]> git.gag.com Git - fw/openocd/blob - src/target/target.c
- added "init" command. "init" and "reset" at end of startup script is equivalent
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26 #include "target_request.h"
27
28 #include "log.h"
29 #include "configuration.h"
30 #include "binarybuffer.h"
31 #include "jtag.h"
32
33 #include <string.h>
34 #include <stdlib.h>
35 #include <inttypes.h>
36
37 #include <sys/types.h>
38 #include <sys/stat.h>
39 #include <unistd.h>
40 #include <errno.h>
41
42 #include <sys/time.h>
43 #include <time.h>
44
45 #include <time_support.h>
46
47 #include <fileio.h>
48 #include <image.h>
49
50 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
51
52
53 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55
56 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79
80 /* targets
81  */
82 extern target_type_t arm7tdmi_target;
83 extern target_type_t arm720t_target;
84 extern target_type_t arm9tdmi_target;
85 extern target_type_t arm920t_target;
86 extern target_type_t arm966e_target;
87 extern target_type_t arm926ejs_target;
88 extern target_type_t feroceon_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t arm11_target;
92
93 target_type_t *target_types[] =
94 {
95         &arm7tdmi_target,
96         &arm9tdmi_target,
97         &arm920t_target,
98         &arm720t_target,
99         &arm966e_target,
100         &arm926ejs_target,
101         &feroceon_target,
102         &xscale_target,
103         &cortexm3_target,
104         &arm11_target,
105         NULL,
106 };
107
108 target_t *targets = NULL;
109 target_event_callback_t *target_event_callbacks = NULL;
110 target_timer_callback_t *target_timer_callbacks = NULL;
111
112 char *target_state_strings[] =
113 {
114         "unknown",
115         "running",
116         "halted",
117         "reset",
118         "debug_running",
119 };
120
121 char *target_debug_reason_strings[] =
122 {
123         "debug request", "breakpoint", "watchpoint",
124         "watchpoint and breakpoint", "single step",
125         "target not halted", "undefined"
126 };
127
128 char *target_endianess_strings[] =
129 {
130         "big endian",
131         "little endian",
132 };
133
134 static int target_continous_poll = 1;
135
136 /* read a u32 from a buffer in target memory endianness */
137 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
138 {
139         if (target->endianness == TARGET_LITTLE_ENDIAN)
140                 return le_to_h_u32(buffer);
141         else
142                 return be_to_h_u32(buffer);
143 }
144
145 /* read a u16 from a buffer in target memory endianness */
146 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
147 {
148         if (target->endianness == TARGET_LITTLE_ENDIAN)
149                 return le_to_h_u16(buffer);
150         else
151                 return be_to_h_u16(buffer);
152 }
153
154 /* write a u32 to a buffer in target memory endianness */
155 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
156 {
157         if (target->endianness == TARGET_LITTLE_ENDIAN)
158                 h_u32_to_le(buffer, value);
159         else
160                 h_u32_to_be(buffer, value);
161 }
162
163 /* write a u16 to a buffer in target memory endianness */
164 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
165 {
166         if (target->endianness == TARGET_LITTLE_ENDIAN)
167                 h_u16_to_le(buffer, value);
168         else
169                 h_u16_to_be(buffer, value);
170 }
171
172 /* returns a pointer to the n-th configured target */
173 target_t* get_target_by_num(int num)
174 {
175         target_t *target = targets;
176         int i = 0;
177
178         while (target)
179         {
180                 if (num == i)
181                         return target;
182                 target = target->next;
183                 i++;
184         }
185
186         return NULL;
187 }
188
189 int get_num_by_target(target_t *query_target)
190 {
191         target_t *target = targets;
192         int i = 0;      
193         
194         while (target)
195         {
196                 if (target == query_target)
197                         return i;
198                 target = target->next;
199                 i++;
200         }
201         
202         return -1;
203 }
204
205 target_t* get_current_target(command_context_t *cmd_ctx)
206 {
207         target_t *target = get_target_by_num(cmd_ctx->current_target);
208         
209         if (target == NULL)
210         {
211                 LOG_ERROR("BUG: current_target out of bounds");
212                 exit(-1);
213         }
214         
215         return target;
216 }
217
218 /* Process target initialization, when target entered debug out of reset
219  * the handler is unregistered at the end of this function, so it's only called once
220  */
221 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
222 {
223         FILE *script;
224         struct command_context_s *cmd_ctx = priv;
225         
226         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
227         {
228                 target_unregister_event_callback(target_init_handler, priv);
229
230                 script = open_file_from_path(target->reset_script, "r");
231                 if (!script)
232                 {
233                         LOG_ERROR("couldn't open script file %s", target->reset_script);
234                                 return ERROR_OK;
235                 }
236
237                 LOG_INFO("executing reset script '%s'", target->reset_script);
238                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
239                 fclose(script);
240
241                 jtag_execute_queue();
242         }
243         
244         return ERROR_OK;
245 }
246
247 int target_run_and_halt_handler(void *priv)
248 {
249         target_t *target = priv;
250         
251         target->type->halt(target);
252         
253         return ERROR_OK;
254 }
255
256 int target_process_reset(struct command_context_s *cmd_ctx)
257 {
258         int retval = ERROR_OK;
259         target_t *target;
260         struct timeval timeout, now;
261
262         jtag->speed(jtag_speed);
263
264         if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
265                 return retval;
266         
267
268         /* prepare reset_halt where necessary */
269         target = targets;
270         while (target)
271         {
272                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
273                 {
274                         switch (target->reset_mode)
275                         {
276                                 case RESET_HALT:
277                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
278                                         target->reset_mode = RESET_RUN_AND_HALT;
279                                         break;
280                                 case RESET_INIT:
281                                         command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
282                                         target->reset_mode = RESET_RUN_AND_INIT;
283                                         break;
284                                 default:
285                                         break;
286                         } 
287                 }
288                 target = target->next;
289         }
290         
291         target = targets;
292         while (target)
293         {
294                 /* we have no idea what state the target is in, so we
295                  * have to drop working areas
296                  */
297                 target_free_all_working_areas_restore(target, 0);
298                 target->type->assert_reset(target);
299                 target = target->next;
300         }
301         if ((retval = jtag_execute_queue()) != ERROR_OK)
302         {
303                 LOG_WARNING("JTAG communication failed asserting reset.");
304                 retval = ERROR_OK;
305         }
306         
307         /* request target halt if necessary, and schedule further action */
308         target = targets;
309         while (target)
310         {
311                 switch (target->reset_mode)
312                 {
313                         case RESET_RUN:
314                                 /* nothing to do if target just wants to be run */
315                                 break;
316                         case RESET_RUN_AND_HALT:
317                                 /* schedule halt */
318                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
319                                 break;
320                         case RESET_RUN_AND_INIT:
321                                 /* schedule halt */
322                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
323                                 target_register_event_callback(target_init_handler, cmd_ctx);
324                                 break;
325                         case RESET_HALT:
326                                 target->type->halt(target);
327                                 break;
328                         case RESET_INIT:
329                                 target->type->halt(target);
330                                 target_register_event_callback(target_init_handler, cmd_ctx);
331                                 break;
332                         default:
333                                 LOG_ERROR("BUG: unknown target->reset_mode");
334                 }
335                 target = target->next;
336         }
337         
338         if ((retval = jtag_execute_queue()) != ERROR_OK)
339         {
340                 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
341                 retval = ERROR_OK;              
342         }
343         
344         target = targets;
345         while (target)
346         {
347                 target->type->deassert_reset(target);
348                 target = target->next;
349         }
350         
351         if ((retval = jtag_execute_queue()) != ERROR_OK)
352         {
353                 LOG_WARNING("JTAG communication failed while deasserting reset.");
354                 retval = ERROR_OK;
355         }
356         
357         LOG_DEBUG("Waiting for halted stated as approperiate");
358         
359         /* Wait for reset to complete, maximum 5 seconds. */    
360         gettimeofday(&timeout, NULL);
361         timeval_add_time(&timeout, 5, 0);
362         for(;;)
363         {
364                 gettimeofday(&now, NULL);
365                 
366                 target_call_timer_callbacks_now();
367                 
368                 target = targets;
369                 while (target)
370                 {
371                         LOG_DEBUG("Polling target");
372                         target->type->poll(target);
373                         if ((target->reset_mode == RESET_RUN_AND_INIT) || 
