Add target_write_memory wrapper:
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_request.h"
38 #include "time_support.h"
39 #include "register.h"
40 #include "trace.h"
41 #include "image.h"
42 #include "jtag.h"
43
44 #include <inttypes.h>
45
46
47 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48
49 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71
72 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t feroceon_target;
87 extern target_type_t xscale_target;
88 extern target_type_t cortexm3_target;
89 extern target_type_t cortexa8_target;
90 extern target_type_t arm11_target;
91 extern target_type_t mips_m4k_target;
92 extern target_type_t avr_target;
93
94 target_type_t *target_types[] =
95 {
96         &arm7tdmi_target,
97         &arm9tdmi_target,
98         &arm920t_target,
99         &arm720t_target,
100         &arm966e_target,
101         &arm926ejs_target,
102         &feroceon_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         NULL,
110 };
111
112 target_t *all_targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
115
116 const Jim_Nvp nvp_assert[] = {
117         { .name = "assert", NVP_ASSERT },
118         { .name = "deassert", NVP_DEASSERT },
119         { .name = "T", NVP_ASSERT },
120         { .name = "F", NVP_DEASSERT },
121         { .name = "t", NVP_ASSERT },
122         { .name = "f", NVP_DEASSERT },
123         { .name = NULL, .value = -1 }
124 };
125
126 const Jim_Nvp nvp_error_target[] = {
127         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
128         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
129         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
130         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
131         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
132         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
133         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
134         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
135         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
136         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
137         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
138         { .value = -1, .name = NULL }
139 };
140
141 const char *target_strerror_safe( int err )
142 {
143         const Jim_Nvp *n;
144
145         n = Jim_Nvp_value2name_simple( nvp_error_target, err );
146         if( n->name == NULL ){
147                 return "unknown";
148         } else {
149                 return n->name;
150         }
151 }
152
153 static const Jim_Nvp nvp_target_event[] = {
154         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
155         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
156
157         { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
158         { .value = TARGET_EVENT_HALTED, .name = "halted" },
159         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
160         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
161         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
162
163         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
164         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
165
166         /* historical name */
167
168         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
169
170         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
171         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
172         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
174         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
175         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
176         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
177         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
178         { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
179         { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
180
181         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
182         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
183
184         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
185         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
186
187         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
188         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
189
190         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
192
193         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
195
196         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
197         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
198         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
199
200         { .name = NULL, .value = -1 }
201 };
202
203 const Jim_Nvp nvp_target_state[] = {
204         { .name = "unknown", .value = TARGET_UNKNOWN },
205         { .name = "running", .value = TARGET_RUNNING },
206         { .name = "halted",  .value = TARGET_HALTED },
207         { .name = "reset",   .value = TARGET_RESET },
208         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
209         { .name = NULL, .value = -1 },
210 };
211
212 const Jim_Nvp nvp_target_debug_reason [] = {
213         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
214         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
215         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
216         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
217         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
218         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
219         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
220         { .name = NULL, .value = -1 },
221 };
222
223 const Jim_Nvp nvp_target_endian[] = {
224         { .name = "big",    .value = TARGET_BIG_ENDIAN },
225         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
226         { .name = "be",     .value = TARGET_BIG_ENDIAN },
227         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
228         { .name = NULL,     .value = -1 },
229 };
230
231 const Jim_Nvp nvp_reset_modes[] = {
232         { .name = "unknown", .value = RESET_UNKNOWN },
233         { .name = "run"    , .value = RESET_RUN },
234         { .name = "halt"   , .value = RESET_HALT },
235         { .name = "init"   , .value = RESET_INIT },
236         { .name = NULL     , .value = -1 },
237 };
238
239 static int max_target_number(void)
240 {
241         target_t *t;
242         int x;
243
244         x = -1;
245         t = all_targets;
246         while( t ){
247                 if( x < t->target_number ){
248                         x = (t->target_number)+1;
249                 }
250                 t = t->next;
251         }
252         return x;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258         target_t *t;
259         int x;
260
261         /* number is 0 based */
262         x = -1;
263         t = all_targets;
264         while(t){
265                 if( x < t->target_number ){
266                         x = t->target_number;
267                 }
268                 t = t->next;
269         }
270         return x+1;
271 }
272
273 static int target_continous_poll = 1;
274
275 /* read a u32 from a buffer in target memory endianness */
276 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
277 {
278         if (target->endianness == TARGET_LITTLE_ENDIAN)
279                 return le_to_h_u32(buffer);
280         else
281                 return be_to_h_u32(buffer);
282 }
283
284 /* read a u16 from a buffer in target memory endianness */
285 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
286 {
287         if (target->endianness == TARGET_LITTLE_ENDIAN)
288                 return le_to_h_u16(buffer);
289         else
290                 return be_to_h_u16(buffer);
291 }
292
293 /* read a u8 from a buffer in target memory endianness */
294 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
295 {
296         return *buffer & 0x0ff;
297 }
298
299 /* write a u32 to a buffer in target memory endianness */
300 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 h_u32_to_le(buffer, value);
304         else
305                 h_u32_to_be(buffer, value);
306 }
307
308 /* write a u16 to a buffer in target memory endianness */
309 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 h_u16_to_le(buffer, value);
313         else
314                 h_u16_to_be(buffer, value);
315 }
316
317 /* write a u8 to a buffer in target memory endianness */
318 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
319 {
320         *buffer = value;
321 }
322
323 /* return a pointer to a configured target; id is name or number */
324 target_t *get_target(const char *id)
325 {
326         target_t *target;
327         char *endptr;
328         int num;
329
330         /* try as tcltarget name */
331         for (target = all_targets; target; target = target->next) {
332                 if (target->cmd_name == NULL)
333                         continue;
334                 if (strcmp(id, target->cmd_name) == 0)
335                         return target;
336         }
337
338         /* no match, try as number */
339         num = strtoul(id, &endptr, 0);
340         if (*endptr != 0)
341                 return NULL;
342
343         for (target = all_targets; target; target = target->next) {
344                 if (target->target_number == num)
345                         return target;
346         }
347
348         return NULL;
349 }
350
351 /* returns a pointer to the n-th configured target */
352 static target_t *get_target_by_num(int num)
353 {
354         target_t *target = all_targets;
355
356         while (target){
357                 if( target->target_number == num ){
358                         return target;
359                 }
360                 target = target->next;
361         }
362
363         return NULL;
364 }
365
366 int get_num_by_target(target_t *query_target)
367 {
368         return query_target->target_number;
369 }
370
371 target_t* get_current_target(command_context_t *cmd_ctx)
372 {
373         target_t *target = get_target_by_num(cmd_ctx->current_target);
374
375         if (target == NULL)
376         {
377                 LOG_ERROR("BUG: current_target out of bounds");
378                 exit(-1);
379         }
380
381         return target;
382 }
383
384 int target_poll(struct target_s *target)
385 {
386         /* We can't poll until after examine */
387         if (!target->type->examined)
388         {
389                 /* Fail silently lest we pollute the log */
390                 return ERROR_FAIL;
391         }
392         return target->type->poll(target);
393 }
394
395 int target_halt(struct target_s *target)
396 {
397         /* We can't poll until after examine */
398         if (!target->type->examined)
399         {
400                 LOG_ERROR("Target not examined yet");
401                 return ERROR_FAIL;
402         }
403         return target->type->halt(target);
404 }
405
406 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
407 {
408         int retval;
409
410         /* We can't poll until after examine */
411         if (!target->type->examined)
412         {
413                 LOG_ERROR("Target not examined yet");
414                 return ERROR_FAIL;
415         }
416
417         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
418          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
419          * the application.
420          */
421         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
422                 return retval;
423
424         return retval;
425 }
426
427 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
428 {
429         char buf[100];
430         int retval;
431         Jim_Nvp *n;
432         n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
433         if( n->name == NULL ){
434                 LOG_ERROR("invalid reset mode");
435                 return ERROR_FAIL;
436         }
437
438         sprintf( buf, "ocd_process_reset %s", n->name );
439         retval = Jim_Eval( interp, buf );
440
441         if(retval != JIM_OK) {
442                 Jim_PrintErrorMessage(interp);
443                 return ERROR_FAIL;
444         }
445
446         /* We want any events to be processed before the prompt */
447         retval = target_call_timer_callbacks_now();
448
449         return retval;
450 }
451
452 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
453 {
454         *physical = virtual;
455         return ERROR_OK;
456 }
457
458 static int default_mmu(struct target_s *target, int *enabled)
459 {
460         *enabled = 0;
461         return ERROR_OK;
462 }
463
464 static int default_examine(struct target_s *target)
465 {
466         target->type->examined = 1;
467         return ERROR_OK;
468 }
469
470 /* Targets that correctly implement init+examine, i.e.
471  * no communication with target during init:
472  *
473  * XScale
474  */
475 int target_examine(void)
476 {
477         int retval = ERROR_OK;
478         target_t *target = all_targets;
479         while (target)
480         {
481                 if ((retval = target->type->examine(target))!=ERROR_OK)
482                         return retval;
483                 target = target->next;
484         }
485         return retval;
486 }
487
488 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
489 {
490         if (!target->type->examined)
491         {
492                 LOG_ERROR("Target not examined yet");
493                 return ERROR_FAIL;
494         }
495         return target->type->write_memory_imp(target, address, size, count, buffer);
496 }
497
498 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
499 {
500         if (!target->type->examined)
501         {
502                 LOG_ERROR("Target not examined yet");
503                 return ERROR_FAIL;
504         }
505         return target->type->read_memory_imp(target, address, size, count, buffer);
506 }
507
508 static int target_soft_reset_halt_imp(struct target_s *target)
509 {
510         if (!target->type->examined)
511         {
512                 LOG_ERROR("Target not examined yet");
513                 return ERROR_FAIL;
514         }
515         return target->type->soft_reset_halt_imp(target);
516 }
517
518 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
519 {
520         if (!target->type->examined)
521         {
522                 LOG_ERROR("Target not examined yet");
523                 return ERROR_FAIL;
524         }
525         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
526 }
527
528 int target_read_memory(struct target_s *target,
529                 u32 address, u32 size, u32 count, u8 *buffer)
530 {
531         return target->type->read_memory(target, address, size, count, buffer);
532 }
533
534 int target_write_memory(struct target_s *target,
535                 u32 address, u32 size, u32 count, u8 *buffer)
536 {
537         return target->type->write_memory(target, address, size, count, buffer);
538 }
539
540
541 int target_init(struct command_context_s *cmd_ctx)
542 {
543         target_t *target = all_targets;
544         int retval;
545
546         while (target)
547         {
548                 target->type->examined = 0;
549                 if (target->type->examine == NULL)
550                 {
551                         target->type->examine = default_examine;
552                 }
553
554                 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
555                 {
556                         LOG_ERROR("target '%s' init failed", target->type->name);
557                         return retval;
558                 }
559
560                 /* Set up default functions if none are provided by target */
561                 if (target->type->virt2phys == NULL)
562                 {
563                         target->type->virt2phys = default_virt2phys;
564                 }
565                 target->type->virt2phys = default_virt2phys;
566                 /* a non-invasive way(in terms of patches) to add some code that
567                  * runs before the type->write/read_memory implementation
568                  */
569                 target->type->write_memory_imp = target->type->write_memory;
570                 target->type->write_memory = target_write_memory_imp;
571                 target->type->read_memory_imp = target->type->read_memory;
572                 target->type->read_memory = target_read_memory_imp;
573                 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
574                 target->type->soft_reset_halt = target_soft_reset_halt_imp;
575                 target->type->run_algorithm_imp = target->type->run_algorithm;
576                 target->type->run_algorithm = target_run_algorithm_imp;
577
578                 if (target->type->mmu == NULL)
579                 {
580                         target->type->mmu = default_mmu;
581                 }
582                 target = target->next;
583         }
584
585         if (all_targets)
586         {
587                 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
588                         return retval;
589                 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
590                         return retval;
591         }
592
593         return ERROR_OK;
594 }
595
596 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
597 {
598         target_event_callback_t **callbacks_p = &target_event_callbacks;
599
600         if (callback == NULL)
601         {
602                 return ERROR_INVALID_ARGUMENTS;
603         }
604
605         if (*callbacks_p)
606         {
607                 while ((*callbacks_p)->next)
608                         callbacks_p = &((*callbacks_p)->next);
609                 callbacks_p = &((*callbacks_p)->next);
610         }
611
612         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
613         (*callbacks_p)->callback = callback;
614         (*callbacks_p)->priv = priv;
615         (*callbacks_p)->next = NULL;
616
617         return ERROR_OK;
618 }
619
620 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
621 {
622         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
623         struct timeval now;
624
625         if (callback == NULL)
626         {
627                 return ERROR_INVALID_ARGUMENTS;
628         }
629
630         if (*callbacks_p)
631         {
632                 while ((*callbacks_p)->next)
633                         callbacks_p = &((*callbacks_p)->next);
634                 callbacks_p = &((*callbacks_p)->next);
635         }
636
637         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
638         (*callbacks_p)->callback = callback;
