target: make "examined" flag be per-target
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
47
48 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
49 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
50
51 /* targets */
52 extern struct target_type arm7tdmi_target;
53 extern struct target_type arm720t_target;
54 extern struct target_type arm9tdmi_target;
55 extern struct target_type arm920t_target;
56 extern struct target_type arm966e_target;
57 extern struct target_type arm926ejs_target;
58 extern struct target_type fa526_target;
59 extern struct target_type feroceon_target;
60 extern struct target_type dragonite_target;
61 extern struct target_type xscale_target;
62 extern struct target_type cortexm3_target;
63 extern struct target_type cortexa8_target;
64 extern struct target_type arm11_target;
65 extern struct target_type mips_m4k_target;
66 extern struct target_type avr_target;
67
68 struct target_type *target_types[] =
69 {
70         &arm7tdmi_target,
71         &arm9tdmi_target,
72         &arm920t_target,
73         &arm720t_target,
74         &arm966e_target,
75         &arm926ejs_target,
76         &fa526_target,
77         &feroceon_target,
78         &dragonite_target,
79         &xscale_target,
80         &cortexm3_target,
81         &cortexa8_target,
82         &arm11_target,
83         &mips_m4k_target,
84         &avr_target,
85         NULL,
86 };
87
88 struct target *all_targets = NULL;
89 struct target_event_callback *target_event_callbacks = NULL;
90 struct target_timer_callback *target_timer_callbacks = NULL;
91
92 const Jim_Nvp nvp_assert[] = {
93         { .name = "assert", NVP_ASSERT },
94         { .name = "deassert", NVP_DEASSERT },
95         { .name = "T", NVP_ASSERT },
96         { .name = "F", NVP_DEASSERT },
97         { .name = "t", NVP_ASSERT },
98         { .name = "f", NVP_DEASSERT },
99         { .name = NULL, .value = -1 }
100 };
101
102 const Jim_Nvp nvp_error_target[] = {
103         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
104         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
105         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
106         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
107         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
108         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
109         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
110         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
111         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
112         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
113         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
114         { .value = -1, .name = NULL }
115 };
116
117 const char *target_strerror_safe(int err)
118 {
119         const Jim_Nvp *n;
120
121         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
122         if (n->name == NULL) {
123                 return "unknown";
124         } else {
125                 return n->name;
126         }
127 }
128
129 static const Jim_Nvp nvp_target_event[] = {
130         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
131         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
132
133         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
134         { .value = TARGET_EVENT_HALTED, .name = "halted" },
135         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
136         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
137         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
138
139         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
140         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
141
142         /* historical name */
143
144         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
145
146         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
147         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
148         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
149         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
150         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
151         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
152         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
153         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
154         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
155         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
156
157         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
158         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
159
160         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
161         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
162
163         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
164         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
165
166         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
167         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
168
169         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
170         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
171
172         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
173         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
174         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
175
176         { .name = NULL, .value = -1 }
177 };
178
179 const Jim_Nvp nvp_target_state[] = {
180         { .name = "unknown", .value = TARGET_UNKNOWN },
181         { .name = "running", .value = TARGET_RUNNING },
182         { .name = "halted",  .value = TARGET_HALTED },
183         { .name = "reset",   .value = TARGET_RESET },
184         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
185         { .name = NULL, .value = -1 },
186 };
187
188 const Jim_Nvp nvp_target_debug_reason [] = {
189         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
190         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
191         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
192         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
193         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
194         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
195         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
196         { .name = NULL, .value = -1 },
197 };
198
199 const Jim_Nvp nvp_target_endian[] = {
200         { .name = "big",    .value = TARGET_BIG_ENDIAN },
201         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
202         { .name = "be",     .value = TARGET_BIG_ENDIAN },
203         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
204         { .name = NULL,     .value = -1 },
205 };
206
207 const Jim_Nvp nvp_reset_modes[] = {
208         { .name = "unknown", .value = RESET_UNKNOWN },
209         { .name = "run"    , .value = RESET_RUN },
210         { .name = "halt"   , .value = RESET_HALT },
211         { .name = "init"   , .value = RESET_INIT },
212         { .name = NULL     , .value = -1 },
213 };
214
215 const char *
216 target_state_name( struct target *t )
217 {
218         const char *cp;
219         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
220         if( !cp ){
221                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
222                 cp = "(*BUG*unknown*BUG*)";
223         }
224         return cp;
225 }
226
227 /* determine the number of the new target */
228 static int new_target_number(void)
229 {
230         struct target *t;
231         int x;
232
233         /* number is 0 based */
234         x = -1;
235         t = all_targets;
236         while (t) {
237                 if (x < t->target_number) {
238                         x = t->target_number;
239                 }
240                 t = t->next;
241         }
242         return x + 1;
243 }
244
245 /* read a uint32_t from a buffer in target memory endianness */
246 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
247 {
248         if (target->endianness == TARGET_LITTLE_ENDIAN)
249                 return le_to_h_u32(buffer);
250         else
251                 return be_to_h_u32(buffer);
252 }
253
254 /* read a uint16_t from a buffer in target memory endianness */
255 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
256 {
257         if (target->endianness == TARGET_LITTLE_ENDIAN)
258                 return le_to_h_u16(buffer);
259         else
260                 return be_to_h_u16(buffer);
261 }
262
263 /* read a uint8_t from a buffer in target memory endianness */
264 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
265 {
266         return *buffer & 0x0ff;
267 }
268
269 /* write a uint32_t to a buffer in target memory endianness */
270 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
271 {
272         if (target->endianness == TARGET_LITTLE_ENDIAN)
273                 h_u32_to_le(buffer, value);
274         else
275                 h_u32_to_be(buffer, value);
276 }
277
278 /* write a uint16_t to a buffer in target memory endianness */
279 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
280 {
281         if (target->endianness == TARGET_LITTLE_ENDIAN)
282                 h_u16_to_le(buffer, value);
283         else
284                 h_u16_to_be(buffer, value);
285 }
286
287 /* write a uint8_t to a buffer in target memory endianness */
288 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
289 {
290         *buffer = value;
291 }
292
293 /* return a pointer to a configured target; id is name or number */
294 struct target *get_target(const char *id)
295 {
296         struct target *target;
297
298         /* try as tcltarget name */
299         for (target = all_targets; target; target = target->next) {
300                 if (target->cmd_name == NULL)
301                         continue;
302                 if (strcmp(id, target->cmd_name) == 0)
303                         return target;
304         }
305
306         /* It's OK to remove this fallback sometime after August 2010 or so */
307
308         /* no match, try as number */
309         unsigned num;
310         if (parse_uint(id, &num) != ERROR_OK)
311                 return NULL;
312
313         for (target = all_targets; target; target = target->next) {
314                 if (target->target_number == (int)num) {
315                         LOG_WARNING("use '%s' as target identifier, not '%u'",
316                                         target->cmd_name, num);
317                         return target;
318                 }
319         }
320
321         return NULL;
322 }
323
324 /* returns a pointer to the n-th configured target */
325 static struct target *get_target_by_num(int num)
326 {
327         struct target *target = all_targets;
328
329         while (target) {
330                 if (target->target_number == num) {
331                         return target;
332                 }
333                 target = target->next;
334         }
335
336         return NULL;
337 }
338
339 struct target* get_current_target(struct command_context *cmd_ctx)
340 {
341         struct target *target = get_target_by_num(cmd_ctx->current_target);
342
343         if (target == NULL)
344         {
345                 LOG_ERROR("BUG: current_target out of bounds");
346                 exit(-1);
347         }
348
349         return target;
350 }
351
352 int target_poll(struct target *target)
353 {
354         int retval;
355
356         /* We can't poll until after examine */
357         if (!target_was_examined(target))
358         {
359                 /* Fail silently lest we pollute the log */
360                 return ERROR_FAIL;
361         }
362
363         retval = target->type->poll(target);
364         if (retval != ERROR_OK)
365                 return retval;
366
367         if (target->halt_issued)
368         {
369                 if (target->state == TARGET_HALTED)
370                 {
371                         target->halt_issued = false;
372                 } else
373                 {
374                         long long t = timeval_ms() - target->halt_issued_time;
375                         if (t>1000)
376                         {
377                                 target->halt_issued = false;
378                                 LOG_INFO("Halt timed out, wake up GDB.");
379                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
380                         }
381                 }
382         }
383
384         return ERROR_OK;
385 }
386
387 int target_halt(struct target *target)
388 {
389         int retval;
390         /* We can't poll until after examine */
391         if (!target_was_examined(target))
392         {
393                 LOG_ERROR("Target not examined yet");
394                 return ERROR_FAIL;
395         }
396
397         retval = target->type->halt(target);
398         if (retval != ERROR_OK)
399                 return retval;
400
401         target->halt_issued = true;
402         target->halt_issued_time = timeval_ms();
403
404         return ERROR_OK;
405 }
406
407 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
408 {
409         int retval;
410
411         /* We can't poll until after examine */
412         if (!target_was_examined(target))
413         {
414                 LOG_ERROR("Target not examined yet");
415                 return ERROR_FAIL;
416         }
417
418         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
419          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
420          * the application.
421          */
422         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
423                 return retval;
424
425         return retval;
426 }
427
428 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
429 {
430         char buf[100];
431         int retval;
432         Jim_Nvp *n;
433         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
434         if (n->name == NULL) {
435                 LOG_ERROR("invalid reset mode");
436                 return ERROR_FAIL;
437         }
438
439         /* disable polling during reset to make reset event scripts
440          * more predictable, i.e. dr/irscan & pathmove in events will
441          * not have JTAG operations injected into the middle of a sequence.
442          */
443         bool save_poll = jtag_poll_get_enabled();
444
445         jtag_poll_set_enabled(false);
446
447         sprintf(buf, "ocd_process_reset %s", n->name);
448         retval = Jim_Eval(interp, buf);
449
450         jtag_poll_set_enabled(save_poll);
451
452         if (retval != JIM_OK) {
453                 Jim_PrintErrorMessage(interp);
454                 return ERROR_FAIL;
455         }
456
457         /* We want any events to be processed before the prompt */
458         retval = target_call_timer_callbacks_now();
459
460         return retval;
461 }
462
463 static int identity_virt2phys(struct target *target,
464                 uint32_t virtual, uint32_t *physical)
465 {
466         *physical = virtual;
467         return ERROR_OK;
468 }
469
470 static int no_mmu(struct target *target, int *enabled)
471 {
472         *enabled = 0;
473         return ERROR_OK;
474 }
475
476 static int default_examine(struct target *target)
477 {
478         target_set_examined(target);
479         return ERROR_OK;
480 }
481
482 int target_examine_one(struct target *target)
483 {
484         return target->type->examine(target);
485 }
486
487 static int jtag_enable_callback(enum jtag_event event, void *priv)
488 {
489         struct target *target = priv;
490
491         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
492                 return ERROR_OK;
493
494         jtag_unregister_event_callback(jtag_enable_callback, target);
495         return target_examine_one(target);
496 }
497
498
499 /* Targets that correctly implement init + examine, i.e.
500  * no communication with target during init:
501  *
502  * XScale
503  */
504 int target_examine(void)
505 {
506         int retval = ERROR_OK;
507         struct target *target;
508
509         for (target = all_targets; target; target = target->next)
510         {
511                 /* defer examination, but don't skip it */
512                 if (!target->tap->enabled) {
513                         jtag_register_event_callback(jtag_enable_callback,
514                                         target);
515                         continue;
516                 }
517                 if ((retval = target_examine_one(target)) != ERROR_OK)
518                         return retval;
519         }
520         return retval;
521 }
522 const char *target_get_name(struct target *target)
523 {
524         return target->type->name;
525 }
526
527 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
528 {
529         if (!target_was_examined(target))
530         {
531                 LOG_ERROR("Target not examined yet");
532                 return ERROR_FAIL;
533         }
534         return target->type->write_memory_imp(target, address, size, count, buffer);
535 }
536
537 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
538 {
539         if (!target_was_examined(target))
540         {
541                 LOG_ERROR("Target not examined yet");
542                 return ERROR_FAIL;
543         }
544         return target->type->read_memory_imp(target, address, size, count, buffer);
545 }
546
547 static int target_soft_reset_halt_imp(struct target *target)
548 {
549         if (!target_was_examined(target))
550         {
551                 LOG_ERROR("Target not examined yet");
552                 return ERROR_FAIL;
553         }
554         if (!target->type->soft_reset_halt_imp) {
555                 LOG_ERROR("Target %s does not support soft_reset_halt",
556                                 target->cmd_name);
557                 return ERROR_FAIL;
558         }
559         return target->type->soft_reset_halt_imp(target);
560 }
561
562 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
563 {
564         if (!target_was_examined(target))
565         {
566                 LOG_ERROR("Target not examined yet");
567                 return ERROR_FAIL;
568         }
569         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
570 }
571
572 int target_read_memory(struct target *target,
573                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
574 {
575         return target->type->read_memory(target, address, size, count, buffer);
576 }
577
578 int target_read_phys_memory(struct target *target,
579                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
580 {
581         return target->type->read_phys_memory(target, address, size, count, buffer);
582 }
583
584 int target_write_memory(struct target *target,
585                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
586 {
587         return target->type->write_memory(target, address, size, count, buffer);
588 }
589
590 int target_write_phys_memory(struct target *target,
591                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
592 {
593         return target->type->write_phys_memory(target, address, size, count, buffer);
594 }
595
596 int target_bulk_write_memory(struct target *target,
597                 uint32_t address, uint32_t count, uint8_t *buffer)
598 {
599         return target->type->bulk_write_memory(target, address, count, buffer);
600 }
601
602 int target_add_breakpoint(struct target *target,
603                 struct breakpoint *breakpoint)
604 {
605         return target->type->add_breakpoint(target, breakpoint);
606 }
607 int target_remove_breakpoint(struct target *target,
608                 struct breakpoint *breakpoint)
609 {
610         return target->type->remove_breakpoint(target, breakpoint);
611 }
612
613 int target_add_watchpoint(struct target *target,
614                 struct watchpoint *watchpoint)
615 {
616         return target->type->add_watchpoint(target, watchpoint);
617 }
618 int target_remove_watchpoint(struct target *target,
619                 struct watchpoint *watchpoint)
620 {
621         return target->type->remove_watchpoint(target, watchpoint);
622 }
623
624 int target_get_gdb_reg_list(struct target *target,
625                 struct reg **reg_list[], int *reg_list_size)
626 {
627         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
628 }
629 int target_step(struct target *target,
630                 int current, uint32_t address, int handle_breakpoints)
631 {
632         return target->type->step(target, current, address, handle_breakpoints);
633 }
634
635
636 int target_run_algorithm(struct target *target,
637                 int num_mem_params, struct mem_param *mem_params,
638                 int num_reg_params, struct reg_param *reg_param,
639                 uint32_t entry_point, uint32_t exit_point,
640                 int timeout_ms, void *arch_info)
641 {
642         return target->type->run_algorithm(target,
643                         num_mem_params, mem_params, num_reg_params, reg_param,
644                         entry_point, exit_point, timeout_ms, arch_info);
645 }
646
647 /**
648  * Reset the @c examined flag for the given target.
649  * Pure paranoia -- targets are zeroed on allocation.
650  */
651 static void target_reset_examined(struct target *target)
652 {
653         target->examined = false;
654 }
655
656
657
658 static int default_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
659 {
660         LOG_ERROR("Not implemented: %s", __func__);
661         return ERROR_FAIL;
662 }
663
664 static int default_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
665 {
666         LOG_ERROR("Not implemented: %s", __func__);
667         return ERROR_FAIL;
668 }
669
670 static int arm_cp_check(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm)
671 {
672         /* basic check */
673         if (!target_was_examined(target))
674         {
675                 LOG_ERROR("Target not examined yet");
676                 return ERROR_FAIL;
677         }
678
679         if ((cpnum <0) || (cpnum > 15))
680         {
681                 LOG_ERROR("Illegal co-processor %d", cpnum);
682                 return ERROR_FAIL;
683         }
684
685         if (op1 > 7)
686         {
687                 LOG_ERROR("Illegal op1");
688                 return ERROR_FAIL;
689         }
690
691         if (op2 > 7)
692         {
693                 LOG_ERROR("Illegal op2");
694                 return ERROR_FAIL;
695         }
696
697         if (CRn > 15)
698         {
699                 LOG_ERROR("Illegal CRn");
700                 return ERROR_FAIL;
701         }
702
703         if (CRm > 15)
704         {
705                 LOG_ERROR("Illegal CRm");
706                 return ERROR_FAIL;
707         }
708
709         return ERROR_OK;
710 }
711
712 int target_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
713 {
714         int retval;
715
716         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
717         if (retval != ERROR_OK)
718                 return retval;
719
720         return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value);
721 }
722
723 int target_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
724 {
725         int retval;
726
727         retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
728         if (retval != ERROR_OK)
729                 return retval;
730
731         return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value);
732 }
733
734 static int
735 err_read_phys_memory(struct target *target, uint32_t address,
736                 uint32_t size, uint32_t count, uint8_t *buffer)
737 {
738         LOG_ERROR("Not implemented: %s", __func__);
739         return ERROR_FAIL;
740 }
741
742 static int
743 err_write_phys_memory(struct target *target, uint32_t address,
744                 uint32_t size, uint32_t count, uint8_t *buffer)
745 {
746         LOG_ERROR("Not implemented: %s", __func__);
747         return ERROR_FAIL;
748 }
749
750 int target_init(struct command_context *cmd_ctx)
751 {
752         struct target *target;
753         int retval;
754
755         for (target = all_targets; target; target = target->next) {
756                 struct target_type *type = target->type;
757
758                 target_reset_examined(target);
759                 if (target->type->examine == NULL)
760                 {
761                         target->type->examine = default_examine;
762                 }
763
764                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
765                 {
766                         LOG_ERROR("target '%s' init failed", target_get_name(target));
767                         return retval;
768                 }
769
770                 /**
771                  * @todo MCR/MRC are ARM-specific; don't require them in
772                  * all targets, or for ARMs without coprocessors.