374                                         (target->reset_mode == RESET_RUN_AND_HALT) ||
375                                         (target->reset_mode == RESET_HALT) ||
376                                         (target->reset_mode == RESET_INIT))
377                         {
378                                 if (target->state != TARGET_HALTED)
379                                 {
380                                         if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
381                                         {
382                                                 LOG_USER("Timed out waiting for halt after reset");
383                                                 goto done;
384                                         }
385                                         /* this will send alive messages on e.g. GDB remote protocol. */
386                                         usleep(500*1000); 
387                                         LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/ 
388                                         goto again;
389                                 }
390                         }
391                         target = target->next;
392                 }
393                 /* All targets we're waiting for are halted */
394                 break;
395                 
396                 again:;
397         }
398         done:
399         
400         
401         /* We want any events to be processed before the prompt */
402         target_call_timer_callbacks_now();
403
404         /* if we timed out we need to unregister these handlers */
405         target = targets;
406         while (target)
407         {
408                 target_unregister_timer_callback(target_run_and_halt_handler, target);
409                 target = target->next;
410         }
411         target_unregister_event_callback(target_init_handler, cmd_ctx);
412                                 
413         
414         jtag->speed(jtag_speed_post_reset);
415         
416         return retval;
417 }
418
419 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
420 {
421         *physical = virtual;
422         return ERROR_OK;
423 }
424
425 static int default_mmu(struct target_s *target, int *enabled)
426 {
427         *enabled = 0;
428         return ERROR_OK;
429 }
430
431 int target_init(struct command_context_s *cmd_ctx)
432 {
433         target_t *target = targets;
434         
435         while (target)
436         {
437                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
438                 {
439                         LOG_ERROR("target '%s' init failed", target->type->name);
440                         exit(-1);
441                 }
442                 
443                 /* Set up default functions if none are provided by target */
444                 if (target->type->virt2phys == NULL)
445                 {
446                         target->type->virt2phys = default_virt2phys;
447                 }
448                 if (target->type->mmu == NULL)
449                 {
450                         target->type->mmu = default_mmu;
451                 }
452                 target = target->next;
453         }
454         
455         if (targets)
456         {
457                 target_register_user_commands(cmd_ctx);
458                 target_register_timer_callback(handle_target, 100, 1, NULL);
459         }
460                 
461         return ERROR_OK;
462 }
463
464 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
465 {
466         target_event_callback_t **callbacks_p = &target_event_callbacks;
467         
468         if (callback == NULL)
469         {
470                 return ERROR_INVALID_ARGUMENTS;
471         }
472         
473         if (*callbacks_p)
474         {
475                 while ((*callbacks_p)->next)
476                         callbacks_p = &((*callbacks_p)->next);
477                 callbacks_p = &((*callbacks_p)->next);
478         }
479         
480         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
481         (*callbacks_p)->callback = callback;
482         (*callbacks_p)->priv = priv;
483         (*callbacks_p)->next = NULL;
484         
485         return ERROR_OK;
486 }
487
488 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
489 {
490         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
491         struct timeval now;
492         
493         if (callback == NULL)
494         {
495                 return ERROR_INVALID_ARGUMENTS;
496         }
497         
498         if (*callbacks_p)
499         {
500                 while ((*callbacks_p)->next)
501                         callbacks_p = &((*callbacks_p)->next);
502                 callbacks_p = &((*callbacks_p)->next);
503         }
504         
505         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
506         (*callbacks_p)->callback = callback;
507         (*callbacks_p)->periodic = periodic;
508         (*callbacks_p)->time_ms = time_ms;
509         
510         gettimeofday(&now, NULL);
511         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
512         time_ms -= (time_ms % 1000);
513         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
514         if ((*callbacks_p)->when.tv_usec > 1000000)
515         {
516                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
517                 (*callbacks_p)->when.tv_sec += 1;
518         }
519         
520         (*callbacks_p)->priv = priv;
521         (*callbacks_p)->next = NULL;
522         
523         return ERROR_OK;
524 }
525
526 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
527 {
528         target_event_callback_t **p = &target_event_callbacks;
529         target_event_callback_t *c = target_event_callbacks;
530         
531         if (callback == NULL)
532         {
533                 return ERROR_INVALID_ARGUMENTS;
534         }
535                 
536         while (c)
537         {
538                 target_event_callback_t *next = c->next;
539                 if ((c->callback == callback) && (c->priv == priv))
540                 {
541                         *p = next;
542                         free(c);
543                         return ERROR_OK;
544                 }
545                 else
546                         p = &(c->next);
547                 c = next;
548         }
549         
550         return ERROR_OK;
551 }
552
553 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
554 {
555         target_timer_callback_t **p = &target_timer_callbacks;
556         target_timer_callback_t *c = target_timer_callbacks;
557         
558         if (callback == NULL)
559         {
560                 return ERROR_INVALID_ARGUMENTS;
561         }
562                 
563         while (c)
564         {
565                 target_timer_callback_t *next = c->next;
566                 if ((c->callback == callback) && (c->priv == priv))
567                 {
568                         *p = next;
569                         free(c);
570                         return ERROR_OK;
571                 }
572                 else
573                         p = &(c->next);
574                 c = next;
575         }
576         
577         return ERROR_OK;
578 }
579
580 int target_call_event_callbacks(target_t *target, enum target_event event)
581 {
582         target_event_callback_t *callback = target_event_callbacks;
583         target_event_callback_t *next_callback;
584         
585         LOG_DEBUG("target event %i", event);
586         
587         while (callback)
588         {
589                 next_callback = callback->next;
590                 callback->callback(target, event, callback->priv);
591                 callback = next_callback;
592         }
593         
594         return ERROR_OK;
595 }
596
597 static int target_call_timer_callbacks_check_time(int checktime)
598 {
599         target_timer_callback_t *callback = target_timer_callbacks;
600         target_timer_callback_t *next_callback;
601         struct timeval now;
602
603         gettimeofday(&now, NULL);
604         
605         while (callback)
606         {
607                 next_callback = callback->next;
608                 
609                 if ((!checktime&&callback->periodic)||
610                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
611                                                 || (now.tv_sec > callback->when.tv_sec)))
612                 {
613                         callback->callback(callback->priv);
614                         if (callback->periodic)
615                         {
616                                 int time_ms = callback->time_ms;
617                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
618                                 time_ms -= (time_ms % 1000);
619                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
620                                 if (callback->when.tv_usec > 1000000)
621                                 {
622                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
623                                         callback->when.tv_sec += 1;
624                                 }
625                         }
626                         else
627                                 target_unregister_timer_callback(callback->callback, callback->priv);
628                 }
629                         
630                 callback = next_callback;
631         }
632         
633         return ERROR_OK;
634 }
635
636 int target_call_timer_callbacks()
637 {
638         return target_call_timer_callbacks_check_time(1);
639 }
640
641 /* invoke periodic callbacks immediately */
642 int target_call_timer_callbacks_now()
643 {
644         return target_call_timer_callbacks(0);
645 }
646
647
648 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
649 {
650         working_area_t *c = target->working_areas;
651         working_area_t *new_wa = NULL;
652         
653         /* Reevaluate working area address based on MMU state*/
654         if (target->working_areas == NULL)
655         {
656                 int retval;
657                 int enabled;
658                 retval = target->type->mmu(target, &enabled);
659                 if (retval != ERROR_OK)
660                 {
661                         return retval;
662                 }
663                 if (enabled)
664                 {
665                         target->working_area = target->working_area_virt;
666                 }
667                 else
668                 {
669                         target->working_area = target->working_area_phys;
670                 }
671         }
672         
673         /* only allocate multiples of 4 byte */
674         if (size % 4)
675         {
676                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
677                 size = CEIL(size, 4);
678         }
679         