639         (*callbacks_p)->periodic = periodic;
640         (*callbacks_p)->time_ms = time_ms;
641
642         gettimeofday(&now, NULL);
643         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
644         time_ms -= (time_ms % 1000);
645         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
646         if ((*callbacks_p)->when.tv_usec > 1000000)
647         {
648                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
649                 (*callbacks_p)->when.tv_sec += 1;
650         }
651
652         (*callbacks_p)->priv = priv;
653         (*callbacks_p)->next = NULL;
654
655         return ERROR_OK;
656 }
657
658 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
659 {
660         target_event_callback_t **p = &target_event_callbacks;
661         target_event_callback_t *c = target_event_callbacks;
662
663         if (callback == NULL)
664         {
665                 return ERROR_INVALID_ARGUMENTS;
666         }
667
668         while (c)
669         {
670                 target_event_callback_t *next = c->next;
671                 if ((c->callback == callback) && (c->priv == priv))
672                 {
673                         *p = next;
674                         free(c);
675                         return ERROR_OK;
676                 }
677                 else
678                         p = &(c->next);
679                 c = next;
680         }
681
682         return ERROR_OK;
683 }
684
685 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
686 {
687         target_timer_callback_t **p = &target_timer_callbacks;
688         target_timer_callback_t *c = target_timer_callbacks;
689
690         if (callback == NULL)
691         {
692                 return ERROR_INVALID_ARGUMENTS;
693         }
694
695         while (c)
696         {
697                 target_timer_callback_t *next = c->next;
698                 if ((c->callback == callback) && (c->priv == priv))
699                 {
700                         *p = next;
701                         free(c);
702                         return ERROR_OK;
703                 }
704                 else
705                         p = &(c->next);
706                 c = next;
707         }
708
709         return ERROR_OK;
710 }
711
712 int target_call_event_callbacks(target_t *target, enum target_event event)
713 {
714         target_event_callback_t *callback = target_event_callbacks;
715         target_event_callback_t *next_callback;
716
717         if (event == TARGET_EVENT_HALTED)
718         {
719                 /* execute early halted first */
720                 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
721         }
722
723         LOG_DEBUG("target event %i (%s)",
724                           event,
725                           Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
726
727         target_handle_event( target, event );
728
729         while (callback)
730         {
731                 next_callback = callback->next;
732                 callback->callback(target, event, callback->priv);
733                 callback = next_callback;
734         }
735
736         return ERROR_OK;
737 }
738
739 static int target_call_timer_callbacks_check_time(int checktime)
740 {
741         target_timer_callback_t *callback = target_timer_callbacks;
742         target_timer_callback_t *next_callback;
743         struct timeval now;
744
745         keep_alive();
746
747         gettimeofday(&now, NULL);
748
749         while (callback)
750         {
751                 next_callback = callback->next;
752
753                 if ((!checktime&&callback->periodic)||
754                                 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
755                                                 || (now.tv_sec > callback->when.tv_sec)))
756                 {
757                         if(callback->callback != NULL)
758                         {
759                                 callback->callback(callback->priv);
760                                 if (callback->periodic)
761                                 {
762                                         int time_ms = callback->time_ms;
763                                         callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
764                                         time_ms -= (time_ms % 1000);
765                                         callback->when.tv_sec = now.tv_sec + time_ms / 1000;
766                                         if (callback->when.tv_usec > 1000000)
767                                         {
768                                                 callback->when.tv_usec = callback->when.tv_usec - 1000000;
769                                                 callback->when.tv_sec += 1;
770                                         }
771                                 }
772                                 else
773                                 {
774                                         int retval;
775                                         if((retval = target_unregister_timer_callback(callback->callback, callback->priv)) != ERROR_OK)
776                                                 return retval;
777                                 }
778                         }
779                 }
780
781                 callback = next_callback;
782         }
783
784         return ERROR_OK;
785 }
786
787 int target_call_timer_callbacks(void)
788 {
789         return target_call_timer_callbacks_check_time(1);
790 }
791
792 /* invoke periodic callbacks immediately */
793 int target_call_timer_callbacks_now(void)
794 {
795         return target_call_timer_callbacks_check_time(0);
796 }
797
798 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
799 {
800         working_area_t *c = target->working_areas;
801         working_area_t *new_wa = NULL;
802
803         /* Reevaluate working area address based on MMU state*/
804         if (target->working_areas == NULL)
805         {
806                 int retval;
807                 int enabled;
808                 retval = target->type->mmu(target, &enabled);
809                 if (retval != ERROR_OK)
810                 {
811                         return retval;
812                 }
813                 if (enabled)
814                 {
815                         target->working_area = target->working_area_virt;
816                 }
817                 else
818                 {
819                         target->working_area = target->working_area_phys;
820                 }
821         }
822
823         /* only allocate multiples of 4 byte */
824         if (size % 4)
825         {
826                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
827                 size = CEIL(size, 4);
828         }
829
830         /* see if there's already a matching working area */
831         while (c)
832         {
833                 if ((c->free) && (c->size == size))
834                 {
835                         new_wa = c;
836                         break;
837                 }
838                 c = c->next;
839         }
840
841         /* if not, allocate a new one */
842         if (!new_wa)
843         {
844                 working_area_t **p = &target->working_areas;
845                 u32 first_free = target->working_area;
846                 u32 free_size = target->working_area_size;
847
848                 LOG_DEBUG("allocating new working area");
849
850                 c = target->working_areas;
851                 while (c)
852                 {
853                         first_free += c->size;
854                         free_size -= c->size;
855                         p = &c->next;
856                         c = c->next;
857                 }
858
859                 if (free_size < size)
860                 {
861                         LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
862                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
863                 }
864
865                 new_wa = malloc(sizeof(working_area_t));
866                 new_wa->next = NULL;
867                 new_wa->size = size;
868                 new_wa->address = first_free;
869
870                 if (target->backup_working_area)
871                 {
872                         int retval;
873                         new_wa->backup = malloc(new_wa->size);
874                         if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
875                         {
876                                 free(new_wa->backup);
877                                 free(new_wa);
878                                 return retval;
879                         }
880                 }
881                 else
882                 {
883                         new_wa->backup = NULL;
884                 }
885
886                 /* put new entry in list */
887                 *p = new_wa;
888         }
889
890         /* mark as used, and return the new (reused) area */
891         new_wa->free = 0;
892         *area = new_wa;
893
894         /* user pointer */
895         new_wa->user = area;
896
897         return ERROR_OK;
898 }
899
900 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
901 {
902         if (area->free)
903                 return ERROR_OK;
904
905         if (restore&&target->backup_working_area)
906         {
907                 int retval;
908                 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
909                         return retval;
910         }
911
912         area->free = 1;
913
914         /* mark user pointer invalid */
915         *area->user = NULL;
916         area->user = NULL;
917
918         return ERROR_OK;
919 }
920
921 int target_free_working_area(struct target_s *target, working_area_t *area)
922 {
923         return target_free_working_area_restore(target, area, 1);
924 }
925
926 /* free resources and restore memory, if restoring memory fails,
927  * free up resources anyway
928  */
929 void target_free_all_working_areas_restore(struct target_s *target, int restore)
930 {
931         working_area_t *c = target->working_areas;
932
933         while (c)
934         {
935                 working_area_t *next = c->next;
936                 target_free_working_area_restore(target, c, restore);
937
938                 if (c->backup)
939                         free(c->backup);
940
941                 free(c);
942
943                 c = next;
944         }
945
946         target->working_areas = NULL;
947 }
948
949 void target_free_all_working_areas(struct target_s *target)
950 {
951         target_free_all_working_areas_restore(target, 1);
952 }
953
954 int target_register_commands(struct command_context_s *cmd_ctx)
955 {
956
957         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
958
959
960
961
962         register_jim(cmd_ctx, "target", jim_target, "configure target" );
963
964         return ERROR_OK;
965 }
966
967 int target_arch_state(struct target_s *target)
968 {
969         int retval;
970         if (target==NULL)
971         {
972                 LOG_USER("No target has been configured");
973                 return ERROR_OK;
974         }
975
976         LOG_USER("target state: %s",
977                  Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
978
979         if (target->state!=TARGET_HALTED)
980                 return ERROR_OK;
981
982         retval=target->type->arch_state(target);
983         return retval;
984 }
985
986 /* Single aligned words are guaranteed to use 16 or 32 bit access
987  * mode respectively, otherwise data is handled as quickly as
988  * possible
989  */
990 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
991 {
992         int retval;
993         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
994
995         if (!target->type->examined)
996         {
997                 LOG_ERROR("Target not examined yet");
998                 return ERROR_FAIL;
999         }
1000
1001         if (size == 0) {
1002                 return ERROR_OK;
1003         }
1004
1005         if ((address + size - 1) < address)
1006         {
1007                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1008                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1009                 return ERROR_FAIL;
1010         }
1011
1012         if (((address % 2) == 0) && (size == 2))
1013         {
1014                 return target_write_memory(target, address, 2, 1, buffer);
1015         }
1016
1017         /* handle unaligned head bytes */
1018         if (address % 4)
1019         {
1020                 u32 unaligned = 4 - (address % 4);
1021
1022                 if (unaligned > size)
1023                         unaligned = size;
1024
1025                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1026                         return retval;
1027
1028                 buffer += unaligned;
1029                 address += unaligned;
1030                 size -= unaligned;
1031         }
1032
1033         /* handle aligned words */
1034         if (size >= 4)
1035         {
1036                 int aligned = size - (size % 4);
1037
1038                 /* use bulk writes above a certain limit. This may have to be changed */
1039                 if (aligned > 128)
1040                 {
1041                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1042                                 return retval;
1043                 }
1044                 else
1045                 {
1046                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1047                                 return retval;
1048                 }
1049
1050                 buffer += aligned;
1051                 address += aligned;
1052                 size -= aligned;
1053         }
1054
1055         /* handle tail writes of less than 4 bytes */
1056         if (size > 0)
1057         {
1058                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1059                         return retval;
1060         }
1061
1062         return ERROR_OK;
1063 }
1064
1065 /* Single aligned words are guaranteed to use 16 or 32 bit access
1066  * mode respectively, otherwise data is handled as quickly as
1067  * possible
1068  */
1069 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1070 {
1071         int retval;
1072         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1073
1074         if (!target->type->examined)
1075         {
1076                 LOG_ERROR("Target not examined yet");
1077                 return ERROR_FAIL;
1078         }
1079
1080         if (size == 0) {
1081                 return ERROR_OK;
1082         }
1083
1084         if ((address + size - 1) < address)
1085         {
1086                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1087                 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1088                 return ERROR_FAIL;
1089         }
1090
1091         if (((address % 2) == 0) && (size == 2))
1092         {
1093                 return target_read_memory(target, address, 2, 1, buffer);
1094         }
1095
1096         /* handle unaligned head bytes */
1097         if (address % 4)
1098         {
1099                 u32 unaligned = 4 - (address % 4);
1100
1101                 if (unaligned > size)
1102                         unaligned = size;
1103
1104                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1105                         return retval;
1106
1107                 buffer += unaligned;
1108                 address += unaligned;
1109                 size -= unaligned;
1110         }
1111
1112         /* handle aligned words */
1113         if (size >= 4)
1114         {
1115                 int aligned = size - (size % 4);
1116
1117                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1118                         return retval;
1119
1120                 buffer += aligned;
1121                 address += aligned;
1122                 size -= aligned;
1123         }
1124
1125         /* handle tail writes of less than 4 bytes */
1126         if (size > 0)
1127         {
1128                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1129                         return retval;
1130         }
1131
1132         return ERROR_OK;
1133 }
1134
1135 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1136 {
1137         u8 *buffer;
1138         int retval;
1139         u32 i;
1140         u32 checksum = 0;
1141         if (!target->type->examined)
1142         {
1143                 LOG_ERROR("Target not examined yet");
1144                 return ERROR_FAIL;
1145         }
1146
1147         if ((retval = target->type->checksum_memory(target, address,
1148                 size, &checksum)) != ERROR_OK)
1149         {
1150                 buffer = malloc(size);
1151                 if (buffer == NULL)
1152                 {
1153                         LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1154                         return ERROR_INVALID_ARGUMENTS;
1155                 }
1156                 retval = target_read_buffer(target, address, size, buffer);
1157                 if (retval != ERROR_OK)
1158                 {
1159                         free(buffer);
1160                         return retval;
1161                 }
1162
1163                 /* convert to target endianess */
1164                 for (i = 0; i < (size/sizeof(u32)); i++)
1165                 {
1166                         u32 target_data;
1167                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1168                         target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1169                 }
1170
1171                 retval = image_calculate_checksum( buffer, size, &checksum );
1172                 free(buffer);
1173         }
1174
1175         *crc = checksum;
1176
1177         return retval;
1178 }
1179
1180 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1181 {
1182         int retval;
1183         if (!target->type->examined)
1184         {
1185                 LOG_ERROR("Target not examined yet");
1186                 return ERROR_FAIL;
1187         }
1188
1189         if (target->type->blank_check_memory == 0)
1190                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1191
1192         retval = target->type->blank_check_memory(target, address, size, blank);
1193
1194         return retval;
1195 }
1196
1197 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1198 {
1199         u8 value_buf[4];
1200         if (!target->type->examined)
1201         {
1202                 LOG_ERROR("Target not examined yet");
1203                 return ERROR_FAIL;
1204         }
1205
