd_ctx);
1404         
1405         DEBUG("");
1406         
1407         if (argc == 0)
1408                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1409
1410         if (argc == 1)
1411                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1412         
1413         return ERROR_OK;
1414 }
1415
1416 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1417 {
1418         int count = 1;
1419         int size = 4;
1420         u32 address = 0;
1421         int i;
1422
1423         char output[128];
1424         int output_len;
1425
1426         int retval;
1427
1428         u8 *buffer;
1429         target_t *target = get_current_target(cmd_ctx);
1430
1431         if (argc < 1)
1432                 return ERROR_OK;
1433
1434         if (argc == 2)
1435                 count = strtoul(args[1], NULL, 0);
1436
1437         address = strtoul(args[0], NULL, 0);
1438         
1439
1440         switch (cmd[2])
1441         {
1442                 case 'w':
1443                         size = 4;
1444                         break;
1445                 case 'h':
1446                         size = 2;
1447                         break;
1448                 case 'b':
1449                         size = 1;
1450                         break;
1451                 default:
1452                         return ERROR_OK;
1453         }
1454
1455         buffer = calloc(count, size);
1456         if ((retval  = target->type->read_memory(target, address, size, count, buffer)) != ERROR_OK)
1457         {
1458                 switch (retval)
1459                 {
1460                         case ERROR_TARGET_UNALIGNED_ACCESS:
1461                                 command_print(cmd_ctx, "error: address not aligned");
1462                                 break;
1463                         case ERROR_TARGET_NOT_HALTED:
1464                                 command_print(cmd_ctx, "error: target must be halted for memory accesses");
1465                                 break;                  
1466                         case ERROR_TARGET_DATA_ABORT:
1467                                 command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1468                                 break;
1469                         default:
1470                                 command_print(cmd_ctx, "error: unknown error");
1471                                 break;
1472                 }
1473                 return ERROR_OK;
1474         }
1475
1476         output_len = 0;
1477
1478         for (i = 0; i < count; i++)
1479         {
1480                 if (i%8 == 0)
1481                         output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1482                 
1483                 switch (size)
1484                 {
1485                         case 4:
1486                                 output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1487                                 break;
1488                         case 2:
1489                                 output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1490                                 break;
1491                         case 1:
1492                                 output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1493                                 break;
1494                 }
1495
1496                 if ((i%8 == 7) || (i == count - 1))
1497                 {
1498                         command_print(cmd_ctx, output);
1499                         output_len = 0;
1500                 }
1501         }
1502
1503         free(buffer);
1504         
1505         return ERROR_OK;
1506 }
1507
1508 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1509 {
1510         u32 address = 0;
1511         u32 value = 0;
1512         int retval;
1513         target_t *target = get_current_target(cmd_ctx);
1514         u8 value_buf[4];
1515
1516         if (argc < 2)
1517                 return ERROR_OK;
1518
1519         address = strtoul(args[0], NULL, 0);
1520         value = strtoul(args[1], NULL, 0);
1521
1522         switch (cmd[2])
1523         {
1524                 case 'w':
1525                         target_buffer_set_u32(target, value_buf, value);
1526                         retval = target->type->write_memory(target, address, 4, 1, value_buf);
1527                         break;
1528                 case 'h':
1529                         target_buffer_set_u16(target, value_buf, value);
1530                         retval = target->type->write_memory(target, address, 2, 1, value_buf);
1531                         break;
1532                 case 'b':
1533                         value_buf[0] = value;
1534                         retval = target->type->write_memory(target, address, 1, 1, value_buf);
1535                         break;
1536                 default:
1537                         return ERROR_OK;
1538         }
1539
1540         switch (retval)
1541         {
1542                 case ERROR_TARGET_UNALIGNED_ACCESS:
1543                         command_print(cmd_ctx, "error: address not aligned");
1544                         break;
1545                 case ERROR_TARGET_DATA_ABORT:
1546                         command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1547                         break;
1548                 case ERROR_TARGET_NOT_HALTED:
1549                         command_print(cmd_ctx, "error: target must be halted for memory accesses");
1550                         break;
1551                 case ERROR_OK:
1552                         break;
1553                 default:
1554                         command_print(cmd_ctx, "error: unknown error");
1555                         break;
1556         }
1557
1558         return ERROR_OK;
1559
1560 }
1561
1562 int handle_load_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1563 {
1564         FILE *binary;
1565         u32 address;
1566         struct stat binary_stat;
1567         u32 binary_size;
1568
1569         u8 *buffer;
1570         u32 buf_cnt;
1571         
1572         struct timeval start, end, duration;
1573                 
1574         target_t *target = get_current_target(cmd_ctx);
1575
1576         if (argc != 2)
1577         {
1578                 command_print(cmd_ctx, "usage: load_binary <filename> <address>");
1579                 return ERROR_OK;
1580         }
1581
1582         address = strtoul(args[1], NULL, 0);
1583
1584         if (stat(args[0], &binary_stat) == -1)
1585         {
1586                 ERROR("couldn't stat() %s: %s", args[0], strerror(errno));
1587                 command_print(cmd_ctx, "error accessing file %s", args[0]);
1588                 return ERROR_OK;
1589         }
1590
1591         if (!(binary = fopen(args[0], "rb")))
1592         {
1593                 ERROR("couldn't open %s: %s", args[0], strerror(errno));
1594                 command_print(cmd_ctx, "error accessing file %s", args[0]);
1595                 return ERROR_OK;
1596         }
1597         
1598         buffer = malloc(128 * 1024);
1599
1600         gettimeofday(&start, NULL);     
1601
1602         binary_size = binary_stat.st_size;
1603         while (binary_size > 0)
1604         {
1605                 buf_cnt = fread(buffer, 1, 128*1024, binary);
1606                 target_write_buffer(target, address, buf_cnt, buffer);
1607                 address += buf_cnt;
1608                 binary_size -= buf_cnt;
1609         }
1610
1611         gettimeofday(&end, NULL);       
1612
1613         free(buffer);
1614         
1615         timeval_subtract(&duration, &end, &start);
1616         command_print(cmd_ctx, "downloaded %lli byte in %is %ius", (long long) binary_stat.st_size, duration.tv_sec, duration.tv_usec);
1617         
1618         fclose(binary);
1619
1620         return ERROR_OK;
1621
1622 }
1623
1624 int handle_dump_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1625 {
1626         FILE *binary;
1627         u32 address;
1628         u32 size;
1629         u8 buffer[560];
1630         
1631         struct timeval start, end, duration;
1632         
1633         target_t *target = get_current_target(cmd_ctx);
1634
1635         if (argc != 3)
1636         {
1637                 command_print(cmd_ctx, "usage: dump_binary <filename> <address> <size>");
1638                 return ERROR_OK;
1639         }
1640
1641         address = strtoul(args[1], NULL, 0);
1642         size = strtoul(args[2], NULL, 0);
1643
1644         if (!(binary = fopen(args[0], "wb")))
1645         {
1646                 ERROR("couldn't open %s for writing: %s", args[0], strerror(errno));
1647                 command_print(cmd_ctx, "error accessing file %s", args[0]);
1648                 return ERROR_OK;
1649         }
1650
1651         if ((address & 3) || (size & 3))
1652         {
1653                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
1654                 return ERROR_OK;
1655         }
1656
1657         gettimeofday(&start, NULL);     
1658         
1659         while (size > 0)
1660         {
1661                 u32 this_run_size = (size > 560) ? 560 : size;
1662                 target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
1663                 fwrite(buffer, 1, this_run_size, binary);
1664                 size -= this_run_size;
1665                 address += this_run_size;
1666         }
1667
1668         fclose(binary);
1669
1670         gettimeofday(&end, NULL);       
1671
1672         timeval_subtract(&duration, &end, &start);
1673         command_print(cmd_ctx, "dumped %i byte in %is %ius", strtoul(args[2], NULL, 0), duration.tv_sec, duration.tv_usec);
1674         
1675         return ERROR_OK;
1676
1677 }
1678
1679 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1680 {
1681         int retval;
1682         target_t *target = get_current_target(cmd_ctx);
1683
1684         if (argc == 0)
1685         {
1686                 breakpoint_t *breakpoint = target->breakpoints;
1687