680         /* see if there's already a matching working area */
681         while (c)
682         {
683                 if ((c->free) && (c->size == size))
684                 {
685                         new_wa = c;
686                         break;
687                 }
688                 c = c->next;
689         }
690         
691         /* if not, allocate a new one */
692         if (!new_wa)
693         {
694                 working_area_t **p = &target->working_areas;
695                 u32 first_free = target->working_area;
696                 u32 free_size = target->working_area_size;
697                 
698                 LOG_DEBUG("allocating new working area");
699                 
700                 c = target->working_areas;
701                 while (c)
702                 {
703                         first_free += c->size;
704                         free_size -= c->size;
705                         p = &c->next;
706                         c = c->next;
707                 }
708                 
709                 if (free_size < size)
710                 {
711                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
712                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
713                 }
714                 
715                 new_wa = malloc(sizeof(working_area_t));
716                 new_wa->next = NULL;
717                 new_wa->size = size;
718                 new_wa->address = first_free;
719                 
720                 if (target->backup_working_area)
721                 {
722                         new_wa->backup = malloc(new_wa->size);
723                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
724                 }
725                 else
726                 {
727                         new_wa->backup = NULL;
728                 }
729                 
730                 /* put new entry in list */
731                 *p = new_wa;
732         }
733         
734         /* mark as used, and return the new (reused) area */
735         new_wa->free = 0;
736         *area = new_wa;
737         
738         /* user pointer */
739         new_wa->user = area;
740         
741         return ERROR_OK;
742 }
743
744 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
745 {
746         if (area->free)
747                 return ERROR_OK;
748         
749         if (restore&&target->backup_working_area)
750                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
751         
752         area->free = 1;
753         
754         /* mark user pointer invalid */
755         *area->user = NULL;
756         area->user = NULL;
757         
758         return ERROR_OK;
759 }
760
761 int target_free_working_area(struct target_s *target, working_area_t *area)
762 {
763         return target_free_working_area_restore(target, area, 1);
764 }
765
766 int target_free_all_working_areas_restore(struct target_s *target, int restore)
767 {
768         working_area_t *c = target->working_areas;
769
770         while (c)
771         {
772                 working_area_t *next = c->next;
773                 target_free_working_area_restore(target, c, restore);
774                 
775                 if (c->backup)
776                         free(c->backup);
777                 
778                 free(c);
779                 
780                 c = next;
781         }
782         
783         target->working_areas = NULL;
784         
785         return ERROR_OK;
786 }
787
788 int target_free_all_working_areas(struct target_s *target)
789 {
790         return target_free_all_working_areas_restore(target, 1); 
791 }
792
793 int target_register_commands(struct command_context_s *cmd_ctx)
794 {
795         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
796         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
797         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
798         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
799         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
800         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
801         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
802
803         return ERROR_OK;
804 }
805
806 int target_arch_state(struct target_s *target)
807 {
808         int retval;
809         if (target==NULL)
810         {
811                 LOG_USER("No target has been configured");
812                 return ERROR_OK;
813         }
814         
815         LOG_USER("target state: %s", target_state_strings[target->state]);
816         
817         if (target->state!=TARGET_HALTED)
818                 return ERROR_OK;
819         
820         retval=target->type->arch_state(target);
821         return retval;
822 }
823
824 /* Single aligned words are guaranteed to use 16 or 32 bit access 
825  * mode respectively, otherwise data is handled as quickly as 
826  * possible
827  */
828 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
829 {
830         int retval;
831         
832         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
833         
834         if (((address % 2) == 0) && (size == 2))
835         {
836                 return target->type->write_memory(target, address, 2, 1, buffer);
837         }
838         
839         /* handle unaligned head bytes */
840         if (address % 4)
841         {
842                 int unaligned = 4 - (address % 4);
843                 
844                 if (unaligned > size)
845                         unaligned = size;
846
847                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
848                         return retval;
849                 
850                 buffer += unaligned;
851                 address += unaligned;
852                 size -= unaligned;
853         }
854                 
855         /* handle aligned words */
856         if (size >= 4)
857         {
858                 int aligned = size - (size % 4);
859         
860                 /* use bulk writes above a certain limit. This may have to be changed */
861                 if (aligned > 128)
862                 {
863                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
864                                 return retval;
865                 }
866                 else
867                 {
868                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
869                                 return retval;
870                 }
871                 
872                 buffer += aligned;
873                 address += aligned;
874                 size -= aligned;
875         }
876         
877         /* handle tail writes of less than 4 bytes */
878         if (size > 0)
879         {
880                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
881                         return retval;
882         }
883         
884         return ERROR_OK;
885 }
886
887
888 /* Single aligned words are guaranteed to use 16 or 32 bit access 
889  * mode respectively, otherwise data is handled as quickly as 
890  * possible
891  */
892 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
893 {
894         int retval;
895         
896         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
897         
898         if (((address % 2) == 0) && (size == 2))
899         {
900                 return target->type->read_memory(target, address, 2, 1, buffer);
901         }
902         
903         /* handle unaligned head bytes */
904         if (address % 4)
905         {
906                 int unaligned = 4 - (address % 4);
907                 
908                 if (unaligned > size)
909                         unaligned = size;
910
911                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
912                         return retval;
913                 
914                 buffer += unaligned;
915                 address += unaligned;
916                 size -= unaligned;
917         }
918                 
919         /* handle aligned words */
920         if (size >= 4)
921         {
922                 int aligned = size - (size % 4);
923         
924                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
925                         return retval;
926                 
927                 buffer += aligned;
928                 address += aligned;
929                 size -= aligned;
930         }
931         
932         /* handle tail writes of less than 4 bytes */
933         if (size > 0)
934         {
935                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
936                         return retval;
937         }
938         
939         return ERROR_OK;
940 }
941
942 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
943 {
944         u8 *buffer;
945         int retval;
946         int i;
947         u32 checksum = 0;
948         
949         if ((retval = target->type->checksum_memory(target, address,
950                 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
951         {
952                 buffer = malloc(size);
953                 if (buffer == NULL)
954                 {
955                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
956                         return ERROR_INVALID_ARGUMENTS;
957                 }
958                 retval = target_read_buffer(target, address, size, buffer);
959                 if (retval != ERROR_OK)
960                 {
961                         free(buffer);
962                         return retval;
963                 }
964
965                 /* convert to target endianess */
966                 for (i = 0; i < (size/sizeof(u32)); i++)
967                 {
968                         u32 target_data;
969                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
970                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
971                 }
972
973                 retval = image_calculate_checksum( buffer, size, &checksum );
974                 free(buffer);
975         }
976         
977         *crc = checksum;
978         
979         return retval;
980 }
981
982 int target_read_u32(struct target_s *target, u32 address, u32 *value)
983 {
984         u8 value_buf[4];
985
986         int retval = target->type->read_memory(target, address, 4, 1, value_buf);
987         
988         if (retval == ERROR_OK)
989         {
990                 *value = target_buffer_get_u32(target, value_buf);
991                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
992         }
993         else
994         {
995                 *value = 0x0;
996                 LOG_DEBUG("address: 0x%8.8x failed", address);
997         }
998         
999         return retval;
1000 }
1001
1002 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1003 {
1004         u8 value_buf[2];
1005         
1006         int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1007         