773                  */
774                 if (target->type->mcr == NULL)
775                 {
776                         target->type->mcr = default_mcr;
777                 } else
778                 {
779                         /* FIX! multiple targets will generally register global commands
780                          * multiple times. Only register this one if *one* of the
781                          * targets need the command. Hmm... make it a command on the
782                          * Jim Tcl target object?
783                          */
784                         register_jim(cmd_ctx, "mcr", jim_mcrmrc, "write coprocessor <cpnum> <op1> <op2> <CRn> <CRm> <value>");
785                 }
786
787                 if (target->type->mrc == NULL)
788                 {
789                         target->type->mrc = default_mrc;
790                 } else
791                 {
792                         register_jim(cmd_ctx, "mrc", jim_mcrmrc, "read coprocessor <cpnum> <op1> <op2> <CRn> <CRm>");
793                 }
794
795
796                 /**
797                  * @todo get rid of those *memory_imp() methods, now that all
798                  * callers are using target_*_memory() accessors ... and make
799                  * sure the "physical" paths handle the same issues.
800                  */
801
802                 /* a non-invasive way(in terms of patches) to add some code that
803                  * runs before the type->write/read_memory implementation
804                  */
805                 target->type->write_memory_imp = target->type->write_memory;
806                 target->type->write_memory = target_write_memory_imp;
807                 target->type->read_memory_imp = target->type->read_memory;
808                 target->type->read_memory = target_read_memory_imp;
809                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
810                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
811                 target->type->run_algorithm_imp = target->type->run_algorithm;
812                 target->type->run_algorithm = target_run_algorithm_imp;
813
814                 /* Sanity-check MMU support ... stub in what we must, to help
815                  * implement it in stages, but warn if we need to do so.
816                  */
817                 if (type->mmu) {
818                         if (type->write_phys_memory == NULL) {
819                                 LOG_ERROR("type '%s' is missing %s",
820                                                 type->name,
821                                                 "write_phys_memory");
822                                 type->write_phys_memory = err_write_phys_memory;
823                         }
824                         if (type->read_phys_memory == NULL) {
825                                 LOG_ERROR("type '%s' is missing %s",
826                                                 type->name,
827                                                 "read_phys_memory");
828                                 type->read_phys_memory = err_read_phys_memory;
829                         }
830                         if (type->virt2phys == NULL) {
831                                 LOG_ERROR("type '%s' is missing %s",
832                                                 type->name,
833                                                 "virt2phys");
834                                 type->virt2phys = identity_virt2phys;
835                         }
836
837                 /* Make sure no-MMU targets all behave the same:  make no
838                  * distinction between physical and virtual addresses, and
839                  * ensure that virt2phys() is always an identity mapping.
840                  */
841                 } else {
842                         if (type->write_phys_memory
843                                         || type->read_phys_memory
844                                         || type->virt2phys)
845                                 LOG_WARNING("type '%s' has broken MMU hooks",
846                                                 type->name);
847
848                         type->mmu = no_mmu;
849                         type->write_phys_memory = type->write_memory;
850                         type->read_phys_memory = type->read_memory;
851                         type->virt2phys = identity_virt2phys;
852                 }
853         }
854
855         if (all_targets)
856         {
857                 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
858                         return retval;
859                 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
860                         return retval;
861         }
862
863         return ERROR_OK;
864 }
865
866 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
867 {
868         struct target_event_callback **callbacks_p = &target_event_callbacks;
869
870         if (callback == NULL)
871         {
872                 return ERROR_INVALID_ARGUMENTS;
873         }
874
875         if (*callbacks_p)
876         {
877                 while ((*callbacks_p)->next)
878                         callbacks_p = &((*callbacks_p)->next);
879                 callbacks_p = &((*callbacks_p)->next);
880         }
881
882         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
883         (*callbacks_p)->callback = callback;
884         (*callbacks_p)->priv = priv;
885         (*callbacks_p)->next = NULL;
886
887         return ERROR_OK;
888 }
889
890 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
891 {
892         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
893         struct timeval now;
894
895         if (callback == NULL)
896         {
897                 return ERROR_INVALID_ARGUMENTS;
898         }
899
900         if (*callbacks_p)
901         {
902                 while ((*callbacks_p)->next)
903                         callbacks_p = &((*callbacks_p)->next);
904                 callbacks_p = &((*callbacks_p)->next);
905         }
906
907         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
908         (*callbacks_p)->callback = callback;
909         (*callbacks_p)->periodic = periodic;
910         (*callbacks_p)->time_ms = time_ms;
911
912         gettimeofday(&now, NULL);
913         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
914         time_ms -= (time_ms % 1000);
915         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
916         if ((*callbacks_p)->when.tv_usec > 1000000)
917         {
918                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
919                 (*callbacks_p)->when.tv_sec += 1;
920         }
921
922         (*callbacks_p)->priv = priv;
923         (*callbacks_p)->next = NULL;
924
925         return ERROR_OK;
926 }
927
928 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
929 {
930         struct target_event_callback **p = &target_event_callbacks;
931         struct target_event_callback *c = target_event_callbacks;
932
933         if (callback == NULL)
934         {
935                 return ERROR_INVALID_ARGUMENTS;
936         }
937
938         while (c)
939         {
940                 struct target_event_callback *next = c->next;
941                 if ((c->callback == callback) && (c->priv == priv))
942                 {
943                         *p = next;
944                         free(c);
945                         return ERROR_OK;
946                 }
947                 else
948                         p = &(c->next);
949                 c = next;
950         }
951
952         return ERROR_OK;
953 }
954
955 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
956 {
957         struct target_timer_callback **p = &target_timer_callbacks;
958         struct target_timer_callback *c = target_timer_callbacks;
959
960         if (callback == NULL)
961         {
962                 return ERROR_INVALID_ARGUMENTS;
963         }
964
965         while (c)
966         {
967                 struct target_timer_callback *next = c->next;
968                 if ((c->callback == callback) && (c->priv == priv))
969                 {
970                         *p = next;
971                         free(c);
972                         return ERROR_OK;
973                 }
974                 else
975                         p = &(c->next);
976                 c = next;
977         }
978
979         return ERROR_OK;
980 }
981
982 int target_call_event_callbacks(struct target *target, enum target_event event)
983 {
984         struct target_event_callback *callback = target_event_callbacks;
985         struct target_event_callback *next_callback;
986
987         if (event == TARGET_EVENT_HALTED)
988         {
989                 /* execute early halted first */
990                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
991         }
992
993         LOG_DEBUG("target event %i (%s)",
994                           event,
995                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
996
997         target_handle_event(target, event);
998
999         while (callback)
1000         {
1001                 next_callback = callback->next;
1002                 callback->callback(target, event, callback->priv);
1003                 callback = next_callback;
1004         }
1005
1006         return ERROR_OK;
1007 }
1008
1009 static int target_timer_callback_periodic_restart(
1010                 struct target_timer_callback *cb, struct timeval *now)
1011 {
1012         int time_ms = cb->time_ms;
1013         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1014         time_ms -= (time_ms % 1000);
1015         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1016         if (cb->when.tv_usec > 1000000)
1017         {
1018                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1019                 cb->when.tv_sec += 1;
1020         }
1021         return ERROR_OK;
1022 }
1023
1024 static int target_call_timer_callback(struct target_timer_callback *cb,
1025                 struct timeval *now)
1026 {
1027         cb->callback(cb->priv);
1028
1029         if (cb->periodic)
1030                 return target_timer_callback_periodic_restart(cb, now);
1031
1032         return target_unregister_timer_callback(cb->callback, cb->priv);
1033 }
1034
1035 static int target_call_timer_callbacks_check_time(int checktime)
1036 {
1037         keep_alive();
1038
1039         struct timeval now;
1040         gettimeofday(&now, NULL);
1041
1042         struct target_timer_callback *callback = target_timer_callbacks;
1043         while (callback)
1044         {
1045                 // cleaning up may unregister and free this callback
1046                 struct target_timer_callback *next_callback = callback->next;
1047
1048                 bool call_it = callback->callback &&
1049                         ((!checktime && callback->periodic) ||
1050                           now.tv_sec > callback->when.tv_sec ||
1051                          (now.tv_sec == callback->when.tv_sec &&
1052                           now.tv_usec >= callback->when.tv_usec));
1053
1054                 if (call_it)
1055                 {
1056                         int retval = target_call_timer_callback(callback, &now);
1057                         if (retval != ERROR_OK)
1058                                 return retval;
1059                 }
1060
1061                 callback = next_callback;
1062         }
1063
1064         return ERROR_OK;
1065 }
1066
1067 int target_call_timer_callbacks(void)
1068 {
1069         return target_call_timer_callbacks_check_time(1);
1070 }
1071
1072 /* invoke periodic callbacks immediately */
1073 int target_call_timer_callbacks_now(void)
1074 {
1075         return target_call_timer_callbacks_check_time(0);
1076 }
1077
1078 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1079 {
1080         struct working_area *c = target->working_areas;
1081         struct working_area *new_wa = NULL;
1082
1083         /* Reevaluate working area address based on MMU state*/
1084         if (target->working_areas == NULL)
1085         {
1086                 int retval;
1087                 int enabled;
1088
1089                 retval = target->type->mmu(target, &enabled);
1090                 if (retval != ERROR_OK)
1091                 {
1092                         return retval;
1093                 }
1094
1095                 if (!enabled) {
1096                         if (target->working_area_phys_spec) {
1097                                 LOG_DEBUG("MMU disabled, using physical "
1098                                         "address for working memory 0x%08x",
1099                                         (unsigned)target->working_area_phys);
1100                                 target->working_area = target->working_area_phys;
1101                         } else {
1102                                 LOG_ERROR("No working memory available. "
1103                                         "Specify -work-area-phys to target.");
1104                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1105                         }
1106                 } else {
1107                         if (target->working_area_virt_spec) {
1108                                 LOG_DEBUG("MMU enabled, using virtual "
1109                                         "address for working memory 0x%08x",
1110                                         (unsigned)target->working_area_virt);
1111                                 target->working_area = target->working_area_virt;
1112                         } else {
1113                                 LOG_ERROR("No working memory available. "
1114                                         "Specify -work-area-virt to target.");
1115                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1116                         }
1117                 }
1118         }
1119
1120         /* only allocate multiples of 4 byte */
1121         if (size % 4)
1122         {
1123                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1124                 size = (size + 3) & (~3);
1125         }
1126
1127         /* see if there's already a matching working area */
1128         while (c)
1129         {
1130                 if ((c->free) && (c->size == size))
1131                 {
1132                         new_wa = c;
1133                         break;
1134                 }
1135                 c = c->next;
1136         }
1137
1138         /* if not, allocate a new one */
1139         if (!new_wa)
1140         {
1141                 struct working_area **p = &target->working_areas;
1142                 uint32_t first_free = target->working_area;
1143                 uint32_t free_size = target->working_area_size;
1144
1145                 c = target->working_areas;
1146                 while (c)
1147                 {
1148                         first_free += c->size;
1149                         free_size -= c->size;
1150                         p = &c->next;
1151                         c = c->next;
1152                 }
1153
1154                 if (free_size < size)
1155                 {
1156                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1157                                     (unsigned)(size), (unsigned)(free_size));
1158                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1159                 }
1160
1161                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1162
1163                 new_wa = malloc(sizeof(struct working_area));
1164                 new_wa->next = NULL;
1165                 new_wa->size = size;
1166                 new_wa->address = first_free;
1167
1168                 if (target->backup_working_area)
1169                 {
1170                         int retval;
1171                         new_wa->backup = malloc(new_wa->size);
1172                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1173                         {
1174                                 free(new_wa->backup);
1175                                 free(new_wa);
1176                                 return retval;
1177                         }
1178                 }
1179                 else
1180                 {
1181                         new_wa->backup = NULL;
1182                 }
1183
1184                 /* put new entry in list */
1185                 *p = new_wa;
1186         }
1187
1188         /* mark as used, and return the new (reused) area */
1189         new_wa->free = 0;
1190         *area = new_wa;
1191
1192         /* user pointer */
1193         new_wa->user = area;
1194
1195         return ERROR_OK;
1196 }
1197
1198 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1199 {
1200         if (area->free)
1201                 return ERROR_OK;
1202
1203         if (restore && target->backup_working_area)
1204         {
1205                 int retval;
1206                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1207                         return retval;
1208         }
1209
1210         area->free = 1;
1211
1212         /* mark user pointer invalid */
1213         *area->user = NULL;
1214         area->user = NULL;
1215
1216         return ERROR_OK;
1217 }
1218
1219 int target_free_working_area(struct target *target, struct working_area *area)
1220 {
1221         return target_free_working_area_restore(target, area, 1);
1222 }
1223
1224 /* free resources and restore memory, if restoring memory fails,
1225  * free up resources anyway
1226  */
1227 void target_free_all_working_areas_restore(struct target *target, int restore)
1228 {
1229         struct working_area *c = target->working_areas;
1230
1231         while (c)
1232         {
1233                 struct working_area *next = c->next;
1234                 target_free_working_area_restore(target, c, restore);
1235
1236                 if (c->backup)
1237                         free(c->backup);
1238
1239                 free(c);
1240
1241                 c = next;
1242         }
1243
1244         target->working_areas = NULL;
1245 }
1246
1247 void target_free_all_working_areas(struct target *target)
1248 {
1249         target_free_all_working_areas_restore(target, 1);
1250 }
1251
1252 int target_arch_state(struct target *target)
1253 {
1254         int retval;
1255         if (target == NULL)
1256         {
1257                 LOG_USER("No target has been configured");
1258                 return ERROR_OK;
1259         }
1260
1261         LOG_USER("target state: %s", target_state_name( target ));
1262
1263         if (target->state != TARGET_HALTED)
1264                 return ERROR_OK;
1265
1266         retval = target->type->arch_state(target);
1267         return retval;
1268 }
1269
1270 /* Single aligned words are guaranteed to use 16 or 32 bit access
1271  * mode respectively, otherwise data is handled as quickly as
1272  * possible
1273  */
1274 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1275 {
1276         int retval;
1277         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1278                   (int)size, (unsigned)address);
1279
1280         if (!target_was_examined(target))
1281         {
1282                 LOG_ERROR("Target not examined yet");
1283                 return ERROR_FAIL;
1284         }
1285
1286         if (size == 0) {
1287                 return ERROR_OK;
1288         }
1289
1290         if ((address + size - 1) < address)
1291         {
1292                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1293                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1294                                   (unsigned)address,
1295                                   (unsigned)size);
1296                 return ERROR_FAIL;
1297         }
1298
1299         if (((address % 2) == 0) && (size == 2))
1300         {
1301                 return target_write_memory(target, address, 2, 1, buffer);
1302         }
1303
1304         /* handle unaligned head bytes */
1305         if (address % 4)
1306         {
1307                 uint32_t unaligned = 4 - (address % 4);
1308
1309                 if (unaligned > size)
1310                         unaligned = size;
1311
1312                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1313                         return retval;
1314
1315                 buffer += unaligned;
1316                 address += unaligned;
1317                 size -= unaligned;
1318         }
1319
1320         /* handle aligned words */
1321         if (size >= 4)
1322         {
1323                 int aligned = size - (size % 4);
1324
1325                 /* use bulk writes above a certain limit. This may have to be changed */
1326                 if (aligned > 128)
1327                 {
1328                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1329                                 return retval;
1330                 }
1331                 else
1332                 {
1333                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1334                                 return retval;
1335                 }
1336
1337                 buffer += aligned;
1338                 address += aligned;
1339                 size -= aligned;
1340         }
1341
1342         /* handle tail writes of less than 4 bytes */
1343         if (size > 0)
1344         {
1345                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1346                         return retval;
1347         }
1348
1349         return ERROR_OK;
1350 }
1351
1352 /* Single aligned words are guaranteed to use 16 or 32 bit access
1353  * mode respectively, otherwise data is handled as quickly as
1354  * possible
1355  */
1356 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1357 {
1358         int retval;
1359         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1360                           (int)size, (unsigned)address);
1361
1362         if (!target_was_examined(target))
1363         {
1364                 LOG_ERROR("Target not examined yet");
1365                 return ERROR_FAIL;
1366         }
1367
1368         if (size == 0) {
1369                 return ERROR_OK;
1370         }
1371
1372         if ((address + size - 1) < address)
1373         {
1374                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1375                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1376                                   address,
1377                                   size);
1378                 return ERROR_FAIL;
1379         }
1380
1381         if (((address % 2) == 0) && (size == 2))
1382         {
1383                 return target_read_memory(target, address, 2, 1, buffer);
1384         }
1385
1386         /* handle unaligned head bytes */
1387         if (address % 4)
1388         {
1389                 uint32_t unaligned = 4 - (address % 4);
1390
1391                 if (unaligned > size)
1392                         unaligned = size;
1393
1394                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1395                         return retval;
1396
1397                 buffer += unaligned;
1398                 address += unaligned;
1399                 size -= unaligned;
1400         }
1401
1402         /* handle aligned words */
1403         if (size >= 4)
1404         {
1405                 int aligned = size - (size % 4);
1406
1407                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1408                         return retval;