1206         int retval = target_read_memory(target, address, 4, 1, value_buf);
1207
1208         if (retval == ERROR_OK)
1209         {
1210                 *value = target_buffer_get_u32(target, value_buf);
1211                 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1212         }
1213         else
1214         {
1215                 *value = 0x0;
1216                 LOG_DEBUG("address: 0x%8.8x failed", address);
1217         }
1218
1219         return retval;
1220 }
1221
1222 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1223 {
1224         u8 value_buf[2];
1225         if (!target->type->examined)
1226         {
1227                 LOG_ERROR("Target not examined yet");
1228                 return ERROR_FAIL;
1229         }
1230
1231         int retval = target_read_memory(target, address, 2, 1, value_buf);
1232
1233         if (retval == ERROR_OK)
1234         {
1235                 *value = target_buffer_get_u16(target, value_buf);
1236                 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1237         }
1238         else
1239         {
1240                 *value = 0x0;
1241                 LOG_DEBUG("address: 0x%8.8x failed", address);
1242         }
1243
1244         return retval;
1245 }
1246
1247 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1248 {
1249         int retval = target_read_memory(target, address, 1, 1, value);
1250         if (!target->type->examined)
1251         {
1252                 LOG_ERROR("Target not examined yet");
1253                 return ERROR_FAIL;
1254         }
1255
1256         if (retval == ERROR_OK)
1257         {
1258                 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1259         }
1260         else
1261         {
1262                 *value = 0x0;
1263                 LOG_DEBUG("address: 0x%8.8x failed", address);
1264         }
1265
1266         return retval;
1267 }
1268
1269 int target_write_u32(struct target_s *target, u32 address, u32 value)
1270 {
1271         int retval;
1272         u8 value_buf[4];
1273         if (!target->type->examined)
1274         {
1275                 LOG_ERROR("Target not examined yet");
1276                 return ERROR_FAIL;
1277         }
1278
1279         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1280
1281         target_buffer_set_u32(target, value_buf, value);
1282         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1283         {
1284                 LOG_DEBUG("failed: %i", retval);
1285         }
1286
1287         return retval;
1288 }
1289
1290 int target_write_u16(struct target_s *target, u32 address, u16 value)
1291 {
1292         int retval;
1293         u8 value_buf[2];
1294         if (!target->type->examined)
1295         {
1296                 LOG_ERROR("Target not examined yet");
1297                 return ERROR_FAIL;
1298         }
1299
1300         LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1301
1302         target_buffer_set_u16(target, value_buf, value);
1303         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1304         {
1305                 LOG_DEBUG("failed: %i", retval);
1306         }
1307
1308         return retval;
1309 }
1310
1311 int target_write_u8(struct target_s *target, u32 address, u8 value)
1312 {
1313         int retval;
1314         if (!target->type->examined)
1315         {
1316                 LOG_ERROR("Target not examined yet");
1317                 return ERROR_FAIL;
1318         }
1319
1320         LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1321
1322         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1323         {
1324                 LOG_DEBUG("failed: %i", retval);
1325         }
1326
1327         return retval;
1328 }
1329
1330 int target_register_user_commands(struct command_context_s *cmd_ctx)
1331 {
1332         int retval = ERROR_OK;
1333
1334
1335         /* script procedures */
1336         register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1337         register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1338         register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values  <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1339
1340         register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1341                         "same args as load_image, image stored in memory - mainly for profiling purposes");
1342
1343         register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1344                         "loads active fast load image to current target - mainly for profiling purposes");
1345
1346
1347         register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1348         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1349         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1350         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1351         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1352         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1353         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1354         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1355         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1356
1357         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1358         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1359         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1360
1361         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1362         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1363         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1364
1365         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1366         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1367         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1368         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1369
1370         register_command(cmd_ctx,  NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1371         register_command(cmd_ctx,  NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1372         register_command(cmd_ctx,  NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1373         register_command(cmd_ctx,  NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1374
1375         if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1376                 return retval;
1377         if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1378                 return retval;
1379
1380         return retval;
1381 }
1382
1383 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1384 {
1385         target_t *target = all_targets;
1386
1387         if (argc == 1)
1388         {
1389                 target = get_target(args[0]);
1390                 if (target == NULL) {
1391                         command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1392                         goto DumpTargets;
1393                 }
1394
1395                 cmd_ctx->current_target = target->target_number;
1396                 return ERROR_OK;
1397         }
1398 DumpTargets:
1399
1400         target = all_targets;
1401         command_print(cmd_ctx, "    CmdName    Type       Endian     AbsChainPos Name          State     ");
1402         command_print(cmd_ctx, "--  ---------- ---------- ---------- ----------- ------------- ----------");
1403         while (target)
1404         {
1405                 /* XX: abcdefghij abcdefghij abcdefghij abcdefghij */
1406                 command_print(cmd_ctx, "%2d: %-10s %-10s %-10s %10d %14s %s",
1407                                           target->target_number,
1408                                           target->cmd_name,
1409                                           target->type->name,
1410                                           Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness )->name,
1411                                           target->tap->abs_chain_position,
1412                                           target->tap->dotted_name,
1413                                           Jim_Nvp_value2name_simple( nvp_target_state, target->state )->name );
1414                 target = target->next;
1415         }
1416
1417         return ERROR_OK;
1418 }
1419
1420 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1421
1422 static int powerDropout;
1423 static int srstAsserted;
1424
1425 static int runPowerRestore;
1426 static int runPowerDropout;
1427 static int runSrstAsserted;
1428 static int runSrstDeasserted;
1429
1430 static int sense_handler(void)
1431 {
1432         static int prevSrstAsserted = 0;
1433         static int prevPowerdropout = 0;
1434
1435         int retval;
1436         if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1437                 return retval;
1438
1439         int powerRestored;
1440         powerRestored = prevPowerdropout && !powerDropout;
1441         if (powerRestored)
1442         {
1443                 runPowerRestore = 1;
1444         }
1445
1446         long long current = timeval_ms();
1447         static long long lastPower = 0;
1448         int waitMore = lastPower + 2000 > current;
1449         if (powerDropout && !waitMore)
1450         {
1451                 runPowerDropout = 1;
1452                 lastPower = current;
1453         }
1454
1455         if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1456                 return retval;
1457
1458         int srstDeasserted;
1459         srstDeasserted = prevSrstAsserted && !srstAsserted;
1460
1461         static long long lastSrst = 0;
1462         waitMore = lastSrst + 2000 > current;
1463         if (srstDeasserted && !waitMore)
1464         {
1465                 runSrstDeasserted = 1;
1466                 lastSrst = current;
1467         }
1468
1469         if (!prevSrstAsserted && srstAsserted)
1470         {
1471                 runSrstAsserted = 1;
1472         }
1473
1474         prevSrstAsserted = srstAsserted;
1475         prevPowerdropout = powerDropout;
1476
1477         if (srstDeasserted || powerRestored)
1478         {
1479                 /* Other than logging the event we can't do anything here.
1480                  * Issuing a reset is a particularly bad idea as we might
1481                  * be inside a reset already.
1482                  */
1483         }
1484
1485         return ERROR_OK;
1486 }
1487
1488 /* process target state changes */
1489 int handle_target(void *priv)
1490 {
1491         int retval = ERROR_OK;
1492
1493         /* we do not want to recurse here... */
1494         static int recursive = 0;
1495         if (! recursive)
1496         {
1497                 recursive = 1;
1498                 sense_handler();
1499                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1500                  * We need to avoid an infinite loop/recursion here and we do that by
1501                  * clearing the flags after running these events.
1502                  */
1503                 int did_something = 0;
1504                 if (runSrstAsserted)
1505                 {
1506                         Jim_Eval( interp, "srst_asserted");
1507                         did_something = 1;
1508                 }
1509                 if (runSrstDeasserted)
1510                 {
1511                         Jim_Eval( interp, "srst_deasserted");
1512                         did_something = 1;
1513                 }
1514                 if (runPowerDropout)
1515                 {
1516                         Jim_Eval( interp, "power_dropout");
1517                         did_something = 1;
1518                 }
1519                 if (runPowerRestore)
1520                 {
1521                         Jim_Eval( interp, "power_restore");
1522                         did_something = 1;
1523                 }
1524
1525                 if (did_something)
1526                 {
1527                         /* clear detect flags */
1528                         sense_handler();
1529                 }
1530
1531                 /* clear action flags */
1532
1533                 runSrstAsserted=0;
1534                 runSrstDeasserted=0;
1535                 runPowerRestore=0;
1536                 runPowerDropout=0;
1537
1538                 recursive = 0;
1539         }
1540
1541         target_t *target = all_targets;
1542
1543         while (target)
1544         {
1545
1546                 /* only poll target if we've got power and srst isn't asserted */
1547                 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1548                 {
1549                         /* polling may fail silently until the target has been examined */
1550                         if((retval = target_poll(target)) != ERROR_OK)
1551                                 return retval;
1552                 }
1553
1554                 target = target->next;
1555         }
1556
1557         return retval;
1558 }
1559
1560 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1561 {
1562         target_t *target;
1563         reg_t *reg = NULL;
1564         int count = 0;
1565         char *value;
1566
1567         LOG_DEBUG("-");
1568
1569         target = get_current_target(cmd_ctx);
1570
1571         /* list all available registers for the current target */
1572         if (argc == 0)
1573         {
1574                 reg_cache_t *cache = target->reg_cache;
1575
1576                 count = 0;
1577                 while(cache)
1578                 {
1579                         int i;
1580                         for (i = 0; i < cache->num_regs; i++)
1581                         {
1582                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1583                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1584                                 free(value);
1585                         }
1586                         cache = cache->next;
1587                 }
1588
1589                 return ERROR_OK;
1590         }
1591
1592         /* access a single register by its ordinal number */
1593         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1594         {
1595                 int num = strtoul(args[0], NULL, 0);
1596                 reg_cache_t *cache = target->reg_cache;
1597
1598                 count = 0;
1599                 while(cache)
1600                 {
1601                         int i;
1602                         for (i = 0; i < cache->num_regs; i++)
1603                         {
1604                                 if (count++ == num)
1605                                 {
1606                                         reg = &cache->reg_list[i];
1607                                         break;
1608                                 }
1609                         }
1610                         if (reg)
1611                                 break;
1612                         cache = cache->next;
1613                 }
1614
1615                 if (!reg)
1616                 {
1617                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1618                         return ERROR_OK;
1619                 }
1620         } else /* access a single register by its name */
1621         {
1622                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1623
1624                 if (!reg)
1625                 {
1626                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1627                         return ERROR_OK;
1628                 }
1629         }
1630
1631         /* display a register */
1632         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1633         {
1634                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1635                         reg->valid = 0;
1636
1637                 if (reg->valid == 0)
1638                 {
1639                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1640                         arch_type->get(reg);
1641                 }
1642                 value = buf_to_str(reg->value, reg->size, 16);
1643                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1644                 free(value);
1645                 return ERROR_OK;
1646         }
1647
1648         /* set register value */
1649         if (argc == 2)
1650         {
1651                 u8 *buf = malloc(CEIL(reg->size, 8));
1652                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1653
1654                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1655                 arch_type->set(reg, buf);
1656
1657                 value = buf_to_str(reg->value, reg->size, 16);
1658                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1659                 free(value);
1660
1661                 free(buf);
1662
1663                 return ERROR_OK;
1664         }
1665
1666         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1667
1668         return ERROR_OK;
1669 }
1670
1671 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1672 {
1673         int retval = ERROR_OK;
1674         target_t *target = get_current_target(cmd_ctx);
1675
1676         if (argc == 0)
1677         {
1678                 if((retval = target_poll(target)) != ERROR_OK)
1679                         return retval;
1680                 if((retval = target_arch_state(target)) != ERROR_OK)
1681                         return retval;
1682
1683         }
1684         else if (argc==1)
1685         {
1686                 if (strcmp(args[0], "on") == 0)
1687                 {
1688                         target_continous_poll = 1;
1689                 }
1690                 else if (strcmp(args[0], "off") == 0)
1691                 {
1692                         target_continous_poll = 0;
1693                 }
1694                 else
1695                 {
1696                         command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1697                 }
1698         } else
1699         {
1700                 return ERROR_COMMAND_SYNTAX_ERROR;
1701         }
1702
1703         return retval;
1704 }
1705
1706 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1707 {
1708         int ms = 5000;
1709
1710         if (argc > 0)
1711         {
1712                 char *end;
1713
1714                 ms = strtoul(args[0], &end, 0) * 1000;
1715                 if (*end)
1716                 {
1717                         command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1718                         return ERROR_OK;
1719                 }
1720         }
1721         target_t *target = get_current_target(cmd_ctx);
1722
1723         return target_wait_state(target, TARGET_HALTED, ms);
1724 }
1725
1726 /* wait for target state to change. The trick here is to have a low
1727  * latency for short waits and not to suck up all the CPU time
1728  * on longer waits.