1008         if (retval == ERROR_OK)
1009         {
1010                 *value = target_buffer_get_u16(target, value_buf);
1011                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1012         }
1013         else
1014         {
1015                 *value = 0x0;
1016                 LOG_DEBUG("address: 0x%8.8x failed", address);
1017         }
1018         
1019         return retval;
1020 }
1021
1022 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1023 {
1024         int retval = target->type->read_memory(target, address, 1, 1, value);
1025
1026         if (retval == ERROR_OK)
1027         {
1028                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1029         }
1030         else
1031         {
1032                 *value = 0x0;
1033                 LOG_DEBUG("address: 0x%8.8x failed", address);
1034         }
1035         
1036         return retval;
1037 }
1038
1039 int target_write_u32(struct target_s *target, u32 address, u32 value)
1040 {
1041         int retval;
1042         u8 value_buf[4];
1043
1044         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1045
1046         target_buffer_set_u32(target, value_buf, value);        
1047         if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1048         {
1049                 LOG_DEBUG("failed: %i", retval);
1050         }
1051         
1052         return retval;
1053 }
1054
1055 int target_write_u16(struct target_s *target, u32 address, u16 value)
1056 {
1057         int retval;
1058         u8 value_buf[2];
1059         
1060         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1061
1062         target_buffer_set_u16(target, value_buf, value);        
1063         if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1064         {
1065                 LOG_DEBUG("failed: %i", retval);
1066         }
1067         
1068         return retval;
1069 }
1070
1071 int target_write_u8(struct target_s *target, u32 address, u8 value)
1072 {
1073         int retval;
1074         
1075         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1076
1077         if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1078         {
1079                 LOG_DEBUG("failed: %i", retval);
1080         }
1081         
1082         return retval;
1083 }
1084
1085 int target_register_user_commands(struct command_context_s *cmd_ctx)
1086 {
1087         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1088         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1089         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1090         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1091         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1092         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1093         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
1094         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1095
1096         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1097         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1098         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1099         
1100         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1101         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1102         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1103         
1104         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
1105         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1106         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
1107         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1108         
1109         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
1110         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1111         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1112         register_command(cmd_ctx,  NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
1113         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
1114         
1115         target_request_register_commands(cmd_ctx);
1116         trace_register_commands(cmd_ctx);
1117         
1118         return ERROR_OK;
1119 }
1120
1121 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1122 {
1123         target_t *target = targets;
1124         int count = 0;
1125         
1126         if (argc == 1)
1127         {
1128                 int num = strtoul(args[0], NULL, 0);
1129                 
1130                 while (target)
1131                 {
1132                         count++;
1133                         target = target->next;
1134                 }
1135                 
1136                 if (num < count)
1137                         cmd_ctx->current_target = num;
1138                 else
1139                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1140                         
1141                 return ERROR_OK;
1142         }
1143                 
1144         while (target)
1145         {
1146                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1147                 target = target->next;
1148         }
1149         
1150         return ERROR_OK;
1151 }
1152
1153 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1154 {
1155         int i;
1156         int found = 0;
1157         
1158         if (argc < 3)
1159         {
1160                 return ERROR_COMMAND_SYNTAX_ERROR;
1161         }
1162         
1163         /* search for the specified target */
1164         if (args[0] && (args[0][0] != 0))
1165         {
1166                 for (i = 0; target_types[i]; i++)
1167                 {
1168                         if (strcmp(args[0], target_types[i]->name) == 0)
1169                         {
1170                                 target_t **last_target_p = &targets;
1171                                 
1172                                 /* register target specific commands */
1173                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1174                                 {
1175                                         LOG_ERROR("couldn't register '%s' commands", args[0]);
1176                                         exit(-1);
1177                                 }
1178
1179                                 if (*last_target_p)
1180                                 {
1181                                         while ((*last_target_p)->next)
1182                                                 last_target_p = &((*last_target_p)->next);
1183                                         last_target_p = &((*last_target_p)->next);
1184                                 }
1185
1186                                 *last_target_p = malloc(sizeof(target_t));
1187                                 
1188                                 (*last_target_p)->type = target_types[i];
1189                                 
1190                                 if (strcmp(args[1], "big") == 0)
1191                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1192                                 else if (strcmp(args[1], "little") == 0)
1193                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1194                                 else
1195                                 {
1196                                         LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1197                                         return ERROR_COMMAND_SYNTAX_ERROR;
1198                                 }
1199                                 
1200                                 /* what to do on a target reset */
1201                                 (*last_target_p)->reset_mode = RESET_INIT; /* default */
1202                                 if (strcmp(args[2], "reset_halt") == 0)
1203                                         (*last_target_p)->reset_mode = RESET_HALT;
1204                                 else if (strcmp(args[2], "reset_run") == 0)
1205                                         (*last_target_p)->reset_mode = RESET_RUN;
1206                                 else if (strcmp(args[2], "reset_init") == 0)
1207                                         (*last_target_p)->reset_mode = RESET_INIT;
1208                                 else if (strcmp(args[2], "run_and_halt") == 0)
1209                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
1210                                 else if (strcmp(args[2], "run_and_init") == 0)
1211                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
1212                                 else
1213                                 {
1214                                         /* Kludge! we want to make this reset arg optional while remaining compatible! */
1215                                         args--;
1216                                         argc++;
1217                                 }
1218                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
1219                                 
1220                                 (*last_target_p)->reset_script = NULL;
1221                                 (*last_target_p)->post_halt_script = NULL;
1222                                 (*last_target_p)->pre_resume_script = NULL;
1223                                 (*last_target_p)->gdb_program_script = NULL;
1224                                 
1225                                 (*last_target_p)->working_area = 0x0;
1226                                 (*last_target_p)->working_area_size = 0x0;
1227                                 (*last_target_p)->working_areas = NULL;
1228                                 (*last_target_p)->backup_working_area = 0;
1229                                 
1230                                 (*last_target_p)->state = TARGET_UNKNOWN;
1231                                 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1232                                 (*last_target_p)->reg_cache = NULL;
1233                                 (*last_target_p)->breakpoints = NULL;
1234                                 (*last_target_p)->watchpoints = NULL;
1235                                 (*last_target_p)->next = NULL;
1236                                 (*last_target_p)->arch_info = NULL;
1237                                 
1238                                 /* initialize trace information */
1239                                 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1240                                 (*last_target_p)->trace_info->num_trace_points = 0;
1241                                 (*last_target_p)->trace_info->trace_points_size = 0;
1242                                 (*last_target_p)->trace_info->trace_points = NULL;
1243                                 (*last_target_p)->trace_info->trace_history_size = 0;
1244                                 (*last_target_p)->trace_info->trace_history = NULL;
1245                                 (*last_target_p)->trace_info->trace_history_pos = 0;