1409
1410                 buffer += aligned;
1411                 address += aligned;
1412                 size -= aligned;
1413         }
1414
1415         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1416         if(size >=2)
1417         {
1418                 int aligned = size - (size%2);
1419                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1420                 if (retval != ERROR_OK)
1421                         return retval;
1422
1423                 buffer += aligned;
1424                 address += aligned;
1425                 size -= aligned;
1426         }
1427         /* handle tail writes of less than 4 bytes */
1428         if (size > 0)
1429         {
1430                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1431                         return retval;
1432         }
1433
1434         return ERROR_OK;
1435 }
1436
1437 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1438 {
1439         uint8_t *buffer;
1440         int retval;
1441         uint32_t i;
1442         uint32_t checksum = 0;
1443         if (!target_was_examined(target))
1444         {
1445                 LOG_ERROR("Target not examined yet");
1446                 return ERROR_FAIL;
1447         }
1448
1449         if ((retval = target->type->checksum_memory(target, address,
1450                 size, &checksum)) != ERROR_OK)
1451         {
1452                 buffer = malloc(size);
1453                 if (buffer == NULL)
1454                 {
1455                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1456                         return ERROR_INVALID_ARGUMENTS;
1457                 }
1458                 retval = target_read_buffer(target, address, size, buffer);
1459                 if (retval != ERROR_OK)
1460                 {
1461                         free(buffer);
1462                         return retval;
1463                 }
1464
1465                 /* convert to target endianess */
1466                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1467                 {
1468                         uint32_t target_data;
1469                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1470                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1471                 }
1472
1473                 retval = image_calculate_checksum(buffer, size, &checksum);
1474                 free(buffer);
1475         }
1476
1477         *crc = checksum;
1478
1479         return retval;
1480 }
1481
1482 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1483 {
1484         int retval;
1485         if (!target_was_examined(target))
1486         {
1487                 LOG_ERROR("Target not examined yet");
1488                 return ERROR_FAIL;
1489         }
1490
1491         if (target->type->blank_check_memory == 0)
1492                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1493
1494         retval = target->type->blank_check_memory(target, address, size, blank);
1495
1496         return retval;
1497 }
1498
1499 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1500 {
1501         uint8_t value_buf[4];
1502         if (!target_was_examined(target))
1503         {
1504                 LOG_ERROR("Target not examined yet");
1505                 return ERROR_FAIL;
1506         }
1507
1508         int retval = target_read_memory(target, address, 4, 1, value_buf);
1509
1510         if (retval == ERROR_OK)
1511         {
1512                 *value = target_buffer_get_u32(target, value_buf);
1513                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1514                                   address,
1515                                   *value);
1516         }
1517         else
1518         {
1519                 *value = 0x0;
1520                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1521                                   address);
1522         }
1523
1524         return retval;
1525 }
1526
1527 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1528 {
1529         uint8_t value_buf[2];
1530         if (!target_was_examined(target))
1531         {
1532                 LOG_ERROR("Target not examined yet");
1533                 return ERROR_FAIL;
1534         }
1535
1536         int retval = target_read_memory(target, address, 2, 1, value_buf);
1537
1538         if (retval == ERROR_OK)
1539         {
1540                 *value = target_buffer_get_u16(target, value_buf);
1541                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1542                                   address,
1543                                   *value);
1544         }
1545         else
1546         {
1547                 *value = 0x0;
1548                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1549                                   address);
1550         }
1551
1552         return retval;
1553 }
1554
1555 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1556 {
1557         int retval = target_read_memory(target, address, 1, 1, value);
1558         if (!target_was_examined(target))
1559         {
1560                 LOG_ERROR("Target not examined yet");
1561                 return ERROR_FAIL;
1562         }
1563
1564         if (retval == ERROR_OK)
1565         {
1566                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1567                                   address,
1568                                   *value);
1569         }
1570         else
1571         {
1572                 *value = 0x0;
1573                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1574                                   address);
1575         }
1576
1577         return retval;
1578 }
1579
1580 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1581 {
1582         int retval;
1583         uint8_t value_buf[4];
1584         if (!target_was_examined(target))
1585         {
1586                 LOG_ERROR("Target not examined yet");
1587                 return ERROR_FAIL;
1588         }
1589
1590         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1591                           address,
1592                           value);
1593
1594         target_buffer_set_u32(target, value_buf, value);
1595         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1596         {
1597                 LOG_DEBUG("failed: %i", retval);
1598         }
1599
1600         return retval;
1601 }
1602
1603 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1604 {
1605         int retval;
1606         uint8_t value_buf[2];
1607         if (!target_was_examined(target))
1608         {
1609                 LOG_ERROR("Target not examined yet");
1610                 return ERROR_FAIL;
1611         }
1612
1613         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1614                           address,
1615                           value);
1616
1617         target_buffer_set_u16(target, value_buf, value);
1618         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1619         {
1620                 LOG_DEBUG("failed: %i", retval);
1621         }
1622
1623         return retval;
1624 }
1625
1626 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1627 {
1628         int retval;
1629         if (!target_was_examined(target))
1630         {
1631                 LOG_ERROR("Target not examined yet");
1632                 return ERROR_FAIL;
1633         }
1634
1635         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1636                           address, value);
1637
1638         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1639         {
1640                 LOG_DEBUG("failed: %i", retval);
1641         }
1642
1643         return retval;
1644 }
1645
1646 COMMAND_HANDLER(handle_targets_command)
1647 {
1648         struct target *target = all_targets;
1649
1650         if (argc == 1)
1651         {
1652                 target = get_target(args[0]);
1653                 if (target == NULL) {
1654                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
1655                         goto DumpTargets;
1656                 }
1657                 if (!target->tap->enabled) {
1658                         command_print(cmd_ctx,"Target: TAP %s is disabled, "
1659                                         "can't be the current target\n",
1660                                         target->tap->dotted_name);
1661                         return ERROR_FAIL;
1662                 }
1663
1664                 cmd_ctx->current_target = target->target_number;
1665                 return ERROR_OK;
1666         }
1667 DumpTargets:
1668
1669         target = all_targets;
1670         command_print(cmd_ctx, "    TargetName         Type       Endian TapName            State       ");
1671         command_print(cmd_ctx, "--  ------------------ ---------- ------ ------------------ ------------");
1672         while (target)
1673         {
1674                 const char *state;
1675                 char marker = ' ';
1676
1677                 if (target->tap->enabled)
1678                         state = target_state_name( target );
1679                 else
1680                         state = "tap-disabled";
1681
1682                 if (cmd_ctx->current_target == target->target_number)
1683                         marker = '*';
1684
1685                 /* keep columns lined up to match the headers above */
1686                 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1687                                           target->target_number,
1688                                           marker,
1689                                           target->cmd_name,
1690                                           target_get_name(target),
1691                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1692                                                                 target->endianness)->name,
1693                                           target->tap->dotted_name,
1694                                           state);
1695                 target = target->next;
1696         }
1697
1698         return ERROR_OK;
1699 }
1700
1701 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1702
1703 static int powerDropout;
1704 static int srstAsserted;
1705
1706 static int runPowerRestore;
1707 static int runPowerDropout;
1708 static int runSrstAsserted;
1709 static int runSrstDeasserted;
1710
1711 static int sense_handler(void)
1712 {
1713         static int prevSrstAsserted = 0;
1714         static int prevPowerdropout = 0;
1715
1716         int retval;
1717         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1718                 return retval;
1719
1720         int powerRestored;
1721         powerRestored = prevPowerdropout && !powerDropout;
1722         if (powerRestored)
1723         {
1724                 runPowerRestore = 1;
1725         }
1726
1727         long long current = timeval_ms();
1728         static long long lastPower = 0;
1729         int waitMore = lastPower + 2000 > current;
1730         if (powerDropout && !waitMore)
1731         {
1732                 runPowerDropout = 1;
1733                 lastPower = current;
1734         }
1735
1736         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1737                 return retval;
1738
1739         int srstDeasserted;
1740         srstDeasserted = prevSrstAsserted && !srstAsserted;
1741
1742         static long long lastSrst = 0;
1743         waitMore = lastSrst + 2000 > current;
1744         if (srstDeasserted && !waitMore)
1745         {
1746                 runSrstDeasserted = 1;
1747                 lastSrst = current;
1748         }
1749
1750         if (!prevSrstAsserted && srstAsserted)
1751         {
1752                 runSrstAsserted = 1;
1753         }
1754
1755         prevSrstAsserted = srstAsserted;
1756         prevPowerdropout = powerDropout;
1757
1758         if (srstDeasserted || powerRestored)
1759         {
1760                 /* Other than logging the event we can't do anything here.
1761                  * Issuing a reset is a particularly bad idea as we might
1762                  * be inside a reset already.
1763                  */
1764         }
1765
1766         return ERROR_OK;
1767 }
1768
1769 static void target_call_event_callbacks_all(enum target_event e) {
1770         struct target *target;
1771         target = all_targets;
1772         while (target) {
1773                 target_call_event_callbacks(target, e);
1774                 target = target->next;
1775         }
1776 }
1777
1778 /* process target state changes */
1779 int handle_target(void *priv)
1780 {
1781         int retval = ERROR_OK;
1782
1783         /* we do not want to recurse here... */
1784         static int recursive = 0;
1785         if (! recursive)
1786         {
1787                 recursive = 1;
1788                 sense_handler();
1789                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1790                  * We need to avoid an infinite loop/recursion here and we do that by
1791                  * clearing the flags after running these events.
1792                  */
1793                 int did_something = 0;
1794                 if (runSrstAsserted)
1795                 {
1796                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1797                         Jim_Eval(interp, "srst_asserted");
1798                         did_something = 1;
1799                 }
1800                 if (runSrstDeasserted)
1801                 {
1802                         Jim_Eval(interp, "srst_deasserted");
1803                         did_something = 1;
1804                 }
1805                 if (runPowerDropout)
1806                 {
1807                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1808                         Jim_Eval(interp, "power_dropout");
1809                         did_something = 1;
1810                 }
1811                 if (runPowerRestore)
1812                 {
1813                         Jim_Eval(interp, "power_restore");
1814                         did_something = 1;
1815                 }
1816
1817                 if (did_something)
1818                 {
1819                         /* clear detect flags */
1820                         sense_handler();
1821                 }
1822
1823                 /* clear action flags */
1824
1825                 runSrstAsserted = 0;
1826                 runSrstDeasserted = 0;
1827                 runPowerRestore = 0;
1828                 runPowerDropout = 0;
1829
1830                 recursive = 0;
1831         }
1832
1833         /* Poll targets for state changes unless that's globally disabled.
1834          * Skip targets that are currently disabled.
1835          */
1836         for (struct target *target = all_targets;
1837                         is_jtag_poll_safe() && target;
1838                         target = target->next)
1839         {
1840                 if (!target->tap->enabled)
1841                         continue;
1842
1843                 /* only poll target if we've got power and srst isn't asserted */
1844                 if (!powerDropout && !srstAsserted)
1845                 {
1846                         /* polling may fail silently until the target has been examined */
1847                         if ((retval = target_poll(target)) != ERROR_OK)
1848                         {
1849                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1850                                 return retval;
1851                         }
1852                 }
1853         }
1854
1855         return retval;
1856 }
1857
1858 COMMAND_HANDLER(handle_reg_command)
1859 {
1860         struct target *target;
1861         struct reg *reg = NULL;
1862         int count = 0;
1863         char *value;
1864
1865         LOG_DEBUG("-");
1866
1867         target = get_current_target(cmd_ctx);
1868
1869         /* list all available registers for the current target */
1870         if (argc == 0)
1871         {
1872                 struct reg_cache *cache = target->reg_cache;
1873
1874                 count = 0;
1875                 while (cache)
1876                 {
1877                         int i;
1878
1879                         command_print(cmd_ctx, "===== %s", cache->name);
1880
1881                         for (i = 0, reg = cache->reg_list;
1882                                         i < cache->num_regs;
1883                                         i++, reg++, count++)
1884                         {
1885                                 /* only print cached values if they are valid */
1886                                 if (reg->valid) {
1887                                         value = buf_to_str(reg->value,
1888                                                         reg->size, 16);
1889                                         command_print(cmd_ctx,
1890                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1891                                                         count, reg->name,
1892                                                         reg->size, value,
1893                                                         reg->dirty
1894                                                                 ? " (dirty)"
1895                                                                 : "");
1896                                         free(value);
1897                                 } else {
1898                                         command_print(cmd_ctx, "(%i) %s (/%" PRIu32 ")",
1899                                                           count, reg->name,
1900                                                           reg->size) ;
1901                                 }
1902                         }
1903                         cache = cache->next;
1904                 }
1905
1906                 return ERROR_OK;
1907         }
1908
1909         /* access a single register by its ordinal number */
1910         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1911         {
1912                 unsigned num;
1913                 COMMAND_PARSE_NUMBER(uint, args[0], num);
1914
1915                 struct reg_cache *cache = target->reg_cache;
1916                 count = 0;
1917                 while (cache)
1918                 {
1919                         int i;
1920                         for (i = 0; i < cache->num_regs; i++)
1921                         {
1922                                 if (count++ == (int)num)
1923                                 {
1924                                         reg = &cache->reg_list[i];
1925                                         break;
1926                                 }
1927                         }
1928                         if (reg)
1929                                 break;
1930                         cache = cache->next;
1931                 }
1932
1933                 if (!reg)
1934                 {
1935                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1936                         return ERROR_OK;
1937                 }
1938         } else /* access a single register by its name */
1939         {
1940                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1941
1942                 if (!reg)
1943                 {
1944                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1945                         return ERROR_OK;
1946                 }
1947         }
1948
1949         /* display a register */
1950         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1951         {
1952                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1953                         reg->valid = 0;
1954
1955                 if (reg->valid == 0)
1956                 {
1957                         struct reg_arch_type *arch_type = register_get_arch_type(reg->arch_type);
1958                         arch_type->get(reg);
1959                 }
1960                 value = buf_to_str(reg->value, reg->size, 16);
1961                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1962                 free(value);
1963                 return ERROR_OK;
1964         }
1965
1966         /* set register value */
1967         if (argc == 2)
1968         {
1969                 uint8_t *buf = malloc(CEIL(reg->size, 8));
1970                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1971
1972                 struct reg_arch_type *arch_type = register_get_arch_type(reg->arch_type);
1973                 arch_type->set(reg, buf);
1974
1975                 value = buf_to_str(reg->value, reg->size, 16);
1976                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1977                 free(value);
1978
1979                 free(buf);
1980
1981                 return ERROR_OK;
1982         }
1983
1984         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1985
1986         return ERROR_OK;
1987 }
1988
1989 COMMAND_HANDLER(handle_poll_command)
1990 {
1991         int retval = ERROR_OK;
1992         struct target *target = get_current_target(cmd_ctx);
1993
1994         if (argc == 0)
1995         {
1996                 command_print(cmd_ctx, "background polling: %s",
1997                                 jtag_poll_get_enabled() ? "on" : "off");
1998                 command_print(cmd_ctx, "TAP: %s (%s)",
1999                                 target->tap->dotted_name,
2000                                 target->tap->enabled ? "enabled" : "disabled");
2001                 if (!target->tap->enabled)
2002                         return ERROR_OK;
2003                 if ((retval = target_poll(target)) != ERROR_OK)
2004                         return retval;
2005                 if ((retval = target_arch_state(target)) != ERROR_OK)
2006                         return retval;
2007
2008         }
2009         else if (argc == 1)
2010         {
2011                 if (strcmp(args[0], "on") == 0)
2012                 {
2013                         jtag_poll_set_enabled(true);
2014                 }
2015                 else if (strcmp(args[0], "off") == 0)
2016                 {
2017                         jtag_poll_set_enabled(false);
2018                 }
2019                 else
2020                 {
2021                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
2022                 }
2023         } else
2024         {
2025                 return ERROR_COMMAND_SYNTAX_ERROR;
2026         }
2027
2028         return retval;
2029 }
2030
2031 COMMAND_HANDLER(handle_wait_halt_command)
2032 {
2033         if (argc > 1)
2034                 return ERROR_COMMAND_SYNTAX_ERROR;
2035
2036         unsigned ms = 5000;
2037         if (1 == argc)
2038         {
2039                 int retval = parse_uint(args[0], &ms);
2040                 if (ERROR_OK != retval)
2041                 {
2042                         command_print(cmd_ctx, "usage: %s [seconds]", CMD_NAME);
2043                         return ERROR_COMMAND_SYNTAX_ERROR;
2044                 }
2045                 // convert seconds (given) to milliseconds (needed)
2046                 ms *= 1000;
2047         }
2048
2049         struct target *target = get_current_target(cmd_ctx);
2050         return target_wait_state(target, TARGET_HALTED, ms);
2051 }
2052
2053 /* wait for target state to change. The trick here is to have a low
2054  * latency for short waits and not to suck up all the CPU time
2055  * on longer waits.