1729  *
1730  * After 500ms, keep_alive() is invoked
1731  */
1732 int target_wait_state(target_t *target, enum target_state state, int ms)
1733 {
1734         int retval;
1735         long long then=0, cur;
1736         int once=1;
1737
1738         for (;;)
1739         {
1740                 if ((retval=target_poll(target))!=ERROR_OK)
1741                         return retval;
1742                 if (target->state == state)
1743                 {
1744                         break;
1745                 }
1746                 cur = timeval_ms();
1747                 if (once)
1748                 {
1749                         once=0;
1750                         then = timeval_ms();
1751                         LOG_DEBUG("waiting for target %s...",
1752                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1753                 }
1754
1755                 if (cur-then>500)
1756                 {
1757                         keep_alive();
1758                 }
1759
1760                 if ((cur-then)>ms)
1761                 {
1762                         LOG_ERROR("timed out while waiting for target %s",
1763                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1764                         return ERROR_FAIL;
1765                 }
1766         }
1767
1768         return ERROR_OK;
1769 }
1770
1771 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1772 {
1773         int retval;
1774         target_t *target = get_current_target(cmd_ctx);
1775
1776         LOG_DEBUG("-");
1777
1778         if ((retval = target_halt(target)) != ERROR_OK)
1779         {
1780                 return retval;
1781         }
1782
1783         if (argc == 1)
1784         {
1785                 int wait;
1786                 char *end;
1787
1788                 wait = strtoul(args[0], &end, 0);
1789                 if (!*end && !wait)
1790                         return ERROR_OK;
1791         }
1792
1793         return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1794 }
1795
1796 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1797 {
1798         target_t *target = get_current_target(cmd_ctx);
1799
1800         LOG_USER("requesting target halt and executing a soft reset");
1801
1802         target->type->soft_reset_halt(target);
1803
1804         return ERROR_OK;
1805 }
1806
1807 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1808 {
1809         const Jim_Nvp *n;
1810         enum target_reset_mode reset_mode = RESET_RUN;
1811
1812         if (argc >= 1)
1813         {
1814                 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1815                 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1816                         return ERROR_COMMAND_SYNTAX_ERROR;
1817                 }
1818                 reset_mode = n->value;
1819         }
1820
1821         /* reset *all* targets */
1822         return target_process_reset(cmd_ctx, reset_mode);
1823 }
1824
1825
1826 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1827 {
1828         int retval;
1829         target_t *target = get_current_target(cmd_ctx);
1830
1831         target_handle_event( target, TARGET_EVENT_OLD_pre_resume );
1832
1833         if (argc == 0)
1834                 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1835         else if (argc == 1)
1836                 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1837         else
1838         {
1839                 retval = ERROR_COMMAND_SYNTAX_ERROR;
1840         }
1841
1842         return retval;
1843 }
1844
1845 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1846 {
1847         target_t *target = get_current_target(cmd_ctx);
1848
1849         LOG_DEBUG("-");
1850
1851         if (argc == 0)
1852                 return target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1853
1854         if (argc == 1)
1855                 return target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1856
1857         return ERROR_OK;
1858 }
1859
1860 static void handle_md_output(struct command_context_s *cmd_ctx,
1861                 struct target_s *target, u32 address, unsigned size,
1862                 unsigned count, const u8 *buffer)
1863 {
1864         const unsigned line_bytecnt = 32;
1865         unsigned line_modulo = line_bytecnt / size;
1866
1867         char output[line_bytecnt * 4 + 1];
1868         unsigned output_len = 0;
1869
1870         const char *value_fmt;
1871         switch (size) {
1872         case 4: value_fmt = "%8.8x"; break;
1873         case 2: value_fmt = "%4.2x"; break;
1874         case 1: value_fmt = "%2.2x"; break;
1875         default:
1876                 LOG_ERROR("invalid memory read size: %u", size);
1877                 exit(-1);
1878         }
1879
1880         for (unsigned i = 0; i < count; i++)
1881         {
1882                 if (i % line_modulo == 0)
1883                 {
1884                         output_len += snprintf(output + output_len,
1885                                         sizeof(output) - output_len,
1886                                         "0x%8.8x: ", address + (i*size));
1887                 }
1888
1889                 u32 value;
1890                 const u8 *value_ptr = buffer + i * size;
1891                 switch (size) {
1892                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
1893                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
1894                 case 1: value = *value_ptr;
1895                 }
1896                 output_len += snprintf(output + output_len,
1897                                 sizeof(output) - output_len,
1898                                 value_fmt, value);
1899
1900                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
1901                 {
1902                         command_print(cmd_ctx, "%s", output);
1903                         output_len = 0;
1904                 }
1905         }
1906 }
1907
1908 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1909 {
1910         if (argc < 1)
1911                 return ERROR_COMMAND_SYNTAX_ERROR;
1912
1913         unsigned size = 0;
1914         switch (cmd[2]) {
1915         case 'w': size = 4; break;
1916         case 'h': size = 2; break;
1917         case 'b': size = 1; break;
1918         default: return ERROR_COMMAND_SYNTAX_ERROR;
1919         }
1920
1921         u32 address = strtoul(args[0], NULL, 0);
1922
1923         unsigned count = 1;
1924         if (argc == 2)
1925                 count = strtoul(args[1], NULL, 0);
1926
1927         u8 *buffer = calloc(count, size);
1928
1929         target_t *target = get_current_target(cmd_ctx);
1930         int retval = target_read_memory(target,
1931                                 address, size, count, buffer);
1932         if (ERROR_OK == retval)
1933                 handle_md_output(cmd_ctx, target, address, size, count, buffer);
1934
1935         free(buffer);
1936
1937         return retval;
1938 }
1939
1940 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1941 {
1942         u32 address = 0;
1943         u32 value = 0;
1944         int count = 1;
1945         int i;
1946         int wordsize;
1947         target_t *target = get_current_target(cmd_ctx);
1948         u8 value_buf[4];
1949
1950          if ((argc < 2) || (argc > 3))
1951                 return ERROR_COMMAND_SYNTAX_ERROR;
1952
1953         address = strtoul(args[0], NULL, 0);
1954         value = strtoul(args[1], NULL, 0);
1955         if (argc == 3)
1956                 count = strtoul(args[2], NULL, 0);
1957
1958         switch (cmd[2])
1959         {
1960                 case 'w':
1961                         wordsize = 4;
1962                         target_buffer_set_u32(target, value_buf, value);
1963                         break;
1964                 case 'h':
1965                         wordsize = 2;
1966                         target_buffer_set_u16(target, value_buf, value);
1967                         break;
1968                 case 'b':
1969                         wordsize = 1;
1970                         value_buf[0] = value;
1971                         break;
1972                 default:
1973                         return ERROR_COMMAND_SYNTAX_ERROR;
1974         }
1975         for (i=0; i<count; i++)
1976         {
1977                 int retval = target_write_memory(target,
1978                                 address + i * wordsize, wordsize, 1, value_buf);
1979                 if (ERROR_OK != retval)
1980                         return retval;
1981                 keep_alive();
1982         }
1983
1984         return ERROR_OK;
1985
1986 }
1987
1988 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1989 {
1990         u8 *buffer;
1991         u32 buf_cnt;
1992         u32 image_size;
1993         u32 min_address=0;
1994         u32 max_address=0xffffffff;
1995         int i;
1996         int retval, retvaltemp;
1997
1998         image_t image;
1999
2000         duration_t duration;
2001         char *duration_text;
2002
2003         target_t *target = get_current_target(cmd_ctx);
2004
2005         if ((argc < 1)||(argc > 5))
2006         {
2007                 return ERROR_COMMAND_SYNTAX_ERROR;
2008         }
2009
2010         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2011         if (argc >= 2)
2012         {
2013                 image.base_address_set = 1;
2014                 image.base_address = strtoul(args[1], NULL, 0);
2015         }
2016         else
2017         {
2018                 image.base_address_set = 0;
2019         }
2020
2021
2022         image.start_address_set = 0;
2023
2024         if (argc>=4)
2025         {
2026                 min_address=strtoul(args[3], NULL, 0);
2027         }
2028         if (argc>=5)
2029         {
2030                 max_address=strtoul(args[4], NULL, 0)+min_address;
2031         }
2032
2033         if (min_address>max_address)
2034         {
2035                 return ERROR_COMMAND_SYNTAX_ERROR;
2036         }
2037
2038         duration_start_measure(&duration);
2039
2040         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2041         {
2042                 return ERROR_OK;
2043         }
2044
2045         image_size = 0x0;
2046         retval = ERROR_OK;
2047         for (i = 0; i < image.num_sections; i++)
2048         {
2049                 buffer = malloc(image.sections[i].size);
2050                 if (buffer == NULL)
2051                 {
2052                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2053                         break;
2054                 }
2055
2056                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2057                 {
2058                         free(buffer);
2059                         break;
2060                 }
2061
2062                 u32 offset=0;
2063                 u32 length=buf_cnt;
2064
2065                 /* DANGER!!! beware of unsigned comparision here!!! */
2066
2067                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2068                                 (image.sections[i].base_address<max_address))
2069                 {
2070                         if (image.sections[i].base_address<min_address)
2071                         {
2072                                 /* clip addresses below */
2073                                 offset+=min_address-image.sections[i].base_address;
2074                                 length-=offset;
2075                         }
2076
2077                         if (image.sections[i].base_address+buf_cnt>max_address)
2078                         {
2079                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2080                         }
2081
2082                         if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2083                         {
2084                                 free(buffer);
2085                                 break;
2086                         }
2087                         image_size += length;
2088                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2089                 }
2090
2091                 free(buffer);
2092         }
2093
2094         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2095         {
2096                 image_close(&image);
2097                 return retvaltemp;
2098         }
2099
2100         if (retval==ERROR_OK)
2101         {
2102                 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2103         }
2104         free(duration_text);
2105
2106         image_close(&image);
2107
2108         return retval;
2109
2110 }
2111
2112 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2113 {
2114         fileio_t fileio;
2115
2116         u32 address;
2117         u32 size;
2118         u8 buffer[560];
2119         int retval=ERROR_OK, retvaltemp;
2120
2121         duration_t duration;
2122         char *duration_text;
2123
2124         target_t *target = get_current_target(cmd_ctx);
2125
2126         if (argc != 3)
2127         {
2128                 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2129                 return ERROR_OK;
2130         }
2131
2132         address = strtoul(args[1], NULL, 0);
2133         size = strtoul(args[2], NULL, 0);
2134
2135         if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2136         {
2137                 return ERROR_OK;
2138         }
2139
2140         duration_start_measure(&duration);
2141
2142         while (size > 0)
2143         {
2144                 u32 size_written;
2145                 u32 this_run_size = (size > 560) ? 560 : size;
2146
2147                 retval = target_read_buffer(target, address, this_run_size, buffer);
2148                 if (retval != ERROR_OK)
2149                 {
2150                         break;
2151                 }
2152
2153                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2154                 if (retval != ERROR_OK)
2155                 {
2156                         break;
2157                 }
2158
2159                 size -= this_run_size;
2160                 address += this_run_size;
2161         }
2162
2163         if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2164                 return retvaltemp;
2165
2166         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2167                 return retvaltemp;
2168
2169         if (retval==ERROR_OK)
2170         {
2171                 command_print(cmd_ctx, "dumped %lld byte in %s",
2172                                 fileio.size, duration_text);
2173                 free(duration_text);
2174         }
2175
2176         return retval;
2177 }
2178
2179 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2180 {
2181         u8 *buffer;
2182         u32 buf_cnt;
2183         u32 image_size;
2184         int i;
2185         int retval, retvaltemp;
2186         u32 checksum = 0;
2187         u32 mem_checksum = 0;
2188
2189         image_t image;
2190
2191         duration_t duration;
2192         char *duration_text;
2193
2194         target_t *target = get_current_target(cmd_ctx);
2195
2196         if (argc < 1)
2197         {
2198                 return ERROR_COMMAND_SYNTAX_ERROR;
2199         }
2200
2201         if (!target)
2202         {
2203                 LOG_ERROR("no target selected");
2204                 return ERROR_FAIL;
2205         }
2206
2207         duration_start_measure(&duration);
2208
2209         if (argc >= 2)
2210         {
2211                 image.base_address_set = 1;
2212                 image.base_address = strtoul(args[1], NULL, 0);
2213         }
2214         else
2215         {
2216                 image.base_address_set = 0;
2217                 image.base_address = 0x0;
2218         }
2219
2220         image.start_address_set = 0;
2221
2222         if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2223         {
2224                 return retval;
2225         }
2226
2227         image_size = 0x0;
2228         retval=ERROR_OK;
2229         for (i = 0; i < image.num_sections; i++)
2230         {
2231                 buffer = malloc(image.sections[i].size);
2232                 if (buffer == NULL)
2233                 {
2234                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2235                         break;
2236                 }
2237                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2238                 {
2239                         free(buffer);
2240                         break;
2241                 }
2242
2243                 if (verify)
2244                 {
2245                         /* calculate checksum of image */
2246                         image_calculate_checksum( buffer, buf_cnt, &checksum );
2247
2248                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2249                         if( retval != ERROR_OK )
2250                         {
2251                                 free(buffer);
2252                                 break;
2253                         }
2254
2255                         if( checksum != mem_checksum )
2256                         {
2257                                 /* failed crc checksum, fall back to a binary compare */
2258                                 u8 *data;
2259
2260                                 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2261
2262                                 data = (u8*)malloc(buf_cnt);
2263
2264                                 /* Can we use 32bit word accesses? */
2265                                 int size = 1;
2266                                 int count = buf_cnt;
2267                                 if ((count % 4) == 0)
2268                                 {
2269                                         size *= 4;
2270                                         count /= 4;
2271                                 }
2272                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2273                                 if (retval == ERROR_OK)
2274                                 {
2275                                         u32 t;
2276                                         for (t = 0; t < buf_cnt; t++)
2277                                         {
2278                                                 if (data[t] != buffer[t])
2279                                                 {
2280                                                         command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2281                                                         free(data);
2282                                                         free(buffer);
2283                                                         retval=ERROR_FAIL;
2284                                                         goto done;
2285                                                 }
2286                                                 if ((t%16384)==0)
2287                                                 {
2288                                                         keep_alive();
2289                                                 }
2290                                         }
2291                                 }
2292
2293                                 free(data);
2294                         }
2295                 } else
2296                 {
2297                         command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2298                 }
2299
2300                 free(buffer);
2301                 image_size += buf_cnt;
2302         }
2303 done:
2304
2305         if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2306         {
2307                 image_close(&image);
2308                 return retvaltemp;
2309         }
2310
2311         if (retval==ERROR_OK)
2312         {
2313                 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2314         }
2315         free(duration_text);
2316
2317         image_close(&image);
2318
2319         return retval;
2320 }
2321
2322 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2323 {
2324         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2325 }
2326
2327 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2328 {
2329         return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2330 }
2331
2332 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2333 {
2334         int retval;
2335         target_t *target = get_current_target(cmd_ctx);
2336
2337         if (argc == 0)
2338         {
2339                 breakpoint_t *breakpoint = target->breakpoints;
2340
2341                 while (breakpoint)
2342                 {
2343                         if (breakpoint->type == BKPT_SOFT)
2344                         {
2345                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2346                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2347                                 free(buf);
2348                         }
2349                         else
2350                         {
2351                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2352                         }
2353                         breakpoint = breakpoint->next;
2354                 }
2355         }
2356         else if (argc >= 2)
2357         {
2358                 int hw = BKPT_SOFT;
2359                 u32 length = 0;
2360
2361                 length = strtoul(args[1], NULL, 0);
2362
2363                 if (argc >= 3)
2364                         if (strcmp(args[2], "hw") == 0)
2365                                 hw = BKPT_HARD;
2366
2367                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2368                 {
2369                         LOG_ERROR("Failure setting breakpoints");
2370                 }
2371                 else
2372                 {
2373                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8lx",
2374                                         strtoul(args[0], NULL, 0));
2375                 }
2376         }
2377         else
2378         {
2379                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2380         }
2381
2382         return ERROR_OK;
2383 }
2384
2385 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2386 {
2387         target_t *target = get_current_target(cmd_ctx);
2388
2389         if (argc > 0)
2390                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2391
2392         return ERROR_OK;
2393 }
2394
2395 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2396 {
2397         target_t *target = get_current_target(cmd_ctx);
2398         int retval;
2399
2400         if (argc == 0)
2401         {
2402                 watchpoint_t *watchpoint = target->watchpoints;
2403
2404                 while (watchpoint)
2405                 {
2406                         command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2407                         watchpoint = watchpoint->next;
2408                 }
2409         }
2410         else if (argc >= 2)
2411         {
2412                 enum watchpoint_rw type = WPT_ACCESS;
2413                 u32 data_value = 0x0;
2414                 u32 data_mask = 0xffffffff;
2415
2416                 if (argc >= 3)
2417                 {
2418                         switch(args[2][0])
2419                         {
2420                                 case 'r':
2421                                         type = WPT_READ;
2422                                         break;
2423                                 case 'w':
2424                                         type = WPT_WRITE;
2425                                         break;
2426                                 case 'a':
2427                                         type = WPT_ACCESS;
2428                                         break;
2429                                 default:
2430                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2431                                         return ERROR_OK;
2432                         }
2433                 }
2434                 if (argc >= 4)
2435                 {
2436                         data_value = strtoul(args[3], NULL, 0);
2437                 }
2438                 if (argc >= 5)
2439                 {
2440                         data_mask = strtoul(args[4], NULL, 0);
2441                 }
2442
2443                 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2444                                 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2445                 {
2446                         LOG_ERROR("Failure setting breakpoints");
2447                 }
2448         }
2449         else
2450         {
2451                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2452         }
2453
2454         return ERROR_OK;
2455 }
2456
2457 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2458 {
2459         target_t *target = get_current_target(cmd_ctx);
2460
2461         if (argc > 0)
2462                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2463
2464         return ERROR_OK;
2465 }
2466
2467 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2468 {
2469         int retval;
2470         target_t *target = get_current_target(cmd_ctx);
2471         u32 va;
2472         u32 pa;
2473
2474         if (argc != 1)
2475         {
2476                 return ERROR_COMMAND_SYNTAX_ERROR;
2477         }
2478         va = strtoul(args[0], NULL, 0);
2479
2480         retval = target->type->virt2phys(target, va, &pa);
2481         if (retval == ERROR_OK)
2482         {
2483                 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2484         }
2485         else
2486         {
2487                 /* lower levels will have logged a detailed error which is
2488                  * forwarded to telnet/GDB session.