1246                                 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1247                                 
1248                                 (*last_target_p)->dbgmsg = NULL;
1249                                 (*last_target_p)->dbg_msg_enabled = 0;
1250                                                                 
1251                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1252                                 
1253                                 found = 1;
1254                                 break;
1255                         }
1256                 }
1257         }
1258         
1259         /* no matching target found */
1260         if (!found)
1261         {
1262                 LOG_ERROR("target '%s' not found", args[0]);
1263                 return ERROR_COMMAND_SYNTAX_ERROR;
1264         }
1265
1266         return ERROR_OK;
1267 }
1268
1269 /* usage: target_script <target#> <event> <script_file> */
1270 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1271 {
1272         target_t *target = NULL;
1273         
1274         if (argc < 3)
1275         {
1276                 LOG_ERROR("incomplete target_script command");
1277                 return ERROR_COMMAND_SYNTAX_ERROR;
1278         }
1279         
1280         target = get_target_by_num(strtoul(args[0], NULL, 0));
1281         
1282         if (!target)
1283         {
1284                 return ERROR_COMMAND_SYNTAX_ERROR;
1285         }
1286         
1287         if (strcmp(args[1], "reset") == 0)
1288         {
1289                 if (target->reset_script)
1290                         free(target->reset_script);
1291                 target->reset_script = strdup(args[2]);
1292         }
1293         else if (strcmp(args[1], "post_halt") == 0)
1294         {
1295                 if (target->post_halt_script)
1296                         free(target->post_halt_script);
1297                 target->post_halt_script = strdup(args[2]);
1298         }
1299         else if (strcmp(args[1], "pre_resume") == 0)
1300         {
1301                 if (target->pre_resume_script)
1302                         free(target->pre_resume_script);
1303                 target->pre_resume_script = strdup(args[2]);
1304         }
1305         else if (strcmp(args[1], "gdb_program_config") == 0)
1306         {
1307                 if (target->gdb_program_script)
1308                         free(target->gdb_program_script);
1309                 target->gdb_program_script = strdup(args[2]);
1310         }
1311         else
1312         {
1313                 LOG_ERROR("unknown event type: '%s", args[1]);
1314                 return ERROR_COMMAND_SYNTAX_ERROR;
1315         }
1316         
1317         return ERROR_OK;
1318 }
1319
1320 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1321 {
1322         target_t *target = NULL;
1323         
1324         if (argc < 2)
1325         {
1326                 return ERROR_COMMAND_SYNTAX_ERROR;
1327         }
1328         
1329         target = get_target_by_num(strtoul(args[0], NULL, 0));
1330         if (!target)
1331         {
1332                 return ERROR_COMMAND_SYNTAX_ERROR;
1333         }
1334         
1335         target->run_and_halt_time = strtoul(args[1], NULL, 0);
1336         
1337         return ERROR_OK;
1338 }
1339
1340 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1341 {
1342         target_t *target = NULL;
1343         
1344         if ((argc < 4) || (argc > 5))
1345         {
1346                 return ERROR_COMMAND_SYNTAX_ERROR;
1347         }
1348         
1349         target = get_target_by_num(strtoul(args[0], NULL, 0));
1350         if (!target)
1351         {
1352                 return ERROR_COMMAND_SYNTAX_ERROR;
1353         }
1354         target_free_all_working_areas(target);
1355         
1356         target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1357         if (argc == 5)
1358         {
1359                 target->working_area_virt = strtoul(args[4], NULL, 0);
1360         }
1361         target->working_area_size = strtoul(args[2], NULL, 0);
1362         
1363         if (strcmp(args[3], "backup") == 0)
1364         {
1365                 target->backup_working_area = 1;
1366         }
1367         else if (strcmp(args[3], "nobackup") == 0)
1368         {
1369                 target->backup_working_area = 0;
1370         }
1371         else
1372         {
1373                 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1374                 return ERROR_COMMAND_SYNTAX_ERROR;
1375         }
1376         
1377         return ERROR_OK;
1378 }
1379
1380
1381 /* process target state changes */
1382 int handle_target(void *priv)
1383 {
1384         int retval;
1385         target_t *target = targets;
1386         
1387         while (target)
1388         {
1389                 /* only poll if target isn't already halted */
1390                 if (target->state != TARGET_HALTED)
1391                 {
1392                         if (target_continous_poll)
1393                                 if ((retval = target->type->poll(target)) != ERROR_OK)
1394                                 {
1395                                         LOG_ERROR("couldn't poll target(%d). It's due for a reset.", retval);
1396                                 }
1397                 }
1398         
1399                 target = target->next;
1400         }
1401         
1402         return ERROR_OK;
1403 }
1404
1405 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1406 {
1407         target_t *target;
1408         reg_t *reg = NULL;
1409         int count = 0;
1410         char *value;
1411         
1412         LOG_DEBUG("-");
1413         
1414         target = get_current_target(cmd_ctx);
1415         
1416         /* list all available registers for the current target */
1417         if (argc == 0)
1418         {
1419                 reg_cache_t *cache = target->reg_cache;
1420                 
1421                 count = 0;
1422                 while(cache)
1423                 {
1424                         int i;
1425                         for (i = 0; i < cache->num_regs; i++)
1426                         {
1427                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1428                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1429                                 free(value);
1430                         }
1431                         cache = cache->next;
1432                 }
1433                 
1434                 return ERROR_OK;
1435         }
1436         
1437         /* access a single register by its ordinal number */
1438         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1439         {
1440                 int num = strtoul(args[0], NULL, 0);
1441                 reg_cache_t *cache = target->reg_cache;
1442                 
1443                 count = 0;
1444                 while(cache)
1445                 {
1446                         int i;
1447                         for (i = 0; i < cache->num_regs; i++)
1448                         {
1449                                 if (count++ == num)
1450                                 {
1451                                         reg = &cache->reg_list[i];
1452                                         break;
1453                                 }
1454                         }
1455                         if (reg)
1456                                 break;
1457                         cache = cache->next;
1458                 }
1459                 
1460                 if (!reg)
1461                 {
1462                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1463                         return ERROR_OK;
1464                 }
1465         } else /* access a single register by its name */
1466         {
1467                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1468                 
1469                 if (!reg)
1470                 {
1471                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1472                         return ERROR_OK;
1473                 }
1474         }
1475
1476         /* display a register */
1477         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1478         {
1479                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1480                         reg->valid = 0;
1481                 
1482                 if (reg->valid == 0)
1483                 {
1484                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1485                         if (arch_type == NULL)
1486                         {
1487                                 LOG_ERROR("BUG: encountered unregistered arch type");
1488                                 return ERROR_OK;
1489                         }
1490                         arch_type->get(reg);
1491                 }
1492                 value = buf_to_str(reg->value, reg->size, 16);
1493                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1494                 free(value);
1495                 return ERROR_OK;
1496         }
1497         
1498         /* set register value */
1499         if (argc == 2)
1500         {
1501                 u8 *buf = malloc(CEIL(reg->size, 8));
1502                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1503
1504                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1505                 if (arch_type == NULL)
1506                 {
1507                         LOG_ERROR("BUG: encountered unregistered arch type");
1508                         return ERROR_OK;
1509                 }
1510                 
1511                 arch_type->set(reg, buf);
1512                 
1513                 value = buf_to_str(reg->value, reg->size, 16);
1514                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1515                 free(value);
1516                 
1517                 free(buf);
1518                 
1519                 return ERROR_OK;
1520         }
1521         
1522         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1523         
1524         return ERROR_OK;
1525 }
1526
1527 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
1528
1529 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1530 {
1531         target_t *target = get_current_target(cmd_ctx);
1532
1533         if (argc == 0)
1534         {
1535                 target->type->poll(target);
1536                 target_arch_state(target);
1537         }
1538         else
1539         {
1540                 if (strcmp(args[0], "on") == 0)
1541                 {
1542                         target_continous_poll = 1;
1543                 }
1544                 else if (strcmp(args[0], "off") == 0)
1545                 {
1546                         target_continous_poll = 0;
1547                 }
1548                 else
1549                 {