2056  *
2057  * After 500ms, keep_alive() is invoked
2058  */
2059 int target_wait_state(struct target *target, enum target_state state, int ms)
2060 {
2061         int retval;
2062         long long then = 0, cur;
2063         int once = 1;
2064
2065         for (;;)
2066         {
2067                 if ((retval = target_poll(target)) != ERROR_OK)
2068                         return retval;
2069                 if (target->state == state)
2070                 {
2071                         break;
2072                 }
2073                 cur = timeval_ms();
2074                 if (once)
2075                 {
2076                         once = 0;
2077                         then = timeval_ms();
2078                         LOG_DEBUG("waiting for target %s...",
2079                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2080                 }
2081
2082                 if (cur-then > 500)
2083                 {
2084                         keep_alive();
2085                 }
2086
2087                 if ((cur-then) > ms)
2088                 {
2089                         LOG_ERROR("timed out while waiting for target %s",
2090                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2091                         return ERROR_FAIL;
2092                 }
2093         }
2094
2095         return ERROR_OK;
2096 }
2097
2098 COMMAND_HANDLER(handle_halt_command)
2099 {
2100         LOG_DEBUG("-");
2101
2102         struct target *target = get_current_target(cmd_ctx);
2103         int retval = target_halt(target);
2104         if (ERROR_OK != retval)
2105                 return retval;
2106
2107         if (argc == 1)
2108         {
2109                 unsigned wait;
2110                 retval = parse_uint(args[0], &wait);
2111                 if (ERROR_OK != retval)
2112                         return ERROR_COMMAND_SYNTAX_ERROR;
2113                 if (!wait)
2114                         return ERROR_OK;
2115         }
2116
2117         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2118 }
2119
2120 COMMAND_HANDLER(handle_soft_reset_halt_command)
2121 {
2122         struct target *target = get_current_target(cmd_ctx);
2123
2124         LOG_USER("requesting target halt and executing a soft reset");
2125
2126         target->type->soft_reset_halt(target);
2127
2128         return ERROR_OK;
2129 }
2130
2131 COMMAND_HANDLER(handle_reset_command)
2132 {
2133         if (argc > 1)
2134                 return ERROR_COMMAND_SYNTAX_ERROR;
2135
2136         enum target_reset_mode reset_mode = RESET_RUN;
2137         if (argc == 1)
2138         {
2139                 const Jim_Nvp *n;
2140                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
2141                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2142                         return ERROR_COMMAND_SYNTAX_ERROR;
2143                 }
2144                 reset_mode = n->value;
2145         }
2146
2147         /* reset *all* targets */
2148         return target_process_reset(cmd_ctx, reset_mode);
2149 }
2150
2151
2152 COMMAND_HANDLER(handle_resume_command)
2153 {
2154         int current = 1;
2155         if (argc > 1)
2156                 return ERROR_COMMAND_SYNTAX_ERROR;
2157
2158         struct target *target = get_current_target(cmd_ctx);
2159         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2160
2161         /* with no args, resume from current pc, addr = 0,
2162          * with one arguments, addr = args[0],
2163          * handle breakpoints, not debugging */
2164         uint32_t addr = 0;
2165         if (argc == 1)
2166         {
2167                 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2168                 current = 0;
2169         }
2170
2171         return target_resume(target, current, addr, 1, 0);
2172 }
2173
2174 COMMAND_HANDLER(handle_step_command)
2175 {
2176         if (argc > 1)
2177                 return ERROR_COMMAND_SYNTAX_ERROR;
2178
2179         LOG_DEBUG("-");
2180
2181         /* with no args, step from current pc, addr = 0,
2182          * with one argument addr = args[0],
2183          * handle breakpoints, debugging */
2184         uint32_t addr = 0;
2185         int current_pc = 1;
2186         if (argc == 1)
2187         {
2188                 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2189                 current_pc = 0;
2190         }
2191
2192         struct target *target = get_current_target(cmd_ctx);
2193
2194         return target->type->step(target, current_pc, addr, 1);
2195 }
2196
2197 static void handle_md_output(struct command_context *cmd_ctx,
2198                 struct target *target, uint32_t address, unsigned size,
2199                 unsigned count, const uint8_t *buffer)
2200 {
2201         const unsigned line_bytecnt = 32;
2202         unsigned line_modulo = line_bytecnt / size;
2203
2204         char output[line_bytecnt * 4 + 1];
2205         unsigned output_len = 0;
2206
2207         const char *value_fmt;
2208         switch (size) {
2209         case 4: value_fmt = "%8.8x "; break;
2210         case 2: value_fmt = "%4.2x "; break;
2211         case 1: value_fmt = "%2.2x "; break;
2212         default:
2213                 LOG_ERROR("invalid memory read size: %u", size);
2214                 exit(-1);
2215         }
2216
2217         for (unsigned i = 0; i < count; i++)
2218         {
2219                 if (i % line_modulo == 0)
2220                 {
2221                         output_len += snprintf(output + output_len,
2222                                         sizeof(output) - output_len,
2223                                         "0x%8.8x: ",
2224                                         (unsigned)(address + (i*size)));
2225                 }
2226
2227                 uint32_t value = 0;
2228                 const uint8_t *value_ptr = buffer + i * size;
2229                 switch (size) {
2230                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2231                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2232                 case 1: value = *value_ptr;
2233                 }
2234                 output_len += snprintf(output + output_len,
2235                                 sizeof(output) - output_len,
2236                                 value_fmt, value);
2237
2238                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2239                 {
2240                         command_print(cmd_ctx, "%s", output);
2241                         output_len = 0;
2242                 }
2243         }
2244 }
2245
2246 COMMAND_HANDLER(handle_md_command)
2247 {
2248         if (argc < 1)
2249                 return ERROR_COMMAND_SYNTAX_ERROR;
2250
2251         unsigned size = 0;
2252         const char *cmd_name = CMD_NAME;
2253         switch (cmd_name[6]) {
2254         case 'w': size = 4; break;
2255         case 'h': size = 2; break;
2256         case 'b': size = 1; break;
2257         default: return ERROR_COMMAND_SYNTAX_ERROR;
2258         }
2259
2260         bool physical=strcmp(args[0], "phys")==0;
2261         int (*fn)(struct target *target,
2262                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2263         if (physical)
2264         {
2265                 argc--;
2266                 args++;
2267                 fn=target_read_phys_memory;
2268         } else
2269         {
2270                 fn=target_read_memory;
2271         }
2272         if ((argc < 1) || (argc > 2))
2273         {
2274                 return ERROR_COMMAND_SYNTAX_ERROR;
2275         }
2276
2277         uint32_t address;
2278         COMMAND_PARSE_NUMBER(u32, args[0], address);
2279
2280         unsigned count = 1;
2281         if (argc == 2)
2282                 COMMAND_PARSE_NUMBER(uint, args[1], count);
2283
2284         uint8_t *buffer = calloc(count, size);
2285
2286         struct target *target = get_current_target(cmd_ctx);
2287         int retval = fn(target, address, size, count, buffer);
2288         if (ERROR_OK == retval)
2289                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2290
2291         free(buffer);
2292
2293         return retval;
2294 }
2295
2296 COMMAND_HANDLER(handle_mw_command)
2297 {
2298         if (argc < 2)
2299         {
2300                 return ERROR_COMMAND_SYNTAX_ERROR;
2301         }
2302         bool physical=strcmp(args[0], "phys")==0;
2303         int (*fn)(struct target *target,
2304                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2305         const char *cmd_name = CMD_NAME;
2306         if (physical)
2307         {
2308                 argc--;
2309                 args++;
2310                 fn=target_write_phys_memory;
2311         } else
2312         {
2313                 fn=target_write_memory;
2314         }
2315         if ((argc < 2) || (argc > 3))
2316                 return ERROR_COMMAND_SYNTAX_ERROR;
2317
2318         uint32_t address;
2319         COMMAND_PARSE_NUMBER(u32, args[0], address);
2320
2321         uint32_t value;
2322         COMMAND_PARSE_NUMBER(u32, args[1], value);
2323
2324         unsigned count = 1;
2325         if (argc == 3)
2326                 COMMAND_PARSE_NUMBER(uint, args[2], count);
2327
2328         struct target *target = get_current_target(cmd_ctx);
2329         unsigned wordsize;
2330         uint8_t value_buf[4];
2331         switch (cmd_name[6])
2332         {
2333                 case 'w':
2334                         wordsize = 4;
2335                         target_buffer_set_u32(target, value_buf, value);
2336                         break;
2337                 case 'h':
2338                         wordsize = 2;
2339                         target_buffer_set_u16(target, value_buf, value);
2340                         break;
2341                 case 'b':
2342                         wordsize = 1;
2343                         value_buf[0] = value;
2344                         break;
2345                 default:
2346                         return ERROR_COMMAND_SYNTAX_ERROR;
2347         }
2348         for (unsigned i = 0; i < count; i++)
2349         {
2350                 int retval = fn(target,
2351                                 address + i * wordsize, wordsize, 1, value_buf);
2352                 if (ERROR_OK != retval)
2353                         return retval;
2354                 keep_alive();
2355         }
2356
2357         return ERROR_OK;
2358
2359 }
2360
2361 static COMMAND_HELPER(parse_load_image_command_args, struct image *image,
2362                 uint32_t *min_address, uint32_t *max_address)
2363 {
2364         if (argc < 1 || argc > 5)
2365                 return ERROR_COMMAND_SYNTAX_ERROR;
2366
2367         /* a base address isn't always necessary,
2368          * default to 0x0 (i.e. don't relocate) */
2369         if (argc >= 2)
2370         {
2371                 uint32_t addr;
2372                 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2373                 image->base_address = addr;
2374                 image->base_address_set = 1;
2375         }
2376         else
2377                 image->base_address_set = 0;
2378
2379         image->start_address_set = 0;
2380
2381         if (argc >= 4)
2382         {
2383                 COMMAND_PARSE_NUMBER(u32, args[3], *min_address);
2384         }
2385         if (argc == 5)
2386         {
2387                 COMMAND_PARSE_NUMBER(u32, args[4], *max_address);
2388                 // use size (given) to find max (required)
2389                 *max_address += *min_address;
2390         }
2391
2392         if (*min_address > *max_address)
2393                 return ERROR_COMMAND_SYNTAX_ERROR;
2394
2395         return ERROR_OK;
2396 }
2397
2398 COMMAND_HANDLER(handle_load_image_command)
2399 {
2400         uint8_t *buffer;
2401         uint32_t buf_cnt;
2402         uint32_t image_size;
2403         uint32_t min_address = 0;
2404         uint32_t max_address = 0xffffffff;
2405         int i;
2406         struct image image;
2407
2408         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_args,
2409                         &image, &min_address, &max_address);
2410         if (ERROR_OK != retval)
2411                 return retval;
2412
2413         struct target *target = get_current_target(cmd_ctx);
2414
2415         struct duration bench;
2416         duration_start(&bench);
2417
2418         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2419         {
2420                 return ERROR_OK;
2421         }
2422
2423         image_size = 0x0;
2424         retval = ERROR_OK;
2425         for (i = 0; i < image.num_sections; i++)
2426         {
2427                 buffer = malloc(image.sections[i].size);
2428                 if (buffer == NULL)
2429                 {
2430                         command_print(cmd_ctx,
2431                                                   "error allocating buffer for section (%d bytes)",
2432                                                   (int)(image.sections[i].size));
2433                         break;
2434                 }
2435
2436                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2437                 {
2438                         free(buffer);
2439                         break;
2440                 }
2441
2442                 uint32_t offset = 0;
2443                 uint32_t length = buf_cnt;
2444
2445                 /* DANGER!!! beware of unsigned comparision here!!! */
2446
2447                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2448                                 (image.sections[i].base_address < max_address))
2449                 {
2450                         if (image.sections[i].base_address < min_address)
2451                         {
2452                                 /* clip addresses below */
2453                                 offset += min_address-image.sections[i].base_address;
2454                                 length -= offset;
2455                         }
2456
2457                         if (image.sections[i].base_address + buf_cnt > max_address)
2458                         {
2459                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2460                         }
2461
2462                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2463                         {
2464                                 free(buffer);
2465                                 break;
2466                         }
2467                         image_size += length;
2468                         command_print(cmd_ctx, "%u bytes written at address 0x%8.8" PRIx32 "",
2469                                                   (unsigned int)length,
2470                                                   image.sections[i].base_address + offset);
2471                 }
2472
2473                 free(buffer);
2474         }
2475
2476         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2477         {
2478                 command_print(cmd_ctx, "downloaded %" PRIu32 " bytes "
2479                                 "in %fs (%0.3f kb/s)", image_size,
2480                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2481         }
2482
2483         image_close(&image);
2484
2485         return retval;
2486
2487 }
2488
2489 COMMAND_HANDLER(handle_dump_image_command)
2490 {
2491         struct fileio fileio;
2492
2493         uint8_t buffer[560];
2494         int retvaltemp;
2495
2496
2497         struct target *target = get_current_target(cmd_ctx);
2498
2499         if (argc != 3)
2500         {
2501                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2502                 return ERROR_OK;
2503         }
2504
2505         uint32_t address;
2506         COMMAND_PARSE_NUMBER(u32, args[1], address);
2507         uint32_t size;
2508         COMMAND_PARSE_NUMBER(u32, args[2], size);
2509
2510         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2511         {
2512                 return ERROR_OK;
2513         }
2514
2515         struct duration bench;
2516         duration_start(&bench);
2517
2518         int retval = ERROR_OK;
2519         while (size > 0)
2520         {
2521                 uint32_t size_written;
2522                 uint32_t this_run_size = (size > 560) ? 560 : size;
2523                 retval = target_read_buffer(target, address, this_run_size, buffer);
2524                 if (retval != ERROR_OK)
2525                 {
2526                         break;
2527                 }
2528
2529                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2530                 if (retval != ERROR_OK)
2531                 {
2532                         break;
2533                 }
2534
2535                 size -= this_run_size;
2536                 address += this_run_size;
2537         }
2538
2539         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2540                 return retvaltemp;
2541
2542         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2543         {
2544                 command_print(cmd_ctx,
2545                                 "dumped %lld bytes in %fs (%0.3f kb/s)", fileio.size,
2546                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2547         }
2548
2549         return retval;
2550 }
2551
2552 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2553 {
2554         uint8_t *buffer;
2555         uint32_t buf_cnt;
2556         uint32_t image_size;
2557         int i;
2558         int retval;
2559         uint32_t checksum = 0;
2560         uint32_t mem_checksum = 0;
2561
2562         struct image image;
2563
2564         struct target *target = get_current_target(cmd_ctx);
2565
2566         if (argc < 1)
2567         {
2568                 return ERROR_COMMAND_SYNTAX_ERROR;
2569         }
2570
2571         if (!target)
2572         {
2573                 LOG_ERROR("no target selected");
2574                 return ERROR_FAIL;
2575         }
2576
2577         struct duration bench;
2578         duration_start(&bench);
2579
2580         if (argc >= 2)
2581         {
2582                 uint32_t addr;
2583                 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2584                 image.base_address = addr;
2585                 image.base_address_set = 1;
2586         }
2587         else
2588         {
2589                 image.base_address_set = 0;
2590                 image.base_address = 0x0;
2591         }
2592
2593         image.start_address_set = 0;
2594
2595         if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2596         {
2597                 return retval;
2598         }
2599
2600         image_size = 0x0;
2601         retval = ERROR_OK;
2602         for (i = 0; i < image.num_sections; i++)
2603         {
2604                 buffer = malloc(image.sections[i].size);
2605                 if (buffer == NULL)
2606                 {
2607                         command_print(cmd_ctx,
2608                                                   "error allocating buffer for section (%d bytes)",
2609                                                   (int)(image.sections[i].size));
2610                         break;
2611                 }
2612                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2613                 {
2614                         free(buffer);
2615                         break;
2616                 }
2617
2618                 if (verify)
2619                 {
2620                         /* calculate checksum of image */
2621                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2622
2623                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2624                         if (retval != ERROR_OK)
2625                         {
2626                                 free(buffer);
2627                                 break;
2628                         }
2629
2630                         if (checksum != mem_checksum)
2631                         {
2632                                 /* failed crc checksum, fall back to a binary compare */
2633                                 uint8_t *data;
2634
2635                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2636
2637                                 data = (uint8_t*)malloc(buf_cnt);
2638
2639                                 /* Can we use 32bit word accesses? */
2640                                 int size = 1;
2641                                 int count = buf_cnt;
2642                                 if ((count % 4) == 0)
2643                                 {
2644                                         size *= 4;
2645                                         count /= 4;
2646                                 }
2647                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2648                                 if (retval == ERROR_OK)
2649                                 {
2650                                         uint32_t t;
2651                                         for (t = 0; t < buf_cnt; t++)
2652                                         {
2653                                                 if (data[t] != buffer[t])
2654                                                 {
2655                                                         command_print(cmd_ctx,
2656                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2657                                                                                   (unsigned)(t + image.sections[i].base_address),
2658                                                                                   data[t],
2659                                                                                   buffer[t]);
2660                                                         free(data);
2661                                                         free(buffer);
2662                                                         retval = ERROR_FAIL;
2663                                                         goto done;
2664                                                 }
2665                                                 if ((t%16384) == 0)
2666                                                 {
2667                                                         keep_alive();
2668                                                 }
2669                                         }
2670                                 }
2671
2672                                 free(data);
2673                         }
2674                 } else
2675                 {
2676                         command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
2677                                                   image.sections[i].base_address,
2678                                                   buf_cnt);
2679                 }
2680
2681                 free(buffer);
2682                 image_size += buf_cnt;
2683         }
2684 done:
2685         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2686         {
2687                 command_print(cmd_ctx, "verified %" PRIu32 " bytes "
2688                                 "in %fs (%0.3f kb/s)", image_size,
2689                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2690         }
2691
2692         image_close(&image);
2693
2694         return retval;
2695 }
2696
2697 COMMAND_HANDLER(handle_verify_image_command)
2698 {
2699         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2700 }
2701
2702 COMMAND_HANDLER(handle_test_image_command)
2703 {
2704         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2705 }
2706
2707 static int handle_bp_command_list(struct command_context *cmd_ctx)
2708 {
2709         struct target *target = get_current_target(cmd_ctx);
2710         struct breakpoint *breakpoint = target->breakpoints;
2711         while (breakpoint)
2712         {
2713                 if (breakpoint->type == BKPT_SOFT)
2714                 {
2715                         char* buf = buf_to_str(breakpoint->orig_instr,
2716                                         breakpoint->length, 16);
2717                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2718                                         breakpoint->address,
2719                                         breakpoint->length,
2720                                         breakpoint->set, buf);