2489                  */
2490         }
2491         return retval;
2492 }
2493
2494 static void writeData(FILE *f, const void *data, size_t len)
2495 {
2496         size_t written = fwrite(data, len, 1, f);
2497         if (written != len)
2498                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2499 }
2500
2501 static void writeLong(FILE *f, int l)
2502 {
2503         int i;
2504         for (i=0; i<4; i++)
2505         {
2506                 char c=(l>>(i*8))&0xff;
2507                 writeData(f, &c, 1);
2508         }
2509
2510 }
2511
2512 static void writeString(FILE *f, char *s)
2513 {
2514         writeData(f, s, strlen(s));
2515 }
2516
2517 /* Dump a gmon.out histogram file. */
2518 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2519 {
2520         u32 i;
2521         FILE *f=fopen(filename, "w");
2522         if (f==NULL)
2523                 return;
2524         writeString(f, "gmon");
2525         writeLong(f, 0x00000001); /* Version */
2526         writeLong(f, 0); /* padding */
2527         writeLong(f, 0); /* padding */
2528         writeLong(f, 0); /* padding */
2529
2530         u8 zero = 0;  /* GMON_TAG_TIME_HIST */
2531         writeData(f, &zero, 1);
2532
2533         /* figure out bucket size */
2534         u32 min=samples[0];
2535         u32 max=samples[0];
2536         for (i=0; i<sampleNum; i++)
2537         {
2538                 if (min>samples[i])
2539                 {
2540                         min=samples[i];
2541                 }
2542                 if (max<samples[i])
2543                 {
2544                         max=samples[i];
2545                 }
2546         }
2547
2548         int addressSpace=(max-min+1);
2549
2550         static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2551         u32 length = addressSpace;
2552         if (length > maxBuckets)
2553         {
2554                 length=maxBuckets;
2555         }
2556         int *buckets=malloc(sizeof(int)*length);
2557         if (buckets==NULL)
2558         {
2559                 fclose(f);
2560                 return;
2561         }
2562         memset(buckets, 0, sizeof(int)*length);
2563         for (i=0; i<sampleNum;i++)
2564         {
2565                 u32 address=samples[i];
2566                 long long a=address-min;
2567                 long long b=length-1;
2568                 long long c=addressSpace-1;
2569                 int index=(a*b)/c; /* danger!!!! int32 overflows */
2570                 buckets[index]++;
2571         }
2572
2573         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2574         writeLong(f, min);                      /* low_pc */
2575         writeLong(f, max);                      /* high_pc */
2576         writeLong(f, length);           /* # of samples */
2577         writeLong(f, 64000000);         /* 64MHz */
2578         writeString(f, "seconds");
2579         for (i=0; i<(15-strlen("seconds")); i++)
2580                 writeData(f, &zero, 1);
2581         writeString(f, "s");
2582
2583         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2584
2585         char *data=malloc(2*length);
2586         if (data!=NULL)
2587         {
2588                 for (i=0; i<length;i++)
2589                 {
2590                         int val;
2591                         val=buckets[i];
2592                         if (val>65535)
2593                         {
2594                                 val=65535;
2595                         }
2596                         data[i*2]=val&0xff;
2597                         data[i*2+1]=(val>>8)&0xff;
2598                 }
2599                 free(buckets);
2600                 writeData(f, data, length * 2);
2601                 free(data);
2602         } else
2603         {
2604                 free(buckets);
2605         }
2606
2607         fclose(f);
2608 }
2609
2610 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2611 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2612 {
2613         target_t *target = get_current_target(cmd_ctx);
2614         struct timeval timeout, now;
2615
2616         gettimeofday(&timeout, NULL);
2617         if (argc!=2)
2618         {
2619                 return ERROR_COMMAND_SYNTAX_ERROR;
2620         }
2621         char *end;
2622         timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2623         if (*end)
2624         {
2625                 return ERROR_OK;
2626         }
2627
2628         command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2629
2630         static const int maxSample=10000;
2631         u32 *samples=malloc(sizeof(u32)*maxSample);
2632         if (samples==NULL)
2633                 return ERROR_OK;
2634
2635         int numSamples=0;
2636         int retval=ERROR_OK;
2637         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2638         reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2639
2640         for (;;)
2641         {
2642                 target_poll(target);
2643                 if (target->state == TARGET_HALTED)
2644                 {
2645                         u32 t=*((u32 *)reg->value);
2646                         samples[numSamples++]=t;
2647                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2648                         target_poll(target);
2649                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2650                 } else if (target->state == TARGET_RUNNING)
2651                 {
2652                         /* We want to quickly sample the PC. */
2653                         if((retval = target_halt(target)) != ERROR_OK)
2654                         {
2655                                 free(samples);
2656                                 return retval;
2657                         }
2658                 } else
2659                 {
2660                         command_print(cmd_ctx, "Target not halted or running");
2661                         retval=ERROR_OK;
2662                         break;
2663                 }
2664                 if (retval!=ERROR_OK)
2665                 {
2666                         break;
2667                 }
2668
2669                 gettimeofday(&now, NULL);
2670                 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2671                 {
2672                         command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2673                         if((retval = target_poll(target)) != ERROR_OK)
2674                         {
2675                                 free(samples);
2676                                 return retval;
2677                         }
2678                         if (target->state == TARGET_HALTED)
2679                         {
2680                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2681                         }
2682                         if((retval = target_poll(target)) != ERROR_OK)
2683                         {
2684                                 free(samples);
2685                                 return retval;
2686                         }
2687                         writeGmon(samples, numSamples, args[1]);
2688                         command_print(cmd_ctx, "Wrote %s", args[1]);
2689                         break;
2690                 }
2691         }
2692         free(samples);
2693
2694         return ERROR_OK;
2695 }
2696
2697 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2698 {
2699         char *namebuf;
2700         Jim_Obj *nameObjPtr, *valObjPtr;
2701         int result;
2702
2703         namebuf = alloc_printf("%s(%d)", varname, idx);
2704         if (!namebuf)
2705                 return JIM_ERR;
2706
2707         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2708         valObjPtr = Jim_NewIntObj(interp, val);
2709         if (!nameObjPtr || !valObjPtr)
2710         {
2711                 free(namebuf);
2712                 return JIM_ERR;
2713         }
2714
2715         Jim_IncrRefCount(nameObjPtr);
2716         Jim_IncrRefCount(valObjPtr);
2717         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2718         Jim_DecrRefCount(interp, nameObjPtr);
2719         Jim_DecrRefCount(interp, valObjPtr);
2720         free(namebuf);
2721         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2722         return result;
2723 }
2724
2725 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2726 {
2727         command_context_t *context;
2728         target_t *target;
2729
2730         context = Jim_GetAssocData(interp, "context");
2731         if (context == NULL)
2732         {
2733                 LOG_ERROR("mem2array: no command context");
2734                 return JIM_ERR;
2735         }
2736         target = get_current_target(context);
2737         if (target == NULL)
2738         {
2739                 LOG_ERROR("mem2array: no current target");
2740                 return JIM_ERR;
2741         }
2742
2743         return  target_mem2array(interp, target, argc-1, argv+1);
2744 }
2745
2746 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2747 {
2748         long l;
2749         u32 width;
2750         int len;
2751         u32 addr;
2752         u32 count;
2753         u32 v;
2754         const char *varname;
2755         u8 buffer[4096];
2756         int  n, e, retval;
2757         u32 i;
2758
2759         /* argv[1] = name of array to receive the data
2760          * argv[2] = desired width
2761          * argv[3] = memory address
2762          * argv[4] = count of times to read
2763          */
2764         if (argc != 4) {
2765                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2766                 return JIM_ERR;
2767         }
2768         varname = Jim_GetString(argv[0], &len);
2769         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2770
2771         e = Jim_GetLong(interp, argv[1], &l);
2772         width = l;
2773         if (e != JIM_OK) {
2774                 return e;
2775         }
2776
2777         e = Jim_GetLong(interp, argv[2], &l);
2778         addr = l;
2779         if (e != JIM_OK) {
2780                 return e;
2781         }
2782         e = Jim_GetLong(interp, argv[3], &l);
2783         len = l;
2784         if (e != JIM_OK) {
2785                 return e;
2786         }
2787         switch (width) {
2788                 case 8:
2789                         width = 1;
2790                         break;
2791                 case 16:
2792                         width = 2;
2793                         break;
2794                 case 32:
2795                         width = 4;
2796                         break;
2797                 default:
2798                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2799                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2800                         return JIM_ERR;
2801         }
2802         if (len == 0) {
2803                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2804                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2805                 return JIM_ERR;
2806         }
2807         if ((addr + (len * width)) < addr) {
2808                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2809                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2810                 return JIM_ERR;
2811         }
2812         /* absurd transfer size? */
2813         if (len > 65536) {
2814                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2815                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2816                 return JIM_ERR;
2817         }
2818
2819         if ((width == 1) ||
2820                 ((width == 2) && ((addr & 1) == 0)) ||
2821                 ((width == 4) && ((addr & 3) == 0))) {
2822                 /* all is well */
2823         } else {
2824                 char buf[100];
2825                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2826                 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2827                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2828                 return JIM_ERR;
2829         }
2830
2831         /* Transfer loop */
2832
2833         /* index counter */
2834         n = 0;
2835         /* assume ok */
2836         e = JIM_OK;
2837         while (len) {
2838                 /* Slurp... in buffer size chunks */
2839
2840                 count = len; /* in objects.. */
2841                 if (count > (sizeof(buffer)/width)) {
2842                         count = (sizeof(buffer)/width);
2843                 }
2844
2845                 retval = target_read_memory( target, addr, width, count, buffer );
2846                 if (retval != ERROR_OK) {
2847                         /* BOO !*/
2848                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2849                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2850                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2851                         e = JIM_ERR;
2852                         len = 0;
2853                 } else {
2854                         v = 0; /* shut up gcc */
2855                         for (i = 0 ;i < count ;i++, n++) {
2856                                 switch (width) {
2857                                         case 4:
2858                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
2859                                                 break;
2860                                         case 2:
2861                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
2862                                                 break;
2863                                         case 1:
2864                                                 v = buffer[i] & 0x0ff;
2865                                                 break;
2866                                 }
2867                                 new_int_array_element(interp, varname, n, v);
2868                         }
2869                         len -= count;
2870                 }
2871         }
2872
2873         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2874
2875         return JIM_OK;
2876 }
2877
2878 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2879 {
2880         char *namebuf;
2881         Jim_Obj *nameObjPtr, *valObjPtr;
2882         int result;
2883         long l;
2884
2885         namebuf = alloc_printf("%s(%d)", varname, idx);
2886         if (!namebuf)
2887                 return JIM_ERR;
2888
2889         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2890         if (!nameObjPtr)