1550                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1551                 }
1552         }
1553         
1554         
1555         return ERROR_OK;
1556 }
1557
1558 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1559 {
1560         int ms = 5000;
1561         
1562         if (argc > 0)
1563         {
1564                 char *end;
1565
1566                 ms = strtoul(args[0], &end, 0) * 1000;
1567                 if (*end)
1568                 {
1569                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1570                         return ERROR_OK;
1571                 }
1572         }
1573
1574         return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms); 
1575 }
1576
1577 static void target_process_events(struct command_context_s *cmd_ctx)
1578 {
1579         target_t *target = get_current_target(cmd_ctx);
1580         target->type->poll(target);
1581         target_call_timer_callbacks_now();
1582 }
1583
1584 static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
1585 {
1586         int retval;
1587         struct timeval timeout, now;
1588         int once=1;
1589         gettimeofday(&timeout, NULL);
1590         timeval_add_time(&timeout, 0, ms * 1000);
1591         
1592         target_t *target = get_current_target(cmd_ctx);
1593         for (;;)
1594         {
1595                 if ((retval=target->type->poll(target))!=ERROR_OK)
1596                         return retval;
1597                 target_call_timer_callbacks_now();
1598                 if (target->state == state)
1599                 {
1600                         break;
1601                 }
1602                 if (once)
1603                 {
1604                         once=0;
1605                         command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
1606                 }
1607                 
1608                 gettimeofday(&now, NULL);
1609                 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1610                 {
1611                         LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1612                         break;
1613                 }
1614         }
1615         
1616         return ERROR_OK;
1617 }
1618
1619 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1620 {
1621         int retval;
1622         target_t *target = get_current_target(cmd_ctx);
1623
1624         LOG_DEBUG("-");
1625
1626         if ((retval = target->type->halt(target)) != ERROR_OK)
1627         {
1628                 return retval;
1629         }
1630         
1631         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1632 }
1633
1634                 
1635 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1636 {
1637         target_t *target = get_current_target(cmd_ctx);
1638         
1639         LOG_USER("requesting target halt and executing a soft reset");
1640         
1641         target->type->soft_reset_halt(target);
1642         
1643         return ERROR_OK;
1644 }
1645
1646 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1647 {
1648         target_t *target = get_current_target(cmd_ctx);
1649         enum target_reset_mode reset_mode = target->reset_mode;
1650         enum target_reset_mode save = target->reset_mode;
1651         
1652         LOG_DEBUG("-");
1653         
1654         if (argc >= 1)
1655         {
1656                 if (strcmp("run", args[0]) == 0)
1657                         reset_mode = RESET_RUN;
1658                 else if (strcmp("halt", args[0]) == 0)
1659                         reset_mode = RESET_HALT;
1660                 else if (strcmp("init", args[0]) == 0)
1661                         reset_mode = RESET_INIT;
1662                 else if (strcmp("run_and_halt", args[0]) == 0)
1663                 {
1664                         reset_mode = RESET_RUN_AND_HALT;
1665                         if (argc >= 2)
1666                         {
1667                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1668                         }
1669                 }
1670                 else if (strcmp("run_and_init", args[0]) == 0)
1671                 {
1672                         reset_mode = RESET_RUN_AND_INIT;
1673                         if (argc >= 2)
1674                         {
1675                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1676                         }
1677                 }
1678                 else
1679                 {
1680                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1681                         return ERROR_OK;
1682                 }
1683         }
1684         
1685         /* temporarily modify mode of current reset target */
1686         target->reset_mode = reset_mode;
1687
1688         /* reset *all* targets */
1689         target_process_reset(cmd_ctx);
1690         
1691         /* Restore default reset mode for this target */
1692     target->reset_mode = save;
1693         
1694         return ERROR_OK;
1695 }
1696
1697 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1698 {
1699         int retval;
1700         target_t *target = get_current_target(cmd_ctx);
1701         
1702         if (argc == 0)
1703                 retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1704         else if (argc == 1)
1705                 retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1706         else
1707         {
1708                 return ERROR_COMMAND_SYNTAX_ERROR;
1709         }
1710
1711         target_process_events(cmd_ctx);
1712         
1713         return retval;
1714 }
1715
1716 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1717 {
1718         target_t *target = get_current_target(cmd_ctx);
1719         
1720         LOG_DEBUG("-");
1721         
1722         if (argc == 0)
1723                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1724
1725         if (argc == 1)
1726                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1727         
1728         return ERROR_OK;
1729 }
1730
1731 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1732 {
1733         const int line_bytecnt = 32;
1734         int count = 1;
1735         int size = 4;
1736         u32 address = 0;
1737         int line_modulo;
1738         int i;
1739
1740         char output[128];
1741         int output_len;
1742
1743         int retval;
1744
1745         u8 *buffer;
1746         target_t *target = get_current_target(cmd_ctx);
1747
1748         if (argc < 1)
1749                 return ERROR_OK;
1750
1751         if (argc == 2)
1752                 count = strtoul(args[1], NULL, 0);
1753
1754         address = strtoul(args[0], NULL, 0);
1755         
1756
1757         switch (cmd[2])
1758         {
1759                 case 'w':
1760                         size = 4; line_modulo = line_bytecnt / 4;
1761                         break;
1762                 case 'h':
1763                         size = 2; line_modulo = line_bytecnt / 2;
1764                         break;
1765                 case 'b':
1766                         size = 1; line_modulo = line_bytecnt / 1;
1767                         break;
1768                 default:
1769                         return ERROR_OK;
1770         }
1771
1772         buffer = calloc(count, size);
1773         retval  = target->type->read_memory(target, address, size, count, buffer);
1774         if (retval == ERROR_OK)
1775         {
1776                 output_len = 0;
1777         
1778                 for (i = 0; i < count; i++)
1779                 {
1780                         if (i%line_modulo == 0)
1781                                 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1782                         
1783                         switch (size)
1784                         {
1785                                 case 4:
1786                                         output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1787                                         break;
1788                                 case 2:
1789                                         output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1790                                         break;
1791                                 case 1:
1792                                         output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1793                                         break;
1794                         }
1795         
1796                         if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1797                         {
1798                                 command_print(cmd_ctx, output);
1799                                 output_len = 0;
1800                         }
1801                 }
1802         } else
1803         {
1804                 LOG_ERROR("Failure examining memory");
1805         }
1806
1807         free(buffer);
1808         
1809         return ERROR_OK;
1810 }
1811
1812 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1813 {
1814         u32 address = 0;
1815         u32 value = 0;
1816         int count = 1;
1817         int i;
1818         int wordsize;
1819         target_t *target = get_current_target(cmd_ctx);
1820         u8 value_buf[4];
1821
1822          if ((argc < 2) || (argc > 3))
1823                 return ERROR_COMMAND_SYNTAX_ERROR;
1824
1825         address = strtoul(args[0], NULL, 0);
1826         value = strtoul(args[1], NULL, 0);
1827         if (argc == 3)
1828                 count = strtoul(args[2], NULL, 0);
1829
1830
1831         switch (cmd[2])
1832         {
1833                 case 'w':
1834                         wordsize = 4;
1835                         target_buffer_set_u32(target, value_buf, value);
1836                         break;
1837                 case 'h':
1838                         wordsize = 2;
1839                         target_buffer_set_u16(target, value_buf, value);
1840                         break;
1841                 case 'b':
1842                         wordsize = 1;
1843                         value_buf[0] = value;
1844                         break;
1845                 default:
1846                         return ERROR_COMMAND_SYNTAX_ERROR;
1847         }
1848         for (i=0; i<count; i++)
1849         {
1850                 int retval;
1851                 switch (wordsize)
1852                 {
1853                         case 4:
1854                                 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1855                                 break;
1856                         case 2:
1857                                 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1858                                 break;
1859                         case 1:
1860                                 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
1861                         break;
1862                         default:
1863                         return ERROR_OK;