2721                         free(buf);
2722                 }
2723                 else
2724                 {
2725                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2726                                                   breakpoint->address,
2727                                                   breakpoint->length, breakpoint->set);
2728                 }
2729
2730                 breakpoint = breakpoint->next;
2731         }
2732         return ERROR_OK;
2733 }
2734
2735 static int handle_bp_command_set(struct command_context *cmd_ctx,
2736                 uint32_t addr, uint32_t length, int hw)
2737 {
2738         struct target *target = get_current_target(cmd_ctx);
2739         int retval = breakpoint_add(target, addr, length, hw);
2740         if (ERROR_OK == retval)
2741                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2742         else
2743                 LOG_ERROR("Failure setting breakpoint");
2744         return retval;
2745 }
2746
2747 COMMAND_HANDLER(handle_bp_command)
2748 {
2749         if (argc == 0)
2750                 return handle_bp_command_list(cmd_ctx);
2751
2752         if (argc < 2 || argc > 3)
2753         {
2754                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2755                 return ERROR_COMMAND_SYNTAX_ERROR;
2756         }
2757
2758         uint32_t addr;
2759         COMMAND_PARSE_NUMBER(u32, args[0], addr);
2760         uint32_t length;
2761         COMMAND_PARSE_NUMBER(u32, args[1], length);
2762
2763         int hw = BKPT_SOFT;
2764         if (argc == 3)
2765         {
2766                 if (strcmp(args[2], "hw") == 0)
2767                         hw = BKPT_HARD;
2768                 else
2769                         return ERROR_COMMAND_SYNTAX_ERROR;
2770         }
2771
2772         return handle_bp_command_set(cmd_ctx, addr, length, hw);
2773 }
2774
2775 COMMAND_HANDLER(handle_rbp_command)
2776 {
2777         if (argc != 1)
2778                 return ERROR_COMMAND_SYNTAX_ERROR;
2779
2780         uint32_t addr;
2781         COMMAND_PARSE_NUMBER(u32, args[0], addr);
2782
2783         struct target *target = get_current_target(cmd_ctx);
2784         breakpoint_remove(target, addr);
2785
2786         return ERROR_OK;
2787 }
2788
2789 COMMAND_HANDLER(handle_wp_command)
2790 {
2791         struct target *target = get_current_target(cmd_ctx);
2792
2793         if (argc == 0)
2794         {
2795                 struct watchpoint *watchpoint = target->watchpoints;
2796
2797                 while (watchpoint)
2798                 {
2799                         command_print(cmd_ctx, "address: 0x%8.8" PRIx32
2800                                         ", len: 0x%8.8" PRIx32
2801                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2802                                         ", mask: 0x%8.8" PRIx32,
2803                                         watchpoint->address,
2804                                         watchpoint->length,
2805                                         (int)watchpoint->rw,
2806                                         watchpoint->value,
2807                                         watchpoint->mask);
2808                         watchpoint = watchpoint->next;
2809                 }
2810                 return ERROR_OK;
2811         }
2812
2813         enum watchpoint_rw type = WPT_ACCESS;
2814         uint32_t addr = 0;
2815         uint32_t length = 0;
2816         uint32_t data_value = 0x0;
2817         uint32_t data_mask = 0xffffffff;
2818
2819         switch (argc)
2820         {
2821         case 5:
2822                 COMMAND_PARSE_NUMBER(u32, args[4], data_mask);
2823                 // fall through
2824         case 4:
2825                 COMMAND_PARSE_NUMBER(u32, args[3], data_value);
2826                 // fall through
2827         case 3:
2828                 switch (args[2][0])
2829                 {
2830                 case 'r':
2831                         type = WPT_READ;
2832                         break;
2833                 case 'w':
2834                         type = WPT_WRITE;
2835                         break;
2836                 case 'a':
2837                         type = WPT_ACCESS;
2838                         break;
2839                 default:
2840                         LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2841                         return ERROR_COMMAND_SYNTAX_ERROR;
2842                 }
2843                 // fall through
2844         case 2:
2845                 COMMAND_PARSE_NUMBER(u32, args[1], length);
2846                 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2847                 break;
2848
2849         default:
2850                 command_print(cmd_ctx, "usage: wp [address length "
2851                                 "[(r|w|a) [value [mask]]]]");
2852                 return ERROR_COMMAND_SYNTAX_ERROR;
2853         }
2854
2855         int retval = watchpoint_add(target, addr, length, type,
2856                         data_value, data_mask);
2857         if (ERROR_OK != retval)
2858                 LOG_ERROR("Failure setting watchpoints");
2859
2860         return retval;
2861 }
2862
2863 COMMAND_HANDLER(handle_rwp_command)
2864 {
2865         if (argc != 1)
2866                 return ERROR_COMMAND_SYNTAX_ERROR;
2867
2868         uint32_t addr;
2869         COMMAND_PARSE_NUMBER(u32, args[0], addr);
2870
2871         struct target *target = get_current_target(cmd_ctx);
2872         watchpoint_remove(target, addr);
2873
2874         return ERROR_OK;
2875 }
2876
2877
2878 /**
2879  * Translate a virtual address to a physical address.
2880  *
2881  * The low-level target implementation must have logged a detailed error
2882  * which is forwarded to telnet/GDB session.
2883  */
2884 COMMAND_HANDLER(handle_virt2phys_command)
2885 {
2886         if (argc != 1)
2887                 return ERROR_COMMAND_SYNTAX_ERROR;
2888
2889         uint32_t va;
2890         COMMAND_PARSE_NUMBER(u32, args[0], va);
2891         uint32_t pa;
2892
2893         struct target *target = get_current_target(cmd_ctx);
2894         int retval = target->type->virt2phys(target, va, &pa);
2895         if (retval == ERROR_OK)
2896                 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
2897
2898         return retval;
2899 }
2900
2901 static void writeData(FILE *f, const void *data, size_t len)
2902 {
2903         size_t written = fwrite(data, 1, len, f);
2904         if (written != len)
2905                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2906 }
2907
2908 static void writeLong(FILE *f, int l)
2909 {
2910         int i;
2911         for (i = 0; i < 4; i++)
2912         {
2913                 char c = (l >> (i*8))&0xff;
2914                 writeData(f, &c, 1);
2915         }
2916
2917 }
2918
2919 static void writeString(FILE *f, char *s)
2920 {
2921         writeData(f, s, strlen(s));
2922 }
2923
2924 /* Dump a gmon.out histogram file. */
2925 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2926 {
2927         uint32_t i;
2928         FILE *f = fopen(filename, "w");
2929         if (f == NULL)
2930                 return;
2931         writeString(f, "gmon");
2932         writeLong(f, 0x00000001); /* Version */
2933         writeLong(f, 0); /* padding */
2934         writeLong(f, 0); /* padding */
2935         writeLong(f, 0); /* padding */
2936
2937         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2938         writeData(f, &zero, 1);
2939
2940         /* figure out bucket size */
2941         uint32_t min = samples[0];
2942         uint32_t max = samples[0];
2943         for (i = 0; i < sampleNum; i++)
2944         {
2945                 if (min > samples[i])
2946                 {
2947                         min = samples[i];
2948                 }
2949                 if (max < samples[i])
2950                 {
2951                         max = samples[i];
2952                 }
2953         }
2954
2955         int addressSpace = (max-min + 1);
2956
2957         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2958         uint32_t length = addressSpace;
2959         if (length > maxBuckets)
2960         {
2961                 length = maxBuckets;
2962         }
2963         int *buckets = malloc(sizeof(int)*length);
2964         if (buckets == NULL)
2965         {
2966                 fclose(f);
2967                 return;
2968         }
2969         memset(buckets, 0, sizeof(int)*length);
2970         for (i = 0; i < sampleNum;i++)
2971         {
2972                 uint32_t address = samples[i];
2973                 long long a = address-min;
2974                 long long b = length-1;
2975                 long long c = addressSpace-1;
2976                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2977                 buckets[index]++;
2978         }
2979
2980         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2981         writeLong(f, min);                      /* low_pc */
2982         writeLong(f, max);                      /* high_pc */
2983         writeLong(f, length);           /* # of samples */
2984         writeLong(f, 64000000);         /* 64MHz */
2985         writeString(f, "seconds");
2986         for (i = 0; i < (15-strlen("seconds")); i++)
2987                 writeData(f, &zero, 1);
2988         writeString(f, "s");
2989
2990         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2991
2992         char *data = malloc(2*length);
2993         if (data != NULL)
2994         {
2995                 for (i = 0; i < length;i++)
2996                 {
2997                         int val;
2998                         val = buckets[i];
2999                         if (val > 65535)
3000                         {
3001                                 val = 65535;
3002                         }
3003                         data[i*2]=val&0xff;
3004                         data[i*2 + 1]=(val >> 8)&0xff;
3005                 }
3006                 free(buckets);
3007                 writeData(f, data, length * 2);
3008                 free(data);
3009         } else
3010         {
3011                 free(buckets);
3012         }
3013
3014         fclose(f);
3015 }
3016
3017 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
3018 COMMAND_HANDLER(handle_profile_command)
3019 {
3020         struct target *target = get_current_target(cmd_ctx);
3021         struct timeval timeout, now;
3022
3023         gettimeofday(&timeout, NULL);
3024         if (argc != 2)
3025         {
3026                 return ERROR_COMMAND_SYNTAX_ERROR;
3027         }
3028         unsigned offset;
3029         COMMAND_PARSE_NUMBER(uint, args[0], offset);
3030
3031         timeval_add_time(&timeout, offset, 0);
3032
3033         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
3034
3035         static const int maxSample = 10000;
3036         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3037         if (samples == NULL)
3038                 return ERROR_OK;
3039
3040         int numSamples = 0;
3041         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3042         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3043
3044         for (;;)
3045         {
3046                 int retval;
3047                 target_poll(target);
3048                 if (target->state == TARGET_HALTED)
3049                 {
3050                         uint32_t t=*((uint32_t *)reg->value);
3051                         samples[numSamples++]=t;
3052                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3053                         target_poll(target);
3054                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3055                 } else if (target->state == TARGET_RUNNING)
3056                 {
3057                         /* We want to quickly sample the PC. */
3058                         if ((retval = target_halt(target)) != ERROR_OK)
3059                         {
3060                                 free(samples);
3061                                 return retval;
3062                         }
3063                 } else
3064                 {
3065                         command_print(cmd_ctx, "Target not halted or running");
3066                         retval = ERROR_OK;
3067                         break;
3068                 }
3069                 if (retval != ERROR_OK)
3070                 {
3071                         break;
3072                 }
3073
3074                 gettimeofday(&now, NULL);
3075                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3076                 {
3077                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
3078                         if ((retval = target_poll(target)) != ERROR_OK)
3079                         {
3080                                 free(samples);
3081                                 return retval;
3082                         }
3083                         if (target->state == TARGET_HALTED)
3084                         {
3085                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3086                         }
3087                         if ((retval = target_poll(target)) != ERROR_OK)
3088                         {
3089                                 free(samples);
3090                                 return retval;
3091                         }
3092                         writeGmon(samples, numSamples, args[1]);
3093                         command_print(cmd_ctx, "Wrote %s", args[1]);
3094                         break;
3095                 }
3096         }
3097         free(samples);
3098
3099         return ERROR_OK;
3100 }
3101
3102 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3103 {
3104         char *namebuf;
3105         Jim_Obj *nameObjPtr, *valObjPtr;
3106         int result;
3107
3108         namebuf = alloc_printf("%s(%d)", varname, idx);
3109         if (!namebuf)
3110                 return JIM_ERR;
3111
3112         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3113         valObjPtr = Jim_NewIntObj(interp, val);
3114         if (!nameObjPtr || !valObjPtr)
3115         {
3116                 free(namebuf);
3117                 return JIM_ERR;
3118         }
3119
3120         Jim_IncrRefCount(nameObjPtr);
3121         Jim_IncrRefCount(valObjPtr);
3122         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3123         Jim_DecrRefCount(interp, nameObjPtr);
3124         Jim_DecrRefCount(interp, valObjPtr);
3125         free(namebuf);
3126         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3127         return result;
3128 }
3129
3130 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3131 {
3132         struct command_context *context;
3133         struct target *target;
3134
3135         context = Jim_GetAssocData(interp, "context");
3136         if (context == NULL)
3137         {
3138                 LOG_ERROR("mem2array: no command context");
3139                 return JIM_ERR;
3140         }
3141         target = get_current_target(context);
3142         if (target == NULL)
3143         {
3144                 LOG_ERROR("mem2array: no current target");
3145                 return JIM_ERR;
3146         }
3147
3148         return  target_mem2array(interp, target, argc-1, argv + 1);
3149 }
3150
3151 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3152 {
3153         long l;
3154         uint32_t width;
3155         int len;
3156         uint32_t addr;
3157         uint32_t count;
3158         uint32_t v;
3159         const char *varname;
3160         uint8_t buffer[4096];
3161         int  n, e, retval;
3162         uint32_t i;
3163
3164         /* argv[1] = name of array to receive the data
3165          * argv[2] = desired width
3166          * argv[3] = memory address
3167          * argv[4] = count of times to read
3168          */
3169         if (argc != 4) {
3170                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3171                 return JIM_ERR;
3172         }
3173         varname = Jim_GetString(argv[0], &len);
3174         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3175
3176         e = Jim_GetLong(interp, argv[1], &l);
3177         width = l;
3178         if (e != JIM_OK) {
3179                 return e;
3180         }
3181
3182         e = Jim_GetLong(interp, argv[2], &l);
3183         addr = l;
3184         if (e != JIM_OK) {
3185                 return e;
3186         }
3187         e = Jim_GetLong(interp, argv[3], &l);
3188         len = l;
3189         if (e != JIM_OK) {
3190                 return e;
3191         }
3192         switch (width) {
3193                 case 8:
3194                         width = 1;
3195                         break;
3196                 case 16:
3197                         width = 2;
3198                         break;
3199                 case 32:
3200                         width = 4;
3201                         break;
3202                 default:
3203                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3204                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3205                         return JIM_ERR;
3206         }
3207         if (len == 0) {
3208                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3209                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3210                 return JIM_ERR;
3211         }
3212         if ((addr + (len * width)) < addr) {
3213                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3214                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3215                 return JIM_ERR;
3216         }
3217         /* absurd transfer size? */
3218         if (len > 65536) {
3219                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3220                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3221                 return JIM_ERR;
3222         }
3223
3224         if ((width == 1) ||
3225                 ((width == 2) && ((addr & 1) == 0)) ||
3226                 ((width == 4) && ((addr & 3) == 0))) {
3227                 /* all is well */
3228         } else {
3229                 char buf[100];
3230                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3231                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3232                                 addr,
3233                                 width);
3234                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3235                 return JIM_ERR;
3236         }
3237
3238         /* Transfer loop */
3239
3240         /* index counter */
3241         n = 0;
3242         /* assume ok */
3243         e = JIM_OK;
3244         while (len) {
3245                 /* Slurp... in buffer size chunks */
3246
3247                 count = len; /* in objects.. */
3248                 if (count > (sizeof(buffer)/width)) {
3249                         count = (sizeof(buffer)/width);
3250                 }
3251
3252                 retval = target_read_memory(target, addr, width, count, buffer);
3253                 if (retval != ERROR_OK) {
3254                         /* BOO !*/
3255                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3256                                           (unsigned int)addr,
3257                                           (int)width,
3258                                           (int)count);
3259                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3260                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3261                         e = JIM_ERR;
3262                         len = 0;
3263                 } else {
3264                         v = 0; /* shut up gcc */
3265                         for (i = 0 ;i < count ;i++, n++) {
3266                                 switch (width) {
3267                                         case 4:
3268                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3269                                                 break;
3270                                         case 2:
3271                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3272                                                 break;
3273                                         case 1:
3274                                                 v = buffer[i] & 0x0ff;
3275                                                 break;
3276                                 }
3277                                 new_int_array_element(interp, varname, n, v);
3278                         }
3279                         len -= count;
3280                 }
3281         }
3282
3283         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3284
3285         return JIM_OK;
3286 }
3287
3288 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3289 {
3290         char *namebuf;
3291         Jim_Obj *nameObjPtr, *valObjPtr;
3292         int result;
3293         long l;
3294
3295         namebuf = alloc_printf("%s(%d)", varname, idx);
3296         if (!namebuf)
3297                 return JIM_ERR;
3298
3299         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3300         if (!nameObjPtr)
3301         {
3302                 free(namebuf);
3303                 return JIM_ERR;
3304         }
3305
3306         Jim_IncrRefCount(nameObjPtr);
3307         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3308         Jim_DecrRefCount(interp, nameObjPtr);
3309         free(namebuf);
3310         if (valObjPtr == NULL)
3311                 return JIM_ERR;
3312
3313         result = Jim_GetLong(interp, valObjPtr, &l);
3314         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3315         *val = l;
3316         return result;
3317 }
3318
3319 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3320 {
3321         struct command_context *context;
3322         struct target *target;
3323
3324         context = Jim_GetAssocData(interp, "context");
3325         if (context == NULL) {
3326                 LOG_ERROR("array2mem: no command context");
3327                 return JIM_ERR;
3328         }
3329         target = get_current_target(context);
3330         if (target == NULL) {
3331                 LOG_ERROR("array2mem: no current target");
3332                 return JIM_ERR;
3333         }
3334
3335         return target_array2mem(interp,target, argc-1, argv + 1);
3336 }
3337 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3338 {
3339         long l;
3340         uint32_t width;
3341         int len;
3342         uint32_t addr;
3343         uint32_t count;
3344         uint32_t v;
3345         const char *varname;
3346         uint8_t buffer[4096];
3347         int  n, e, retval;
3348         uint32_t i;
3349
3350         /* argv[1] = name of array to get the data
3351          * argv[2] = desired width
3352          * argv[3] = memory address
3353          * argv[4] = count to write
3354          */
3355         if (argc != 4) {
3356                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3357                 return JIM_ERR;
3358         }
3359         varname = Jim_GetString(argv[0], &len);
3360         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3361
3362         e = Jim_GetLong(interp, argv[1], &l);
3363         width = l;
3364         if (e != JIM_OK) {
3365                 return e;
3366         }
3367
3368         e = Jim_GetLong(interp, argv[2], &l);
3369         addr = l;
3370         if (e != JIM_OK) {
3371                 return e;
3372         }
3373         e = Jim_GetLong(interp, argv[3], &l);
3374         len = l;
3375         if (e != JIM_OK) {
3376                 return e;
3377         }
3378         switch (width) {
3379                 case 8:
3380                         width = 1;
3381                         break;
3382                 case 16:
3383                         width = 2;
3384                         break;
3385                 case 32:
3386                         width = 4;
3387                         break;
3388                 default:
3389                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3390                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3391                         return JIM_ERR;
3392         }