1688                 while (breakpoint)
1689                 {
1690                         if (breakpoint->type == BKPT_SOFT)
1691                         {
1692                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
1693                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
1694                                 free(buf);
1695                         }
1696                         else
1697                         {
1698                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
1699                         }
1700                         breakpoint = breakpoint->next;
1701                 }
1702         }
1703         else if (argc >= 2)
1704         {
1705                 int hw = BKPT_SOFT;
1706                 u32 length = 0;
1707
1708                 length = strtoul(args[1], NULL, 0);
1709                 
1710                 if (argc >= 3)
1711                         if (strcmp(args[2], "hw") == 0)
1712                                 hw = BKPT_HARD;
1713
1714                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
1715                 {
1716                         switch (retval)
1717                         {
1718                                 case ERROR_TARGET_NOT_HALTED:
1719                                         command_print(cmd_ctx, "target must be halted to set breakpoints");
1720                                         break;
1721                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
1722                                         command_print(cmd_ctx, "no more breakpoints available");
1723                                         break;
1724                                 default:
1725                                         command_print(cmd_ctx, "unknown error, breakpoint not set");
1726                                         break;
1727                         }
1728                 }
1729                 else
1730                 {
1731                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
1732                 }
1733         }
1734         else
1735         {
1736                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
1737         }
1738
1739         return ERROR_OK;
1740 }
1741
1742 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1743 {
1744         target_t *target = get_current_target(cmd_ctx);
1745
1746         if (argc > 0)
1747                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
1748
1749         return ERROR_OK;
1750 }
1751
1752 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1753 {
1754         target_t *target = get_current_target(cmd_ctx);
1755
1756         if (argc == 0)
1757         {
1758                 watchpoint_t *watchpoint = target->watchpoints;
1759
1760                 while (watchpoint)
1761                 {
1762                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
1763                         watchpoint = watchpoint->next;
1764                 }
1765         } 
1766         else if (argc >= 2)
1767         {
1768                 enum watchpoint_rw type = WPT_ACCESS;
1769                 u32 data_value = 0x0;
1770                 u32 data_mask = 0xffffffff;
1771                 
1772                 if (argc >= 3)
1773                 {
1774                         switch(args[2][0])
1775                         {
1776                                 case 'r':
1777                                         type = WPT_READ;
1778                                         break;
1779                                 case 'w':
1780                                         type = WPT_WRITE;
1781                                         break;
1782                                 case 'a':
1783                                         type = WPT_ACCESS;
1784                                         break;
1785                                 default:
1786                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
1787                                         return ERROR_OK;
1788                         }
1789                 }
1790                 if (argc >= 4)
1791                 {
1792                         data_value = strtoul(args[3], NULL, 0);
1793                 }
1794                 if (argc >= 5)
1795                 {
1796                         data_mask = strtoul(args[4], NULL, 0);
1797                 }
1798                 watchpoint_add(target, strtoul(args[0], NULL, 0), strtoul(args[1], NULL, 0), type, data_value, data_mask);
1799         }
1800         else
1801         {
1802                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
1803         }
1804                 
1805         return ERROR_OK;
1806 }
1807
1808 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1809 {
1810         target_t *target = get_current_target(cmd_ctx);
1811
1812         if (argc > 0)
1813                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
1814         
1815         return ERROR_OK;
1816 }
1817