1864                 }
1865                 if (retval!=ERROR_OK)
1866                 {
1867                         return retval;
1868                 }
1869         }
1870
1871         return ERROR_OK;
1872
1873 }
1874
1875 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1876 {
1877         u8 *buffer;
1878         u32 buf_cnt;
1879         u32 image_size;
1880         int i;
1881         int retval;
1882
1883         image_t image;  
1884         
1885         duration_t duration;
1886         char *duration_text;
1887         
1888         target_t *target = get_current_target(cmd_ctx);
1889
1890         if (argc < 1)
1891         {
1892                 command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
1893                 return ERROR_OK;
1894         }
1895         
1896         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1897         if (argc >= 2)
1898         {
1899                 image.base_address_set = 1;
1900                 image.base_address = strtoul(args[1], NULL, 0);
1901         }
1902         else
1903         {
1904                 image.base_address_set = 0;
1905         }
1906         
1907         image.start_address_set = 0;
1908
1909         duration_start_measure(&duration);
1910         
1911         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1912         {
1913                 return ERROR_OK;
1914         }
1915         
1916         image_size = 0x0;
1917         retval = ERROR_OK;
1918         for (i = 0; i < image.num_sections; i++)
1919         {
1920                 buffer = malloc(image.sections[i].size);
1921                 if (buffer == NULL)
1922                 {
1923                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1924                         break;
1925                 }
1926                 
1927                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1928                 {
1929                         free(buffer);
1930                         break;
1931                 }
1932                 if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
1933                 {
1934                         free(buffer);
1935                         break;
1936                 }
1937                 image_size += buf_cnt;
1938                 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
1939                 
1940                 free(buffer);
1941         }
1942
1943         duration_stop_measure(&duration, &duration_text);
1944         if (retval==ERROR_OK)
1945         {
1946                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
1947         }
1948         free(duration_text);
1949         
1950         image_close(&image);
1951
1952         return retval;
1953
1954 }
1955
1956 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1957 {
1958         fileio_t fileio;
1959         
1960         u32 address;
1961         u32 size;
1962         u8 buffer[560];
1963         int retval=ERROR_OK;
1964         
1965         duration_t duration;
1966         char *duration_text;
1967         
1968         target_t *target = get_current_target(cmd_ctx);
1969
1970         if (argc != 3)
1971         {
1972                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
1973                 return ERROR_OK;
1974         }
1975
1976         address = strtoul(args[1], NULL, 0);
1977         size = strtoul(args[2], NULL, 0);
1978
1979         if ((address & 3) || (size & 3))
1980         {
1981                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
1982                 return ERROR_OK;
1983         }
1984         
1985         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
1986         {
1987                 return ERROR_OK;
1988         }
1989         
1990         duration_start_measure(&duration);
1991         
1992         while (size > 0)
1993         {
1994                 u32 size_written;
1995                 u32 this_run_size = (size > 560) ? 560 : size;
1996                 
1997                 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
1998                 if (retval != ERROR_OK)
1999                 {
2000                         break;
2001                 }
2002                 
2003                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2004                 if (retval != ERROR_OK)
2005                 {
2006                         break;
2007                 }
2008                 
2009                 size -= this_run_size;
2010                 address += this_run_size;
2011         }
2012
2013         fileio_close(&fileio);
2014
2015         duration_stop_measure(&duration, &duration_text);
2016         if (retval==ERROR_OK)
2017         {
2018                 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2019         }
2020         free(duration_text);
2021         
2022         return ERROR_OK;
2023 }
2024
2025 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2026 {
2027         u8 *buffer;
2028         u32 buf_cnt;
2029         u32 image_size;
2030         int i;
2031         int retval;
2032         u32 checksum = 0;
2033         u32 mem_checksum = 0;
2034
2035         image_t image;  
2036         
2037         duration_t duration;
2038         char *duration_text;
2039         
2040         target_t *target = get_current_target(cmd_ctx);
2041         
2042         if (argc < 1)
2043         {
2044                 return ERROR_COMMAND_SYNTAX_ERROR;
2045         }
2046         
2047         if (!target)
2048         {
2049                 LOG_ERROR("no target selected");
2050                 return ERROR_FAIL;
2051         }
2052         
2053         duration_start_measure(&duration);
2054         
2055         if (argc >= 2)
2056         {
2057                 image.base_address_set = 1;
2058                 image.base_address = strtoul(args[1], NULL, 0);
2059         }
2060         else
2061         {
2062                 image.base_address_set = 0;
2063                 image.base_address = 0x0;
2064         }
2065
2066         image.start_address_set = 0;
2067
2068         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2069         {
2070                 return retval;
2071         }
2072         
2073         image_size = 0x0;
2074         retval=ERROR_OK;
2075         for (i = 0; i < image.num_sections; i++)
2076         {
2077                 buffer = malloc(image.sections[i].size);
2078                 if (buffer == NULL)
2079                 {
2080                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2081                         break;
2082                 }
2083                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2084                 {
2085                         free(buffer);
2086                         break;
2087                 }
2088                 
2089                 /* calculate checksum of image */
2090                 image_calculate_checksum( buffer, buf_cnt, &checksum );
2091                 
2092                 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2093                 if( retval != ERROR_OK )
2094                 {
2095                         free(buffer);
2096                         break;
2097                 }
2098                 
2099                 if( checksum != mem_checksum )
2100                 {
2101                         /* failed crc checksum, fall back to a binary compare */
2102                         u8 *data;
2103                         
2104                         command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2105                         
2106                         data = (u8*)malloc(buf_cnt);
2107                         
2108                         /* Can we use 32bit word accesses? */
2109                         int size = 1;
2110                         int count = buf_cnt;
2111                         if ((count % 4) == 0)
2112                         {
2113                                 size *= 4;
2114                                 count /= 4;
2115                         }
2116                         retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2117                         if (retval == ERROR_OK)
2118                         {
2119                                 int t;
2120                                 for (t = 0; t < buf_cnt; t++)
2121                                 {
2122                                         if (data[t] != buffer[t])
2123                                         {
2124                                                 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2125                                                 free(data);
2126                                                 free(buffer);
2127                                                 retval=ERROR_FAIL;
2128                                                 goto done;
2129                                         }
2130                                 }
2131                         }
2132                         
2133                         free(data);
2134                 }
2135                 
2136                 free(buffer);
2137                 image_size += buf_cnt;
2138         }
2139 done:   
2140         duration_stop_measure(&duration, &duration_text);
2141         if (retval==ERROR_OK)
2142         {
2143                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2144         }
2145         free(duration_text);
2146         
2147         image_close(&image);
2148         
2149         return retval;
2150 }
2151
2152 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2153 {
2154         int retval;
2155         target_t *target = get_current_target(cmd_ctx);
2156
2157         if (argc == 0)
2158         {
2159                 breakpoint_t *breakpoint = target->breakpoints;
2160
2161                 while (breakpoint)
2162                 {
2163                         if (breakpoint->type == BKPT_SOFT)
2164                         {
2165                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2166                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2167                                 free(buf);
2168                         }
2169                         else
2170                         {
2171                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2172                         }
2173                         breakpoint = breakpoint->next;
2174                 }
2175         }
2176         else if (argc >= 2)
2177         {
2178                 int hw = BKPT_SOFT;
2179                 u32 length = 0;
2180
2181                 length = strtoul(args[1], NULL, 0);
2182                 
2183                 if (argc >= 3)
2184                         if (strcmp(args[2], "hw") == 0)
2185                                 hw = BKPT_HARD;
2186
2187                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2188                 {