3393         if (len == 0) {
3394                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3395                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3396                 return JIM_ERR;
3397         }
3398         if ((addr + (len * width)) < addr) {
3399                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3400                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3401                 return JIM_ERR;
3402         }
3403         /* absurd transfer size? */
3404         if (len > 65536) {
3405                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3406                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3407                 return JIM_ERR;
3408         }
3409
3410         if ((width == 1) ||
3411                 ((width == 2) && ((addr & 1) == 0)) ||
3412                 ((width == 4) && ((addr & 3) == 0))) {
3413                 /* all is well */
3414         } else {
3415                 char buf[100];
3416                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3417                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3418                                 (unsigned int)addr,
3419                                 (int)width);
3420                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3421                 return JIM_ERR;
3422         }
3423
3424         /* Transfer loop */
3425
3426         /* index counter */
3427         n = 0;
3428         /* assume ok */
3429         e = JIM_OK;
3430         while (len) {
3431                 /* Slurp... in buffer size chunks */
3432
3433                 count = len; /* in objects.. */
3434                 if (count > (sizeof(buffer)/width)) {
3435                         count = (sizeof(buffer)/width);
3436                 }
3437
3438                 v = 0; /* shut up gcc */
3439                 for (i = 0 ;i < count ;i++, n++) {
3440                         get_int_array_element(interp, varname, n, &v);
3441                         switch (width) {
3442                         case 4:
3443                                 target_buffer_set_u32(target, &buffer[i*width], v);
3444                                 break;
3445                         case 2:
3446                                 target_buffer_set_u16(target, &buffer[i*width], v);
3447                                 break;
3448                         case 1:
3449                                 buffer[i] = v & 0x0ff;
3450                                 break;
3451                         }
3452                 }
3453                 len -= count;
3454
3455                 retval = target_write_memory(target, addr, width, count, buffer);
3456                 if (retval != ERROR_OK) {
3457                         /* BOO !*/
3458                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3459                                           (unsigned int)addr,
3460                                           (int)width,
3461                                           (int)count);
3462                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3463                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3464                         e = JIM_ERR;
3465                         len = 0;
3466                 }
3467         }
3468
3469         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3470
3471         return JIM_OK;
3472 }
3473
3474 void target_all_handle_event(enum target_event e)
3475 {
3476         struct target *target;
3477
3478         LOG_DEBUG("**all*targets: event: %d, %s",
3479                            (int)e,
3480                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3481
3482         target = all_targets;
3483         while (target) {
3484                 target_handle_event(target, e);
3485                 target = target->next;
3486         }
3487 }
3488
3489
3490 /* FIX? should we propagate errors here rather than printing them
3491  * and continuing?
3492  */
3493 void target_handle_event(struct target *target, enum target_event e)
3494 {
3495         struct target_event_action *teap;
3496
3497         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3498                 if (teap->event == e) {
3499                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3500                                            target->target_number,
3501                                            target->cmd_name,
3502                                            target_get_name(target),
3503                                            e,
3504                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3505                                            Jim_GetString(teap->body, NULL));
3506                         if (Jim_EvalObj(interp, teap->body) != JIM_OK)
3507                         {
3508                                 Jim_PrintErrorMessage(interp);
3509                         }
3510                 }
3511         }
3512 }
3513
3514 enum target_cfg_param {
3515         TCFG_TYPE,
3516         TCFG_EVENT,
3517         TCFG_WORK_AREA_VIRT,
3518         TCFG_WORK_AREA_PHYS,
3519         TCFG_WORK_AREA_SIZE,
3520         TCFG_WORK_AREA_BACKUP,
3521         TCFG_ENDIAN,
3522         TCFG_VARIANT,
3523         TCFG_CHAIN_POSITION,
3524 };
3525
3526 static Jim_Nvp nvp_config_opts[] = {
3527         { .name = "-type",             .value = TCFG_TYPE },
3528         { .name = "-event",            .value = TCFG_EVENT },
3529         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3530         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3531         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3532         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3533         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3534         { .name = "-variant",          .value = TCFG_VARIANT },
3535         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3536
3537         { .name = NULL, .value = -1 }
3538 };
3539
3540 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3541 {
3542         Jim_Nvp *n;
3543         Jim_Obj *o;
3544         jim_wide w;
3545         char *cp;
3546         int e;
3547
3548         /* parse config or cget options ... */
3549         while (goi->argc > 0) {
3550                 Jim_SetEmptyResult(goi->interp);
3551                 /* Jim_GetOpt_Debug(goi); */
3552
3553                 if (target->type->target_jim_configure) {
3554                         /* target defines a configure function */
3555                         /* target gets first dibs on parameters */
3556                         e = (*(target->type->target_jim_configure))(target, goi);
3557                         if (e == JIM_OK) {
3558                                 /* more? */
3559                                 continue;
3560                         }
3561                         if (e == JIM_ERR) {
3562                                 /* An error */
3563                                 return e;
3564                         }
3565                         /* otherwise we 'continue' below */
3566                 }
3567                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3568                 if (e != JIM_OK) {
3569                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3570                         return e;
3571                 }
3572                 switch (n->value) {
3573                 case TCFG_TYPE:
3574                         /* not setable */
3575                         if (goi->isconfigure) {
3576                                 Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name);
3577                                 return JIM_ERR;
3578                         } else {
3579                         no_params:
3580                                 if (goi->argc != 0) {
3581                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
3582                                         return JIM_ERR;
3583                                 }
3584                         }
3585                         Jim_SetResultString(goi->interp, target_get_name(target), -1);
3586                         /* loop for more */
3587                         break;
3588                 case TCFG_EVENT:
3589                         if (goi->argc == 0) {
3590                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3591                                 return JIM_ERR;
3592                         }
3593
3594                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3595                         if (e != JIM_OK) {
3596                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3597                                 return e;
3598                         }
3599
3600                         if (goi->isconfigure) {
3601                                 if (goi->argc != 1) {
3602                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3603                                         return JIM_ERR;
3604                                 }
3605                         } else {
3606                                 if (goi->argc != 0) {
3607                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3608                                         return JIM_ERR;
3609                                 }
3610                         }
3611
3612                         {
3613                                 struct target_event_action *teap;
3614
3615                                 teap = target->event_action;
3616                                 /* replace existing? */
3617                                 while (teap) {
3618                                         if (teap->event == (enum target_event)n->value) {
3619                                                 break;
3620                                         }
3621                                         teap = teap->next;
3622                                 }
3623
3624                                 if (goi->isconfigure) {
3625                                         bool replace = true;
3626                                         if (teap == NULL) {
3627                                                 /* create new */
3628                                                 teap = calloc(1, sizeof(*teap));
3629                                                 replace = false;
3630                                         }
3631                                         teap->event = n->value;
3632                                         Jim_GetOpt_Obj(goi, &o);
3633                                         if (teap->body) {
3634                                                 Jim_DecrRefCount(interp, teap->body);
3635                                         }
3636                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3637                                         /*
3638                                          * FIXME:
3639                                          *     Tcl/TK - "tk events" have a nice feature.
3640                                          *     See the "BIND" command.
3641                                          *    We should support that here.
3642                                          *     You can specify %X and %Y in the event code.
3643                                          *     The idea is: %T - target name.
3644                                          *     The idea is: %N - target number
3645                                          *     The idea is: %E - event name.
3646                                          */
3647                                         Jim_IncrRefCount(teap->body);
3648
3649                                         if (!replace)
3650                                         {
3651                                                 /* add to head of event list */
3652                                                 teap->next = target->event_action;
3653                                                 target->event_action = teap;
3654                                         }
3655                                         Jim_SetEmptyResult(goi->interp);
3656                                 } else {
3657                                         /* get */
3658                                         if (teap == NULL) {
3659                                                 Jim_SetEmptyResult(goi->interp);
3660                                         } else {
3661                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3662                                         }
3663                                 }
3664                         }
3665                         /* loop for more */
3666                         break;
3667
3668                 case TCFG_WORK_AREA_VIRT:
3669                         if (goi->isconfigure) {
3670                                 target_free_all_working_areas(target);
3671                                 e = Jim_GetOpt_Wide(goi, &w);
3672                                 if (e != JIM_OK) {
3673                                         return e;
3674                                 }
3675                                 target->working_area_virt = w;
3676                                 target->working_area_virt_spec = true;
3677                         } else {
3678                                 if (goi->argc != 0) {
3679                                         goto no_params;
3680                                 }
3681                         }
3682                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3683                         /* loop for more */
3684                         break;
3685
3686                 case TCFG_WORK_AREA_PHYS:
3687                         if (goi->isconfigure) {
3688                                 target_free_all_working_areas(target);
3689                                 e = Jim_GetOpt_Wide(goi, &w);
3690                                 if (e != JIM_OK) {
3691                                         return e;
3692                                 }
3693                                 target->working_area_phys = w;
3694                                 target->working_area_phys_spec = true;
3695                         } else {
3696                                 if (goi->argc != 0) {
3697                                         goto no_params;
3698                                 }
3699                         }
3700                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3701                         /* loop for more */
3702                         break;
3703
3704                 case TCFG_WORK_AREA_SIZE:
3705                         if (goi->isconfigure) {
3706                                 target_free_all_working_areas(target);
3707                                 e = Jim_GetOpt_Wide(goi, &w);
3708                                 if (e != JIM_OK) {
3709                                         return e;
3710                                 }
3711                                 target->working_area_size = w;
3712                         } else {
3713                                 if (goi->argc != 0) {
3714                                         goto no_params;
3715                                 }
3716                         }
3717                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3718                         /* loop for more */
3719                         break;
3720
3721                 case TCFG_WORK_AREA_BACKUP:
3722                         if (goi->isconfigure) {
3723                                 target_free_all_working_areas(target);
3724                                 e = Jim_GetOpt_Wide(goi, &w);
3725                                 if (e != JIM_OK) {
3726                                         return e;
3727                                 }
3728                                 /* make this exactly 1 or 0 */
3729                                 target->backup_working_area = (!!w);
3730                         } else {
3731                                 if (goi->argc != 0) {
3732                                         goto no_params;
3733                                 }
3734                         }
3735                         Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3736                         /* loop for more e*/
3737                         break;
3738
3739                 case TCFG_ENDIAN:
3740                         if (goi->isconfigure) {
3741                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3742                                 if (e != JIM_OK) {
3743                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3744                                         return e;
3745                                 }
3746                                 target->endianness = n->value;
3747                         } else {
3748                                 if (goi->argc != 0) {
3749                                         goto no_params;
3750                                 }
3751                         }
3752                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3753                         if (n->name == NULL) {
3754                                 target->endianness = TARGET_LITTLE_ENDIAN;
3755                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3756                         }
3757                         Jim_SetResultString(goi->interp, n->name, -1);
3758                         /* loop for more */
3759                         break;
3760
3761                 case TCFG_VARIANT:
3762                         if (goi->isconfigure) {
3763                                 if (goi->argc < 1) {
3764                                         Jim_SetResult_sprintf(goi->interp,
3765                                                                                    "%s ?STRING?",
3766                                                                                    n->name);
3767                                         return JIM_ERR;
3768                                 }
3769                                 if (target->variant) {
3770                                         free((void *)(target->variant));
3771                                 }
3772                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3773                                 target->variant = strdup(cp);
3774                         } else {
3775                                 if (goi->argc != 0) {
3776                                         goto no_params;
3777                                 }
3778                         }
3779                         Jim_SetResultString(goi->interp, target->variant,-1);
3780                         /* loop for more */
3781                         break;
3782                 case TCFG_CHAIN_POSITION:
3783                         if (goi->isconfigure) {
3784                                 Jim_Obj *o;
3785                                 struct jtag_tap *tap;
3786                                 target_free_all_working_areas(target);
3787                                 e = Jim_GetOpt_Obj(goi, &o);
3788                                 if (e != JIM_OK) {
3789                                         return e;
3790                                 }
3791                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3792                                 if (tap == NULL) {
3793                                         return JIM_ERR;
3794                                 }
3795                                 /* make this exactly 1 or 0 */
3796                                 target->tap = tap;
3797                         } else {
3798                                 if (goi->argc != 0) {
3799                                         goto no_params;
3800                                 }
3801                         }
3802                         Jim_SetResultString(interp, target->tap->dotted_name, -1);
3803                         /* loop for more e*/
3804                         break;
3805                 }
3806         } /* while (goi->argc) */
3807
3808
3809                 /* done - we return */
3810         return JIM_OK;
3811 }
3812
3813 /** this is the 'tcl' handler for the target specific command */
3814 static int tcl_target_func(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3815 {
3816         Jim_GetOptInfo goi;
3817         jim_wide a,b,c;
3818         int x,y,z;
3819         uint8_t  target_buf[32];
3820         Jim_Nvp *n;
3821         struct target *target;
3822         struct command_context *cmd_ctx;
3823         int e;
3824
3825         enum {
3826                 TS_CMD_CONFIGURE,
3827                 TS_CMD_CGET,
3828
3829                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3830                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3831                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3832                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3833                 TS_CMD_EXAMINE,
3834                 TS_CMD_POLL,
3835                 TS_CMD_RESET,
3836                 TS_CMD_HALT,
3837                 TS_CMD_WAITSTATE,
3838                 TS_CMD_EVENTLIST,
3839                 TS_CMD_CURSTATE,
3840                 TS_CMD_INVOKE_EVENT,
3841         };
3842
3843         static const Jim_Nvp target_options[] = {
3844                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3845                 { .name = "cget", .value = TS_CMD_CGET },
3846                 { .name = "mww", .value = TS_CMD_MWW },
3847                 { .name = "mwh", .value = TS_CMD_MWH },
3848                 { .name = "mwb", .value = TS_CMD_MWB },
3849                 { .name = "mdw", .value = TS_CMD_MDW },
3850                 { .name = "mdh", .value = TS_CMD_MDH },
3851                 { .name = "mdb", .value = TS_CMD_MDB },
3852                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3853                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3854                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3855                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3856
3857                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3858                 { .name = "arp_poll", .value = TS_CMD_POLL },
3859                 { .name = "arp_reset", .value = TS_CMD_RESET },
3860                 { .name = "arp_halt", .value = TS_CMD_HALT },
3861                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3862                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3863
3864                 { .name = NULL, .value = -1 },
3865         };
3866
3867         /* go past the "command" */
3868         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
3869
3870         target = Jim_CmdPrivData(goi.interp);
3871         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3872
3873         /* commands here are in an NVP table */
3874         e = Jim_GetOpt_Nvp(&goi, target_options, &n);
3875         if (e != JIM_OK) {
3876                 Jim_GetOpt_NvpUnknown(&goi, target_options, 0);
3877                 return e;
3878         }
3879         /* Assume blank result */
3880         Jim_SetEmptyResult(goi.interp);
3881
3882         switch (n->value) {
3883         case TS_CMD_CONFIGURE:
3884                 if (goi.argc < 2) {
3885                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3886                         return JIM_ERR;
3887                 }
3888                 goi.isconfigure = 1;
3889                 return target_configure(&goi, target);
3890         case TS_CMD_CGET:
3891                 // some things take params
3892                 if (goi.argc < 1) {
3893                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "missing: ?-option?");
3894                         return JIM_ERR;
3895                 }
3896                 goi.isconfigure = 0;
3897                 return target_configure(&goi, target);
3898                 break;
3899         case TS_CMD_MWW:
3900         case TS_CMD_MWH:
3901         case TS_CMD_MWB:
3902                 /* argv[0] = cmd
3903                  * argv[1] = address
3904                  * argv[2] = data
3905                  * argv[3] = optional count.