2891         {
2892                 free(namebuf);
2893                 return JIM_ERR;
2894         }
2895
2896         Jim_IncrRefCount(nameObjPtr);
2897         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2898         Jim_DecrRefCount(interp, nameObjPtr);
2899         free(namebuf);
2900         if (valObjPtr == NULL)
2901                 return JIM_ERR;
2902
2903         result = Jim_GetLong(interp, valObjPtr, &l);
2904         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2905         *val = l;
2906         return result;
2907 }
2908
2909 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2910 {
2911         command_context_t *context;
2912         target_t *target;
2913
2914         context = Jim_GetAssocData(interp, "context");
2915         if (context == NULL){
2916                 LOG_ERROR("array2mem: no command context");
2917                 return JIM_ERR;
2918         }
2919         target = get_current_target(context);
2920         if (target == NULL){
2921                 LOG_ERROR("array2mem: no current target");
2922                 return JIM_ERR;
2923         }
2924
2925         return target_array2mem( interp,target, argc-1, argv+1 );
2926 }
2927
2928 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2929 {
2930         long l;
2931         u32 width;
2932         int len;
2933         u32 addr;
2934         u32 count;
2935         u32 v;
2936         const char *varname;
2937         u8 buffer[4096];
2938         int  n, e, retval;
2939         u32 i;
2940
2941         /* argv[1] = name of array to get the data
2942          * argv[2] = desired width
2943          * argv[3] = memory address
2944          * argv[4] = count to write
2945          */
2946         if (argc != 4) {
2947                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2948                 return JIM_ERR;
2949         }
2950         varname = Jim_GetString(argv[0], &len);
2951         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2952
2953         e = Jim_GetLong(interp, argv[1], &l);
2954         width = l;
2955         if (e != JIM_OK) {
2956                 return e;
2957         }
2958
2959         e = Jim_GetLong(interp, argv[2], &l);
2960         addr = l;
2961         if (e != JIM_OK) {
2962                 return e;
2963         }
2964         e = Jim_GetLong(interp, argv[3], &l);
2965         len = l;
2966         if (e != JIM_OK) {
2967                 return e;
2968         }
2969         switch (width) {
2970                 case 8:
2971                         width = 1;
2972                         break;
2973                 case 16:
2974                         width = 2;
2975                         break;
2976                 case 32:
2977                         width = 4;
2978                         break;
2979                 default:
2980                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2981                         Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2982                         return JIM_ERR;
2983         }
2984         if (len == 0) {
2985                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2986                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2987                 return JIM_ERR;
2988         }
2989         if ((addr + (len * width)) < addr) {
2990                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2991                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2992                 return JIM_ERR;
2993         }
2994         /* absurd transfer size? */
2995         if (len > 65536) {
2996                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2997                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2998                 return JIM_ERR;
2999         }
3000
3001         if ((width == 1) ||
3002                 ((width == 2) && ((addr & 1) == 0)) ||
3003                 ((width == 4) && ((addr & 3) == 0))) {
3004                 /* all is well */
3005         } else {
3006                 char buf[100];
3007                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3008                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3009                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3010                 return JIM_ERR;
3011         }
3012
3013         /* Transfer loop */
3014
3015         /* index counter */
3016         n = 0;
3017         /* assume ok */
3018         e = JIM_OK;
3019         while (len) {
3020                 /* Slurp... in buffer size chunks */
3021
3022                 count = len; /* in objects.. */
3023                 if (count > (sizeof(buffer)/width)) {
3024                         count = (sizeof(buffer)/width);
3025                 }
3026
3027                 v = 0; /* shut up gcc */
3028                 for (i = 0 ;i < count ;i++, n++) {
3029                         get_int_array_element(interp, varname, n, &v);
3030                         switch (width) {
3031                         case 4:
3032                                 target_buffer_set_u32(target, &buffer[i*width], v);
3033                                 break;
3034                         case 2:
3035                                 target_buffer_set_u16(target, &buffer[i*width], v);
3036                                 break;
3037                         case 1:
3038                                 buffer[i] = v & 0x0ff;
3039                                 break;
3040                         }
3041                 }
3042                 len -= count;
3043
3044                 retval = target_write_memory(target, addr, width, count, buffer);
3045                 if (retval != ERROR_OK) {
3046                         /* BOO !*/
3047                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3048                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3049                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3050                         e = JIM_ERR;
3051                         len = 0;
3052                 }
3053         }
3054
3055         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3056
3057         return JIM_OK;
3058 }
3059
3060 void target_all_handle_event( enum target_event e )
3061 {
3062         target_t *target;
3063
3064         LOG_DEBUG( "**all*targets: event: %d, %s",
3065                         e,
3066                         Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3067
3068         target = all_targets;
3069         while (target){
3070                 target_handle_event( target, e );
3071                 target = target->next;
3072         }
3073 }
3074
3075 void target_handle_event( target_t *target, enum target_event e )
3076 {
3077         target_event_action_t *teap;
3078         int done;
3079
3080         teap = target->event_action;
3081
3082         done = 0;
3083         while( teap ){
3084                 if( teap->event == e ){
3085                         done = 1;
3086                         LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3087                                            target->target_number,
3088                                            target->cmd_name,
3089                                            target->type->name,
3090                                            e,
3091                                            Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3092                                            Jim_GetString( teap->body, NULL ) );
3093                         if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3094                         {
3095                                 Jim_PrintErrorMessage(interp);
3096                         }
3097                 }
3098                 teap = teap->next;
3099         }
3100         if( !done ){
3101                 LOG_DEBUG( "event: %d %s - no action",
3102                                    e,
3103                                    Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3104         }
3105 }
3106
3107 enum target_cfg_param {
3108         TCFG_TYPE,
3109         TCFG_EVENT,
3110         TCFG_WORK_AREA_VIRT,
3111         TCFG_WORK_AREA_PHYS,
3112         TCFG_WORK_AREA_SIZE,
3113         TCFG_WORK_AREA_BACKUP,
3114         TCFG_ENDIAN,
3115         TCFG_VARIANT,
3116         TCFG_CHAIN_POSITION,
3117 };
3118
3119 static Jim_Nvp nvp_config_opts[] = {
3120         { .name = "-type",             .value = TCFG_TYPE },
3121         { .name = "-event",            .value = TCFG_EVENT },
3122         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3123         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3124         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3125         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3126         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3127         { .name = "-variant",          .value = TCFG_VARIANT },
3128         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3129
3130         { .name = NULL, .value = -1 }
3131 };
3132
3133 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3134 {
3135         Jim_Nvp *n;
3136         Jim_Obj *o;
3137         jim_wide w;
3138         char *cp;
3139         int e;
3140
3141         /* parse config or cget options ... */
3142         while( goi->argc > 0 ){
3143                 Jim_SetEmptyResult( goi->interp );
3144                 /* Jim_GetOpt_Debug( goi ); */
3145
3146                 if( target->type->target_jim_configure ){
3147                         /* target defines a configure function */
3148                         /* target gets first dibs on parameters */
3149                         e = (*(target->type->target_jim_configure))( target, goi );
3150                         if( e == JIM_OK ){
3151                                 /* more? */
3152                                 continue;
3153                         }
3154                         if( e == JIM_ERR ){
3155                                 /* An error */
3156                                 return e;
3157                         }
3158                         /* otherwise we 'continue' below */
3159                 }
3160                 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3161                 if( e != JIM_OK ){
3162                         Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3163                         return e;
3164                 }
3165                 switch( n->value ){
3166                 case TCFG_TYPE:
3167                         /* not setable */
3168                         if( goi->isconfigure ){
3169                                 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3170                                 return JIM_ERR;
3171                         } else {
3172                         no_params:
3173                                 if( goi->argc != 0 ){
3174                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3175                                         return JIM_ERR;
3176                                 }
3177                         }
3178                         Jim_SetResultString( goi->interp, target->type->name, -1 );
3179                         /* loop for more */
3180                         break;
3181                 case TCFG_EVENT:
3182                         if( goi->argc == 0 ){
3183                                 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3184                                 return JIM_ERR;
3185                         }
3186
3187                         e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3188                         if( e != JIM_OK ){
3189                                 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3190                                 return e;
3191                         }
3192
3193                         if( goi->isconfigure ){
3194                                 if( goi->argc != 1 ){
3195                                         Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3196                                         return JIM_ERR;
3197                                 }
3198                         } else {
3199                                 if( goi->argc != 0 ){
3200                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3201                                         return JIM_ERR;
3202                                 }
3203                         }
3204
3205                         {
3206                                 target_event_action_t *teap;
3207
3208                                 teap = target->event_action;
3209                                 /* replace existing? */
3210                                 while( teap ){
3211                                         if( teap->event == (enum target_event)n->value ){
3212                                                 break;
3213                                         }
3214                                         teap = teap->next;
3215                                 }
3216
3217                                 if( goi->isconfigure ){
3218                                         if( teap == NULL ){
3219                                                 /* create new */
3220                                                 teap = calloc( 1, sizeof(*teap) );
3221                                         }
3222                                         teap->event = n->value;
3223                                         Jim_GetOpt_Obj( goi, &o );
3224                                         if( teap->body ){
3225                                                 Jim_DecrRefCount( interp, teap->body );
3226                                         }
3227                                         teap->body  = Jim_DuplicateObj( goi->interp, o );
3228                                         /*
3229                                          * FIXME:
3230                                          *     Tcl/TK - "tk events" have a nice feature.
3231                                          *     See the "BIND" command.
3232                                          *    We should support that here.
3233                                          *     You can specify %X and %Y in the event code.
3234                                          *     The idea is: %T - target name.
3235                                          *     The idea is: %N - target number
3236                                          *     The idea is: %E - event name.