2189                         LOG_ERROR("Failure setting breakpoints");
2190                 }
2191                 else
2192                 {
2193                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2194                 }
2195         }
2196         else
2197         {
2198                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2199         }
2200
2201         return ERROR_OK;
2202 }
2203
2204 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2205 {
2206         target_t *target = get_current_target(cmd_ctx);
2207
2208         if (argc > 0)
2209                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2210
2211         return ERROR_OK;
2212 }
2213
2214 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2215 {
2216         target_t *target = get_current_target(cmd_ctx);
2217         int retval;
2218
2219         if (argc == 0)
2220         {
2221                 watchpoint_t *watchpoint = target->watchpoints;
2222
2223                 while (watchpoint)
2224                 {
2225                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2226                         watchpoint = watchpoint->next;
2227                 }
2228         } 
2229         else if (argc >= 2)
2230         {
2231                 enum watchpoint_rw type = WPT_ACCESS;
2232                 u32 data_value = 0x0;
2233                 u32 data_mask = 0xffffffff;
2234                 
2235                 if (argc >= 3)
2236                 {
2237                         switch(args[2][0])
2238                         {
2239                                 case 'r':
2240                                         type = WPT_READ;
2241                                         break;
2242                                 case 'w':
2243                                         type = WPT_WRITE;
2244                                         break;
2245                                 case 'a':
2246                                         type = WPT_ACCESS;
2247                                         break;
2248                                 default:
2249                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2250                                         return ERROR_OK;
2251                         }
2252                 }
2253                 if (argc >= 4)
2254                 {
2255                         data_value = strtoul(args[3], NULL, 0);
2256                 }
2257                 if (argc >= 5)
2258                 {
2259                         data_mask = strtoul(args[4], NULL, 0);
2260                 }
2261                 
2262                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2263                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2264                 {
2265                         LOG_ERROR("Failure setting breakpoints");
2266                 }
2267         }
2268         else
2269         {
2270                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2271         }
2272                 
2273         return ERROR_OK;
2274 }
2275
2276 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2277 {
2278         target_t *target = get_current_target(cmd_ctx);
2279
2280         if (argc > 0)
2281                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2282         
2283         return ERROR_OK;
2284 }
2285
2286 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2287 {
2288         int retval;
2289         target_t *target = get_current_target(cmd_ctx);
2290         u32 va;
2291         u32 pa;
2292
2293         if (argc != 1)
2294         {
2295                 return ERROR_COMMAND_SYNTAX_ERROR;
2296         }
2297         va = strtoul(args[0], NULL, 0);
2298
2299         retval = target->type->virt2phys(target, va, &pa);
2300         if (retval == ERROR_OK)
2301         {
2302                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2303         }
2304         else
2305         {
2306                 /* lower levels will have logged a detailed error which is 
2307                  * forwarded to telnet/GDB session.  
2308                  */
2309         }
2310         return retval;
2311 }
2312 static void writeLong(FILE *f, int l)
2313 {
2314         int i;
2315         for (i=0; i<4; i++)
2316         {
2317                 char c=(l>>(i*8))&0xff;
2318                 fwrite(&c, 1, 1, f); 
2319         }
2320         
2321 }
2322 static void writeString(FILE *f, char *s)
2323 {
2324         fwrite(s, 1, strlen(s), f); 
2325 }
2326
2327
2328
2329 // Dump a gmon.out histogram file.
2330 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2331 {
2332         int i;
2333         FILE *f=fopen(filename, "w");
2334         if (f==NULL)
2335                 return;
2336         fwrite("gmon", 1, 4, f);
2337         writeLong(f, 0x00000001); // Version
2338         writeLong(f, 0); // padding
2339         writeLong(f, 0); // padding
2340         writeLong(f, 0); // padding
2341                                 
2342         fwrite("", 1, 1, f);  // GMON_TAG_TIME_HIST 
2343
2344         // figure out bucket size
2345         u32 min=samples[0];
2346         u32 max=samples[0];
2347         for (i=0; i<sampleNum; i++)
2348         {
2349                 if (min>samples[i])
2350                 {
2351                         min=samples[i];
2352                 }
2353                 if (max<samples[i])
2354                 {
2355                         max=samples[i];
2356                 }
2357         }
2358
2359         int addressSpace=(max-min+1);
2360         
2361         static int const maxBuckets=256*1024; // maximum buckets.
2362         int length=addressSpace;
2363         if (length > maxBuckets)
2364         {
2365                 length=maxBuckets; 
2366         }
2367         int *buckets=malloc(sizeof(int)*length);
2368         if (buckets==NULL)
2369         {
2370                 fclose(f);
2371                 return;
2372         }
2373         memset(buckets, 0, sizeof(int)*length);
2374         for (i=0; i<sampleNum;i++)
2375         {
2376                 u32 address=samples[i];
2377                 long long a=address-min;
2378                 long long b=length-1;
2379                 long long c=addressSpace-1;
2380                 int index=(a*b)/c; // danger!!!! int32 overflows 
2381                 buckets[index]++;
2382         }
2383         
2384         //                         append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2385         writeLong(f, min);                                      // low_pc
2386         writeLong(f, max);              // high_pc
2387         writeLong(f, length);           // # of samples
2388         writeLong(f, 64000000);                         // 64MHz
2389         writeString(f, "seconds");
2390         for (i=0; i<(15-strlen("seconds")); i++)
2391         {
2392                 fwrite("", 1, 1, f);  // padding
2393         }
2394         writeString(f, "s");
2395                 
2396 //                         append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2397         
2398         char *data=malloc(2*length);
2399         if (data!=NULL)
2400         {
2401                 for (i=0; i<length;i++)
2402                 {
2403                         int val;
2404                         val=buckets[i];
2405                         if (val>65535)
2406                         {
2407                                 val=65535;
2408                         }
2409                         data[i*2]=val&0xff;
2410                         data[i*2+1]=(val>>8)&0xff;
2411                 }
2412                 free(buckets);
2413                 fwrite(data, 1, length*2, f);
2414                 free(data);
2415         } else
2416         {
2417                 free(buckets);
2418         }
2419
2420         fclose(f);
2421 }
2422
2423 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2424 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2425 {
2426         target_t *target = get_current_target(cmd_ctx);
2427         struct timeval timeout, now;
2428         
2429         gettimeofday(&timeout, NULL);
2430         if (argc!=2)
2431         {
2432                 return ERROR_COMMAND_SYNTAX_ERROR;
2433         }
2434         char *end;
2435         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2436         if (*end) 
2437         {
2438                 return ERROR_OK;
2439         }
2440         
2441         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2442
2443         static const int maxSample=10000;
2444         u32 *samples=malloc(sizeof(u32)*maxSample);
2445         if (samples==NULL)
2446                 return ERROR_OK;
2447         
2448         int numSamples=0;
2449         int retval=ERROR_OK;
2450         // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2451         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2452         
2453         for (;;)
2454         {
2455                 target->type->poll(target);
2456                 if (target->state == TARGET_HALTED)
2457                 {
2458                         u32 t=*((u32 *)reg->value);
2459                         samples[numSamples++]=t;
2460                         retval = target->type->resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2461                         target->type->poll(target);
2462                         usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2463                 } else if (target->state == TARGET_RUNNING)
2464                 {
2465                         // We want to quickly sample the PC.
2466                         target->type->halt(target);
2467                 } else
2468                 {
2469                         command_print(cmd_ctx, "Target not halted or running");
2470                         retval=ERROR_OK;
2471                         break;
2472                 }
2473                 if (retval!=ERROR_OK)
2474                 {
2475                         break;
2476                 }
2477                 
2478                 gettimeofday(&now, NULL);
2479                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2480                 {
2481                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2482                         target->type->poll(target);
2483                         if (target->state == TARGET_HALTED)
2484                         {
2485                                 target->type->resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2486                         }
2487                         target->type->poll(target);
2488                         writeGmon(samples, numSamples, args[1]);
2489                         command_print(cmd_ctx, "Wrote %s", args[1]);
2490                         break;
2491                 }
2492         }
2493         free(samples);
2494         
2495         return ERROR_OK;
2496 }
2497