3906                  */
3907
3908                 if ((goi.argc == 2) || (goi.argc == 3)) {
3909                         /* all is well */
3910                 } else {
3911                 mwx_error:
3912                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR DATA [COUNT]", n->name);
3913                         return JIM_ERR;
3914                 }
3915
3916                 e = Jim_GetOpt_Wide(&goi, &a);
3917                 if (e != JIM_OK) {
3918                         goto mwx_error;
3919                 }
3920
3921                 e = Jim_GetOpt_Wide(&goi, &b);
3922                 if (e != JIM_OK) {
3923                         goto mwx_error;
3924                 }
3925                 if (goi.argc == 3) {
3926                         e = Jim_GetOpt_Wide(&goi, &c);
3927                         if (e != JIM_OK) {
3928                                 goto mwx_error;
3929                         }
3930                 } else {
3931                         c = 1;
3932                 }
3933
3934                 switch (n->value) {
3935                 case TS_CMD_MWW:
3936                         target_buffer_set_u32(target, target_buf, b);
3937                         b = 4;
3938                         break;
3939                 case TS_CMD_MWH:
3940                         target_buffer_set_u16(target, target_buf, b);
3941                         b = 2;
3942                         break;
3943                 case TS_CMD_MWB:
3944                         target_buffer_set_u8(target, target_buf, b);
3945                         b = 1;
3946                         break;
3947                 }
3948                 for (x = 0 ; x < c ; x++) {
3949                         e = target_write_memory(target, a, b, 1, target_buf);
3950                         if (e != ERROR_OK) {
3951                                 Jim_SetResult_sprintf(interp, "Error writing @ 0x%08x: %d\n", (int)(a), e);
3952                                 return JIM_ERR;
3953                         }
3954                         /* b = width */
3955                         a = a + b;
3956                 }
3957                 return JIM_OK;
3958                 break;
3959
3960                 /* display */
3961         case TS_CMD_MDW:
3962         case TS_CMD_MDH:
3963         case TS_CMD_MDB:
3964                 /* argv[0] = command
3965                  * argv[1] = address
3966                  * argv[2] = optional count
3967                  */
3968                 if ((goi.argc == 2) || (goi.argc == 3)) {
3969                         Jim_SetResult_sprintf(goi.interp, "expected: %s ADDR [COUNT]", n->name);
3970                         return JIM_ERR;
3971                 }
3972                 e = Jim_GetOpt_Wide(&goi, &a);
3973                 if (e != JIM_OK) {
3974                         return JIM_ERR;
3975                 }
3976                 if (goi.argc) {
3977                         e = Jim_GetOpt_Wide(&goi, &c);
3978                         if (e != JIM_OK) {
3979                                 return JIM_ERR;
3980                         }
3981                 } else {
3982                         c = 1;
3983                 }
3984                 b = 1; /* shut up gcc */
3985                 switch (n->value) {
3986                 case TS_CMD_MDW:
3987                         b =  4;
3988                         break;
3989                 case TS_CMD_MDH:
3990                         b = 2;
3991                         break;
3992                 case TS_CMD_MDB:
3993                         b = 1;
3994                         break;
3995                 }
3996
3997                 /* convert to "bytes" */
3998                 c = c * b;
3999                 /* count is now in 'BYTES' */
4000                 while (c > 0) {
4001                         y = c;
4002                         if (y > 16) {
4003                                 y = 16;
4004                         }
4005                         e = target_read_memory(target, a, b, y / b, target_buf);
4006                         if (e != ERROR_OK) {
4007                                 Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4008                                 return JIM_ERR;
4009                         }
4010
4011                         Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4012                         switch (b) {
4013                         case 4:
4014                                 for (x = 0 ; (x < 16) && (x < y) ; x += 4) {
4015                                         z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
4016                                         Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4017                                 }
4018                                 for (; (x < 16) ; x += 4) {
4019                                         Jim_fprintf(interp, interp->cookie_stdout, "         ");
4020                                 }
4021                                 break;
4022                         case 2:
4023                                 for (x = 0 ; (x < 16) && (x < y) ; x += 2) {
4024                                         z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
4025                                         Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4026                                 }
4027                                 for (; (x < 16) ; x += 2) {
4028                                         Jim_fprintf(interp, interp->cookie_stdout, "     ");
4029                                 }
4030                                 break;
4031                         case 1:
4032                         default:
4033                                 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4034                                         z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
4035                                         Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4036                                 }
4037                                 for (; (x < 16) ; x += 1) {
4038                                         Jim_fprintf(interp, interp->cookie_stdout, "   ");
4039                                 }
4040                                 break;
4041                         }
4042                         /* ascii-ify the bytes */
4043                         for (x = 0 ; x < y ; x++) {
4044                                 if ((target_buf[x] >= 0x20) &&
4045                                         (target_buf[x] <= 0x7e)) {
4046                                         /* good */
4047                                 } else {
4048                                         /* smack it */
4049                                         target_buf[x] = '.';
4050                                 }
4051                         }
4052                         /* space pad  */
4053                         while (x < 16) {
4054                                 target_buf[x] = ' ';
4055                                 x++;
4056                         }
4057                         /* terminate */
4058                         target_buf[16] = 0;
4059                         /* print - with a newline */
4060                         Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4061                         /* NEXT... */
4062                         c -= 16;
4063                         a += 16;
4064                 }
4065                 return JIM_OK;
4066         case TS_CMD_MEM2ARRAY:
4067                 return target_mem2array(goi.interp, target, goi.argc, goi.argv);
4068                 break;
4069         case TS_CMD_ARRAY2MEM:
4070                 return target_array2mem(goi.interp, target, goi.argc, goi.argv);
4071                 break;
4072         case TS_CMD_EXAMINE:
4073                 if (goi.argc) {
4074                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4075                         return JIM_ERR;
4076                 }
4077                 if (!target->tap->enabled)
4078                         goto err_tap_disabled;
4079                 e = target->type->examine(target);
4080                 if (e != ERROR_OK) {
4081                         Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4082                         return JIM_ERR;
4083                 }
4084                 return JIM_OK;
4085         case TS_CMD_POLL:
4086                 if (goi.argc) {
4087                         Jim_WrongNumArgs(goi.interp, 2, argv, "[no parameters]");
4088                         return JIM_ERR;
4089                 }
4090                 if (!target->tap->enabled)
4091                         goto err_tap_disabled;
4092                 if (!(target_was_examined(target))) {
4093                         e = ERROR_TARGET_NOT_EXAMINED;
4094                 } else {
4095                         e = target->type->poll(target);
4096                 }
4097                 if (e != ERROR_OK) {
4098                         Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4099                         return JIM_ERR;
4100                 } else {
4101                         return JIM_OK;
4102                 }
4103                 break;
4104         case TS_CMD_RESET:
4105                 if (goi.argc != 2) {
4106                         Jim_WrongNumArgs(interp, 2, argv,
4107                                         "([tT]|[fF]|assert|deassert) BOOL");
4108                         return JIM_ERR;
4109                 }
4110                 e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4111                 if (e != JIM_OK) {
4112                         Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4113                         return e;
4114                 }
4115                 /* the halt or not param */
4116                 e = Jim_GetOpt_Wide(&goi, &a);
4117                 if (e != JIM_OK) {
4118                         return e;
4119                 }
4120                 if (!target->tap->enabled)
4121                         goto err_tap_disabled;
4122                 if (!target->type->assert_reset
4123                                 || !target->type->deassert_reset) {
4124                         Jim_SetResult_sprintf(interp,
4125                                         "No target-specific reset for %s",
4126                                         target->cmd_name);
4127                         return JIM_ERR;
4128                 }
4129                 /* determine if we should halt or not. */
4130                 target->reset_halt = !!a;
4131                 /* When this happens - all workareas are invalid. */
4132                 target_free_all_working_areas_restore(target, 0);
4133
4134                 /* do the assert */
4135                 if (n->value == NVP_ASSERT) {
4136                         e = target->type->assert_reset(target);
4137                 } else {
4138                         e = target->type->deassert_reset(target);
4139                 }
4140                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4141         case TS_CMD_HALT:
4142                 if (goi.argc) {
4143                         Jim_WrongNumArgs(goi.interp, 0, argv, "halt [no parameters]");
4144                         return JIM_ERR;
4145                 }
4146                 if (!target->tap->enabled)
4147                         goto err_tap_disabled;
4148                 e = target->type->halt(target);
4149                 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4150         case TS_CMD_WAITSTATE:
4151                 /* params:  <name>  statename timeoutmsecs */
4152                 if (goi.argc != 2) {
4153                         Jim_SetResult_sprintf(goi.interp, "%s STATENAME TIMEOUTMSECS", n->name);
4154                         return JIM_ERR;
4155                 }
4156                 e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4157                 if (e != JIM_OK) {
4158                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4159                         return e;
4160                 }
4161                 e = Jim_GetOpt_Wide(&goi, &a);
4162                 if (e != JIM_OK) {
4163                         return e;
4164                 }
4165                 if (!target->tap->enabled)
4166                         goto err_tap_disabled;
4167                 e = target_wait_state(target, n->value, a);
4168                 if (e != ERROR_OK) {
4169                         Jim_SetResult_sprintf(goi.interp,
4170                                                                    "target: %s wait %s fails (%d) %s",
4171                                                                    target->cmd_name,
4172                                                                    n->name,
4173                                                                    e, target_strerror_safe(e));
4174                         return JIM_ERR;
4175                 } else {
4176                         return JIM_OK;
4177                 }
4178         case TS_CMD_EVENTLIST:
4179                 /* List for human, Events defined for this target.
4180                  * scripts/programs should use 'name cget -event NAME'
4181                  */
4182                 {
4183                         struct target_event_action *teap;
4184                         teap = target->event_action;
4185                         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4186                                                    target->target_number,
4187                                                    target->cmd_name);
4188                         command_print(cmd_ctx, "%-25s | Body", "Event");
4189                         command_print(cmd_ctx, "------------------------- | ----------------------------------------");
4190                         while (teap) {
4191                                 command_print(cmd_ctx,
4192                                                            "%-25s | %s",
4193                                                            Jim_Nvp_value2name_simple(nvp_target_event, teap->event)->name,
4194                                                            Jim_GetString(teap->body, NULL));
4195                                 teap = teap->next;
4196                         }
4197                         command_print(cmd_ctx, "***END***");
4198                         return JIM_OK;
4199                 }
4200         case TS_CMD_CURSTATE:
4201                 if (goi.argc != 0) {
4202                         Jim_WrongNumArgs(goi.interp, 0, argv, "[no parameters]");
4203                         return JIM_ERR;
4204                 }
4205                 Jim_SetResultString(goi.interp,
4206                                                         target_state_name( target ),
4207                                                         -1);
4208                 return JIM_OK;
4209         case TS_CMD_INVOKE_EVENT:
4210                 if (goi.argc != 1) {
4211                         Jim_SetResult_sprintf(goi.interp, "%s ?EVENTNAME?",n->name);
4212                         return JIM_ERR;
4213                 }
4214                 e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4215                 if (e != JIM_OK) {
4216                         Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4217                         return e;
4218                 }
4219                 target_handle_event(target, n->value);
4220                 return JIM_OK;
4221         }
4222         return JIM_ERR;
4223
4224 err_tap_disabled:
4225         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4226         return JIM_ERR;
4227 }
4228
4229 static int target_create(Jim_GetOptInfo *goi)
4230 {
4231         Jim_Obj *new_cmd;
4232         Jim_Cmd *cmd;
4233         const char *cp;
4234         char *cp2;
4235         int e;
4236         int x;
4237         struct target *target;
4238         struct command_context *cmd_ctx;
4239
4240         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4241         if (goi->argc < 3) {
4242                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4243                 return JIM_ERR;
4244         }
4245
4246         /* COMMAND */
4247         Jim_GetOpt_Obj(goi, &new_cmd);
4248         /* does this command exist? */
4249         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4250         if (cmd) {
4251                 cp = Jim_GetString(new_cmd, NULL);
4252                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4253                 return JIM_ERR;
4254         }
4255
4256         /* TYPE */
4257         e = Jim_GetOpt_String(goi, &cp2, NULL);
4258         cp = cp2;
4259         /* now does target type exist */
4260         for (x = 0 ; target_types[x] ; x++) {
4261                 if (0 == strcmp(cp, target_types[x]->name)) {
4262                         /* found */
4263                         break;
4264                 }
4265         }
4266         if (target_types[x] == NULL) {
4267                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4268                 for (x = 0 ; target_types[x] ; x++) {
4269                         if (target_types[x + 1]) {
4270                                 Jim_AppendStrings(goi->interp,
4271                                                                    Jim_GetResult(goi->interp),
4272                                                                    target_types[x]->name,
4273                                                                    ", ", NULL);
4274                         } else {
4275                                 Jim_AppendStrings(goi->interp,
4276                                                                    Jim_GetResult(goi->interp),
4277                                                                    " or ",
4278                                                                    target_types[x]->name,NULL);
4279                         }
4280                 }
4281                 return JIM_ERR;
4282         }
4283
4284         /* Create it */
4285         target = calloc(1,sizeof(struct target));
4286         /* set target number */
4287         target->target_number = new_target_number();
4288
4289         /* allocate memory for each unique target type */
4290         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4291
4292         memcpy(target->type, target_types[x], sizeof(struct target_type));
4293
4294         /* will be set by "-endian" */
4295         target->endianness = TARGET_ENDIAN_UNKNOWN;
4296
4297         target->working_area        = 0x0;
4298         target->working_area_size   = 0x0;
4299         target->working_areas       = NULL;
4300         target->backup_working_area = 0;
4301
4302         target->state               = TARGET_UNKNOWN;
4303         target->debug_reason        = DBG_REASON_UNDEFINED;
4304         target->reg_cache           = NULL;
4305         target->breakpoints         = NULL;
4306         target->watchpoints         = NULL;
4307         target->next                = NULL;
4308         target->arch_info           = NULL;
4309
4310         target->display             = 1;
4311
4312         target->halt_issued                     = false;
4313
4314         /* initialize trace information */
4315         target->trace_info = malloc(sizeof(struct trace));
4316         target->trace_info->num_trace_points         = 0;
4317         target->trace_info->trace_points_size        = 0;
4318         target->trace_info->trace_points             = NULL;
4319         target->trace_info->trace_history_size       = 0;
4320         target->trace_info->trace_history            = NULL;
4321         target->trace_info->trace_history_pos        = 0;
4322         target->trace_info->trace_history_overflowed = 0;
4323
4324         target->dbgmsg          = NULL;
4325         target->dbg_msg_enabled = 0;
4326
4327         target->endianness = TARGET_ENDIAN_UNKNOWN;
4328
4329         /* Do the rest as "configure" options */
4330         goi->isconfigure = 1;
4331         e = target_configure(goi, target);
4332
4333         if (target->tap == NULL)
4334         {
4335                 Jim_SetResultString(interp, "-chain-position required when creating target", -1);
4336                 e = JIM_ERR;
4337         }
4338
4339         if (e != JIM_OK) {
4340                 free(target->type);
4341                 free(target);
4342                 return e;
4343         }
4344
4345         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4346                 /* default endian to little if not specified */
4347                 target->endianness = TARGET_LITTLE_ENDIAN;
4348         }
4349
4350         /* incase variant is not set */
4351         if (!target->variant)
4352                 target->variant = strdup("");
4353
4354         /* create the target specific commands */
4355         if (target->type->register_commands) {
4356                 (*(target->type->register_commands))(cmd_ctx);
4357         }
4358         if (target->type->target_create) {
4359                 (*(target->type->target_create))(target, goi->interp);
4360         }
4361
4362         /* append to end of list */
4363         {
4364                 struct target **tpp;
4365                 tpp = &(all_targets);
4366                 while (*tpp) {
4367                         tpp = &((*tpp)->next);
4368                 }