3237                                          */
3238                                         Jim_IncrRefCount( teap->body );
3239
3240                                         /* add to head of event list */
3241                                         teap->next = target->event_action;
3242                                         target->event_action = teap;
3243                                         Jim_SetEmptyResult(goi->interp);
3244                                 } else {
3245                                         /* get */
3246                                         if( teap == NULL ){
3247                                                 Jim_SetEmptyResult( goi->interp );
3248                                         } else {
3249                                                 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3250                                         }
3251                                 }
3252                         }
3253                         /* loop for more */
3254                         break;
3255
3256                 case TCFG_WORK_AREA_VIRT:
3257                         if( goi->isconfigure ){
3258                                 target_free_all_working_areas(target);
3259                                 e = Jim_GetOpt_Wide( goi, &w );
3260                                 if( e != JIM_OK ){
3261                                         return e;
3262                                 }
3263                                 target->working_area_virt = w;
3264                         } else {
3265                                 if( goi->argc != 0 ){
3266                                         goto no_params;
3267                                 }
3268                         }
3269                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3270                         /* loop for more */
3271                         break;
3272
3273                 case TCFG_WORK_AREA_PHYS:
3274                         if( goi->isconfigure ){
3275                                 target_free_all_working_areas(target);
3276                                 e = Jim_GetOpt_Wide( goi, &w );
3277                                 if( e != JIM_OK ){
3278                                         return e;
3279                                 }
3280                                 target->working_area_phys = w;
3281                         } else {
3282                                 if( goi->argc != 0 ){
3283                                         goto no_params;
3284                                 }
3285                         }
3286                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3287                         /* loop for more */
3288                         break;
3289
3290                 case TCFG_WORK_AREA_SIZE:
3291                         if( goi->isconfigure ){
3292                                 target_free_all_working_areas(target);
3293                                 e = Jim_GetOpt_Wide( goi, &w );
3294                                 if( e != JIM_OK ){
3295                                         return e;
3296                                 }
3297                                 target->working_area_size = w;
3298                         } else {
3299                                 if( goi->argc != 0 ){
3300                                         goto no_params;
3301                                 }
3302                         }
3303                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3304                         /* loop for more */
3305                         break;
3306
3307                 case TCFG_WORK_AREA_BACKUP:
3308                         if( goi->isconfigure ){
3309                                 target_free_all_working_areas(target);
3310                                 e = Jim_GetOpt_Wide( goi, &w );
3311                                 if( e != JIM_OK ){
3312                                         return e;
3313                                 }
3314                                 /* make this exactly 1 or 0 */
3315                                 target->backup_working_area = (!!w);
3316                         } else {
3317                                 if( goi->argc != 0 ){
3318                                         goto no_params;
3319                                 }
3320                         }
3321                         Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3322                         /* loop for more e*/
3323                         break;
3324
3325                 case TCFG_ENDIAN:
3326                         if( goi->isconfigure ){
3327                                 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3328                                 if( e != JIM_OK ){
3329                                         Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3330                                         return e;
3331                                 }
3332                                 target->endianness = n->value;
3333                         } else {
3334                                 if( goi->argc != 0 ){
3335                                         goto no_params;
3336                                 }
3337                         }
3338                         n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3339                         if( n->name == NULL ){
3340                                 target->endianness = TARGET_LITTLE_ENDIAN;
3341                                 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3342                         }
3343                         Jim_SetResultString( goi->interp, n->name, -1 );
3344                         /* loop for more */
3345                         break;
3346
3347                 case TCFG_VARIANT:
3348                         if( goi->isconfigure ){
3349                                 if( goi->argc < 1 ){
3350                                         Jim_SetResult_sprintf( goi->interp,
3351                                                                                    "%s ?STRING?",
3352                                                                                    n->name );
3353                                         return JIM_ERR;
3354                                 }
3355                                 if( target->variant ){
3356                                         free((void *)(target->variant));
3357                                 }
3358                                 e = Jim_GetOpt_String( goi, &cp, NULL );
3359                                 target->variant = strdup(cp);
3360                         } else {
3361                                 if( goi->argc != 0 ){
3362                                         goto no_params;
3363                                 }
3364                         }
3365                         Jim_SetResultString( goi->interp, target->variant,-1 );
3366                         /* loop for more */
3367                         break;
3368                 case TCFG_CHAIN_POSITION:
3369                         if( goi->isconfigure ){
3370                                 Jim_Obj *o;
3371                                 jtag_tap_t *tap;
3372                                 target_free_all_working_areas(target);
3373                                 e = Jim_GetOpt_Obj( goi, &o );
3374                                 if( e != JIM_OK ){
3375                                         return e;
3376                                 }
3377                                 tap = jtag_TapByJimObj( goi->interp, o );
3378                                 if( tap == NULL ){
3379                                         return JIM_ERR;
3380                                 }
3381                                 /* make this exactly 1 or 0 */
3382                                 target->tap = tap;
3383                         } else {
3384                                 if( goi->argc != 0 ){
3385                                         goto no_params;
3386                                 }
3387                         }
3388                         Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3389                         /* loop for more e*/
3390                         break;
3391                 }
3392         } /* while( goi->argc ) */
3393
3394
3395                 /* done - we return */
3396         return JIM_OK;
3397 }
3398
3399 /** this is the 'tcl' handler for the target specific command */
3400 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3401 {
3402         Jim_GetOptInfo goi;
3403         jim_wide a,b,c;
3404         int x,y,z;
3405         u8  target_buf[32];
3406         Jim_Nvp *n;
3407         target_t *target;
3408         struct command_context_s *cmd_ctx;
3409         int e;
3410
3411         enum {
3412                 TS_CMD_CONFIGURE,
3413                 TS_CMD_CGET,
3414
3415                 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3416                 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3417                 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3418                 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3419                 TS_CMD_EXAMINE,
3420                 TS_CMD_POLL,
3421                 TS_CMD_RESET,
3422                 TS_CMD_HALT,
3423                 TS_CMD_WAITSTATE,
3424                 TS_CMD_EVENTLIST,
3425                 TS_CMD_CURSTATE,
3426                 TS_CMD_INVOKE_EVENT,
3427         };
3428
3429         static const Jim_Nvp target_options[] = {
3430                 { .name = "configure", .value = TS_CMD_CONFIGURE },
3431                 { .name = "cget", .value = TS_CMD_CGET },
3432                 { .name = "mww", .value = TS_CMD_MWW },
3433                 { .name = "mwh", .value = TS_CMD_MWH },
3434                 { .name = "mwb", .value = TS_CMD_MWB },
3435                 { .name = "mdw", .value = TS_CMD_MDW },
3436                 { .name = "mdh", .value = TS_CMD_MDH },
3437                 { .name = "mdb", .value = TS_CMD_MDB },
3438                 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3439                 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3440                 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3441                 { .name = "curstate",  .value = TS_CMD_CURSTATE },
3442
3443                 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3444                 { .name = "arp_poll", .value = TS_CMD_POLL },
3445                 { .name = "arp_reset", .value = TS_CMD_RESET },
3446                 { .name = "arp_halt", .value = TS_CMD_HALT },
3447                 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3448                 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3449
3450                 { .name = NULL, .value = -1 },
3451         };
3452
3453         /* go past the "command" */
3454         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3455
3456         target = Jim_CmdPrivData( goi.interp );
3457         cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3458
3459         /* commands here are in an NVP table */
3460         e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3461         if( e != JIM_OK ){
3462                 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3463                 return e;
3464         }
3465         /* Assume blank result */
3466         Jim_SetEmptyResult( goi.interp );
3467
3468         switch( n->value ){
3469         case TS_CMD_CONFIGURE:
3470                 if( goi.argc < 2 ){
3471                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3472                         return JIM_ERR;
3473                 }
3474                 goi.isconfigure = 1;
3475                 return target_configure( &goi, target );
3476         case TS_CMD_CGET:
3477                 // some things take params
3478                 if( goi.argc < 1 ){
3479                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3480                         return JIM_ERR;
3481                 }
3482                 goi.isconfigure = 0;
3483                 return target_configure( &goi, target );
3484                 break;
3485         case TS_CMD_MWW:
3486         case TS_CMD_MWH:
3487         case TS_CMD_MWB:
3488                 /* argv[0] = cmd
3489                  * argv[1] = address
3490                  * argv[2] = data
3491                  * argv[3] = optional count.
3492                  */
3493
3494                 if( (goi.argc == 3) || (goi.argc == 4) ){
3495                         /* all is well */
3496                 } else {
3497                 mwx_error:
3498                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3499                         return JIM_ERR;
3500                 }
3501
3502                 e = Jim_GetOpt_Wide( &goi, &a );
3503                 if( e != JIM_OK ){
3504                         goto mwx_error;
3505                 }
3506
3507                 e = Jim_GetOpt_Wide( &goi, &b );
3508                 if( e != JIM_OK ){
3509                         goto mwx_error;
3510                 }
3511                 if( goi.argc ){
3512                         e = Jim_GetOpt_Wide( &goi, &c );
3513                         if( e != JIM_OK ){
3514                                 goto mwx_error;
3515                         }
3516                 } else {
3517                         c = 1;
3518                 }
3519
3520                 switch( n->value ){
3521                 case TS_CMD_MWW:
3522                         target_buffer_set_u32( target, target_buf, b );
3523                         b = 4;
3524                         break;
3525                 case TS_CMD_MWH:
3526                         target_buffer_set_u16( target, target_buf, b );
3527                         b = 2;
3528                         break;
3529                 case TS_CMD_MWB:
3530                         target_buffer_set_u8( target, target_buf, b );
3531                         b = 1;
3532                         break;
3533                 }
3534                 for( x = 0 ; x < c ; x++ ){
3535                         e = target_write_memory( target, a, b, 1, target_buf );
3536                         if( e != ERROR_OK ){
3537                                 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3538                                 return JIM_ERR;
3539                         }
3540                         /* b = width */
3541                         a = a + b;
3542                 }
3543                 return JIM_OK;
3544                 break;
3545
3546                 /* display */
3547         case TS_CMD_MDW:
3548         case TS_CMD_MDH:
3549         case TS_CMD_MDB:
3550                 /* argv[0] = command
3551                  * argv[1] = address
3552                  * argv[2] = optional count
3553                  */
3554                 if( (goi.argc == 2) || (goi.argc == 3) ){
3555                         Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3556                         return JIM_ERR;
3557                 }
3558                 e = Jim_GetOpt_Wide( &goi, &a );
3559                 if( e != JIM_OK ){
3560                         return JIM_ERR;
3561                 }
3562                 if( goi.argc ){
3563                         e = Jim_GetOpt_Wide( &goi, &c );
3564                         if( e != JIM_OK ){
3565                                 return JIM_ERR;
3566                         }
3567                 } else {
3568                         c = 1;
3569                 }
3570                 b = 1; /* shut up gcc */
3571                 switch( n->value ){
3572                 case TS_CMD_MDW:
3573                         b =  4;
3574                         break;
3575                 case TS_CMD_MDH:
3576                         b = 2;
3577                         break;
3578                 case TS_CMD_MDB:
3579                         b = 1;
3580                         break;
3581                 }
3582
3583                 /* convert to "bytes" */
3584                 c = c * b;
3585                 /* count is now in 'BYTES' */
3586                 while( c > 0 ){
3587                         y = c;
3588                         if( y > 16 ){
3589                                 y = 16;
3590                         }
3591                         e = target_read_memory( target, a, b, y / b, target_buf );
3592                         if( e != ERROR_OK ){
3593                                 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3594                                 return JIM_ERR;
3595                         }
3596
3597                         Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3598                         switch( b ){
3599                         case 4:
3600                                 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3601                                         z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3602                                         Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3603                                 }
3604                                 for( ; (x < 16) ; x += 4 ){
3605                                         Jim_fprintf( interp, interp->cookie_stdout, "         " );
3606                                 }
3607                                 break;
3608                         case 2:
3609                                 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3610                                         z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3611                                         Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3612                                 }
3613                                 for( ; (x < 16) ; x += 2 ){
3614                                         Jim_fprintf( interp, interp->cookie_stdout, "     " );
3615                                 }
3616                                 break;
3617                         case 1:
3618                         default:
3619                                 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3620                                         z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3621                                         Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3622                                 }
3623                                 for( ; (x < 16) ; x += 1 ){
3624                                         Jim_fprintf( interp, interp->cookie_stdout, "   " );
3625                                 }
3626                                 break;
3627                         }
3628                         /* ascii-ify the bytes */
3629                         for( x = 0 ; x < y ; x++ ){
3630                                 if( (target_buf[x] >= 0x20) &&
3631                                         (target_buf[x] <= 0x7e) ){
3632                                         /* good */
3633                                 } else {
3634                                         /* smack it */
3635                                         target_buf[x] = '.';
3636                                 }
3637                         }
3638                         /* space pad  */
3639                         while( x < 16 ){
3640                                 target_buf[x] = ' ';
3641                                 x++;
3642                         }
3643                         /* terminate */
3644                         target_buf[16] = 0;
3645                         /* print - with a newline */
3646                         Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3647                         /* NEXT... */
3648                         c -= 16;
3649                         a += 16;
3650                 }
3651                 return JIM_OK;
3652         case TS_CMD_MEM2ARRAY:
3653                 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3654                 break;
3655         case TS_CMD_ARRAY2MEM:
3656                 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3657                 break;
3658         case TS_CMD_EXAMINE:
3659                 if( goi.argc ){
3660                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3661                         return JIM_ERR;
3662                 }
3663                 e = target->type->examine( target );
3664                 if( e != ERROR_OK ){
3665                         Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3666                         return JIM_ERR;
3667                 }
3668                 return JIM_OK;
3669         case TS_CMD_POLL:
3670                 if( goi.argc ){
3671                         Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3672                         return JIM_ERR;
3673                 }
3674                 if( !(target->type->examined) ){
3675                         e = ERROR_TARGET_NOT_EXAMINED;
3676                 } else {
3677                         e = target->type->poll( target );
3678                 }
3679                 if( e != ERROR_OK ){
3680                         Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3681                         return JIM_ERR;
3682                 } else {
3683                         return JIM_OK;
3684                 }
3685                 break;
3686         case TS_CMD_RESET:
3687                 if( goi.argc != 2 ){
3688                         Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3689                         return JIM_ERR;
3690                 }
3691                 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3692                 if( e != JIM_OK ){
3693                         Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3694                         return e;
3695                 }
3696                 /* the halt or not param */
3697                 e = Jim_GetOpt_Wide( &goi, &a);
3698                 if( e != JIM_OK ){
3699                         return e;
3700                 }
3701                 /* determine if we should halt or not. */
3702                 target->reset_halt = !!a;
3703                 /* When this happens - all workareas are invalid. */
3704                 target_free_all_working_areas_restore(target, 0);
3705
3706                 /* do the assert */
3707                 if( n->value == NVP_ASSERT ){
3708                         target->type->assert_reset( target );
3709                 } else {
3710                         target->type->deassert_reset( target );
3711                 }
3712                 return JIM_OK;
3713         case TS_CMD_HALT:
3714                 if( goi.argc ){
3715                         Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3716                         return JIM_ERR;
3717                 }
3718                 target->type->halt( target );
3719                 return JIM_OK;
3720         case TS_CMD_WAITSTATE:
3721                 /* params:  <name>  statename timeoutmsecs */
3722                 if( goi.argc != 2 ){
3723                         Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3724                         return JIM_ERR;
3725                 }
3726                 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3727                 if( e != JIM_OK ){
3728                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3729                         return e;
3730                 }
3731                 e = Jim_GetOpt_Wide( &goi, &a );
3732                 if( e != JIM_OK ){
3733                         return e;
3734                 }
3735                 e = target_wait_state( target, n->value, a );
3736                 if( e != ERROR_OK ){
3737                         Jim_SetResult_sprintf( goi.interp,
3738                                                                    "target: %s wait %s fails (%d) %s",
3739                                                                    target->cmd_name,
3740                                                                    n->name,
3741                                                                    e, target_strerror_safe(e) );
3742                         return JIM_ERR;
3743                 } else {
3744                         return JIM_OK;
3745                 }
3746         case TS_CMD_EVENTLIST:
3747                 /* List for human, Events defined for this target.
3748                  * scripts/programs should use 'name cget -event NAME'
3749                  */
3750                 {
3751                         target_event_action_t *teap;
3752                         teap = target->event_action;
3753                         command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3754                                                    target->target_number,
3755                                                    target->cmd_name );
3756                         command_print( cmd_ctx, "%-25s | Body", "Event");
3757                         command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3758                         while( teap ){
3759                                 command_print( cmd_ctx,
3760                                                            "%-25s | %s",
3761                                                            Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3762                                                            Jim_GetString( teap->body, NULL ) );
3763                                 teap = teap->next;
3764                         }
3765                         command_print( cmd_ctx, "***END***");
3766                         return JIM_OK;
3767                 }
3768         case TS_CMD_CURSTATE:
3769                 if( goi.argc != 0 ){
3770                         Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3771                         return JIM_ERR;
3772                 }
3773                 Jim_SetResultString( goi.interp,
3774                                                          Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3775                 return JIM_OK;
3776         case TS_CMD_INVOKE_EVENT:
3777                 if( goi.argc != 1 ){
3778                         Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3779                         return JIM_ERR;
3780                 }
3781                 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3782                 if( e != JIM_OK ){
3783                         Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3784                         return e;
3785                 }
3786                 target_handle_event( target, n->value );
3787                 return JIM_OK;
3788         }
3789         return JIM_ERR;
3790 }
3791
3792 static int target_create( Jim_GetOptInfo *goi )
3793 {
3794         Jim_Obj *new_cmd;
3795         Jim_Cmd *cmd;
3796         const char *cp;
3797         char *cp2;
3798         int e;
3799         int x;
3800         target_t *target;
3801         struct command_context_s *cmd_ctx;
3802
3803         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3804         if( goi->argc < 3 ){
3805                 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3806                 return JIM_ERR;
3807         }
3808
3809         /* COMMAND */
3810         Jim_GetOpt_Obj( goi, &new_cmd );
3811         /* does this command exist? */
3812         cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3813         if( cmd ){
3814                 cp = Jim_GetString( new_cmd, NULL );
3815                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3816                 return JIM_ERR;
3817         }
3818
3819         /* TYPE */
3820         e = Jim_GetOpt_String( goi, &cp2, NULL );
3821         cp = cp2;
3822         /* now does target type exist */
3823         for( x = 0 ; target_types[x] ; x++ ){
3824                 if( 0 == strcmp( cp, target_types[x]->name ) ){
3825                         /* found */
3826                         break;
3827                 }
3828         }
3829         if( target_types[x] == NULL ){
3830                 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
3831                 for( x = 0 ; target_types[x] ; x++ ){
3832                         if( target_types[x+1] ){
3833                                 Jim_AppendStrings( goi->interp,
3834                                                                    Jim_GetResult(goi->interp),
3835                                                                    target_types[x]->name,
3836                                                                    ", ", NULL);
3837                         } else {
3838                                 Jim_AppendStrings( goi->interp,
3839                                                                    Jim_GetResult(goi->interp),
3840                                                                    " or ",
3841                                                                    target_types[x]->name,NULL );
3842                         }
3843                 }
3844                 return JIM_ERR;
3845         }
3846
3847         /* Create it */
3848         target = calloc(1,sizeof(target_t));
3849         /* set target number */
3850         target->target_number = new_target_number();
3851
3852         /* allocate memory for each unique target type */
3853         target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
3854
3855         memcpy( target->type, target_types[x], sizeof(target_type_t));
3856
3857         /* will be set by "-endian" */
3858         target->endianness = TARGET_ENDIAN_UNKNOWN;
3859
3860         target->working_area        = 0x0;
3861         target->working_area_size   = 0x0;
3862         target->working_areas       = NULL;
3863         target->backup_working_area = 0;
3864
3865         target->state               = TARGET_UNKNOWN;
3866         target->debug_reason        = DBG_REASON_UNDEFINED;
3867         target->reg_cache           = NULL;
3868         target->breakpoints         = NULL;
3869         target->watchpoints         = NULL;
3870         target->next                = NULL;
3871         target->arch_info           = NULL;
3872
3873         target->display             = 1;
3874
3875         /* initialize trace information */
3876         target->trace_info = malloc(sizeof(trace_t));
3877         target->trace_info->num_trace_points         = 0;
3878         target->trace_info->trace_points_size        = 0;
3879         target->trace_info->trace_points             = NULL;
3880         target->trace_info->trace_history_size       = 0;
3881         target->trace_info->trace_history            = NULL;
3882         target->trace_info->trace_history_pos        = 0;
3883         target->trace_info->trace_history_overflowed = 0;
3884
3885         target->dbgmsg          = NULL;
3886         target->dbg_msg_enabled = 0;
3887
3888         target->endianness = TARGET_ENDIAN_UNKNOWN;
3889
3890         /* Do the rest as "configure" options */
3891         goi->isconfigure = 1;
3892         e = target_configure( goi, target);
3893
3894         if (target->tap == NULL)
3895         {
3896                 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
3897                 e=JIM_ERR;
3898         }
3899
3900         if( e != JIM_OK ){
3901                 free( target->type );
3902                 free( target );
3903                 return e;
3904         }
3905
3906         if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
3907                 /* default endian to little if not specified */
3908                 target->endianness = TARGET_LITTLE_ENDIAN;
3909         }
3910
3911         /* incase variant is not set */
3912         if (!target->variant)
3913                 target->variant = strdup("");
3914
3915         /* create the target specific commands */
3916         if( target->type->register_commands ){
3917                 (*(target->type->register_commands))( cmd_ctx );
3918         }
3919         if( target->type->target_create ){
3920                 (*(target->type->target_create))( target, goi->interp );
3921         }
3922
3923         /* append to end of list */
3924         {
3925                 target_t **tpp;
3926                 tpp = &(all_targets);
3927                 while( *tpp ){
3928                         tpp = &( (*tpp)->next );
3929                 }
3930                 *tpp = target;
3931         }
3932
3933         cp = Jim_GetString( new_cmd, NULL );
3934         target->cmd_name = strdup(cp);
3935
3936         /* now - create the new target name command */
3937         e = Jim_CreateCommand( goi->interp,
3938                                                    /* name */
3939                                                    cp,
3940                                                    tcl_target_func, /* C function */
3941                                                    target, /* private data */
3942                                                    NULL ); /* no del proc */
3943
3944         return e;
3945 }
3946
3947 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3948 {
3949         int x,r,e;
3950         jim_wide w;
3951         struct command_context_s *cmd_ctx;
3952         target_t *target;
3953         Jim_GetOptInfo goi;
3954         enum tcmd {
3955                 /* TG = target generic */
3956                 TG_CMD_CREATE,
3957                 TG_CMD_TYPES,
3958                 TG_CMD_NAMES,
3959                 TG_CMD_CURRENT,
3960                 TG_CMD_NUMBER,
3961                 TG_CMD_COUNT,
3962         };
3963         const char *target_cmds[] = {
3964                 "create", "types", "names", "current", "number",
3965                 "count",
3966                 NULL /* terminate */
3967         };
3968
3969         LOG_DEBUG("Target command params:");
3970         LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
3971
3972         cmd_ctx = Jim_GetAssocData( interp, "context" );
3973
3974         Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3975
3976         if( goi.argc == 0 ){
3977                 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
3978                 return JIM_ERR;
3979         }
3980
3981         /* Jim_GetOpt_Debug( &goi ); */
3982         r = Jim_GetOpt_Enum( &goi, target_cmds, &x   );
3983         if( r != JIM_OK ){
3984                 return r;
3985         }
3986
3987         switch(x){
3988         default:
3989                 Jim_Panic(goi.interp,"Why am I here?");
3990                 return JIM_ERR;
3991         case TG_CMD_CURRENT:
3992                 if( goi.argc != 0 ){
3993                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
3994                         return JIM_ERR;
3995                 }
3996                 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
3997                 return JIM_OK;
3998         case TG_CMD_TYPES:
3999                 if( goi.argc != 0 ){
4000                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4001                         return JIM_ERR;
4002                 }
4003                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4004                 for( x = 0 ; target_types[x] ; x++ ){
4005                         Jim_ListAppendElement( goi.interp,
4006                                                                    Jim_GetResult(goi.interp),
4007                                                                    Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4008                 }
4009                 return JIM_OK;
4010         case TG_CMD_NAMES:
4011                 if( goi.argc != 0 ){
4012                         Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4013                         return JIM_ERR;
4014                 }
4015                 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4016                 target = all_targets;
4017                 while( target ){
4018                         Jim_ListAppendElement( goi.interp,
4019                                                                    Jim_GetResult(goi.interp),
4020                                                                    Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4021                         target = target->next;
4022                 }
4023                 return JIM_OK;
4024         case TG_CMD_CREATE:
4025                 if( goi.argc < 3 ){
4026                         Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name  ... config options ...");
4027                         return JIM_ERR;
4028                 }
4029                 return target_create( &goi );
4030                 break;
4031         case TG_CMD_NUMBER:
4032                 if( goi.argc != 1 ){
4033                         Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4034                         return JIM_ERR;
4035                 }
4036                 e = Jim_GetOpt_Wide( &goi, &w );
4037                 if( e != JIM_OK ){
4038                         return JIM_ERR;
4039                 }
4040                 {
4041                         target_t *t;
4042                         t = get_target_by_num(w);
4043                         if( t == NULL ){
4044                                 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4045                                 return JIM_ERR;
4046                         }
4047                         Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4048                         return JIM_OK;
4049                 }
4050         case TG_CMD_COUNT:
4051                 if( goi.argc != 0 ){
4052                         Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4053                         return JIM_ERR;
4054                 }
4055                 Jim_SetResult( goi.interp,
4056                                            Jim_NewIntObj( goi.interp, max_target_number()));
4057                 return JIM_OK;
4058         }
4059
4060         return JIM_ERR;
4061 }
4062
4063
4064 struct FastLoad
4065 {
4066         u32 address;
4067         u8 *data;
4068         int length;
4069
4070 };
4071
4072 static int fastload_num;
4073 static struct FastLoad *fastload;
4074
4075 static void free_fastload(void)
4076 {
4077         if (fastload!=NULL)
4078         {
4079                 int i;
4080                 for (i=0; i<fastload_num; i++)
4081                 {
4082                         if (fastload[i].data)
4083                                 free(fastload[i].data);
4084                 }
4085                 free(fastload);
4086                 fastload=NULL;
4087         }
4088 }
4089
4090
4091
4092
4093 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4094 {
4095         u8 *buffer;
4096         u32 buf_cnt;
4097         u32 image_size;
4098         u32 min_address=0;
4099         u32 max_address=0xffffffff;
4100         int i;
4101         int retval;
4102
4103         image_t image;
4104
4105         duration_t duration;
4106         char *duration_text;
4107
4108         if ((argc < 1)||(argc > 5))
4109         {
4110                 return ERROR_COMMAND_SYNTAX_ERROR;
4111         }
4112
4113         /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4114         if (argc >= 2)
4115         {
4116                 image.base_address_set = 1;
4117                 image.base_address = strtoul(args[1], NULL, 0);
4118         }
4119         else
4120         {
4121                 image.base_address_set = 0;
4122         }
4123
4124
4125         image.start_address_set = 0;
4126
4127         if (argc>=4)
4128         {
4129                 min_address=strtoul(args[3], NULL, 0);
4130         }
4131         if (argc>=5)
4132         {
4133                 max_address=strtoul(args[4], NULL, 0)+min_address;
4134         }
4135
4136         if (min_address>max_address)
4137         {
4138                 return ERROR_COMMAND_SYNTAX_ERROR;
4139         }
4140
4141         duration_start_measure(&duration);
4142
4143         if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4144         {
4145                 return ERROR_OK;
4146         }
4147
4148         image_size = 0x0;
4149         retval = ERROR_OK;
4150         fastload_num=image.num_sections;
4151         fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4152         if (fastload==NULL)
4153         {
4154                 image_close(&image);
4155                 return ERROR_FAIL;
4156         }
4157         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4158         for (i = 0; i < image.num_sections; i++)
4159         {
4160                 buffer = malloc(image.sections[i].size);
4161                 if (buffer == NULL)
4162                 {
4163                         command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4164                         break;
4165                 }
4166
4167                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4168                 {
4169                         free(buffer);
4170                         break;
4171                 }
4172
4173                 u32 offset=0;
4174                 u32 length=buf_cnt;
4175
4176
4177                 /* DANGER!!! beware of unsigned comparision here!!! */
4178
4179                 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4180                                 (image.sections[i].base_address<max_address))
4181                 {
4182                         if (image.sections[i].base_address<min_address)
4183                         {
4184                                 /* clip addresses below */
4185                                 offset+=min_address-image.sections[i].base_address;
4186                                 length-=offset;
4187                         }
4188
4189                         if (image.sections[i].base_address+buf_cnt>max_address)
4190                         {
4191                                 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4192                         }
4193
4194                         fastload[i].address=image.sections[i].base_address+offset;
4195                         fastload[i].data=malloc(length);
4196                         if (fastload[i].data==NULL)
4197                         {
4198                                 free(buffer);
4199                                 break;
4200                         }
4201                         memcpy(fastload[i].data, buffer+offset, length);
4202                         fastload[i].length=length;
4203
4204                         image_size += length;
4205                         command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4206                 }
4207
4208                 free(buffer);
4209         }
4210
4211         duration_stop_measure(&duration, &duration_text);
4212         if (retval==ERROR_OK)
4213         {
4214                 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4215                 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4216         }
4217         free(duration_text);
4218
4219         image_close(&image);
4220
4221         if (retval!=ERROR_OK)
4222         {
4223                 free_fastload();
4224         }
4225
4226         return retval;
4227 }
4228
4229 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4230 {
4231         if (argc>0)
4232                 return ERROR_COMMAND_SYNTAX_ERROR;
4233         if (fastload==NULL)
4234         {
4235                 LOG_ERROR("No image in memory");
4236                 return ERROR_FAIL;
4237         }
4238         int i;
4239         int ms=timeval_ms();
4240         int size=0;
4241         int retval=ERROR_OK;
4242         for (i=0; i<fastload_num;i++)
4243         {
4244                 target_t *target = get_current_target(cmd_ctx);
4245                 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4246                 if (retval==ERROR_OK)
4247                 {
4248                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4249                 }
4250                 size+=fastload[i].length;
4251         }
4252         int after=timeval_ms();
4253         command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4254         return retval;
4255 }