4369                 *tpp = target;
4370         }
4371
4372         cp = Jim_GetString(new_cmd, NULL);
4373         target->cmd_name = strdup(cp);
4374
4375         /* now - create the new target name command */
4376         e = Jim_CreateCommand(goi->interp,
4377                                                    /* name */
4378                                                    cp,
4379                                                    tcl_target_func, /* C function */
4380                                                    target, /* private data */
4381                                                    NULL); /* no del proc */
4382
4383         return e;
4384 }
4385
4386 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4387 {
4388         int x,r,e;
4389         jim_wide w;
4390         struct command_context *cmd_ctx;
4391         struct target *target;
4392         Jim_GetOptInfo goi;
4393         enum tcmd {
4394                 /* TG = target generic */
4395                 TG_CMD_CREATE,
4396                 TG_CMD_TYPES,
4397                 TG_CMD_NAMES,
4398                 TG_CMD_CURRENT,
4399                 TG_CMD_NUMBER,
4400                 TG_CMD_COUNT,
4401         };
4402         const char *target_cmds[] = {
4403                 "create", "types", "names", "current", "number",
4404                 "count",
4405                 NULL /* terminate */
4406         };
4407
4408         LOG_DEBUG("Target command params:");
4409         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4410
4411         cmd_ctx = Jim_GetAssocData(interp, "context");
4412
4413         Jim_GetOpt_Setup(&goi, interp, argc-1, argv + 1);
4414
4415         if (goi.argc == 0) {
4416                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4417                 return JIM_ERR;
4418         }
4419
4420         /* Jim_GetOpt_Debug(&goi); */
4421         r = Jim_GetOpt_Enum(&goi, target_cmds, &x);
4422         if (r != JIM_OK) {
4423                 return r;
4424         }
4425
4426         switch (x) {
4427         default:
4428                 Jim_Panic(goi.interp,"Why am I here?");
4429                 return JIM_ERR;
4430         case TG_CMD_CURRENT:
4431                 if (goi.argc != 0) {
4432                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4433                         return JIM_ERR;
4434                 }
4435                 Jim_SetResultString(goi.interp, get_current_target(cmd_ctx)->cmd_name, -1);
4436                 return JIM_OK;
4437         case TG_CMD_TYPES:
4438                 if (goi.argc != 0) {
4439                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4440                         return JIM_ERR;
4441                 }
4442                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4443                 for (x = 0 ; target_types[x] ; x++) {
4444                         Jim_ListAppendElement(goi.interp,
4445                                                                    Jim_GetResult(goi.interp),
4446                                                                    Jim_NewStringObj(goi.interp, target_types[x]->name, -1));
4447                 }
4448                 return JIM_OK;
4449         case TG_CMD_NAMES:
4450                 if (goi.argc != 0) {
4451                         Jim_WrongNumArgs(goi.interp, 1, goi.argv, "Too many parameters");
4452                         return JIM_ERR;
4453                 }
4454                 Jim_SetResult(goi.interp, Jim_NewListObj(goi.interp, NULL, 0));
4455                 target = all_targets;
4456                 while (target) {
4457                         Jim_ListAppendElement(goi.interp,
4458                                                                    Jim_GetResult(goi.interp),
4459                                                                    Jim_NewStringObj(goi.interp, target->cmd_name, -1));
4460                         target = target->next;
4461                 }
4462                 return JIM_OK;
4463         case TG_CMD_CREATE:
4464                 if (goi.argc < 3) {
4465                         Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4466                         return JIM_ERR;
4467                 }
4468                 return target_create(&goi);
4469                 break;
4470         case TG_CMD_NUMBER:
4471                 /* It's OK to remove this mechanism sometime after August 2010 or so */
4472                 LOG_WARNING("don't use numbers as target identifiers; use names");
4473                 if (goi.argc != 1) {
4474                         Jim_SetResult_sprintf(goi.interp, "expected: target number ?NUMBER?");
4475                         return JIM_ERR;
4476                 }
4477                 e = Jim_GetOpt_Wide(&goi, &w);
4478                 if (e != JIM_OK) {
4479                         return JIM_ERR;
4480                 }
4481                 for (x = 0, target = all_targets; target; target = target->next, x++) {
4482                         if (target->target_number == w)
4483                                 break;
4484                 }
4485                 if (target == NULL) {
4486                         Jim_SetResult_sprintf(goi.interp,
4487                                         "Target: number %d does not exist", (int)(w));
4488                         return JIM_ERR;
4489                 }
4490                 Jim_SetResultString(goi.interp, target->cmd_name, -1);
4491                 return JIM_OK;
4492         case TG_CMD_COUNT:
4493                 if (goi.argc != 0) {
4494                         Jim_WrongNumArgs(goi.interp, 0, goi.argv, "<no parameters>");
4495                         return JIM_ERR;
4496                 }
4497                 for (x = 0, target = all_targets; target; target = target->next, x++)
4498                         continue;
4499                 Jim_SetResult(goi.interp, Jim_NewIntObj(goi.interp, x));
4500                 return JIM_OK;
4501         }
4502
4503         return JIM_ERR;
4504 }
4505
4506
4507 struct FastLoad
4508 {
4509         uint32_t address;
4510         uint8_t *data;
4511         int length;
4512
4513 };
4514
4515 static int fastload_num;
4516 static struct FastLoad *fastload;
4517
4518 static void free_fastload(void)
4519 {
4520         if (fastload != NULL)
4521         {
4522                 int i;
4523                 for (i = 0; i < fastload_num; i++)
4524                 {
4525                         if (fastload[i].data)
4526                                 free(fastload[i].data);
4527                 }
4528                 free(fastload);
4529                 fastload = NULL;
4530         }
4531 }
4532
4533
4534
4535
4536 COMMAND_HANDLER(handle_fast_load_image_command)
4537 {
4538         uint8_t *buffer;
4539         uint32_t buf_cnt;
4540         uint32_t image_size;
4541         uint32_t min_address = 0;
4542         uint32_t max_address = 0xffffffff;
4543         int i;
4544
4545         struct image image;
4546
4547         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_args,
4548                         &image, &min_address, &max_address);
4549         if (ERROR_OK != retval)
4550                 return retval;
4551
4552         struct duration bench;
4553         duration_start(&bench);
4554
4555         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4556         {
4557                 return ERROR_OK;
4558         }
4559
4560         image_size = 0x0;
4561         retval = ERROR_OK;
4562         fastload_num = image.num_sections;
4563         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4564         if (fastload == NULL)
4565         {
4566                 image_close(&image);
4567                 return ERROR_FAIL;
4568         }
4569         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4570         for (i = 0; i < image.num_sections; i++)
4571         {
4572                 buffer = malloc(image.sections[i].size);
4573                 if (buffer == NULL)
4574                 {
4575                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)",
4576                                                   (int)(image.sections[i].size));
4577                         break;
4578                 }
4579
4580                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4581                 {
4582                         free(buffer);
4583                         break;
4584                 }
4585
4586                 uint32_t offset = 0;
4587                 uint32_t length = buf_cnt;
4588
4589
4590                 /* DANGER!!! beware of unsigned comparision here!!! */
4591
4592                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4593                                 (image.sections[i].base_address < max_address))
4594                 {
4595                         if (image.sections[i].base_address < min_address)
4596                         {
4597                                 /* clip addresses below */
4598                                 offset += min_address-image.sections[i].base_address;
4599                                 length -= offset;
4600                         }
4601
4602                         if (image.sections[i].base_address + buf_cnt > max_address)
4603                         {
4604                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4605                         }
4606
4607                         fastload[i].address = image.sections[i].base_address + offset;
4608                         fastload[i].data = malloc(length);
4609                         if (fastload[i].data == NULL)
4610                         {
4611                                 free(buffer);
4612                                 break;
4613                         }
4614                         memcpy(fastload[i].data, buffer + offset, length);
4615                         fastload[i].length = length;
4616
4617                         image_size += length;
4618                         command_print(cmd_ctx, "%u bytes written at address 0x%8.8x",
4619                                                   (unsigned int)length,
4620                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4621                 }
4622
4623                 free(buffer);
4624         }
4625
4626         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4627         {
4628                 command_print(cmd_ctx, "Loaded %" PRIu32 " bytes "
4629                                 "in %fs (%0.3f kb/s)", image_size, 
4630                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4631
4632                 command_print(cmd_ctx,
4633                                 "WARNING: image has not been loaded to target!"
4634                                 "You can issue a 'fast_load' to finish loading.");
4635         }
4636
4637         image_close(&image);
4638
4639         if (retval != ERROR_OK)
4640         {
4641                 free_fastload();
4642         }
4643
4644         return retval;
4645 }
4646
4647 COMMAND_HANDLER(handle_fast_load_command)
4648 {
4649         if (argc > 0)
4650                 return ERROR_COMMAND_SYNTAX_ERROR;
4651         if (fastload == NULL)
4652         {
4653                 LOG_ERROR("No image in memory");
4654                 return ERROR_FAIL;
4655         }
4656         int i;
4657         int ms = timeval_ms();
4658         int size = 0;
4659         int retval = ERROR_OK;
4660         for (i = 0; i < fastload_num;i++)
4661         {
4662                 struct target *target = get_current_target(cmd_ctx);
4663                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x",
4664                                           (unsigned int)(fastload[i].address),
4665                                           (unsigned int)(fastload[i].length));
4666                 if (retval == ERROR_OK)
4667                 {
4668                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4669                 }
4670                 size += fastload[i].length;
4671         }
4672         int after = timeval_ms();
4673         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4674         return retval;
4675 }
4676
4677 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4678 {
4679         struct command_context *context;
4680         struct target *target;
4681         int retval;
4682
4683         context = Jim_GetAssocData(interp, "context");
4684         if (context == NULL) {
4685                 LOG_ERROR("array2mem: no command context");
4686                 return JIM_ERR;
4687         }
4688         target = get_current_target(context);
4689         if (target == NULL) {
4690                 LOG_ERROR("array2mem: no current target");
4691                 return JIM_ERR;
4692         }
4693
4694         if ((argc < 6) || (argc > 7))
4695         {
4696                 return JIM_ERR;
4697         }
4698
4699         int cpnum;
4700         uint32_t op1;
4701         uint32_t op2;
4702         uint32_t CRn;
4703         uint32_t CRm;
4704         uint32_t value;
4705
4706         int e;
4707         long l;
4708         e = Jim_GetLong(interp, argv[1], &l);
4709         if (e != JIM_OK) {
4710                 return e;
4711         }
4712         cpnum = l;
4713
4714         e = Jim_GetLong(interp, argv[2], &l);
4715         if (e != JIM_OK) {
4716                 return e;
4717         }
4718         op1 = l;
4719
4720         e = Jim_GetLong(interp, argv[3], &l);
4721         if (e != JIM_OK) {
4722                 return e;
4723         }
4724         CRn = l;
4725
4726         e = Jim_GetLong(interp, argv[4], &l);
4727         if (e != JIM_OK) {
4728                 return e;
4729         }
4730         CRm = l;
4731
4732         e = Jim_GetLong(interp, argv[5], &l);
4733         if (e != JIM_OK) {
4734                 return e;
4735         }
4736         op2 = l;
4737
4738         value = 0;
4739
4740         if (argc == 7)
4741         {
4742                 e = Jim_GetLong(interp, argv[6], &l);
4743                 if (e != JIM_OK) {
4744                         return e;
4745                 }
4746                 value = l;
4747
4748                 retval = target_mcr(target, cpnum, op1, op2, CRn, CRm, value);
4749                 if (retval != ERROR_OK)
4750                         return JIM_ERR;
4751         } else
4752         {
4753                 retval = target_mrc(target, cpnum, op1, op2, CRn, CRm, &value);
4754                 if (retval != ERROR_OK)
4755                         return JIM_ERR;
4756
4757                 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
4758         }
4759
4760         return JIM_OK;
4761 }
4762
4763 int target_register_commands(struct command_context *cmd_ctx)
4764 {
4765
4766         register_command(cmd_ctx, NULL, "targets",
4767                         handle_targets_command, COMMAND_EXEC,
4768                         "change current command line target (one parameter) "
4769                         "or list targets (no parameters)");
4770
4771         register_jim(cmd_ctx, "target", jim_target, "configure target");
4772
4773         return ERROR_OK;
4774 }
4775
4776 int target_register_user_commands(struct command_context *cmd_ctx)
4777 {
4778         int retval = ERROR_OK;
4779         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
4780                 return retval;
4781
4782         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
4783                 return retval;
4784
4785         register_command(cmd_ctx, NULL, "profile",
4786                         handle_profile_command, COMMAND_EXEC,
4787                         "profiling samples the CPU PC");
4788
4789         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array,
4790                         "read memory and return as a TCL array for script processing "
4791                         "<ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
4792
4793         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem,
4794                         "convert a TCL array to memory locations and write the values "
4795                         "<ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
4796
4797         register_command(cmd_ctx, NULL, "fast_load_image",
4798                         handle_fast_load_image_command, COMMAND_ANY,
4799                         "same args as load_image, image stored in memory "
4800                         "- mainly for profiling purposes");
4801
4802         register_command(cmd_ctx, NULL, "fast_load",
4803                         handle_fast_load_command, COMMAND_ANY,
4804                         "loads active fast load image to current target "
4805                         "- mainly for profiling purposes");
4806
4807         /** @todo don't register virt2phys() unless target supports it */
4808         register_command(cmd_ctx, NULL, "virt2phys",
4809                         handle_virt2phys_command, COMMAND_ANY,
4810                         "translate a virtual address into a physical address");
4811
4812         register_command(cmd_ctx,  NULL, "reg",
4813                         handle_reg_command, COMMAND_EXEC,
4814                         "display or set a register");
4815
4816         register_command(cmd_ctx,  NULL, "poll",
4817                         handle_poll_command, COMMAND_EXEC,
4818                         "poll target state");
4819         register_command(cmd_ctx,  NULL, "wait_halt",
4820                         handle_wait_halt_command, COMMAND_EXEC,
4821                         "wait for target halt [time (s)]");
4822         register_command(cmd_ctx,  NULL, "halt",
4823                         handle_halt_command, COMMAND_EXEC,
4824                         "halt target");
4825         register_command(cmd_ctx,  NULL, "resume",
4826                         handle_resume_command, COMMAND_EXEC,
4827                         "resume target [addr]");
4828         register_command(cmd_ctx,  NULL, "reset",
4829                         handle_reset_command, COMMAND_EXEC,
4830                         "reset target [run | halt | init] - default is run");
4831         register_command(cmd_ctx,  NULL, "soft_reset_halt",
4832                         handle_soft_reset_halt_command, COMMAND_EXEC,
4833                         "halt the target and do a soft reset");
4834
4835         register_command(cmd_ctx,  NULL, "step",
4836                         handle_step_command, COMMAND_EXEC,
4837                         "step one instruction from current PC or [addr]");
4838
4839         register_command(cmd_ctx,  NULL, "mdw",
4840                         handle_md_command, COMMAND_EXEC,
4841                         "display memory words [phys] <addr> [count]");
4842         register_command(cmd_ctx,  NULL, "mdh",
4843                         handle_md_command, COMMAND_EXEC,
4844                         "display memory half-words [phys] <addr> [count]");
4845         register_command(cmd_ctx,  NULL, "mdb",
4846                         handle_md_command, COMMAND_EXEC,
4847                         "display memory bytes [phys] <addr> [count]");
4848
4849         register_command(cmd_ctx,  NULL, "mww",
4850                         handle_mw_command, COMMAND_EXEC,
4851                         "write memory word [phys]  <addr> <value> [count]");
4852         register_command(cmd_ctx,  NULL, "mwh",
4853                         handle_mw_command, COMMAND_EXEC,
4854                         "write memory half-word [phys]  <addr> <value> [count]");
4855         register_command(cmd_ctx,  NULL, "mwb",
4856                         handle_mw_command, COMMAND_EXEC,
4857                         "write memory byte [phys] <addr> <value> [count]");
4858
4859         register_command(cmd_ctx,  NULL, "bp",
4860                         handle_bp_command, COMMAND_EXEC,
4861                         "list or set breakpoint [<address> <length> [hw]]");
4862         register_command(cmd_ctx,  NULL, "rbp",
4863                         handle_rbp_command, COMMAND_EXEC,
4864                         "remove breakpoint <address>");
4865
4866         register_command(cmd_ctx,  NULL, "wp",
4867                         handle_wp_command, COMMAND_EXEC,
4868                         "list or set watchpoint "
4869                                 "[<address> <length> <r/w/a> [value] [mask]]");
4870         register_command(cmd_ctx,  NULL, "rwp",
4871                         handle_rwp_command, COMMAND_EXEC,
4872                         "remove watchpoint <address>");
4873
4874         register_command(cmd_ctx,  NULL, "load_image",
4875                         handle_load_image_command, COMMAND_EXEC,
4876                         "load_image <file> <address> "
4877                         "['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
4878         register_command(cmd_ctx,  NULL, "dump_image",
4879                         handle_dump_image_command, COMMAND_EXEC,
4880                         "dump_image <file> <address> <size>");
4881         register_command(cmd_ctx,  NULL, "verify_image",
4882                         handle_verify_image_command, COMMAND_EXEC,
4883                         "verify_image <file> [offset] [type]");
4884         register_command(cmd_ctx,  NULL, "test_image",
4885                         handle_test_image_command, COMMAND_EXEC,
4886                         "test_image <file> [offset] [type]");
4887
4888         return ERROR_OK;
4889 }